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Titre : Théorie motivique des n÷uds

Mots clés : Théorie de l'homotopie motivique, Théorie des n÷uds, Entrelacs,
Groupes de Witt, K-théorie de Milnor-Witt, Complexe de Rost-Schmid.

Résumé : Dans ce manuscrit, nous
créons une théorie en géométrie al-
gébrique par analogie avec la théorie des
n÷uds. Étant donné que cette nou-
velle théorie s'appuie sur la théorie de
l'homotopie motivique (plus précisément,
sur la théorie de l'intersection quadra-
tique), nous la nommons théorie mo-
tivique des n÷uds. Plus précisément, nous
étudions l'enlacement motivique: com-
ment deux F -sous-schémas fermés dis-
joints dans un F -schéma ambiant peu-
vent être enlacés (F étant un corps par-
fait). En théorie des n÷uds, l'enlacement
d'un entrelacs orienté à deux composantes
(i.e. de deux n÷uds orientés disjoints)
est un entier qui compte combien de fois
une des composantes tourne autour de
l'autre composante. Nous dé�nissons des
analogues en géométrie algébrique des en-
trelacs orientés à deux composantes et
de l'enlacement; nous appelons ces ana-
logues de l'enlacement des enlacements
quadratiques. Nos enlacements quadra-
tiques ne sont pas nécessairement des
entiers; ceux que nous étudions le plus

sont des éléments du groupe de Witt du
corps de base F , qui est un groupe de
classes d'équivalence de formes bilinéaires
symétriques sur F (ou de manière équiv-
alente, de formes quadratiques sur F ,
quand la caractéristique de F est dif-
férente de 2). Dans un premier temps
nous répondons aux questions qui émer-
gent naturellement de ces enlacements
quadratiques et dans un second temps
nous créons des méthodes de calcul des
enlacements quadratiques. Ces méthodes
s'appuient sur des formules explicites pour
les morphismes de résidus de la K-théorie
de Milnor-Witt (qui permettent de cal-
culer des morphismes de bord pour les
complexes de Rost-Schmid) et pour le pro-
duit d'intersection de l'anneau de Rost-
Schmid (et en particulier de l'anneau de
Chow-Witt). Grâce à ces méthodes, nous
calculons explicitement nos enlacements
quadratiques sur des exemples. Certains
de ces exemples sont inspirés de la théorie
des n÷uds, plus spéci�quement des en-
trelacs toriques (notamment les entrelacs
de Hopf et de Salomon).

Title: Motivic knot theory

Keywords: Motivic homotopy theory, Knot theory, Links, Witt groups, Milnor-Witt
K-theory, Rost-Schmid complex.

Abstract: In this thesis, we introduce a
counterpart in algebraic geometry to knot
theory. Since this new theory uses motivic
homotopy theory (speci�cally, quadratic
intersection theory), we name it motivic
knot theory. We focus on motivic linking,
which means that we study how two dis-
joint closed F -subschemes of an ambient
F -scheme can be intertwined, i.e. linked
together (where F is a perfect �eld). In
knot theory, the linking number of an ori-
ented link with two components (i.e. of
two disjoint oriented knots) is an integer
which counts how many times one of the
components turns around the other com-
ponent. We de�ne counterparts in alge-
braic geometry to oriented links with two
components and to the linking number;
we call these latter counterparts quadratic
linking degrees. Our quadratic linking de-
grees are not necessarily integers; the ones

we study the most take values in the Witt
group of the ground �eld F , which is a
group of equivalence classes of symmetric
bilinear forms over F (or equivalently, of
quadratic forms over F , when the char-
acteristic of F is di�erent from 2). Af-
ter answering questions which naturally
arise from these quadratic linking degrees,
we devise methods to compute them.
These methods rely on explicit formulas
for the residue morphisms of Milnor-Witt
K-theory (from which boundary maps
for the Rost-Schmid complexes are con-
structed) and for the intersection prod-
uct of the Rost-Schmid ring (and in par-
ticular of the Chow-Witt ring). Using
these methods, we explicitly compute our
quadratic linking degrees on examples.
Some of these examples are inspired by
knot theory, speci�cally by torus links (in-
cluding the Hopf and Solomon links).
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Introduction

Knot theory emerged in the end of the nineteenth century and is still widely
studied today. Motivic knot theory is a new theory which begins with
this thesis and is a counterpart in algebraic geometry to knot theory. We
call it motivic knot theory because it relies heavily on motivic homotopy
theory (speci�cally on quadratic intersection theory). Before we describe
the contents of this thesis, let us recall some notions from these theories we
have mentioned.

Knot theory

Knots in knot theory are similar to knots in everyday life, except that the
two ends of the piece of string are glued together and the string has no
thickness, so that a knot is an embedding of the circle S1 in R3, or rather
in the 3-sphere S3 (which is R3 with a point at in�nity). Knots have two
possible orientations (see Figure 1.1 on page 23 for the orientations of the
trivial knot (i.e. the circle), which is called �unknot�) and oriented knots
(i.e. knots with a �xed orientation) are important objects of study in knot
theory.

In addition to (oriented) knots, knot theorists are also interested in
(oriented) links, which are �nite disjoint unions of (oriented) knots (which
are called the components of the link). Of particular interest to us is the
linking number of an oriented link with two components, which is an integer
in Z which counts the number of times one of the components turns around
the other component (the sign indicating the direction it turns in). The
absolute value of the linking number does not depend on the orientations
(but it is important to have orientations in order to compute it). The linking
number has several applications outside of mathematics, one of which is in
the study of DNA supercoiling (see for instance the article [BOS02]).
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Introduction

Motivic homotopy theory and quadratic

intersection theory

Motivic homotopy theory began in 1999 with Morel and Voevodsky's article
[MV99] and has already proved very useful (for instance, motivic homotopy
theory was used to prove Milnor's conjecture and later on its generalisation
the Bloch-Kato conjecture). This theory applies methods from algebraic
topology to algebraic geometry, which is why it is particularly useful for
our endeavor: creating a counterpart to knot theory in algebraic geome-
try. We are particularly interested in a theory which is central in motivic
homotopy theory: quadratic intersection theory. In quadratic intersection
theory, instead of considering Z-linear combinations of subvarieties of a
scheme, we consider subvarieties together with coe�cients in Milnor-Witt
K-theory graded rings (which are constructions with a deep relationship
with motivic homotopy theory, see [Mor12, Corollary 1.25]) together with
�twists� which are very useful for considerations pertaining to orientations.
The term �quadratic� comes from the fact that for every perfect �eld F and
for all n < 0, the n-th Milnor-Witt K-theory group KMW

n (F ) is canonically
isomorphic to the Witt group W(F ) and the ring KMW

0 (F ) is canonically
isomorphic to the Grothendieck-Witt ring GW(F ); the Witt ring W(F ) and
Grothendieck-Witt ring GW(F ) being constructed from symmetric bilinear
forms on F , or equivalently from quadratic forms on F if the characteristic
of F is di�erent from 2. Milnor-Witt K-theory comes with residue mor-
phisms from which �boundary maps� are constructed in quadratic intersec-
tion theory. These boundary maps, together with the intersection product
in quadratic intersection theory, which is the product of the �Rost-Schmid
ring�� which generalises the �Chow-Witt ring� and is the direct sum of the
�Rost-Schmid groups�� are tools which are crucial for this thesis.

A bird's-eye view of the thesis

In this thesis, we de�ne counterparts in algebraic geometry to oriented links
with two components and to the linking number. In a sense, we answer
the question �How many times does this closed F -subscheme turn around
this other closed F -subscheme in this ambient F -scheme?� (where F is a
perfect �eld and the two closed F -subschemes in question are disjoint). Our
answer is an element of the Witt group W(F ) (thus is an integer in the case
F = R, but not in general) or of the Grothendieck-Witt group GW(F ) or
of the �rst Milnor-Witt K-theory group KMW

1 (F ), or is a couple of such
elements (depending on the context).
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A bird's-eye view of the thesis

The �rst counterpart to the linking number we present in this thesis
is the ambient quadratic linking degree. It is thus named because it is
obtained from an element (called the ambient quadratic linking class) of
a Rost-Schmid group of the ambient F -scheme (similarly to the linking
number which can be obtained from an element of a singular cohomology
group of the ambient 3-sphere S3). In the cases which are studied in this
thesis, the ambient quadratic linking degree is in the Witt group W(F ) or
in the Grothendieck-Witt group GW(F ).

The other counterpart to the linking number (or rather to the linking
couple, whose components are the linking number up to sign) we present in
this thesis is the quadratic linking degree couple. This couple is obtained
from an element (called the quadratic linking class) of a Rost-Schmid group
of the link (similarly to the linking couple which is obtained from an element
of a singular cohomology group of the link). In the cases which are studied
in this thesis, each of the components of the quadratic linking degree couple
is in W(F ), in GW(F ), or in KMW

1 (F ).
Unlike the quadratic linking class and the ambient quadratic linking

class which can be de�ned in a rather general context, the ambient quadratic
linking degree requires knowledge of the Rost-Schmid group in which the
ambient quadratic linking class lives (namely, an isomorphism between this
group and a well-known group, such as W(F )) and the quadratic linking
degree couple requires knowledge of the Rost-Schmid group in which the
quadratic linking class lives (namely, an isomorphism between this group
and a well-known group, such as W(F )⊕W(F )).

Thus, the ambient quadratic linking degree and the quadratic linking de-
gree couple complete each other well, since the former only requires knowl-
edge of Rost-Schmid groups of the ambient F -scheme (which is useful in
situations in which the Rost-Schmid groups of the link are not well-known)
while the latter only requires knowledge of a Rost-Schmid group of the link
and the fact that some Rost-Schmid groups of the ambient F -scheme are
zero (which is useful in situations in which the Rost-Schmid groups of the
ambient F -scheme are not well-known).

Since the ambient quadratic linking degree and the quadratic linking
degree couple depend on the orientation of the oriented link, we also de�ne
�invariants of the quadratic linking degree�. These invariants are quantities
computed from the ambient quadratic linking degree or the quadratic link-
ing degree couple which do not depend on the orientation of the oriented
link and thus anwer more accurately the question �How many times does
this closed F -subscheme turn around this other closed F -subscheme in this
ambient F -scheme?�. In knot theory, the absolute value of the linking num-
ber is the answer to how many times one knot turns around another knot,
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Introduction

and it answers completely this question since it is the only information we
can get from the linking number which does not depend on the choices of
orientations. In motivic knot theory, it is much harder to �nd interesting
invariants of the quadratic linking degree. We �nd several such invariants
by looking closely at the structure of the Witt group W(F ) and at the
structure of the Grothendieck-Witt group GW(F ).

After we de�ne these new mathematical objects and prove results which
answer questions which naturally arise from these, we turn to computations.
There were two main di�culties to overcome in order to be able to compute
the ambient quadratic linking degree, the quadratic linking degree couple
and their invariants:

� The quadratic linking class (which is an intermediate step both for the
ambient quadratic linking degree and for the quadratic linking degree
couple) is de�ned as the image by a boundary map of an intersection
product in quadratic intersection theory, but the de�nitions of the
intersection product and of the boundary map are not well-suited to
computations. We gave an explicit de�nition (i.e. one well-suited
to computations) of the residue morphisms of Milnor-Witt K-theory
(and proved that it is equivalent to the classical de�nition) which
enabled computations of the boundary maps in the situations in which
we need them. A recent formula also enabled computations of the
intersection product in some of the situations in which we need it, so
that computing the quadratic linking class became possible in several
situations.

� To get the ambient quadratic linking degree or the quadratic linking
degree couple from the quadratic linking class, we need explicit (and
computable) isomorphisms between some Rost-Schmid groups and
well-known groups (such as W(F )). This has taken some work (and
will continue to take some work) since most results on the structure of
Rost-Schmid groups are abstract results (in the sense that they show
that a Rost-Schmid group is isomorphic to a well-known group in a
way which does not provide an isomorphism between these groups).

In this thesis, we present methods to compute the quadratic linking
class, the ambient quadratic linking class, the ambient quadratic linking
degree and the quadratic linking degree couple in some cases (in which the
ambient quadratic linking degree takes values in the Witt group W(F ) and
the quadratic linking degree couple takes values in W(F ) ⊕W(F )). We
then make explicit computations of these and of invariants of the quadratic
linking degree on several examples. The �rst of these examples, the Hopf
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Outline of the thesis

link, is a simple example over any perfect �eld. The second example is rather
a family of examples, which we call binary links, over any perfect �eld of
characteristic di�erent from 2, which we have created in order to realise
classes of binary quadratic forms in W(F ) as ambient quadratic linking
degrees (and also as components of quadratic linking degree couples) and
to showcase the usefulness of an invariant of the quadratic linking degree
we have de�ned. (Note that classes of unary quadratic forms in W(F ) can
be realised as ambient quadratic linking degrees (and also as components
of quadratic linking degree couples) of variants of the Hopf link.) The third
family of examples, which we consider over the �eld R of real numbers, is
inspired by knot theory: it is a family of examples, indexed by n ∈ N, which
is a counterpart to a family of links in knot theory (which is also indexed
by n ∈ N), and veri�es that the absolute value of the ambient quadratic
linking degree (which is in W(R) ' Z) of the n-th member of this family
(which is equal to n) is equal to the absolue value of the linking number of
its counterpart in knot theory. The same is true of the absolute value of
each component of the quadratic linking degree couple of the n-th member
of this family.

Outline of the thesis

We now discuss the contents of this thesis in some more detail.
Let us begin by highlighting the fact that there is a list of notations on

page 17 which recalls usual notations. Notations which are speci�c to this
thesis are introduced at the beginning of the section they are used in if they
are local notations and in environments (especially Notation environments)
if they are global notations. In any case, all important notations used in this
thesis are referenced (with page numbers) in the Index of notations and all
important words and phrases used in this thesis are referenced (with page
numbers) in the General index (you may �nd these at the end of this thesis).

This thesis is divided into two parts.
Part I, Mathematical background, presents material which is important

for the development of motivic knot theory. Most of this material is not new,
with an important exception: Theorem 2.46 which enables the computation
of the residue morphisms of Milnor-Witt K-theory (which we also included
in our preprint [Lem23]). In Chapter 1, we present the aspects of knot
theory and higher-dimensional knot theory which are important for the
development of motivic knot theory. In Chapter 2, we present the Witt
ring, the Grothendieck-Witt ring and the Milnor-Witt K-theory ring. In
this chapter we also prove Theorem 2.46, which will be used to compute
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Introduction

boundary maps in Chapters 6 and 7. In Chapter 3, we present the aspects
of quadratic intersection theory which are useful for the development of
motivic knot theory.

Part II, Motivic linking, is the beginning of motivic knot theory. In this
part, we de�ne oriented links with two components in algebraic geometry
and we study their linking, i.e. how their components are intertwined.
Everything in this part is new (note that a study of oriented links of type
(A2

F \ {0},A2
F \ {0},A4

F \ {0}) was also included in our preprint [Lem23]).
In Chapter 4, we de�ne counterparts in algebraic geometry to oriented

links with two components (i.e. couples of disjoint oriented knots) and to
the linking class (from which the linking number and the linking couple
can be de�ned). We call this latter counterpart the quadratic linking class.
The quadratic linking class is an interesting object of study because it
contains the linking information of the oriented link (i.e. the information
about how its components are intertwined) and does not depend on any
convention, unlike the ambient quadratic linking degree and the quadratic
linking degree couple. This allows the quadratic linking class to be de�ned
in a coherent manner in a very wide variety of contexts. More precisely,
we can associate a quadratic linking class to any couple (Z1, Z2) of disjoint
irreducible smooth �nite-type closed F -subschemes of same dimension in an
irreducible smooth �nite-type F -scheme X (with F a perfect �eld) which is
equipped with orientation classes of the normal sheaves of Z1 and Z2 in X
(in particular, the normal sheaves of Z1 and Z2 in X need to be orientable,
which means that their determinants need to be isomorphic to squares).
One of the reasons behind our statement that the quadratic linking class
is de�ned in a coherent manner is Theorem 4.23: the pullback along a
smooth morphism of the quadratic linking class of an oriented link with two
components is the quadratic linking class of the pullback of this oriented
link (under some minor additional assumptions). We end this chapter by
studying some special settings in which the study of the quadratic linking
class seems particularly interesting.

In Chapter 5, we de�ne counterparts in algebraic geometry to the linking
number and to the linking couple, which we call respectively the ambient
quadratic linking degree and the quadratic linking degree couple. The inclu-
sion of the �rst component of the oriented link in the ambient F -scheme
induces a morphism of Rost-Schmid groups which takes the part of the
quadratic linking class which lives over this �rst component to what we
call the ambient quadratic linking class. Note that the inclusion of the
second component of the oriented link in the ambient F -scheme induces
a morphism of Rost-Schmid groups which takes the part of the quadratic
linking class which lives over this second component to the opposite of the

10



Outline of the thesis

ambient quadratic linking class. The ambient quadratic linking class, like
the quadratic linking class, does not depend on any convention. However,
both of these are hard to understand (or rather their values are hard to un-
derstand), since it is di�cult to compare elements of Rost-Schmid groups
(especially in the case of the quadratic linking class, since it lives in a Rost-
Schmid group of the link). This is why we introduce the ambient quadratic
linking degree (respectively the quadratic linking degree couple), which is
obtained from the ambient quadratic linking class (resp. the quadratic link-
ing class) by an isomorphism between the Rost-Schmid group in which it
lives and a well-known group. These are easier to understand (in the sense
that comparisons of their values on di�erent oriented links are easier to
make), at the price of the introduction of a convention: the choice of the
above-mentioned isomorphism (since there are several such isomorphisms
in general). In the case of the ambient quadratic linking degree, this means
that we �x a convention for the ambient F -scheme (an isomorphism between
one of its Rost-Schmid groups and a well-known group) but in the case of
the quadratic linking degree couple the situation is more complicated: we
need to �x a convention for each link (an isomorphism between one of
its Rost-Schmid groups and a well-known group) in a coherent manner (so
that we can compare the quadratic linking degree couples of di�erent links).
This is why we introduce the notion of oriented links of type (Y1, Y2, X):
oriented links in the ambient F -scheme X together with a parametrisation
ϕ1 : Y1 → X of their �rst component (i.e. a closed immersion ϕ1 : Y1 → X
whose image is their �rst component) and a parametrisation ϕ2 : Y2 → X of
their second component (i.e. a closed immersion ϕ2 : Y2 → X whose image
is their second component). By using the couple of orientation classes and
the couple of parametrisations of an oriented link of type (Y1, Y2, X), we
obtain an isomorphism between the twisted Rost-Schmid group in which
its quadratic linking class lives and the direct sum of an untwisted Rost-
Schmid group of Y1 and of an untwisted Rost-Schmid group of Y2, and it
su�ces to �x once and for all an isomorphism between this direct sum and a
well-known group in order to have a quadratic linking degree couple which
is de�ned in a coherent manner for all oriented links of type (Y1, Y2, X).
We end this chapter with the creation of invariants of the quadratic linking
degree, which are quantities computed from the ambient quadratic linking
degree or from the quadratic linking degree couple which do not depend on
the orientations (nor on the parametrisations in some cases) of the oriented
link (of a certain type in the case of the quadratic linking degree couple).
See Propositions 5.25 and 5.30 for simple invariants of the quadratic link-
ing degree and Theorems 5.28 and 5.33 for more involved and potentially
more interesting invariants of the quadratic linking degree. In Section 7.2,
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we give examples (over the �eld Q of rational numbers) which show the
usefulness of Σ2 (applied to the ambient quadratic linking degree or to a
component of the quadratic linking degree couple (in W(Q))) which is the
�rst of these more involved invariants. More precisely, we show that Σ2 can
distinguish between in�nitely many oriented links. In Propositions 5.26
and 5.31, we create complete invariants of the quadratic linking degree over
the �eld R of real numbers (for the ambient quadratic linking degree, and
for the quadratic linking degree couple when none of its components is in
KMW

1 (R)). By �complete invariants�, we mean invariants which capture all
the information in the ambient quadratic linking degree or in the quadratic
linking degree couple which does not depend on the orientations.

In Chapter 6, we give methods to compute the quadratic linking class
(see Theorem 6.1), the ambient quadratic linking class (see Corollary 6.2),
the ambient quadratic linking degree (see Theorem 6.3) and the quadratic
linking degree couple (see Theorem 6.4) in the case A2

F \ {0} tA2
F \ {0} →

A4
F \ {0} under reasonable assumptions on the oriented link (and under

assumptions on j1 and j2, which parametrise di�erent (coherent) versions
of the quadratic linking class etc.). We also list other cases (in the beginning
of the chapter) in which similar theorems can be established (and have not
been established yet due to lack of time).

In Chapter 7, we give examples of oriented links in the case A2
F \ {0} t

A2
F \ {0} → A4

F \ {0} and compute the quadratic linking class, the ambient
quadratic linking class, the ambient quadratic linking degree, the quadratic
linking degree couple and invariants of the quadratic linking degree on these
examples. We begin by a simple example (the Hopf link, see Section 7.1)
which is de�ned over any perfect �eld F , then we consider a family of ex-
amples (the binary links, see Section 7.2) which are de�ned over any perfect
�eld of characteristic di�erent from 2 and which show that the class of any
binary quadratic form in W(F ) can be realised as an ambient quadratic
linking degree (and as a component of a quadratic linking degree couple);
the Hopf link and its variants already show that the class of any unary
quadratic form in W(F ) can be realised as an ambient quadratic linking
degree (and as a component of a quadratic linking degree couple). Finally,
in Section 7.3, we consider a family of examples over R which is inspired by
knot theory (speci�cally, by the torus links T (2, 2n)). More examples could
be tackled but have not been tackled yet due to lack of time.

Finally, let us highlight the fact that there is a list of future works on
page 16 which references (with page numbers) the Future work environ-
ments in this thesis.
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Chapter 1

Knot theory

Before we develop motivic linking in Part II � a counterpart in algebraic
geometry to classical linking � we introduce in this chapter knot theory
(especially classical linking) to readers who are unfamiliar with it, in order
to give the intuition behind motivic linking (and more generally motivic
knot theory). In contrast to the following chapters, this chapter is rather
informal, as its goal is to present the ideas in knot theory which are of
particular interest for the development of motivic knot theory. If you wish
to know more about knot theory, we recommend these �ve introductory
books: [Ada94], [Cro04], [Lic97], [Mur96], [Rol90].

In Section 1.1 we paint the big picture of what knot theory consists of,
while in Section 1.2 we give formal de�nitions of important notions in knot
theory. In Section 1.3 we focus on the linking number, which is the link
invariant to which we create (and study) counterparts in Part II. Section
1.4 focuses on torus links (from which all link classes which can be rep-
resented by complex algebraic varieties can be constructed), while Section
1.5 presents the fact that all link classes can be represented by real alge-
braic varieties, whose polynomial equations can be e�ectively determined.
Finally, in Section 1.6, we present higher dimensional knot theory and a
generalisation of the linking number.

1.1 What is knot theory?

You probably already encountered knots in your life (for instance, to tie
your shoelaces). You also probably already encountered links (for instance,
the links in a necklace or in a bracelet).

Knot theory is the study of knots and links. In knot theory, knots di�er
slightly from knots in real life: the two ends of the piece of string (or rope,
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1. Knot theory

etc.) are glued together and the string has no thickness. More formally, a
knot is an embedding of the circle S1 in R3 (or in S3, see below for details)
and a link is a �nite disjoint union of knots.

The study of given knots or links goes back centuries, but the systematic
study of knots and links began at the end of the nineteenth century. Indeed,
that is when the classi�cation of knots and links began. The goal of a
classi�cation of a collection of objects is to gather these objects together in
classes which verify the following:

� When given an object of this collection, it is possible to determine to
which class it belongs.

� The objects in a class verify the same properties (among the properties
which interest you).

This means that once the classi�cation is (at least partially) done, you can
easily determine the properties of an object (which has been classi�ed) by
determining to which class it belongs then looking up the properties which
are veri�ed by this class of objects. This way of thinking (by classifying)
is common in mathematics, but also in other sciences and in real life (with
less precision).

In knot theory, the collection of objects is the collection of oriented
links (which includes oriented knots). An oriented knot is a knot with a
direction in which to follow the knot (such as the clockwise direction or
the counterclockwise (a.k.a. trigonometric) direction for the circle) and
an oriented link is a link whose components/knots are all oriented (thus
a link with n components has 2n possible orientations). The properties
of oriented links which interest knot theorists are invariant under ambient
isotopy (a relationship between oriented links, see below for details) hence
the classes of oriented links are their classes for the equivalence relation of
being ambient isotopic.

See Figure 1.1 for the two possible orientations of the unknot (the circle).
It is hard (perhaps impossible) to classify every link (or even every knot)

in a meaningful way, so a link invariant (i.e. a characteristic of links which
is invariant under ambient isotopy) which takes values in the nonnegative
integers was chosen to order the classi�cation (by ascending values), in order
to set realistic classi�cation goals (classifying all links with a value of this
characteristic below a given value, then increasing this value to set a new
goal when this goal is achieved). This characteristic (which in a sense is
one way of measuring the complexity of a link) is the crossing number of a
link: the minimum of the number of times a two-dimensional picture of the
link crosses itself. It is important to take a minimum since two di�erent
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1.1. What is knot theory?

(a) The unknot with the trigono-

metric (a.k.a. counterclockwise)

orientation.

(b) The unknot with the clock-

wise orientation.

Figure 1.1 � The unknot (a.k.a. circle) with the two orientations.

Figure 1.2 � The Hopf link is of crossing number 2 (you can see on this
drawing that its crossing number is at most 2).

link diagrams (i.e. two-dimensional pictures of the link) may have di�erent
numbers of times the link diagram crosses itself. The links with crossing
number 0 are called unlinks (one example of which is the unknot). There
is no link with crossing number 1. The Hopf link has crossing number 2
(see Figure 1.2) and the trefoil knot has crossing number 3 (see Figure 1.3).
When two strands of a knot cross in a picture, two lines are drawn around
the strand which is on top (i.e. nearer to you) and when two di�erent knots
cross each other in a picture, the knot on top (i.e. nearer to you) is the one
whose colour you see at the crossing.

As the author writes these lines, the links with crossing number at most
16 have been classi�ed (see [HTW98] and [Hos05]). Tables with all the
classes of links whose components are prime (i.e. are not connected sums of
more than one knot), topologically linked (i.e. there is no homeomorphism
H of R3 onto itself such that the image by H of one of the components
of the link and the image by H of another of the components of the link
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1. Knot theory

Figure 1.3 � The trefoil knot is of crossing number 3 (you can see on this
drawing that its crossing number is at most 3).

can be separated by a plane) and whose crossing number is between 0 and
16 are available in Knotscape1. There are 2 518 665 such classes of links
(including 1 701 936 classes of knots).

You can also �nd here2 a table of the classes of prime knots with crossing
number at most 12, except for the unknot, the mirror images of knots in
the table, the knots with a reversed orientation from knots in the table, and
the mirror images with a reversed orientation from knots in the table.

The knot which is denoted cm in this table is the m-th knot of crossing
number c (there are other names available by ticking squares in the Nomen-
clature section (and the meaning of each nomenclature is explained when
clicking on it)). Several invariants of oriented knots are available in this
table.

You can also �nd here3 a table of the classes of links with prime com-
ponents which are topologically linked and have crossing number at most
11, except for knots (which are in the previous table), the mirror images
of links in the table, the links with a reversed orientation from links in the
table, and the mirror images with a reversed orientation from links in the
table.

The link which is denoted Lckm{ε1, . . . , εp} in this table is the m-th
link of crossing number c which is alternating if k = a (which means that
there exists a diagram of this link such that each component goes over then
under then over then under etc.), nonalternating if k = n; the εi (which
are equal to 0 or 1) denote the changes in orientations from Lckm{0, . . . , 0}
(click on Name in the Nomenclature section for more information; there are

1https://web.math.utk.edu/~morwen/knotscape.html
2https://knotinfo.math.indiana.edu/
3https://linkinfo.sitehost.iu.edu/
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1.2. Knots and links

other names available in the Nomenclature section). Several invariants of
oriented links are available in this table.

Let us now go into details!

1.2 Knots and links

Knots are topological subspaces of R3 or of the 3-sphere S3 which are home-
omorphic to S1 and verify an additional tameness property (for instance,
smoothness). The 3-sphere S3 can be constructed by adding a point at
in�nity to R3, which is why it does not matter if we consider knots as be-
ing in R3 or in S3. In the following, we will consider knots as topological
subspaces of the 3-sphere S3.

De�nitions 1.1 (Knots and Links).

� A knot is the imageK of a smooth (i.e. inde�nitely di�erentiable) map
S1 → S3 such that the induced map S1 → K is a homeomorphism.

� A link is a �nite disjoint union of knots, which are called the compo-
nents of the link.

Knot theorists are interested in equivalence classes of links for the fol-
lowing equivalence relation (which corresponds well to what happens when
you move links around in real life).

De�nition 1.2 (Ambient isotopy). An ambient isotopy from a topolog-
ical subspace N1 of S3 to a topological subspace N2 of S3 is a contin-
uous map H : S3 × [0, 1] → S3 such that, denoting for all t ∈ [0, 1]

Ht :

{
S3 → S3

x 7→ H(x, t)
, H0 is the identity, H1(N1) = N2 and for all t ∈ [0, 1],

Ht is a homeomorphism. If there is an ambient isotopy from N1 to N2 then
N1 and N2 are said to be ambient isotopic.

This is indeed an equivalence relation (take (x, t) 7→ x for re�exivity,
(x, t) 7→ H−1t (x) for symmetry and (x, t) 7→ H2(H1(x, t), t) for transitivity).

Let us now talk about orientation.
Similarly to the circle S1 which can be oriented in the clockwise direction

or in the counterclockwise (a.k.a. trigonometric) direction, a knot has two
possible orientations. The choice of an orientation of a knot K is the choice
of a generator of the singular homology group H1(K) ' H1(S1) ' Z.

De�nition 1.3 ((Homological) oriented fundamental class). An oriented
knot is a knot K together with a generator of the singular homology group
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1. Knot theory

H1(K) which is called the (homological) oriented fundamental class of K.
An oriented link is a link whose components are oriented.

The homological oriented fundamental class (or oriented fundamental
class for short) is sometimes simply called the fundamental class, but we
will always call it the oriented fundamental class to stress out the fact that
it depends on the orientation of the knot.

This de�nition may seem rather abstract compared to the informal talk
on orientations which was made earlier, but it is equivalent to the more
visual de�nition of an orientation, or rather of an orientation class, of a
knot as the equivalence class of an orientation of its tangent bundle, i.e.
of the datum for each point p of K of a basis (ep) of the tangent space
TpK ' R of K at p such that the (ep) vary continuously with p, for the
following equivalence relation: ((ep))p∈K and ((e′p))p∈K are equivalent if for
every point p in K there exists a positive real number rp > 0 such that
e′p = rp.ep, which means visually that the arrow ep and the arrow e′p point
in the same direction. We denote by ((ep))p∈K the class of ((ep))p∈K .

Indeed, a generator ofH1(K) is the class of a continuous map σ : [0, 1]→
K which veri�es that σ(1) = σ(0) and that its restriction to [0, 1[ is a
bijection with K. The homological oriented fundamental class of K is the
class in H1(K) of such a σ which goes in the direction pointed by the arrows
of the orientation (class) of the tangent bundle of K, and conversely the
orientation class of the tangent bundle of K is the one whose arrows point
in the direction in which σ goes (as time moves from 0 to 1).

Note that since there is an orientation class ((ap, bp, cp))p∈S3 of the ambi-
ent space S3 (which veri�es that at every point its tangent space is isomor-
phic to R3) which is �xed once and for all (by the �right-hand rule�), there is
an equivalent de�nition of orientation which uses the normal bundle of the
knot in the ambient space S3 instead of its tangent bundle. An orientation
of the normal bundle of a knot K in S3 is the datum for each point p of
K of a basis (fp, gp) of the normal space (NKS3)p ' R2 of K in S3 at p
such that the (fp, gp) vary continuously with p. An orientation class of a
knot K is an equivalence class of orientations of the normal bundle of K
in S3 for the following equivalence relation: ((fp, gp))p∈K and ((f ′p, g

′
p))p∈K

are equivalent if for every point p in K there exists a 2× 2 real matrix Ap

with positive determinant such that
(
f ′p
g′p

)
= Ap

(
fp
gp

)
. The relationship

between ((ep))p∈K and ((fp, gp))p∈K (when they give the same orientation
class of K) is that for every point p in K, the basis (ep, fp, gp) of the tangent
space TpS3 = TpK ⊕ (NKS3)p of S3 at p veri�es that there exists a 3 × 3
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1.3. The linking number

real matrix Bp with positive determinant such that

epfp
gp

 = Bp

apbp
cp

.

Remark 1.4. Note that having an orientation class ((ep))p∈K of a knotK is
equivalent to having a cohomological oriented fundamental class of the knot
K, i.e. a generator of the singular cohomology group H1(K) ' H1(S1) ' Z.
Indeed, the cohomological oriented fundamental class of the knot K is the
class of the volume form ω such that for every point p in K: ω(p) = det(ep)
(the determinant in the basis (ep)) and conversely the orientation class (ep)
of the tangent bundle of K is the one such that det(ep) = ω(p).

Since ambient isotopy preserves orientation classes, we can consider
equivalence classes of oriented links for ambient isotopy. This is what knot
theorists strive to classify (see Section 1.1). Knot theorists also strive to
compute link invariants: quantities which are computed from an oriented
link and only depend on the equivalence class of the oriented link for am-
bient isotopy. In the next section, we consider such a link invariant for
oriented links with two components: the linking number.

1.3 The linking number

The linking number is an invariant of oriented links with two components
which counts the number of times one of the components turns around
the other component. The sign of the linking number indicates in which
direction this component turns around the other component. The linking
number has several applications outside of mathematics, one of which is in
the study of DNA supercoiling (in which the linking number is sometimes
called the topological entanglement); see for instance the article [BOS02].

In Chapters 4 and 5 we will construct counterparts in algebraic geometry
of the linking number and in Chapters 6 and 7 we will compute these
counterparts. Before we do this, let us introduce the linking number.

See Figure 1.4 for an example of a link of linking number 1 (the Hopf
link) and Figure 1.5 for an example of a link of linking number 2 (the
Solomon link).

We say that a link with two components is topologically unlinked (or
split) if there is a homeomorphism H of R3 = S3 \ {∗} onto itself such
that the images by H of the two components of the link can be separated
by a plane (where ∗ is a point which is not on the link). Note that links
with two components which are topologically unlinked are of linking num-
ber 0 (see Sub�gure 1.6a for an example) but the converse is false: the
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1. Knot theory

Figure 1.4 � The Hopf link is of linking number 1.

Figure 1.5 � The Solomon link is of linking number 2.

Whitehead link in Sub�gure 1.6b is a counterexample. There is however
a weaker notion which is equivalent to being of linking number 0: being
homologically unlinked (or algebraically split). We say that a link with two
components is homologically unlinked if one of the components of the link
is the boundary of an orientable surface which is disjoint from the other
component. See [BOS02] (in which the �linking number� is the opposite of
the linking number (due to their choice of the �left-hand rule� instead of
the more commonly used �right-hand rule�) but this does not change the
instances in which the linking number is equal to 0)).

The fact that being homologically unlinked implies being of linking num-
ber 0 will come directly from the following de�nition of the linking number,
which uses the notion of Seifert surface of an oriented knot. A Seifert sur-
face of an oriented knot K is a compact connected oriented surface whose
oriented boundary is the oriented knot K. The following three steps give
the linking number of two disjoint oriented knots K1 and K2 (i.e. of the
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1.3. The linking number

(a) The unlink

(b) The Whitehead link

Figure 1.6 � The unlink and the Whitehead link are both of linking number
0 but the Whitehead link is topologically linked.

oriented link K1 tK2).

� Pick a Seifert surface S2 for K2 such that the oriented intersection
of K1 with S2 is a �nite number of oriented points. This is always
possible (and the oriented intersection of K1 with S2 is equal to the
oriented intersection of S2 with K1).

� Let P be one of the oriented points mentioned above. We want to
associate εP ∈ {−1, 1} to P by taking into account the orientation of
the oriented point P . To do this, place yourself so that near the point
P , the oriented knot K1 is coming towards you:

� If the Seifert surface S2 is oriented in a trigonometric (a.k.a.
counterclockwise) manner, set εP := 1 (see for instance Sub�gure
1.7a).

� Otherwise (i.e. the Seifert surface S2 is oriented in a clockwise
manner), set εP := −1 (see for instance Sub�gure 1.7b).

� The linking number is the sum (over the oriented points P of the
oriented intersection of K1 with S2) of the εP .

See [Rol90, Chapter 5, Section D] for this de�nition of the linking num-
ber (more precisely, (2) and (5) at the beginning of the cited section, (2)
being the visual de�nition (described in [Rol90] with a bicollar of a Seifert
surface) and (5) being the more formal de�nition as the intersection num-
ber of S2 with K1 (see below for an even more formal variant of this de�-
nition)). The fact that εP is as described above comes from the fact that
εP = 1 means that the orientation of the direct sum of tangent spaces
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(a) The red (dotted) Seifert sur-

face is oriented in a trigono-

metric (a.k.a. counterclockwise)

manner.

(b) The red (dotted) Seifert sur-

face is oriented in a clockwise

manner.

Figure 1.7 � In the two examples above, near the intersection of the blue
knot (on the left) with the red (dotted) Seifert surface (for the red knot),
the blue knot is coming towards you.

TP (K1) ⊕ TP (S2), which is canonically isomorphic to the tangent space
TP (S3), corresponds to the orientation given by the �right-hand rule�.

Note that in [Rol90, Chapter 5, Section D], knots are considered to
be polygonal rather than smooth, but this is inconsequential since every
smooth knot is ambient isotopic to a polygonal knot (and vice versa) and
the linking number is a link invariant.

The formal version of the de�nition above is as follows. We denote by L
the oriented link whose components are K1 and K2, by N an open tubular
neighbourhood of K2 which is disjoint from K1 and by E the complement
of N in S3, i.e. E := S3 \ N . We can pick a Seifert surface S2 of K2

which induces a class [S2] in the singular cohomology group H1(E). The
linking number of L is the cup-product of the class (denoted [K1]) of K1

in H2(E, ∂E) with [S2], or rather the image of this cup-product by the
isomorphism H3(E, ∂E) → Z which is induced by the orientation of the
ambient space S3 (more precisely, the isomorphism H3(E, ∂E) → Z in
question is the Kronecker product with (or �evaluation on�) the fundamental
class [E, ∂E], a.k.a. the cap product with the fundamental class [E, ∂E]; see
[Bre97, Chapter VI]). Note that [K1]∪ [S2] = (−1)2[S2]∪ [K1] = [S2]∪ [K1].

Note that even though this de�nition is non-symmetric, the linking num-
ber does not depend on the order of the components K1 and K2 (see [Rol90,
Chapter 5, Section D, Theorem 6]). Further note that the linking number
only depends on the oriented link (not on a choice of Seifert surface for one
of the components); even better, it only depends on the class of the oriented
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link for ambient isotopy (see [Cro04, Theorem 3.8.2]), or even better, on
its class for concordance (which is a weaker equivalence relation than being
ambient isotopic; see [Rol90, Chapter 8, Section F], especially Exercise 13).

We will introduce a new de�nition of the linking number which will be
more symmetric and which will only use classes in cohomology, not chains,
so that it will be easier to see that the linking number only depends on
the oriented link. To do this, we use Borel-Moore homology and singular
cohomology (see [BM60] and [Mas78] for further information on these, as
well as [Bre97] for further information on singular cohomology).

Notation 1.5. Let A ⊂M be Hausdor� topological spaces. We denote by
HBM
∗ (M,A) the Borel-Moore homology groups of the pair (M,A) and by

H∗(M,A) the singular cohomology groups of the pair (M,A). We denote
HBM
∗ (M) := HBM

∗ (M, ∅) and H∗(M) := H∗(M, ∅).

We choose to work with these groups because they verify a Poincaré du-
ality theorem which gives an isomorphism Hk(M \B,M \A) ' HBM

n−k(A,B)
whenever M is an oriented topological manifold of dimension n, B ⊂ A are
locally compact closed subspaces of M and 0 ≤ k ≤ n. Note that this is
di�erent from the better-known Poincaré duality theorem for singular ho-
mology H∗ and �ech cohomology Ȟ∗ which, under the same assumptions
and the extra assumption that A and B are compact, gives an isomorphism
Ȟk(A,B) ' Hn−k(M \ B,M \ A). Indeed, in the former case the closed
subspaces A and B ofM are on the homology side of the isomorphism (and
the open subspaces M \B and M \A are on the cohomology side) whereas
in the latter case the closed subspaces A and B are on the cohomology side
of the isomorphism (and the open subspaces M \ B and M \ A are on the
homology side).

This Poincaré duality theorem between Borel-Moore homology and sin-
gular cohomology, together with the Borel-Moore homology long exact se-
quence, straightforwardly imply the following theorem, which we will use
in our new de�nition of the linking number.

Theorem 1.6. Let M be an oriented topological manifold and A be a
locally compact closed submanifold of codimension c in M . We have the
following long exact sequence, in which the maps are induced by the in-
clusions A → M and M \ A → M except for the maps ∂ which are the
boundary maps (a.k.a. connecting morphisms):

. . . // Hk(M) // Hk(M \ A) ∂ // Hk+1−c(A) // Hk+1(M) // . . .

We directly get the following corollary.
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Corollary 1.7. Let L be a link. We have the following long exact sequence,
in which the maps are induced by the inclusions L → S3 and S3 \ L → S3

except for the maps ∂ which are the boundary maps:

. . . // Hk(S3) // Hk(S3 \ L) ∂ // Hk−1(L) // Hk+1(S3) // . . .

In particular, the following sequence is exact:

H1(S3) = 0 // H1(S3 \ L) ∂ // H0(L) // H2(S3) = 0

i.e. the boundary map ∂ : H1(S3 \ L)→ H0(L) is an isomorphism.

This corollary allows us to give the following de�nition.

De�nition 1.8 (Couple of Seifert classes). Let L be an oriented link with
two components K1 and K2. Let [oK1 ] ∈ H0(K1) (respectively [oK2 ] ∈
H0(K2)) be the element which corresponds to the oriented fundamental
class of K1 (resp. K2), which was de�ned in De�nition 1.3. The couple of
Seifert classes of L is the (unique) couple (S1, S2) of elements of H1(S3 \L)
such that ∂(S1) = ([oK1 ], 0) and ∂(S2) = (0, [oK2 ]) (via the isomorphism
H0(L) ' H0(K1) ⊕ H0(K2) induced by the inclusions of K1 and K2 in
L = K1 t K2). We call S1 the Seifert class of K1 (relative to the link L)
and S2 the Seifert class of K2 (relative to the link L).

By Poincaré duality, S1 ∈ H1(S3 \L) ' HBM
2 (S3, L) is the class of some

surfaces in S3 whose boundaries lie in the link L; in fact, it is precisely
the class of the Seifert surfaces of K1, and the same is true for S2 and K2.
See Figure 1.8 for an example of a couple of Seifert surfaces (which in this
simple example are disks).

Remark 1.9. If you reverse the orientation of K1 (respectively of K2) then
[oK1 ] (resp. [oK2 ]) is turned into its opposite hence S1 (resp. S2) is turned
into its opposite since the boundary map is a group morphism.

Now we can de�ne the linking class, from which we will de�ne the linking
number.

De�nition 1.10 (Linking class). Let L be an oriented link with two com-
ponentsK1 andK2 and let (S1, S2) be its couple of Seifert classes, as de�ned
in De�nition 1.8. The linking class of L is the image by the boundary map
∂ : H2(S3 \ L)→ H1(L) of the cup-product of S1 with S2, i.e. ∂(S1 ∪ S2).
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1.3. The linking number

Figure 1.8 � The Hopf link with a Seifert surface hatched in blue for the
blue component (on the left) and a Seifert surface dotted in red for the red
component (on the right).

Figure 1.9 � The Hopf link and the oriented intersection of the blue
(hatched) Seifert surface with the red (dotted) Seifert surface.

See Figure 1.9 for the oriented intersection of the blue Seifert surface
(on the left) with the red Seifert surface (on the right), which is an oriented
purple interval in this drawing. See Figure 1.10 for a portrayal of the linking
class of the Hopf link (by two oriented green points, one of which lies on
the blue component (which was chosen as �rst component) of the link and
one of which lies on the red component of the link).

Note that the linking class contains as much information as the cup-
product of S1 with S2, since the boundary map ∂ : H2(S3 \ L)→ H1(L) is
injective (see Corollary 1.7 and note that H2(S3) = 0).

Remark 1.11. The linking class is turned into its opposite if you reverse
the order of the components, since S2 ∪ S1 = (−1)1(S1 ∪ S2) = −S1 ∪ S2

and the boundary map is a group morphism.

Remark 1.12. If you reverse the orientation of K1 (respectively of K2)
then the linking class is turned into its opposite since S1 (resp. S2) is
turned into its opposite (see Remark 1.9).
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1. Knot theory

Figure 1.10 � The Hopf link and the oriented boundary of the oriented
intersection of the blue (hatched) Seifert surfaces with the red (dotted)
Seifert surface.

Let us now de�ne the linking number.

De�nition 1.13 (Linking number). The linking number of the oriented link
L = K1 tK2 is the image of the part of the linking class of L which is in
H1(K1) by the composite of the morphism i1 : H1(K1)→ H3(S3) which is
induced by the inclusion of K1 in S3 and of the isomorphism r : H3(S3)→ Z
which corresponds to the �right-hand rule�.

The fact that this de�nition of the linking number is equivalent to the
de�nition which was made earlier follows from the stability property of
the cup-product which is described in [Dol95, Chapter VII, 8.10]. Indeed,
in our case this property tells us that the part of the quadratic linking
class ∂(S1 ∪ S2) which is in H1(K1) is sent to [K1] ∪ [S2] by the morphism
H1(K1) → H3(E, ∂E) which is induced by the inclusion of K1 in E (since
the oriented knot K1 is the boundary of the Seifert surface S1). Also note
that the isomorphism H3(E, ∂E)→ Z we mentioned earlier depends on the
choice of the (oriented) fundamental class [E, ∂E], i.e. on the orientation
of E, and that we implicitly chose the orientation which is induced by the
orientation of S3, i.e. by the isomorphism r : H3(S3)→ Z which corresponds
to the �right-hand rule�.

Remark 1.14. If you reverse the orientation of K1 (respectively of K2)
then the linking number is turned into its opposite since the linking class
is turned into its opposite (see Remark 1.12).

Remark 1.15. Note that the image of the part of the linking class of the
oriented link L = K1 t K2 which is in H1(K2) by the composite of the
morphism i2 : H1(K2) → H3(S3) which is induced by the inclusion of K2

in S3 and of the isomorphism r : H3(S3) → Z which corresponds to the

34



1.3. The linking number

�right-hand rule� is the opposite of the linking number. Indeed, the linking
class ∂(S1 ∪ S2) is in the kernel of the morphism H1(L)→ H3(S3) which is
induced by the inclusion of L in S3 (see Corollary 1.7) and this morphism
is the composite of the isomorphism H1(L)→ H1(K1)⊕H1(K2) (which is
induced by the inclusions of K1 and K2 in L = K1 tK2) and of the direct
sum of the morphisms i1 : H1(K1) → H3(S3) and i2 : H1(K2) → H3(S3).
(Another way of proving this is to use the more general version of the
stability property of the cup-product (see [Dol95, Chapter VII, 8.19(2)])
and to identify which part comes from H1(K1) and which part comes from
H1(K2).) It follows from this and from the fact that the linking class is
turned into its opposite if you reverse the order of the components (see
Remark 1.11) that the linking number does not depend on the order of the
components.

Note that a de�nition similar to our de�nition of the linking number is
made between Exercise 8 and Exercise 9 in [Rol90, Chapter 5, Section D],
with an important di�erence: in Rolfsen's de�nition, he considers Seifert
surfaces in the four-dimensional disc D4 whose boundary is S3 and de�nes
the linking number as the intersection number of these surfaces (which can
be chosen so as to intersect in a �nite number of points since they are
surfaces in D4).

Remark 1.16. Note that the cohomological oriented fundamental classes
[ωK1 ] ∈ H1(K1) of K1 and [ωK2 ] ∈ H1(K2) of K2 (see Remark 1.4) �x an
isomorphism h1 : H1(K1) → Z (the isomorphism which sends [ωK1 ] to 1)
and an isomorphism h2 : H1(K2)→ Z (the isomorphism which sends [ωK2 ]
to 1) respectively. Also note that the morphisms i1 : H1(K1)→ H3(S3) and
i2 : H1(K2) → H3(S3) are surjective since they are in the following exact
sequences (see Theorem 1.6):

H1(K1)
i1 // H3(S3) // H3(S3 \K1) = 0

H1(K2)
i2 // H3(S3) // H3(S3 \K2) = 0

(where H3(S3 \ K1) = 0 and H3(S3 \ K2) = 0 since S3 \ K1 and S3 \
K2 are orientable connected noncompact manifolds). Therefore, the group
morphisms r ◦ i1 ◦ (h1)

−1 : Z→ Z and r ◦ i2 ◦ (h2)
−1 : Z→ Z are surjective

hence each is the identity of Z or the opposite (which sends m ∈ Z to −m).
It follows from this, De�nition 1.13 and Remark 1.15 that h1⊕h2 sends the
linking class of L = K1 tK2 to (n, n), (n,−n), (−n, n) or (−n,−n), where
n is the linking number of L.
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De�nition 1.17 (Linking couple). The linking couple of the oriented link
L = K1 t K2 is the image of the linking class of L by the composite of
the isomorphism H1(L) → H1(K1) ⊕ H1(K2) (which is induced by the
inclusions of K1 and K2 in L = K1 tK2) and of the isomorphism h1 ⊕ h2 :
H1(K1)⊕H1(K2)→ Z⊕ Z (see Remark 1.16).

Remark 1.18. If you reverse the order of the components then the linking
couple is either the same (if r ◦ i1 ◦ (h1)

−1 and r ◦ i2 ◦ (h2)
−1 are both

the identity of Z or both the opposite) or is turned into its opposite (if
r ◦ i1 ◦ (h1)

−1 is the identity of Z and r ◦ i2 ◦ (h2)
−1 is the opposite or vice

versa).

Remark 1.19. If you reverse the orientation of the �rst component (respec-
tively the second component) of the oriented link then the �rst component
(resp. the second component) of the linking couple stays the same and
the second component (resp. the �rst component) of the linking couple is
turned into its opposite.

Finally, let us introduce link homotopy (which was de�ned by Milnor in
[Mil54]).

De�nition 1.20 (Link homotopy). A link homotopy from an oriented link
L = K1 t · · · tKn with n ∈ N components to an oriented link L′ = K ′1 t
· · · tK ′n with n components is the data of n continuous maps H1, . . . , Hn :
S1 × [0, 1] → S3 such that, denoting for all i ∈ {1, . . . , n} and t ∈ [0, 1],

Hi,t :

{
S1 → S3

x 7→ Hi(x, t)
, for all i ∈ {1, . . . , n}, Hi,0(S1) = Ki and Hi,1(S1) =

K ′i, and for all t ∈ [0, 1], the sets H1,t(S1), . . . , Hn,t(S1) are pairwise disjoint
(i.e. for all i 6= j ∈ {1, . . . , n}, Hi,t(S1) ∩ Hj,t(S1) = ∅). If there is a link
homotopy from L to L′ then L and L′ are said to be link homotopic.

Note that link homotopy is an equivalence relation and that if n = 1 then
it is merely homotopy (hence every two oriented knots are link homotopic).
If n ≥ 2 then two oriented links with n components are link homotopic if
and only if you can deform one continuously into the other while keeping
the n components pairwise disjoint. Note that any oriented link is link
homotopic to an oriented link whose components are all unknotted circles
(a.k.a. unknots). The class of an oriented link for link homotopy describes
how the components of the link are �linked� together, how they turn around
each other.

In the case of oriented links with two components, the linking number
is a complete invariant for link homotopy, i.e. two oriented links with two
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1.4. Torus links

Figure 1.11 � The torus link T (2, 6) (without orientation on this drawing).

components are link homotopic if and only if they have the same linking
number (see [Mil54, Section 5]).

Note that the unlink (see Sub�gure 1.6a) has linking number 0, that the
Hopf link (see Figure 1.4) has linking number 1 and that the Solomon link
(see Figure 1.5) has linking number 2. The Hopf link (a.k.a. T (2, 2)) and the
Solomon link (a.k.a. T (2, 4)) are part of a family of torus links (T (2, 2n))n∈N
(see Figure 1.11 for T (2, 6); for n ≥ 3, T (2, 2n) can be pictured as two
intertwined n-gons) which veri�es that for all n ∈ N, T (2, 2n) is of linking
number n (see the next section). Thus, the unlink, the family of torus links
(T (2, 2n))n∈N and the family given by reversing the orientation of one of the
components of T (2, 2n) (with n ∈ N), make up a family of representatives
for the link homotopy classes of oriented links with two components (see
Remark 1.14). We present torus links in the following section.

1.4 Torus links

Torus links are links which can be drawn on the surface of a torus. They
are indexed by couples of integers (p, q) ∈ Z × Z. If d ∈ N is the greatest
common divisor of p and q (by convention, d := 1 if p = q = 0) then T (p, q)
is an oriented link with d components, each of which wraps around the
torus p

d
times meridionally and q

d
times longitudinally (the signs of p and

q indicating the directions). For further details on the de�nition of torus
links, see [Mur96, Chapter 7]. Note that if the greatest common divisor
of p and q is 2, then the linking number of the oriented torus link T (p, q)

(which has two components) is equal to
pq

4
. See [BFS14, Theorem 4.2] but

note that there is a typo there: their result should be divided by 2 (their
proof consists in counting the number of crossings (which are all positive
here) in the braid representation, but the linking number is the number of
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crossings divided by 2 (when all the crossings are positive), not the number
of crossings).

For each p, q ∈ N, the torus link T (p, q) is a complex algebraic link, which
means that there is a complex polynomial Rp,q ∈ C[u, v] and a positive real
number εp,q > 0 such that:

� Rp,q vanishes at the origin (0, 0) ∈ C2;

� the origin is an isolated singularity for Rp,q, i.e. the origin is a singu-
larity for Rp,q (which means that ∂Rp,q

∂u
and ∂Rp,q

∂v
both vanish at the

origin) and there is an open neighbourhood Up,q of the origin in C2

such that Rp,q has no singularity in Up,q \ {(0, 0)};

� for all 0 < ε ≤ εp,q, there is a di�eomorphism hp,q,ε : S3
ε → S3 such that

hp,q,ε(V (Rp,q) ∩ S3
ε) = T (p, q), where S3

ε := {(u, v) ∈ C2, |u|2 + |v|2 =
ε2} and V (Rp,q) := {(u, v) ∈ C2, Rp,q(u, v) = 0}.

In fact, Rp,q can be chosen to be the complex polynomial up−vq. Thus, the
torus link T (p, q) is called the link of the singularity (0, 0) of the complex
curve de�ned by up−vq. See the classical reference [Mil69] or the historical
account [Dur99].

Note that not many links are complex algebraic links. Indeed, complex
algebraic links are all unions of iterated torus links (see [Ore21] for the
de�nition of iterated torus links). However, there is a reasonable way to
de�ne algebraic links in general so that every link is an algebraic link.

1.5 All links are algebraic

In their article [AK81], Akbulut and King de�ned algebraic links in a similar
manner to complex algebraic links, with two important di�erences: the
complex polynomial in two variables was replaced with two real polynomials
in four variables and the isolated singularity was replaced with a weakly
isolated singularity.

De�nition 1.21 (Algebraic link). A link L is an algebraic link if there are
two real polynomials P,Q ∈ R[x, y, z, t] and a positive real number ε0 > 0
such that:

� P and Q vanish at the origin (0, 0, 0, 0) ∈ R4;

� the origin is a weakly isolated singularity of (P,Q), i.e. the origin is a
singularity of (P,Q) (which means that ∂P

∂x
, ∂P
∂y
, ∂P
∂z
, ∂P
∂t
, ∂Q
∂x
, ∂Q
∂y
, ∂Q
∂z
, ∂Q
∂t
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all vanish at the origin) and there is an open neighbourhood U of
the origin in R4 such that (P,Q) has no singularity in V (P,Q) ∩
(U \ {(0, 0, 0, 0)}), where V (P,Q) := {(x, y, z, t) ∈ R4, P (x, y, z, t) =
0, Q(x, y, z, t) = 0};

� for all 0 < ε ≤ ε0, there is a di�eomorphism hε : S3
ε → S3 such that

hε(V (P,Q)∩S3
ε) = L, where S3

ε = {(x, y, z, t) ∈ R4, x2 +y2 +z2 + t2 =
ε2}.

Note that a complex algebraic link is an algebraic link (you can take
the real part of the complex polynomial as P and the imaginary part of
the complex polynomial as Q). In their article [AK81], Akbulut and King
prove that every link is an algebraic link! However, their proof does not
give explicit polynomials P and Q as in De�nition 1.21. In his recent paper
[Bod22], Bode provides an algorithm which gives explicit polynomials P
and Q as in De�nition 1.21.

1.6 Higher dimensional knot theory

In this section, we �rst consider the linking number of higher-dimensional
(smooth) links with two components, then we mention the di�erent contexts
in which higher-dimensional knots and links are studied (to the best of our
knowledge).

De�nitions 1.22 ((Higher-dimensional) knots and links).

� Smooth higher-dimensional knots are images of smooth maps from
the m-sphere Sm to the n-sphere Sn for some integers m,n ≥ 1.

� Smooth higher-dimensional links are �nite disjoint unions of smooth
higher-dimensional knots which go into the same sphere (but may
come from spheres of di�erent dimensions).

De�nition 1.23 (Oriented fundamental class). A higher-dimensional knot
K ' Sm is oriented if a generator ofH0(K) ' H0(Sm) ' Z has been chosen;
this generator is called the oriented fundamental class of K and is denoted
[oK ]. A higher-dimensional link is oriented if all its components (i.e. the
knots of which it is a union) are oriented.

Once an orientation of the ambient sphere (i.e. the sphere in which the
considered higher-dimensional links live) has been �xed, a classical way to
de�ne the linking number of a higher-dimensional link L = K1 t K2 with
two components is as the intersection number of K1 with a �Seifert surface�
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of K2 (which is not necessarily a surface anymore) or as the intersection
number of a �Seifert surface� of K1 with K2 (which gives the same number
up to a sign). For this intersection number to be well-de�ned (and not
always zero), the sum of the dimensions of K1 and K2 needs to be one
less than the dimension of the ambiant sphere: if K1 ' Sm and K2 ' Sn,
then they need to lie in Sm+n+1. Indeed, we want the intersection of the
dimension m chain K1 and of a dimension n+1 �Seifert surface� of K2 to be
of dimension 0 in order to obtain an �intersection number� (by identifying
the zeroth homology group of the ambient sphere with Z). See [ST80,
Section 77] for further details on this de�nition of the higher-dimensional
linking number (and more generally [ST80, Chapter X] for a discussion of
intersection numbers).

In the case where m = n ≥ 1, we can give a de�nition of the higher-
dimensional linking number which generalises De�nition 1.13. Let us walk
you through this generalisation.

Let n ≥ 1. We �x an isomorphism r : H2n+1(S2n+1)→ Z once and for all
(in the case n = 1, we choose r to be isomorphism which is induced by the
�right-hand rule�), which is the same as �xing an orientation of the ambient
sphere S2n+1 once and for all. (If the other isomorphism H2n+1(S2n+1)→ Z
is chosen instead, then the linking number will be turned into its opposite.)

Let K1, K2 ' Sn be two disjoint oriented (higher-dimensional) knots in
S2n+1 and L = K1tK2 be the corresponding oriented (higher-dimensional)
link with two components.

In order to de�ne the couple of Seifert classes of L, we state the following
corollary of Theorem 1.6, which is a direct application of this theorem.

Corollary 1.24. We have the following long exact sequence, in which the
maps are induced by the inclusions L→ S2n+1 and S2n+1\L→ S2n+1 except
for the maps ∂ which are the boundary maps:

. . . // Hk(S2n+1) // Hk(S2n+1 \ L) ∂ // Hk−n(L) // Hk+1(S2n+1) // . . .

In particular, the following sequence is exact:

Hn(S2n+1) = 0 // Hn(S2n+1 \ L) ∂ // H0(L) // Hn+1(S2n+1) = 0

i.e. the boundary map ∂ : Hn(S2n+1 \ L)→ H0(L) is an isomorphism.

The following de�nition generalises De�nition 1.8.

De�nition 1.25 (Couple of Seifert classes). The couple of Seifert classes
of L is the (unique) couple (S1, S2) of elements of Hn(S2n+1 \ L) such that
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∂(S1) = ([oK1 ], 0) and ∂(S2) = (0, [oK2 ]) (via the isomorphism H0(L) '
H0(K1)⊕H0(K2) induced by the inclusions of K1 and K2 in L = K1tK2).
We call S1 the Seifert class of K1 (relative to the link L) and S2 the Seifert
class of K2 (relative to the link L).

Remark 1.26. If you reverse the orientation of K1 (respectively of K2)
then [oK1 ] (resp. [oK2 ]) is turned into its opposite hence S1 (resp. S2) is
turned into its opposite since the boundary map is a group morphism.

Now we can de�ne the linking class of L. The following de�nition gen-
eralises De�nition 1.10.

De�nition 1.27 (Linking class). Let (S1, S2) be the couple of Seifert classes
of L. The linking class of L is the image by the boundary map ∂ :
H2n(S2n+1 \ L)→ Hn(L) of the cup-product of S1 with S2, i.e. ∂(S1 ∪ S2).

Note that the linking class contains as much information as the cup-
product of S1 with S2, since the boundary map ∂ : H2n(S2n+1\L)→ Hn(L)
is injective (see Corollary 1.24 and note that H2n(S2n+1) = 0).

Remark 1.28. If you reverse the order of the components then the linking
class is multiplied by (−1)n

2
(i.e. it stays the same if n is even, it is turned

into its opposite if n is odd). Indeed, S2 ∪ S1 = (−1)n
2
(S1 ∪ S2) and the

boundary map is a group morphism, hence ∂(S2 ∪ S1) = (−1)n
2
∂(S1 ∪ S2).

Remark 1.29. If you reverse the orientation of K1 (respectively of K2)
then the linking class is turned into its opposite since S1 (resp. S2) is
turned into its opposite (see Remark 1.26).

Let us now de�ne the linking number of L. The following de�nition
generalises De�nition 1.13.

De�nition 1.30 (Linking number). The linking number of the oriented link
L is the image of the part of the linking class of L which is in Hn(K1) by the
composite of the morphism i1 : Hn(K1) → H2n+1(S2n+1) which is induced
by the inclusion of K1 in S2n+1 and of the isomorphism r : H2n+1(S2n+1)→
Z.

Remark 1.31. If you reverse the orientation of K1 (respectively of K2)
then the linking number is turned into its opposite since the linking class
is turned into its opposite (see Remark 1.29).

Remark 1.32. Note that the image of the part of the linking class of the
oriented link L which is in Hn(K2) by the composite of the morphism i2 :
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Hn(K2) → H2n+1(S2n+1) which is induced by the inclusion of K2 in S2n+1

and of the isomorphism r : H2n+1(S2n+1)→ Z is the opposite of the linking
number. Indeed, the linking class ∂(S1∪S2) is in the kernel of the morphism
Hn(L)→ H2n+1(S2n+1) which is induced by the inclusion of L in S2n+1 (see
Corollary 1.24) and this morphism is the composite of the isomorphism
Hn(L)→ Hn(K1)⊕Hn(K2) (which is induced by the inclusions of K1 and
K2 in L = K1tK2) and of the direct sum of the morphisms i1 : Hn(K1)→
H2n+1(S2n+1) and i2 : Hn(K2) → H2n+1(S2n+1). It follows from this and
from Remark 1.28 that the linking number is multiplied by (−1)n

2+1 if you
reverse the order of the components. In other words, if you reverse the
order of the components, then the linking number stays the same if n is
odd, and is turned into its opposite if n is even.

Remark 1.33. Note that the cohomological oriented fundamental classes
[ωK1 ] ∈ Hn(K1) of K1 and [ωK2 ] ∈ Hn(K2) of K2 (which are de�ned simi-
larly to what was done in Remark 1.4) �x an isomorphism h1 : Hn(K1)→
Z (the isomorphism which sends [ωK1 ] to 1) and an isomorphism h2 :
Hn(K2) → Z (the isomorphism which sends [ωK2 ] to 1) respectively. Also
note that the morphisms i1 : Hn(K1) → H2n+1(S2n+1) and i2 : Hn(K2) →
H2n+1(S2n+1) are surjective since they are in the following exact sequences
(see Theorem 1.6):

Hn(K1)
i1 // H2n+1(S2n+1) // H2n+1(S2n+1 \K1) = 0

Hn(K2)
i2 // H2n+1(S2n+1) // H2n+1(S2n+1 \K2) = 0

(where H2n+1(S2n+1 \K1) = 0 and H2n+1(S2n+1 \K2) = 0 since S2n+1 \K1

and S2n+1\K2 are orientable connected noncompact manifolds). Therefore,
the group morphisms r ◦ i1 ◦ (h1)

−1 : Z → Z and r ◦ i2 ◦ (h2)
−1 : Z → Z

are surjective hence each is the identity of Z or the opposite (which sends
m ∈ Z to −m). It follows from this, De�nition 1.30 and Remark 1.32 that
h1 ⊕ h2 sends the linking class of L = K1 t K2 to (l, l), (l,−l), (−l, l) or
(−l,−l), where l is the linking number of L.

De�nition 1.34 (Linking couple). The linking couple of the oriented link
L = K1 t K2 is the image of the linking class of L by the composite of
the isomorphism H1(L) → H1(K1) ⊕ H1(K2) (which is induced by the
inclusions of K1 and K2 in L = K1 tK2) and of the isomorphism h1 ⊕ h2 :
H1(K1)⊕H1(K2)→ Z⊕ Z (see Remark 1.33).

Remark 1.35. If you reverse the order of the components then the linking
couple is either the same (if n is odd and r ◦ i1 ◦ (h1)

−1 and r ◦ i2 ◦ (h2)
−1 are
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both the identity of Z or both the opposite or if n is even and r ◦ i1 ◦ (h1)
−1

is the identity of Z and r ◦ i2 ◦ (h2)
−1 is the opposite or vice versa) or is

turned into its opposite (if n is odd and r◦i1◦(h1)−1 is the identity of Z and
r ◦ i2 ◦ (h2)

−1 is the opposite or vice versa or if n is even and r ◦ i1 ◦ (h1)
−1

and r ◦ i2 ◦ (h2)
−1 are both the identity of Z or both the opposite).

Remark 1.36. If you reverse the orientation of the �rst component (respec-
tively the second component) of the oriented link then the �rst component
(resp. the second component) of the linking couple stays the same and
the second component (resp. the �rst component) of the linking couple is
turned into its opposite.

Let us now brie�y mention the other higher-dimensional contexts in
which knots and links are studied.

First, let us mention that in classical knot theory (S1 → S3), there
are three competing de�nitions of knots, which all give the same classes of
knots for ambient isotopy (and the same is true for links). Knots can be
de�ned as smooth knots (see De�nition 1.1), as topological knots (topolog-
ical subspaces of S3 which are homeomorphic to S1 and locally �at in all
their points), or as piecewise-linear knots (a.k.a. combinatorial knots, a.k.a.
polygonal knots in this case). In higher-dimensional cases (Sm → Sn), these
three competing de�nitions do not give the same classes of knots, hence
there are three higher-dimensional knot theories: the theory of higher-
dimensional smooth knots, the theory of higher-dimensional topological
knots, and the theory of higher-dimensional piecewise-linear knots (a.k.a.
combinatorial knots).

Although piecewise-linear knots Sm → Sn can be knotted (which means
that there are at least two equivalence classes of piecewise-linear knots) only
in codimension 2 and perhaps codimension 1 (the case of codimension 1 is
an open problem if n ≥ 4 as far as the author knows, whereas all knots
S1 → S2 or S2 → S3 can be unknotted; see [Zee63] for these results), and
a similar result exists for topological knots (see [Sta63]; this result existed
before the corresponding result for piecewise-linear knots), this is not the
case for smooth knots: for each integer k ≥ 2, there are in�nitely many
equivalence classes of smooth knots S4k−1 → S6k (see [Hae62]).

Note that in their article [AK81], Akbulut and King proved that every
higher-dimensional smooth link is algebraic (similarly to what we discussed
in Section 1.5). However, there is no constructive proof of this result (except
for links S1 → S3) as far as the author knows.

Finally, although we have only considered links Sm → Sn, note that
links Sm → Rn are also objects of interest. For an informal introduction to
the case Sk → Rk+2, see [Oga18].
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Chapter 2

The Witt, Grothendieck-Witt

and Milnor-Witt K-theory rings

In this chapter, we recall well-known facts about symmetric bilinear forms,
quadratic forms and Milnor-Witt K-theory, which will play an important
role in the following chapter on quadratic intersection theory and in all
subsequent chapters. We also prove a new result: Theorem 2.46 which
enables us to compute the residue morphisms of Milnor-Witt K-theory (we
also included this theorem in our preprint [Lem23]). We use this theorem to
compute the quadratic linking class and the quadratic linking degree (our
counterparts of the linking class and of the linking number) in Chapters 6
and 7.

In Section 2.1 we consider symmetric bilinear forms and quadratic forms
in order to construct the Witt ring W(F ) and the Grothendieck-Witt ring
GW(F ) of a �eld F . In Section 2.2 we construct the Milnor-Witt K-theory
(graded) ring KMW

∗ (F ) associated to a �eld F , which has a strong rela-
tionship to the Witt ring W(F ) and the Grothendieck-Witt ring GW(F ).
Namely, the ring KMW

0 (F ) in degree 0 is canonically isomorphic to the
Grothendieck-Witt ring GW(F ) and for each negative n, the groupKMW

n (F )
in degree n is canonically isomorphic to the Witt group W(F ). Further-
more, for all negative m,n, the product KMW

m (F )×KMW
n (F )→ KMW

m+n(F )
corresponds via these isomorphisms to the product of the Witt ring of F .

2.1 The Witt ring and the

Grothendieck-Witt ring

In this section, we de�ne the Witt ring and the Grothendieck-Witt ring
of a �eld, which arise from symmetric bilinear forms on �nite-dimensional
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2. Witt, Grothendieck-Witt and Milnor-Witt K-theory

vector spaces over the �eld (which correspond to quadratic forms if the
�eld is of characteristic di�erent from 2). For further information on the
Witt ring and the Grothendieck-Witt ring of a �eld, we recommend these
�ve books (the �rst of which is in French): [dSP11], [EKM08], [Lam05],
[MH73], [Sch85].

In the �rst subsection we construct the commutative semiring Isom(F )
of isometry classes of (non-degenerate) symmetric bilinear forms on the �eld
F . In the second subsection we use Grothendieck's construction to obtain
a commutative ring GW(F ) from Isom(F ): the Grothendieck-Witt ring of
F . In the third subsection we construct the Witt ring W(F ) of F in two
ways: from the Grothendieck-Witt ring of F (by taking out the hyperbolic
plane) and directly (from Witt-equivalence). In the �nal subsection we give
examples of Grothendieck-Witt rings and of Witt rings.

Throughout this section, F is a �eld and V, V ′ are F -vector spaces of
�nite dimension.

Symmetric bilinear forms and quadratic forms

De�nitions 2.1 ((Symmetric) bilinear forms and quadratic forms).

� A bilinear form on V is a bilinear map b : V × V → F .

� A bilinear form b on V is symmetric if for all v, w ∈ V :

b(v, w) = b(w, v)

� If char(F ) 6= 2, a quadratic form on V is a map q : V → F such that

the map b :

{
V × V → F
(x, y) 7→ 1

2
(q(x+ y)− q(x)− q(y))

is a symmetric

bilinear form such that for all x ∈ V , b(x, x) = q(x). We call b the
polar form of q.

Remark 2.2. If char(F ) 6= 2 and b is a symmetric bilinear form on V then

q :

{
V → F
x 7→ b(x, x)

is a quadratic form on V of polar form b.

Note that if char(F ) 6= 2 and V = F n for some n ∈ N then the quadratic
forms on V are exactly the homogeneous polynomials of degree 2 in n
variables on F .

Examples 2.3. � If V = {0} then the only symmetric bilinear form on
V is b• : (0, 0) 7→ 0. If char(F ) 6= 2 then the only quadratic form on
V is q• : 0 7→ 0 (and its polar form is b•).

46



2.1. The Witt ring and the Grothendieck-Witt ring

� If V = F then symmetric bilinear forms on V correspond to elements
a ∈ F in the following way: ba : (x, y) 7→ axy. If char(F ) 6= 2 then
the quadratic form qa of polar form ba is simply x 7→ ax2.

� If V = F 2 then symmetric bilinear forms on V correspond to triples
(a, b, c) ∈ F 3 in the following way: b(a,b,c) : ((x1, y1), (x2, y2)) 7→
ax1x2 + b(x1y2 + x2y1) + cy1y2. If char(F ) 6= 2 then the quadratic
form q(a,b,c) of polar form b(a,b,c) is simply (x, y) 7→ ax2 + 2bxy + cy2.

In what follows, we will only be interested in non-degenerate symmetric
bilinear forms and quadratic forms.

De�nitions 2.4 (Non-degenerate symmetric bilinear forms and rank).

� The symmetric bilinear form b on V is non-degenerate if 0 is the only
element x of V which veri�es that for all y ∈ V , b(x, y) = 0. In this
case, the rank of b is the dimension of V .

� If char(F ) 6= 2, the quadratic form q on V is non-degenerate if its
polar form is non-degenerate. In this case, the rank of q is the rank
of its polar form (i.e. the dimension of V ).

In the examples above, b• is non-degenerate (of rank 0), ba is non-
degenerate if and only if a 6= 0 (and is of rank 1 in this case) and b(a,b,c) is
non-degenerate if and only if (b 6= 0 or (a 6= 0 and c 6= 0)) (and is of rank 2
in this case).

We want to say that two quadratic forms (or two symmetric bilinear
forms) are �the same� if they are the same up to a change of coordinates,
i.e. if they are isometric.

De�nitions 2.5 (Isometry). � Two non-degenerate symmetric bilinear
forms b on V and b′ on V ′ are isometric if there exists a linear isomor-
phism u : V → V ′ such that for all x, y ∈ V , b(x, y) = b′(u(x), u(y)).

� If char(F ) 6= 2, two non-degenerate quadratic forms q on V and q′ on
V ′ are isometric if there exists a linear isomorphism u : V → V ′ such
that for all x ∈ V , q(x) = q′(u(x)).

Note that two quadratic forms are isometric if and only if their polar
forms are isometric.

Remark 2.6. Isometry is an equivalence relation on non-degenerate sym-
metric bilinear forms (set u = Id for re�exiveness, the inverse of the linear
isomorphism for symmetry and the composite of the linear isomorphisms
for transitivity).
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2. Witt, Grothendieck-Witt and Milnor-Witt K-theory

Notation 2.7. We denote by Isom(F ) the set of isometry classes of non-
degenerate symmetric bilinear forms.

If char(F ) 6= 2, the set Isom(F ) is in canonical bijection with the set of
isometry classes of non-degenerate quadratic forms on F (by polarising (i.e.
taking the polar form) / depolarising (i.e. associating the quadratic form
q : x 7→ b(x, x) to the symmetric bilinear form b)).

The set Isom(F ) can be endowed with a commutative semiring structure.

De�nitions 2.8 (Orthogonal sum and tensor product). Let b : V ×V → F
and b′ : V ′ × V ′ → F be symmetric bilinear forms.

� The orthogonal sum of b and b′ is the symmetric bilinear form b ⊥ b′ :
(V ⊕ V ′)× (V ⊕ V ′)→ F which veri�es:

b ⊥ b′ : ((x, x′), (y, y′)) 7→ b(x, y) + b′(x′, y′)

� The tensor product of b and b′ is the symmetric bilinear form b⊗ b′ :
(V ⊗ V ′)× (V ⊗ V ′)→ F which veri�es:

b⊗ b′ : (
∑
i∈I

xi ⊗ x′i,
∑
j∈J

yj ⊗ y′j) 7→
∑

(i,j)∈I×J

b(xi, yj)× b′(x′i, y′j)

Note that if char(F ) 6= 2 and q : V → F and q′ : V ′ → F are quadratic
forms of respective polar forms b and b′ then we can de�ne q ⊥ q′ : V ⊕V ′ →
F and q⊗ q′ : V ⊗V ′ → F as the quadratic forms of respective polar forms
b ⊥ b′ and b⊗ b′.

Remark 2.9. The orthogonal sum and the tensor product induce opera-
tions on the set Isom(F ) which make it into a commutative semiring.

If char(F ) 6= 2 then we can construct a commutative semiring from
quadratic forms on F which is canonically isomorphic (through polarising
/ depolarising) to Isom(F ). This is also true of the commutative rings
which are constructed from symmetric bilinear forms on F in the following
subsections: the Grothendieck-Witt ring of F and the Witt ring of F . In
these subsections we stop making comments about quadratic forms but the
readers should keep in mind that if char(F ) 6= 2 then symmetric bilinear
forms can be replaced with quadratic forms every step of the way (through
polarising / depolarising).
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The Grothendieck-Witt ring

The Grothendieck-Witt (commutative) ring of F is obtained from the com-
mutative semiring Isom(F ) by using Grothendieck's construction.

De�nition 2.10 (Grothendieck-Witt ring). The Grothendieck-Witt ring of
F , denoted GW(F ), is the Grothendieck ring associated to the commutative
semiring Isom(F ). More explicitly:

� As a set, GW(F ) is the set of equivalence classes of elements of
Isom(F )× Isom(F ) for the following equivalence relation:

(b1, b2) ∼ (b′1, b
′
2)⇔ ∃d ∈ Isom(F ), b1 ⊥ b′2 ⊥ d = b′1 ⊥ b2 ⊥ d

The equivalence class of (b1, b2) is denoted by b1 − b2.

� The sum + of GW(F ) is given by:

(b1 − b2) + (b′1 − b′2) = (b1 ⊥ b′1)− (b2 ⊥ b′2)

� The product × of GW(F ) is given by:

(b1 − b2)× (b′1 − b′2) = (b1 ⊗ b′1 ⊥ b2 ⊗ b′2)− (b1 ⊗ b′2 ⊥ b2 ⊗ b′1)

Note that if char(F ) 6= 2 then Witt's cancellation theorem, which states
that for all b, b′, d ∈ Isom(F ), b ⊥ d = b′ ⊥ d ⇒ b = b′, gives as a

corollary that the map
{

Isom(F ) → GW(F )
b 7→ b− 0

is injective. This is not

the case if char(F ) = 2 (although the restriction of this map to classes of
anisotropic symmetric bilinear forms b (i.e. symmetric bilinear forms b such
that b(x, x) = 0 implies x = 0) is injective).

Remark 2.11. The rank is well-de�ned on GW(F ) (by demanding that
the rank of b1 − b2 be the rank of b1 minus the rank of b2).

Notation 2.12. Let a ∈ F ∗. We denote by 〈a〉 ∈ GW(F ) the class of

ba :

{
F × F → F
(x, y) 7→ axy

.

Note that 〈a〉 × 〈b〉 = 〈ab〉 for all a, b ∈ F ∗.

Theorem 2.13 (Theorem 4.3 in Chapter II of [Lam05]). The elements of
GW(F ) are �nite sums of elements of the form ε〈a〉 with ε ∈ {−1, 1} and
a ∈ F ∗. Furthermore, a presentation of the abelian group GW(F ) is given
by the generators 〈a〉 with a ∈ F ∗ and the following relations:

� 〈ab2〉 = 〈a〉 for all a, b ∈ F ∗;

� 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈(a+ b)ab〉 for all a, b ∈ F ∗ such that a+ b ∈ F ∗.
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2. Witt, Grothendieck-Witt and Milnor-Witt K-theory

The Witt ring

There are two ways of de�ning the Witt ring. One way is to de�ne the Witt
ring as a quotient of the Grothendieck-Witt ring.

De�nition 2.14 (Witt ring). The Witt ring of F , denoted W(F ), is the
quotient of the Grothendieck-Witt ring of F by the ideal generated by the

class of the hyperbolic plane H :

{
F 2 × F 2 → F

((x1, y1), (x2, y2)) 7→ x1y2 + x2y1
.

Remark 2.15. The rank modulo 2 is well-de�ned on W(F ).

Notation 2.16. Let a ∈ F ∗. We denote by < a >∈ W(F ) the class of

ba :

{
F × F → F
(x, y) 7→ axy

.

Note that < a > × < b >=< ab > for all a, b ∈ F ∗.
The following theorem follows immediately from Theorem 2.13.

Theorem 2.17. The elements of W(F ) are �nite sums of elements of the
form < a > with a ∈ F ∗. Furthermore, a presentation of the abelian group
W(F ) is given by the generators < a > with a ∈ F ∗ and the following
relations:

� < ab2 >=< a > for all a, b ∈ F ∗;

� < a > + < b >=< a+ b > + < (a+ b)ab > for all a, b ∈ F ∗ such that
a+ b ∈ F ∗;

� < −1 > + < 1 >= 0 (note that < −1 > + < 1 > is the class of H).

Note that for all a ∈ F ∗, < −a > + < a >= 0 (which is why the elements
of W(F ) are �nite sums of elements of the form < a > rather than �nite
Z-linear combinations).

Another way to de�ne the Witt ring is to introduce Witt-equivalence of
symmetric bilinear forms.

De�nition 2.18 (Witt-equivalence). Two non-degenerate symmetric bilin-
ear forms b on V and b′ on V ′ are Witt-equivalent if there exist integers
n, n′ ∈ N0 such that b ⊥ nH is isometric to b′ ⊥ n′H.

Remark 2.19. The orthogonal sum and the tensor product induce opera-
tions on the set of equivalence classes for Witt-equivalence which make it
into a commutative ring. The morphism from W(F ) to this commutative
ring which for each a ∈ F ∗ sends < a > to the equivalence class of ba is an
isomorphism.
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Examples of Witt rings and of Grothendieck-Witt rings

First note that if every element of F is a square (e.g. if F is a perfect �eld
of characteristic 2 or if F is algebraically closed) then GW(F ) ' Z via the
rank and W(F ) ' Z/2Z via the rank modulo 2.

Examples 2.20. � The rank r : GW(C)→ Z is a ring isomorphism.

� The morphism r : W(C) → Z/2Z induced by the rank is a ring
isomorphism.

� If F is a �nite �eld of characteristic 2 then the rank r : GW(F )→ Z
is a ring isomorphism.

� If F is a �nite �eld of characteristic 2 then the morphism r : W(F )→
Z/2Z induced by the rank is a ring isomorphism.

For the real case, we need the following de�nitions.

De�nition 2.21 (Group ring). Let G be a group. The group ring Z[G] is
the free abelian group

⊕
f∈G

Zλf associated to G with the following product:

(
∑
f∈G

nfλf )(
∑
g∈G

mgλg) =
∑
h∈G

(
∑

f, g ∈ G
fg = h

nfmg)λh

De�nitions 2.22 (Signature couple and signature). Let a, b ∈ Z.

� The signature couple of a〈1〉+ b〈−1〉 ∈ GW(R) is the couple (a, b) ∈
Z[Z/2Z].

� The signature of a < 1 > + b < −1 >∈W(R) is a− b ∈ Z.

Examples 2.23. � The signature couple GW(R) → Z[Z/2Z] is a ring
isomorphism.

� The signature W(R)→ Z is a ring isomorphism.

For the cases of �nite �elds, we need the following de�nitions.

De�nition 2.24 (Binary group ring). Let G be a group. The binary group
ring Z/2Z[G] is the Z/2Z-module

⊕
f∈G

Z/2Zλf associated to G with the
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following product:

(
∑
f∈G

nfλf )(
∑
g∈G

mgλg) =
∑
h∈G

(
∑

f, g ∈ G
fg = h

nfmg)λh

De�nitions 2.25 (Signature couple and signature for �nite �elds). Let F
be a �nite �eld of characteristic di�erent from 2 and s ∈ F be a non-square
(e.g. s = −1 if the cardinal of F is congruent to 3 modulo 4). Let a, b ∈ Z.

� If the cardinal of F is congruent to 1 modulo 4 then the signature cou-
ple of a < 1 > + b < s >∈W(F ) is the couple (a, b) ∈ Z/2Z[Z/2Z].

� If the cardinal of F is congruent to 3 modulo 4 then the signature of
a < 1 > + b < s >∈W(F ) is a− b ∈ Z/4Z.

Note that in the preceding de�nitions the choice of s is inconsequential
since if s, s′ are non-squares in a �nite �eld F then < s >=< s′ >∈W(F ).

In the following example, Z⊕ Z/2Z is the abelian group endowed with
the coordinatewise product ((n, a)× (m, b) = (n×m, a× b)), which makes
it into a commutative ring.

Examples 2.26. Let F be a �nite �eld of characteristic di�erent from 2.

� Let ϕ : GW(F ) → Z ⊕ Z/2Z be the ring morphism which for each
a ∈ F ∗ sends 〈a〉 to (1, 0) if a is a square in F , to (1, 1) otherwise.
The ring morphism ϕ : GW(F )→ Z⊕ Z/2Z is a ring isomorphism.

� If the cardinal of F is congruent to 1 modulo 4 then the signature
couple W(F )→ Z/2Z[Z/2Z] is a ring isomorphism.

� If the cardinal of F is congruent to 3 modulo 4 then the signature
W(F )→ Z/4Z is a ring isomorphism.

Finally, let us consider the �eld Q of rational numbers. Note that for all
r ∈ Q∗, there exists an integer m with no square factor such that in W(Q)
< r >=< m >. We denote by P the (ordered) set of prime numbers.

Example 2.27. The group morphism ψ : W(Q)→W(R)⊕
⊕
p∈P

W(Z/pZ)

which for all ε ∈ {−1, 1}, n ∈ N0 and distinct prime numbers p1, . . . , pn
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sends < ε
n∏
i=1

pi > to < ε

n∏
i=1

pi >∈W(R)⊕
n⊕
i=1

< ε

n∏
j = 1
j 6= i

pj >∈W(Z/piZ)

is a group isomorphism. Since ψ is surjective, we can de�ne a product ·
on W(R)⊕

⊕
p∈P W(Z/pZ) by ψ(α) · ψ(β) = ψ(αβ); this makes the group

W(R)⊕
⊕

p∈P W(Z/pZ) into a ring and ψ into a ring isomorphism.

We denote by I(R) ' 2Z the kernel of the ring morphism W(R)→ Z/2Z
induced by the rank. Using the rank r : GW(Q)→ Z and the isomorphism
ψ from the previous example, we determine the structure of GW(Q).

Example 2.28. We denote by π : GW(Q) → W(Q) the ring morphism
which sends 〈a〉 to < a > for each a ∈ Q∗. The group morphism ψ′ :

GW(Q) → Z ⊕ I(R) ⊕
⊕
p∈P

W(Z/pZ) which veri�es for each α ∈ GW(Q)

ψ′(α) = (r(α), ψ(π(α − r(α)〈1〉))) is a group isomorphism. Since ψ′ is
surjective, we can de�ne a product · on Z ⊕ I(R) ⊕

⊕
p∈P W(Z/pZ) by

ψ′(α) · ψ′(β) = ψ′(αβ); this makes Z ⊕ I(R) ⊕
⊕

p∈P W(Z/pZ) into a ring
and ψ′ into a ring isomorphism.

2.2 The Milnor-Witt K-theory ring

In this section, we construct the Milnor-Witt K-theory ring associated to a
�eld, which has a strong relationship to the Witt ring and the Grothendieck-
Witt ring (see Theorem 2.33 and Corollary 2.34). In the �rst subsection, we
introduce the Milnor-Witt K-theory of �elds which was de�ned by Morel
in [Mor12, Section 3.1] and recall some of its properties. In the second sub-
section, we consider the residue morphisms of Milnor-Witt K-theory and
we prove Theorem 2.46 which gives an explicit de�nition (i.e. one which al-
lows computations) of the noncanonical residue morphisms of Milnor-Witt
K-theory. In other words, we give in Theorem 2.46 a formula to com-
pute the noncanonical residue morphisms which were de�ned by Morel in
[Mor12] (see De�nition 2.36). Formulas to compute the canonical residue
morphisms (see De�nition 2.39) and the twisted canonical residue mor-
phisms (see De�nition 2.41) follow directly. This in turn enables us to
compute the di�erentials of the Rost-Schmid complexes (see De�nition 3.8)
and their boundary maps (see De�nition 3.18) in the cases which are useful
to compute the quadratic linking class and the quadratic linking degree (see
Chapters 6 and 7).
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Throughout this section, F is a perfect �eld, v : F ∗ → Z is a discrete
valuation (of residue �eld κ(v) and ring Ov (of maximal ideal mv)) and π
is a uniformizing parameter for v. For all u ∈ O∗v, we denote by u its class
in κ(v) (which is in κ(v)∗ since u ∈ O∗v).

Milnor-Witt K-theory

We start by de�ning the Milnor-Witt K-theory ring associated to F .

De�nition 2.29 (Milnor-Witt K-theory). The Milnor-Witt K-theory ring
associated to F , denoted KMW

∗ (F ), is the Z-graded ring with unit generated
by elements [a] of degree 1, for a ∈ F ∗, and an element η of degree −1,
subject to the relations:

� [ab] = [a] + [b] + η[a][b] for all a, b ∈ F ∗

� [a][1− a] = 0 for all a ∈ F \ {0, 1} (Steinberg relation)

� η[a] = [a]η for all a ∈ F ∗

� η(η[−1] + 2) = 0, i.e. ηh = 0 with h := η[−1] + 2

This means that KMW
∗ (F ) is the quotient of the non-commutative poly-

nomial ring with coe�cients in Z and (non-commuting) indeterminates
the [a] for a ∈ F ∗ and η (with ηk0 [a1]η

k1 . . . [an]ηkn of degree n − k with

n, k0, . . . , kn ∈ N0 and k =
n∑
i=0

ki) by the (homogeneous) ideal generated by

the relations above.
Note that since KMW

∗ (F ) is a Z-graded ring with unit, KMW
0 (F ) inherits

a ring (with unit) structure and all the KMW
n (F ) (with n ∈ Z) inherit a

KMW
0 (F )-module structure (in particular, an abelian group structure).

Remark 2.30. This de�nition of the Milnor-Witt K-theory ring associated
to F may seem abstract; the readers who are interested in motivic homotopy
theory should see [Mor12, Corollary 1.25] for a more concrete de�nition.

We now introduce important notation.

Notation 2.31. Let a ∈ F ∗. 〈a〉 := 1 + η[a] ∈ KMW
0 (F ). ε := −〈−1〉.

For all n ∈ N0, nε :=
n∑
i=1

〈(−1)i−1〉 and (−n)ε := ε nε.

For all a1, . . . , an ∈ F ∗, [a1, . . . , an] := [a1] . . . [an] ∈ KMW
n (F ).

We recall the following facts which are very useful for computations.
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Proposition 2.32.

1. For all a, b ∈ F ∗, 〈ab〉 = 〈a〉〈b〉 (see [Mor12, Lemma 3.5]).

2. If n ≤ 0 then any element of KMW
n (F ) can be written as a Z-linear

combination of elements of the form 〈a〉η−n with a ∈ F ∗ (see [Mor12,
Lemma 3.6]).

3. If n ≥ 1 then any element of KMW
n (F ) can be written as a Z-linear

combination of elements of the form [a1, . . . , an] with a1, . . . , an ∈ F ∗
(see [Mor12, Lemma 3.6]).

4. For all a ∈ F ∗, [a, a] = [a,−1] (see [Mor12, Lemma 3.7]).

5. For all α ∈ KMW
m (F ) and β ∈ KMW

n (F ), αβ = εmnβα (see [Mor12,
Corollary 3.8]).

6. For all n ∈ Z and a ∈ F ∗, [an] = nε[a] (see [Mor12, Lemma 3.14]).

Note in particular that KMW
0 (F ) is a commutative ring.

The following theorem and corollary give the relationship between the
Milnor-Witt K-theory ring on the one hand and the Grothendieck-Witt
ring and Witt ring on the other hand.

Theorem 2.33 (Lemma 3.10 in [Mor12]). For all n ≤ −1, the morphism
γn : KMW

n (F ) → W(F ) which for all a ∈ F ∗ sends 〈a〉η−n to < a > is an
isomorphism of abelian groups and the morphism γ0 : KMW

0 (F )→ GW(F )
which for all a ∈ F ∗ sends 〈a〉 to 〈a〉 is an isomorphism of commutative
rings with unit.

Corollary 2.34. The product in negative degrees in Milnor-Witt K-theory
corresponds to the product in the Witt ring via the isomorphisms described
in Theorem 2.33. In other words, for all negative integers m,n < 0, the
following diagram is commutative:

KMW
m (F )×KMW

n (F )
× //

γm×γn
��

KMW
m+n(F )

γm+n

��
W(F )×W(F ) ×

//W(F )

Proof. For all a, b ∈ F ∗, (〈a〉η−m)× (〈b〉η−n) = (〈a〉×〈b〉)η−(m+n) and since
γ0 : KMW

0 (F ) → GW(F ) is an isomorphism of rings (see Theorem 2.33),
γ0(〈a〉 × 〈b〉) = 〈a〉 × 〈b〉 ∈ GW(F ) which is sent to < a > × < b >∈
W(F ) via the canonical ring morphism GW(F ) → W(F ) (see De�nition
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2.14). Furthermore, the composite of γ0 : KMW
0 (F ) → GW(F ) and of

the canonical morphism GW(F ) → W(F ) is equal to the composite of
×η−(m+n) : KMW

0 (F ) → KMW
m+n(F ) and of γm+n : KMW

m+n(F ) → W(F ) since
these two group morphisms send 〈a〉 ∈ KMW

0 (F ) to < a >∈ W(F ) for all
a ∈ F ∗. Therefore the diagram above is commutative.

Note that 〈1〉 = 1, thus h = 〈1〉+ 〈−1〉 (see De�nition 2.29) corresponds
via γ0 to the hyperbolic plane.

Before we move on to residue morphisms, we introduce one last de�nition
(which will be useful to turn noncanonical residue morphisms into canonical
residue morphisms).

De�nition 2.35 (Twisted Milnor-Witt K-theory).

� The group ring Z[F ∗] is the free abelian group
⊕
f∈F ∗

Zλf associated to

F ∗ with the following product:

(
∑
f∈F ∗

nfλf )(
∑
g∈F ∗

mgλg) =
∑
h∈F ∗

(
∑

f, g ∈ F ∗
fg = h

nfmg)λh

� Let L be an F -vector space of dimension 1. The Z[F ∗]-module
Z[L \ {0}] is the free abelian group

⊕
e∈L\{0}

Zξe associated to L \ {0}

with the following scalar product:

(
∑
f∈F ∗

nfλf ) · (
∑

g∈L\{0}

mgξg) =
∑

h∈L\{0}

(
∑

f ∈ F ∗, g ∈ L \ {0}
f · g = h

nfmg)ξh

� Let m ∈ Z and L be an F -vector space of dimension 1. The L-twisted
m-th Milnor-Witt K-theory abelian group of F , denoted KMW

m (F,L),
is the tensor product of the Z[F ∗]-modules KMW

m (F ) and Z[L \ {0}]
(the scalar product ofKMW

m (F ) being (
∑

f∈F ∗ nfλf )·α =
∑

f∈F ∗ nf〈f〉α):

KMW
m (F,L) = KMW

m (F )⊗Z[F ∗] Z[L \ {0}]

Note that if we �x an isomorphism between L and F then we get an
isomorphism of Z[F ∗]-modules between KMW

m (F,L) and KMW
m (F ); never-

theless, KMW
m (F,L) is a useful construction because there is no canonical

isomorphism betweenKMW
m (F,L) andKMW

m (F ) unless L = F (since there is
no canonical isomorphism between L and F unless L = F ) and the introduc-
tion of KMW

m (F,L) is what allows us to have canonical residue morphisms.
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Residue morphisms of Milnor-Witt K-theory

We recall Morel's de�nition of the noncanonical residue morphism associ-
ated to the discrete valuation v : F ∗ → Z and the uniformizing parameter π.

De�nition 2.36 (The noncanonical residue morphism). The residue mor-
phism ∂πv : KMW

∗ (F )→ KMW
∗−1 (κ(v)) is the (only) morphism of graded groups

which commutes to product by η and satis�es, for all n ∈ N0, u1, . . . , un ∈ O∗v:

∂πv ([π, u1, . . . , un]) = [u1, . . . , un] and ∂πv ([u1, . . . , un]) = 0.

(For n = 0, this means ∂πv ([π]) = 1 and ∂πv (1) = 0.)

In [Mor12, Theorem 3.15], Morel proves that such a morphism exists and
that it is unique. For an explicit de�nition, see Theorem 2.46. Before we
de�ne the canonical residue morphism associated to the discrete valuation
v : F ∗ → Z (which will not depend on a uniformizing parameter), we recall
the following proposition and corollary.

Proposition 2.37 (Proposition 3.17 in [Mor12]). For all u ∈ O∗v and α ∈
KMW
∗ (F ), we have ∂πv (〈u〉α) = 〈u〉∂πv (α).

Corollary 2.38. Let u′ ∈ O∗v and π′ = u′π. Then ∂πv = 〈u′〉∂π′v .

Proof. Note that 〈u′〉∂π′v : KMW
∗ (F ) → KMW

∗−1 (κ(v)) (which sends α to
〈u′〉∂π′v (α) for all α ∈ KMW

∗ (F )) is a morphism of graded groups which
commutes to product by η. Thus it su�ces to prove that for all n ∈
N0, u1, . . . , un ∈ O∗v, 〈u′〉∂π

′
v ([u1, . . . , un]) = 0 and 〈u′〉∂π′v ([π, u1, . . . , un]) =

[u1, . . . , un]. Note that ∂π
′

v ([u1, . . . , un]) = 0 hence 〈u′〉∂π′v ([u1, . . . , un]) = 0.

〈u′〉∂π′v ([π, u1, . . . , un]) = ∂π
′

v (〈u′〉[π, u1, . . . , un]) by Proposition 2.37

= ∂π
′

v ((1 + η[u′])[π][u1, . . . , un]) by de�nition of 〈u′〉
= ∂π

′

v ((1 + η[u′])[π][u1, . . . , un]) + ∂π
′

v ([u′, u1, . . . , un])

= ∂π
′

v (([π] + η[u′][π] + [u′])[u1, . . . , un])

= ∂π
′

v ([u′π][u1, . . . , un]) (see De�nition 2.29)

= ∂π
′

v ([π′, u1, . . . , un]) by de�nition of π′

= [u1, . . . , un]

Recall De�nition 2.35. In the following de�nition, we denote by (mv/m
2
v)
∨

the dual of the κ(v)-vector space mv/m
2
v, by π the class of π in mv/m

2
v (which

is nonzero since π is a uniformizing parameter for v) and by (π∗) the dual
basis of (π).
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De�nition 2.39 (The canonical residue morphism). The canonical residue
morphism ∂v : KMW

∗ (F )→ KMW
∗−1 (κ(v), (mv/m

2
v)
∨) is given by ∂v = ∂πv ⊗π∗.

Remark 2.40. Note that ∂v does not depend on the choice of π, since if π′

is another uniformizing parameter for v then there exists u′ ∈ O∗v such that
π′ = u′π hence ∂πv ⊗π∗ = 〈u′〉∂π′v ⊗π∗ = ∂π

′
v ⊗u′π

∗
= ∂π

′
v ⊗π′

∗ by Corollary
2.38.

We also introduce the twisted canonical residue morphism associated to
the discrete valuation v : F ∗ → Z and the rank one Ov-module L.

De�nition 2.41 (The twisted canonical residue morphism). Let L be a
rank one Ov-module. The twisted canonical residue morphism

∂v,L : KMW
∗ (F,L⊗Ov F )→ KMW

∗−1 (κ(v), (mv/m
2
v)
∨ ⊗κ(v) (L⊗Ov κ(v)))

is the (only) morphism of graded groups which satis�es for all α ∈ KMW
∗ (F )

and l ∈ L:
∂v,L(α⊗ (l ⊗ 1)) = ∂πv (α)⊗ (π∗ ⊗ (l ⊗ 1))

These twisted canonical residue morphisms we have introduced will turn
up in the de�nition of the di�erentials of the Rost-Schmid complexes (see
De�nition 3.8) and (through this de�nition) in the de�nition of the bound-
ary maps of the Rost-Schmid complexes (see De�nition 3.18). These twisted
canonical residue morphisms will then be used (through the de�nition of
boundary map) to de�ne the quadratic linking class and the quadratic
linking degree, which are central to this thesis. In order to compute the
quadratic linking class and the quadratic linking degree, we thus need to be
able to compute the twisted canonical residue morphisms. By de�nition,
it su�ces to be able to compute the noncanonical residue morphisms. The
following lemmas and theorem allow us to do just that.

Lemma 2.42. For all n ∈ Z, nε = n+ bn
2
cη[−1].

Proof. If n ≥ 0 then nε =
∑n

i=1〈(−1)i−1〉 = dn
2
e〈1〉 + bn

2
c〈−1〉 = dn

2
e +

bn
2
c(1+η[−1]) = n+bn

2
cη[−1]. If n < 0 then nε = ε(−n)ε hence, from what

we have previously shown, nε = ε(−n + b−n
2
cη[−1]) = (−1 − η[−1])(−n +

b−n
2
cη[−1]) = n+ (−b−n

2
c+ n)η[−1]− b−n

2
cη2[−1,−1]. By De�nition 2.29,

η[−1,−1] = [1] − [−1] − [−1] = −2[−1] hence nε = n + (−b−n
2
c + n +

2b−n
2
c)η[−1] = n+ (n+ b−n

2
c)η[−1] = n+ bn

2
cη[−1].

Lemma 2.43. For all m,n ∈ Z, (mn)ε = mεnε.
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Proof. Let m,n ∈ Z. By Lemma 2.42, mεnε = (m + bm
2
cη[−1])(n +

bn
2
cη[−1]) = mn + (nbm

2
c + mbn

2
c)η[−1] + bm

2
cbn

2
cη2[−1,−1]. By De�-

nition 2.29, η[−1,−1] = [1] − [−1] − [−1] = −2[−1] hence mεnε = mn +
(nbm

2
c + mbn

2
c − 2bm

2
cbn

2
c)η[−1] = mn + bmn

2
cη[−1] = (mn)ε by Lemma

2.42.

Notation 2.44. We denote by χodd the characteristic function of the set
of odd numbers, i.e.

χodd :


Z → {0, 1}

m 7→ χodd(m) =

{
1 if m is odd
0 otherwise

.

Lemma 2.45. For all m ∈ Z, ηmε = ηχodd(m).

Proof. Note that η〈−1〉 = −η since η(1 + 〈−1〉) = 0 (see De�nition 2.29).
It follows that if m ≥ 0 then ηmε = dm

2
eη − bm

2
cη = ηχodd(m). If m < 0

then mε = ε(−m)ε hence, from what we have previously shown, ηmε =
εηχodd(−m) = εηχodd(m). Since εη = −〈−1〉η = η, ηmε = ηχodd(m).

We now give a formula to compute the noncanonical residue morphisms
∂πv : KMW

n (F ) → KMW
n−1 (κ(v)) (see De�nition 2.36). We restrict to genera-

tors of the group KMW
n (F ) (see 2 and 3 in Proposition 2.32) since ∂πv is a

group morphism (see De�nition 2.36). Note that formulas to compute the
canonical residue morphisms and the twisted canonical residue morphisms
follow immediately from the de�nitions (see De�nitions 2.39 and 2.41).

Theorem 2.46. For all n ≤ 0, m ∈ Z and u ∈ O∗v:

∂πv (〈πmu〉η−n) = 〈u〉η−n+1χodd(m)

For all n ≥ 1, m1, . . . ,mn ∈ Z and u1, . . . , un ∈ O∗v:

∂πv ([πm1u1, . . . , π
mnun]) =

n−1∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

((−1)
∑l
i=1 n−l+i−ji

∏
k∈{1,...,n}\J

mk)ε[−1, . . . ,−1︸ ︷︷ ︸
n−1−l terms

, uj1 , . . . , ujl ]

+
n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l}
|I|=p

ηpχodd(
∏
i∈I

mji ×
∏

k∈{1,...,n}\J

mk))[−1, . . . ,−1︸ ︷︷ ︸
n−1+p−l terms

, uj1 , . . . , ujl ]
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Remark 2.47. This last formula may seem daunting, but for n = 1 it is
merely

∂πv ([πmu]) = mε + ηχodd(m)[u] = 〈u〉mε

(similarly to the case n ≤ 0 where ∂πv (〈πmu〉η−n) = 〈u〉η−n+1mε, see Lemma
2.45), for n = 2 it is merely

∂πv ([πm1u1, π
m2u2]) = (m1m2)ε[−1] + (−m2)ε[u1] + (m1)ε[u2]

+ ηχodd(m1m2)[−1, u1] + ηχodd(m1)[−1, u2]

+ (ηχodd(m1) + ηχodd(m2))[u1, u2]

+ η2χodd(m1m2)[−1, u1, u2]

and so on (the number of terms growing (a priori) exponentially with n).

Remark 2.48. Note that for n ≥ 1, the formula in Theorem 2.46 could be
rewritten so that η does not appear (by using the fact that for all a, b ∈
κ(v)∗, η[a, b] = [ab]− [a]− [b], see De�nition 2.29). For n = 1 this gives:

∂πv ([πmu]) =
⌈m

2

⌉
〈u〉+

⌊m
2

⌋
〈−u〉

for n = 2 this gives:

∂πv ([πm1u1, π
m2u2]) = (χodd(m1m2)− χodd(m1))[−1]−

⌈m1

2

⌉
[u1]−

⌊m1

2

⌋
[−u1]

+ (χodd(m1m2)− χodd(m1) +
⌊m2

2

⌋
)[u2]

+ (χodd(m1)− χodd(m1m2) +
⌈m2

2

⌉
)[−u2]

+
m1 −m2 + χodd(m1 −m2)

2
[u1u2]

+
m1 −m2 − χodd(m1 −m2)

2
[−u1u2]

and so on (the number of terms growing (a priori) exponentially with n).

Proof. Let n ≤ 0, m ∈ Z and u ∈ O∗v.
∂πv (〈πmu〉η−n) = ∂πv ((1 + η[πmu])η−n)

= ∂πv ((1 + η([πm] + [u] + η[πm, u]))η−n) by De�nition 2.29
= ∂πv ((1 + ηmε[π] + η[u] + η2mε[π, u])η−n) by 6 in Prop. 2.32
= η−n∂πv (1) + η−n+1mε∂

π
v ([π])

+ η−n+1∂πv ([u]) + η−n+2mε∂
π
v ([π, u]) by Prop. 2.37 and Def. 2.36

= η−n+1mε + η−n+2mε[u] by Def. 2.36

= (η−n+1 + η−n+2[u])χodd(m) by Lemma 2.45

= 〈u〉η−n+1χodd(m)
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Let n ≥ 1,m1, . . . ,mn ∈ Z, u1, . . . , un ∈ O∗v and N := {1, . . . , n}.

[πm1u1, . . . , π
mnun] =

n∏
i=1

([πmi ] + [ui] + η[πmi , ui]) by De�nition 2.29

=
n∏
i=1

((mi)ε[π] + [ui] + η(mi)ε[π, ui]) by 6 in Prop. 2.32

By developing this product and using 5 in Proposition 2.32 (ε-graded com-
mutativity), as well as the fact that ηε = η (since η(1 + 〈−1〉) = 0 (see
De�nition 2.29)), we get that [πm1u1, . . . , π

mnun] is equal to:

n∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

∏
k∈N\J

(mk)ε × ε
∑l
i=1 n−l+i−ji [π, . . . , π, uj1 , . . . , ujl ]

+
n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l}
|I|=p

ηp ×
∏
i∈I

(mji)ε ×
∏

k∈N\J

(mk)ε)[π, . . . , π, uj1 , . . . , ujl ]

The index p corresponds to the number of terms coming from an η(mi)ε[π, ui],
the index l corresponds to the number of terms coming from a [ui] or an
η(mi)ε[π, ui] (which is why l ≥ p), the set J = {j1, . . . , jl} corresponds to
the indices i of the terms coming from a [ui] or an η(mi)ε[π, ui] (which is
why the cardinality |J | of J is equal to l) and the set I corresponds to the
indices i of the ji such that uji comes from an η(mji)ε[π, uji ] (rather than
from a [uji ]), which is why the cardinality |I| of I is equal to p.

Therefore, by 4 in Proposition 2.32 and Lemmas 2.43 and 2.45, we have
that [πm1u1, . . . , π

mnun] is equal to:

n∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

((−1)
∑l
i=1 n−l+i−ji

∏
k∈N\J

mk)ε[π,−1, . . . ,−1, uj1 , . . . , ujl ]

+
n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l}
|I|=p

ηpχodd(
∏
i∈I

mji ×
∏

k∈N\J

mk))[π,−1, . . . ,−1, uj1 , . . . , ujl ]
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Finally, by De�nition 2.36 and Proposition 2.37, we get that ∂πv ([πm1u1, . . . , π
mnun])

is equal to:

n−1∑
l=0

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

((−1)
∑l
i=1 n−l+i−ji

∏
k∈N\J

mk)ε[−1, . . . ,−1, uj1 , . . . , ujl ]

+
n∑
p=1

n∑
l=p

∑
J⊂{1,...,n},|J |=l
J={j1<···<jl}

(
∑

I⊂{1,...,l}
|I|=p

ηpχodd(
∏
i∈I

mji ×
∏

k∈N\J

mk))[−1, . . . ,−1, uj1 , . . . , ujl ]

Note that the term l = n in the �rst double sum vanished because
∂πv ([u1, . . . , un]) = 0 (see De�nition 2.36).
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Chapter 3

Quadratic intersection theory

In this chapter, we present quadratic intersection theory, which is a quadratic
re�nement of classical intersection theory (in algebraic geometry) which is
central in motivic homotopy theory (and will rely heavily on Chapter 2).
This chapter will play an important role in all subsequent chapters.

In Section 3.1 we recall the reinvention and generalisation of Chow
groups by Rost, which is the inspiration for quadratic intersection theory.
In Section 3.2 we regroup important results on Rost-Schmid groups, in par-
ticular on Chow-Witt groups (the quadratic counterparts to Chow groups)
and in Section 3.3 we focus on the intersection product in quadratic in-
tersection theory and present a recent formula to compute it. Finally, in
Section 3.4 we compute some useful Rost-Schmid groups.

3.1 Intersection theory à la Rost

In this section we present the reinvention and generalisation of Chow groups
by Rost (see [Ros96]). For a more classical take on intersection theory, see
[Ful98] and [EH16].

Throughout this section, F is a perfect �eld and X is a smooth �nite-
type F -scheme.

First, we de�ne Milnor K-theory (which was introduced by Milnor in
[Mil70]).

De�nition 3.1 (Milnor K-theory). The Milnor K-theory ring associated
to F , denotedKM

∗ (F ), is the Z-graded ring with unit de�ned as the quotient
of the tensor algebra of F ∗ by the (homogeneous) ideal generated by the
�Steinberg relations� a ⊗ (1 − a) with a ∈ F \ {0, 1}. The class in KM

∗ (F )
of a1 ⊗ · · · ⊗ an (where a1, . . . , an ∈ F ∗) is denoted {a1, . . . , an}.
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Note that for all n < 0, KM
n (F ) = 0, KM

0 (F ) ' Z and KM
1 (F ) ' F ∗.

The following de�nition is equivalent to De�nition 3.1.

Equivalent De�nition 3.2 (Milnor K-theory). The Milnor K-theory ring
associated to F , denoted KM

∗ (F ), is the Z-graded ring with unit generated
by the elements {a} of degree 1, for a ∈ F ∗ subject to the relations:

� {ab} = {a}+ {b} for all a, b ∈ F ∗

� {a}{1− a} = 0 for all a ∈ F \ {0, 1} (Steinberg relation)

Note that KM
∗ (F ) is canonically isomorphic to the quotient of KMW

∗ (F )
(see De�nition 2.29) by the (homogeneous) ideal generated by η (the el-
ement {a} ∈ KM

1 (F ) corresponding to the class of [a] ∈ KMW
1 (F ) for all

a ∈ F ∗).

Remark 3.3. Milnor K-theory has residue morphisms which are de�ned
in a similar manner to the noncanonical residue morphisms in Milnor-Witt
K-theory (see De�nition 2.36) but which are canonical (i.e. they do not
depend on a choice of uniformizing parameter).

Traditionally, the i-th Chow group CHi(X) of X is de�ned as the group
of rational equivalence classes of cycles of codimension i in X (which are
Z-linear combinations of subvarieties of codimension i in X). In his arti-
cle [Ros96], Rost uses Milnor K-theory KM

∗ to de�ne for each j ∈ Z the
following complex (where X(i) is the set of points of codimension i in X):

. . . //
⊕

p∈X(i) KM
j−i(κ(p))

dij //
⊕

q∈X(i+1) KM
j−i−1(κ(q)) // . . .

whose cohomology groups are Ai(X, j) := ker(dij)/ im(di−1j ) and shows that
the i-th Chow group CHi(X) of X is equal to Ai(X, i).

Remark 3.4. The morphisms dij are constructed from the residue mor-
phisms of Milnor K-theory.

This generalisation of Chow groups has several advantages, one of which
is that Chow groups �t in the long exact sequences given by the exact
triangle theorem in homological algebra (see [Rot88, Theorem 5.6]):

. . . // An(Z,m)
i∗ // An+dX−dZ (X,m+ dX − dZ)

j∗ //

j∗ // An+dX−dZ (U,m+ dX − dZ) ∂ // An+1(Z,m) // . . .
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3.2. The Rost-Schmid complex and Chow-Witt groups

with i : Z → X a closed immersion and j : U → X an open immersion such
that the image of U by j is the complement in X of the image of Z by i,
where Z,X,U are smooth F -schemes of pure dimensions (denoted dZ , dX
and dU = dX respectively), the morphisms ∂ (which are called boundary
maps) being the connecting morphisms of the exact triangle theorem.

In [Ros96, Remark 2.6], Rost suggested that his work could probably be
developed similarly over the Witt ring rather than the MilnorK-theory ring
(with additional di�culties), which was partially done by Schmid in [Sch98].
In [BM00], Barge and Morel developed similar work over the Milnor-Witt
K-theory ring (which in this article was constructed from the Milnor K-
theory ring and the Witt ring, see [Mor03, Theorem 6.4.5]) and created
the Chow groups of oriented cycles, which were later called the Chow-Witt
groups, and a complex which was later called the Rost-Schmid complex.

Remark 3.5. In [Ros96], Rost developed much more general machinery
than the generalisation of Chow groups we have described above: Chow
groups with coe�cients in cycle modules. In [Fel21], Feld recently developed
Chow-Witt groups with coe�cients in Milnor-Witt cycle modules, �nally
completing the work announced in [Ros96, Remark 2.6] and in [Mor12,
Remark 5.37].

3.2 The Rost-Schmid complex and

Chow-Witt groups

In this section, we de�ne the quadratic counterpart to the complex which
was described in the preceding section and study its cohomology groups,
some of which are the Chow-Witt groups which play the role of Chow groups
in a quadratic setting. After we de�ne the Rost-Schmid complex and its
cohomology groups (including Chow-Witt groups), we study some of their
properties (homotopy invariance, the existence of a localization long exact
sequence, their equivalent de�nition as sheaf cohomology groups) then focus
on their interactions with orientations and orientation classes.

Throughout this section, F is a perfect �eld and X is a smooth �nite-
type F -scheme.

De�nitions

We need the following de�nition and notation to de�ne the Rost-Schmid
complex.
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De�nition 3.6 (Determinant of a locally free module). The determinant
of a locally free OX-module V of constant �nite rank r, denoted det(V), is
its r-th exterior power Λr(V).

Notation 3.7. Let i ∈ Z, x ∈ X and L be an invertible OX-module.

� We denote by X(i) the set of points of codimension i in X. Note that
X(i) is empty if i is less than 0 or greater than the dimension of X.

� We denote by Nx/X the normal sheaf of x in X, i.e. the dual of
mX,x/m

2
X,x, where mX,x is the maximal ideal of the local ring OX,x of

X at x. We denote by νx the determinant of Nx/X .

� We denote by L|x the tensor product of the OX,x-modules Lx and
κ(x), i.e. L|x := Lx ⊗OX,x κ(x).

We now give the de�nition of the Rost-Schmid complex that Morel gave
in [Mor12, Chapter 5]. Note that an earlier (equivalent) de�nition of the
Rost-Schmid complex was given in [BM00]. (The equivalence of these de�-
nitions follows from [Mor03, Theorem 6.4.5].) Recall De�nition 2.35.

De�nition 3.8 (Rost-Schmid complex). Let j ∈ Z and L be an invertible
OX-module. The Rost-Schmid complex associated to X, j and L, denoted
C(X,KMW

j {L}), is the following:

. . . // Ci(X,KMW
j {L})

diX,j,L // Ci+1(X,KMW
j {L}) // . . .

where
Ci(X,KMW

j {L}) =
⊕
x∈X(i)

KMW
j−i (κ(x), νx ⊗κ(x) L|x)

and diX,j,L (which is called the di�erential of the Rost-Schmid complex)
is the (only) morphism of groups Ci(X,KMW

j {L}) → Ci+1(X,KMW
j {L})

which for each x ∈ X(i) and kx ∈ KMW
j−i (κ(x), νx ⊗κ(x) L|x) maps kx to∑

y∈{x}(1)
∂xy (kx), with ∂xy : KMW

j−i (κ(x), νx⊗κ(x)L|x)→ KMW
j−i−1(κ(y), νy⊗κ(y)L|y)

the twisted canonical residue morphism (see De�nition 2.41) when {x} is
smooth, and the adequate composition of twisted canonical residue mor-
phisms and transfer morphisms (between y and points of the normalisation
of {x}) otherwise (see [Fel20, Section 7] (in which the (veri�ed) axiom FD
ensures that this sum is �nite) or [Fas20, Subsection 2.1] or [Mor12, pp.
121-122] for further details). We denote C(X,KMW

j ) := C(X,KMW
j {OX})

and for all i ∈ Z, Ci(X,KMW
j ) := Ci(X,KMW

j {OX}) and diX,j := diX,j,OX .
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Theorem 3.9 (Theorem 5.31 in [Mor12]). The Rost-Schmid complex is a
complex, i.e. for each i, j ∈ Z and each invertible OX-module L:

di+1
X,j,L ◦ d

i
X,j,L = 0

This theorem allows us to de�ne the Rost-Schmid groups (and in par-
ticular the Chow-Witt groups) as follows.

De�nition 3.10 (Rost-Schmid groups). Let i, j ∈ Z and L be an invertible
OX-module. The i-th Rost-Schmid group associated toX, j and L, denoted
by H i(X,KMW

j {L}), is the i-th cohomology group of the Rost-Schmid com-
plex C(X,KMW

j {L}), i.e.:

H i(X,KMW
j {L}) := ker(diX,j,L)/ im(di−1X,j,L)

We denote H i(X,KMW
j ) := H i(X,KMW

j {OX}).

De�nition 3.11 (Chow-Witt groups). Let i ∈ Z and L be an invert-
ible OX-module. The i-th Chow-Witt group associated to X and L, de-
noted by C̃H

i
(X,L), is the i-th cohomology group of the Rost-Schmid

complex C(X,KMW
i {L}), i.e. C̃H

i
(X,L) := H i(X,KMW

i {L}). We denote

C̃H
i
(X) := C̃H

i
(X,OX).

Remark 3.12. As soon as i is less than 0 or greater than the dimension
of X, we have H i(X,KMW

j {L}) = 0 and C̃H
i
(X,L) = 0.

Note that if we quotient the Ci(X,KMW
j {L}) by η then we obtain

the complex which was described in the previous section, di�erentials in-
cluded (i.e. the morphism dij mentioned in the previous section is induced
by the morphism diX,j,L (which commutes to product by η)), hence we
have morphisms H i(X,KMW

j {L})→ Ai(X, j) and in particular morphisms

C̃H
i
(X,L)→ CHi(X).

Homotopy invariance

Let us now state the property of homotopy invariance of Rost-Schmid
groups. We denote by A1

X the product of F -schemes A1
F ×F X.

Theorem 3.13 (Theorem 5.38 in [Mor12]). Let π : A1
X → X be the

projection and i, j ∈ Z. The induced morphism π∗ : H i(X,KMW
j ) →

H i(A1
X , K

MW
j ) is an isomorphism.
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Localization long exact sequence

In order to give the localization long exact sequence, we �rst de�ne bound-
ary triples and boundary maps (which were introduced by Feld in [Fel20]
who was inspired by Rost's work in [Ros96]).

De�nition 3.14 (Boundary triple). A boundary triple is a triple (Z,X,U),
or rather a 5-tuple (Z, i,X, j, U), with i : Z → X a closed immersion
and j : U → X an open immersion such that the image of U by j is
the complement in X of the image of Z by i, where Z,X,U are smooth
�nite-type F -schemes of pure dimensions. We denote by dZ and dX the
dimensions of Z andX respectively and by νZ the determinant of the normal
sheaf of Z in X (which is the dual of the OZ-module IZ/I 2

Z , where IZ is
the ideal sheaf of Z in X).

Remark 3.15. Let (Z, i,X, j, U) be a boundary triple and n,m ∈ Z.
Since every point x of codimension n in X is either a point of codimen-
sion n+ dZ − dX in Z (in which case, det(Nx/X) is canonically isomorphic
to det(Nx/Z)⊗κ(x) (νZ)|x) or a point of codimension n in U (in which case,
det(Nx/X) is canonically isomorphic to det(Nx/U)), we have a canonical
isomorphism Cn(X,KMW

m ) ' Cn+dZ−dX (Z,KMW
m+dZ−dX{νZ})⊕ C

n(U,KMW
m ).

Notation 3.16. Let (Z, i,X, j, U) be a boundary triple and n,m ∈ Z. We
denote the projections by

i∗ : Cn(X,KMW
m )→ Cn+dZ−dX (Z,KMW

m+dZ−dX{νZ})
j∗ : Cn(X,KMW

m )→ Cn(U,KMW
m )

and the inclusions by

i∗ : Cn+dZ−dX (Z,KMW
m+dZ−dX{νZ})→ C

n(X,KMW
m )

j∗ : Cn(U,KMW
m )→ Cn(X,KMW

m )

Remark 3.17. Let (Z, i,X, j, U) be a boundary triple and n,m ∈ Z.
Note that the morphisms i∗ and j∗ commute with the di�erentials of the
Rost-Schmid complexes and induce morphisms i∗ : Hn(Z,KMW

m {νZ}) →
Hn+dX−dZ (X,KMW

m+dX−dZ ) (which is also induced by the pushforward along
the closed immersion i, see [Fas20, Subsection 2.3]) and j∗ : Hn(X,KMW

m )→
Hn(U,KMW

m ) (which is also induced by the pullback along the open immer-
sion j, see [Fas20, Subsection 2.4]).
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3.2. The Rost-Schmid complex and Chow-Witt groups

De�nition 3.18 (Boundary map). Let (Z, i,X, j, U) be a boundary triple
and n,m ∈ Z. The boundary map associated to this boundary triple is the
morphism

∂ : Cn+dX−dZ (U,KMW
m+dX−dZ )→ Cn+1(Z,KMW

m {νZ})

induced by the di�erential dn+dX−dZX,m+dX−dZ of the Rost-Schmid complex C(X,KMW
m+dX−dZ ):

∂ = i∗ ◦ dn+dX−dZX,m+dX−dZ ◦ j∗

The following theorem is a special case of the exact triangle theorem in
homological algebra (see [Rot88, Theorem 5.6] and note that the boundary
maps are the connecting morphisms by de�nition). Note its similarity to
Theorem 1.6 (which is also a consequence of the exact triangle theorem
(and of Poincaré duality)).

Theorem 3.19. Let (Z, i,X, j, U) be a boundary triple. The boundary
maps induce morphisms ∂ : Hn+dX−dZ (U,KMW

m+dX−dZ )→ Hn+1(Z,KMW
m {νZ})

and we have the following long exact sequence, called the localization long
exact sequence:

. . . // Hn(Z,KMW
m {νZ})

i∗ // Hn+dX−dZ (X,KMW
m+dX−dZ )

j∗ //

j∗ // Hn+dX−dZ (U,KMW
m+dX−dZ ) ∂ // Hn+1(Z,KMW

m {νZ}) // . . .

Rost-Schmid groups are sheaf cohomology groups

The reason Rost-Schmid groups are denoted as they are is the following:
for each j ∈ Z, there is a strongly A1-invariant sheaf KMW

j of abelian
groups (this means that the morphisms H0

Nis(X,K
MW
j )→ H0

Nis(A1
X , K

MW
j )

and H1
Nis(X,K

MW
j ) → H1

Nis(A1
X , K

MW
j ) induced by the projection A1

X :=
A1
F ×F X → X are isomorphisms, see [Mor12, De�nition 1.7]) such that

the Rost-Schmid cohomology groups H i(X,KMW
j ) are the Zariski sheaf co-

homology groups H i
Zar(X,K

MW
j ) with respect to the sheaf KMW

j as well as
the Nisnevich sheaf cohomology groups H i

Nis(X,K
MW
j ) with respect to the

sheaf KMW
j . See [Mor12, Chapter 3] for the construction of KMW

j (which is
called the unrami�ed Milnor-Witt K-theory in weight j) and the fact that
it is a strongly A1-invariant sheaf of abelian groups.

Theorem 3.20 (Corollary 5.43 in [Mor12]). For all i, j ∈ Z, there are
canonical isomorphisms H i(X,KMW

j ) ' H i
Zar(X,K

MW
j ) ' H i

Nis(X,K
MW
j ).
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Remark 3.21. It follows immediately from Theorems 3.20 and 3.13 that
for all j ∈ Z, the sheaf KMW

j is strictly A1-invariant (this means that for all
i ∈ N0, the morphism H i

Nis(X,K
MW
j ) → H i

Nis(A1
X , K

MW
j ) induced by the

projection A1
X → X is an isomorphism, see [Mor12, De�nition 1.7]).

Orientations and their induced isomorphisms

In all subsequent chapters (as well as Section 3.4), orientations will play a
major role. Let us de�ne orientations as Morel did in [Mor12, De�nition
4.3].

De�nition 3.22 (Orientation of a locally free module). An orientation of
a locally free OX-module V of constant �nite rank r is an isomorphism
o : det(V) = Λr(V)→ L⊗L where L is an invertible OX-module.

Two orientations o : det(V) → L ⊗ L and o′ : det(V) → L′ ⊗ L′ are
said to be equivalent if there exists an isomorphism ψ : L → L′ such that
(ψ ⊗ ψ) ◦ o = o′. The equivalence class of o, denoted o, is called the
orientation class of o.

Remark 3.23. Note that if X = Spec(F ) then V is an F -vector space of
dimension r and an orientation class of V corresponds to a basis of V up
to multiplication by a matrix of determinant a square of a unit of F . In
particular, if X = Spec(R) then an orientation class of V corresponds to a
basis of V up to multiplication by a matrix of positive determinant, thus
we recover the usual de�nition of orientation class.

Before we de�ne the isomorphisms õ : H i(X,KMW
j {det(V)})→ H i(X,KMW

j )
induced by the orientation o : det(V)→ L⊗L, we need the following lemma.

Lemma 3.24. Let L be an invertible OX-module. For all i, j ∈ Z, the
morphism C

i(X,KMW
j {L ⊗ L}) → Ci(X,KMW

j )∑
x∈I

kx ⊗ (lx ⊗ lx) 7→
∑
x∈I

kx

where I is a �nite subset of X(i), kx ∈ KMW
j−i (κ(x), νx) and lx ∈ L|x \ {0}, is

a well-de�ned isomorphism which commutes with di�erentials.

Proof. First note that elements of Ci(X,KMW
j {L ⊗ L}) are of the form∑

x∈I mx ⊗ tx with I a �nite subset of X(i), mx ∈ KMW
j−i (κ(x)) and tx ∈

Z[(νx⊗(L⊗L)|x)\{0}]. Let x ∈ I. Since νx⊗(L⊗L)|x is a κ(x)-vector space
of dimension 1, there exist nx ∈ KMW

j−i (κ(x)) and sx ∈ (νx⊗ (L⊗L)|x) \ {0}
such that mx ⊗ tx = nx ⊗ sx. By de�nition of KMW

j−i (κ(x), νx), there exist
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3.2. The Rost-Schmid complex and Chow-Witt groups

hx ∈ KMW
j−i (κ(x), νx) and lx, rx ∈ L|x \{0} such that nx⊗sx = hx⊗(lx⊗rx).

Since L|x is a κ(x)-vector space of dimension 1, there exists vx ∈ κ(x)∗

such that rx = vxlx. It follows that hx ⊗ (lx ⊗ rx) = 〈vx〉hx ⊗ (lx ⊗ lx).
Denoting kx := 〈vx〉hx, we obtain mx ⊗ tx = kx ⊗ (lx ⊗ lx). Thus, elements
of Ci(X,KMW

j {L ⊗ L}) are of the form
∑

x∈I kx ⊗ (lx ⊗ lx) with I a �nite
subset of X(i), kx ∈ KMW

j−i (κ(x), νx) and lx ∈ L|x \ {0}.
To check that our map is well-de�ned, let us show that

∑
x∈I kx =∑

y∈J k
′
y in Ci(X,KMW

j ) whenever
∑

x∈I kx⊗ (lx⊗ lx) =
∑

y∈J k
′
y ⊗ (l′y ⊗ l′y)

in Ci(X,KMW
j {L⊗L}), where I, J are �nite subsets of X(i) and for all x ∈ I

and y ∈ J , kx ∈ KMW
j−i (κ(x), νx), k′y ∈ KMW

j−i (κ(y), νy), lx ∈ L|x \ {0} and
l′y ∈ L|y \{0}. Since Ci(X,KMW

j {L⊗L}) is the direct sum over x in X(i) of
KMW
j−i (κ(x), νx ⊗ (L⊗L)|x), note that for all x ∈ I \ (I ∩ J), kx = 0, for all

y ∈ J\(I∩J), k′y = 0 and for all z ∈ I∩J , kz⊗(lz⊗lz) = k′z⊗(l′z⊗l′z). Let x ∈
I∩J . Since L|x is a one-dimensional κ(x)-vector space, there exists ux ∈ F ∗
such that l′x = uxlx. Hence, k′x⊗(l′x⊗ l′x) = 〈u2x〉k′x⊗(lx⊗ lx) = k′x⊗(lx⊗ lx),
thus k′x ⊗ (lx ⊗ lx) = kx ⊗ (lx ⊗ lx) and �nally k′x = kx (since the tensor
product is over Z[κ(x)∗]). Similarly, the equality k′x⊗(l′x⊗l′x) = k′x⊗(lx⊗lx)
above gives straightforwardly that our map is a morphism and that the mapC

i(X,KMW
j ) → Ci(X,KMW

j {L ⊗ L})∑
x∈I

kx 7→
∑
x∈I

kx ⊗ (lx ⊗ lx)

is well-de�ned and is a morphism, which shows that our morphism is an
isomorphism. The commutation with di�erentials is straightforward.

Notation 3.25. Let i, j ∈ Z and L be an invertible OX-module. We denote
by ιL,i,j : H i(X,KMW

j {L ⊗ L}) → H i(X,KMW
j ) the isomorphism induced

by the isomorphism of Lemma 3.24. If o : det(V)→ L⊗L is an orientation
then we denote by õ : H i(X,KMW

j {det(V)}) → H i(X,KMW
j ) the isomor-

phism which is the composite of the isomorphism H i(X,KMW
j {det(V)})→

H i(X,KMW
j {L ⊗ L}) induced by o and of the isomorphism ιL,i,j.

In the following proposition, we show that the isomorphism õ only de-
pends on the orientation class o of o (see De�nition 3.22).

Proposition 3.26. Let i, j ∈ Z, o : det(V)→ L⊗L be an orientation and

ψ : L → L′ be an isomorphism. Then ˜(ψ ⊗ ψ) ◦ o = õ.

Proof. Note that the isomorphismH i(X,KMW
j {det(V)})→ H i(X,KMW

j {L′⊗L′})
induced by (ψ⊗ψ)◦o is the composite of the isomorphismH i(X,KMW

j {det(V)})→
H i(X,KMW

j {L⊗L}) induced by o and of the isomorphismH i(X,KMW
j {L⊗ L})→

71



3. Quadratic intersection theory

H i(X,KMW
j {L′⊗L′}) induced by ψ⊗ψ. Hence it su�ces to show that the

isomorphism ιL,i,j is the composite of the isomorphismH i(X,KMW
j {L⊗ L})→

H i(X,KMW
j {L′⊗L′}) induced by ψ⊗ψ and of the isomorphism ιL′,i,j. This

follows directly from the de�nitions of ιL,i,j and ιL′,i,j and the fact that the
isomorphism H i(X,KMW

j {L ⊗ L}) → H i(X,KMW
j {L′ ⊗ L′}) induced by

ψ ⊗ ψ sends kx ⊗ (lx ⊗ lx) to kx ⊗ (ψ(lx) ⊗ ψ(lx)) for all x ∈ X(i), kx ∈
KMW
j−i (κ(x), νx) and lx ∈ L|x \ {0}.

3.3 The intersection product

In this section we de�ne the intersection product in quadratic intersection
theory and recall some of its properties, then we present a formula to com-
pute the intersection product.

Throughout this section, F is a perfect �eld and X is a smooth �nite-
type F -scheme.

Before we de�ne the intersection product, we need to de�ne the exterior
product (a.k.a. cross product).

De�nition 3.27 (The exterior product (or cross product)). Let X and X ′

be smooth �nite-type F -schemes and i, i′, j, j′ ∈ Z. The exterior product
µ : Ci(X,KMW

j )×Ci′(X ′, KMW
j′ )→ Ci+i′(X×X ′, KMW

j+j′) (which is sometimes
denoted × and called cross product) is the (only) morphism which for all
x ∈ X(i), k ∈ KMW

j−i (κ(x), νx), x′ ∈ (X ′)(i
′), k′ ∈ KMW

j′−i′(κ(x′), νx′), maps
(k, k′) to the sum over l ∈ {1, . . . , n} of kk′ ∈ KMW

j+j′−(i+i′)(κ(zl), νzl), where
z1, . . . , zl ∈ (X ×X ′)(i+i′) are such that κ(x)⊗F κ(x′) '

∏n
l=1 κ(zl).

The exterior product induces a well-de�ned product µ : H i(X,KMW
j )×

H i′(X ′, KMW
j′ ) → H i+i′(X × X ′, KMW

j+j′) (see [Fel20, Section 11]). The in-
tersection product is de�ned from the exterior product and the pull-back
along the diagonal (see [Fas20, Subsection 3.3]), which is also known as the
Gysin morphism induced by the diagonal (see [Fel20, Section 10]).

De�nition 3.28 (The intersection product). Let ∆ : X → X × X be
the diagonal. The intersection product · : H i(X,KMW

j )×H i′(X,KMW
j′ )→

H i+i′(X,KMW
j+j′) is the composite of the exterior product µ : H i(X,KMW

j )×
H i′(X,KMW

j′ ) → H i+i′(X × X,KMW
j+j′) with the pull-back (a.k.a. Gysin

morphism) ∆∗ : H i+i′(X ×X,KMW
j+j′)→ H i+i′(X,KMW

j+j′).

We will give a more explicit de�nition of the intersection product below
under some assumptions. Before we do this, let us state that the intersection
product is a product, then expand on its graded commutativity.
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Proposition 3.29 (Subsection 3.4 in [Fas20] or Theorem 11.6 in [Fel20]).
The intersection product makes

⊕
i,j∈Z

H i(X,KMW
j ) into a graded KMW

0 (F )-

algebra, which is called the Rost-Schmid ring. In particular, the intersection
product makes

⊕
i∈Z

C̃H
i
(X) into a graded KMW

0 (F )-algebra, which is called

the Chow-Witt ring.

Recall that ε = −〈−1〉 ∈ KMW
0 (F ) and that Milnor-Witt K-theory is

ε-commutative (see 5 in Proposition 2.32).

Proposition 3.30 (Subsection 3.4 in [Fas20]). Let i, i′, j, j′ ∈ Z, c1 ∈
H i(X,KMW

j ) and c2 ∈ H i′(X,KMW
j′ ). The intersection product of c1 with

c2 is 〈(−1)ii
′〉ε(j−i)(j′−i′)-commutative:

c2 · c1 =


c1 · c2 if ii′ is even and (j − i)(j′ − i′) is even
ε(c1 · c2) if ii′ is even and (j − i)(j′ − i′) is odd
−ε(c1 · c2) if ii′ is odd and (j − i)(j′ − i′) is even
−(c1 · c2) if ii′ is odd and (j − i)(j′ − i′) is odd

We now present a formula to compute the intersection product under
some assumptions (this will be very useful in Chapters 6 and 7). The fol-
lowing theorem has been proved by Déglise; the proof will be made available
in the second part of his notes [Dég23]. In the meantime, we give a proof
sketch of this theorem below.

Theorem 3.31. Let n1, n2 ≥ 0 and D1, D2 be distinct smooth integral
divisors in X. For all i ∈ {1, 2}, let gi be a local parameter for Di,
i.e. gi is a uniformizing parameter for OX,Di . The intersection prod-
uct of ηn1 ⊗ g1

∗ ∈ H1(X,KMW
1−n1

) (over the generic point of D1) with
ηn2 ⊗ g2

∗ ∈ H1(X,KMW
1−n2

) (over the generic point of D2) is the class in
H2(X,KMW

2−n1−n2
) of the sum over the generic points x of the irreducible

components of D1 ∩D2 of (mx)ε〈ux〉ηn1+n2 ⊗ (πx
∗⊗ g1∗) (over the point x),

where πx is a uniformizing parameter for OX,x/(g1), ux is a unit in OX,x/(g1)
and mx ∈ Z, such that g2 = uxπ

mx
x ∈ OX,x/(g1).

The ideas of the proof are the following:

� Reduce the problem to the case where D1 = div(g1).

� Denoting by i1 : D1 → X the inclusion and by Θ1 : H0(D1, K
MW
−n1

)→
H0(D1, K

MW
−n1
{νD1}) (where νD1 is the determinant of the normal sheaf

of D1 in X) the isomorphism which sends ηn1 to ηn1 ⊗ g1∗, check that
ηn1 ⊗ g1∗ ∈ H1(X,KMW

1−n1
) is equal to (i1)∗(Θ1(η

n1)).
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� Use the projection formula (Theorem 3.19 in [Fas20]) to show that
(i1)∗(Θ1(η

n1)) · (ηn2 ⊗ g2∗) = (i1)∗(Θ1(η
n1) · (i1)∗(ηn2 ⊗ g2∗)).

� Use Proposition 3.2.15 in [DFJ22], which states that if i is the closed
immersion of a principal divisor D = div(π) and j is the comple-
mentary open immersion to i, then i! = ∂ ◦ γ[π] ◦ j!, to show that
(i1)

∗ = ∂1 ◦ γ[g1] ◦ (j1)
∗, with j1 the complementary open immer-

sion to i1, ∂1 the boundary map associated to the boundary triple
(D1, i1, X, j1, X \D1) and γ[g1] the multiplication by [g1].

� Deduce from the previous steps that (ηn1 ⊗ g1∗) · (ηn2 ⊗ g2∗) is equal
to (i1)∗(Θ1(η

n1) · (∂1 ◦ γ[g1] ◦ (j1)
∗)(ηn2 ⊗ g2∗)) and conclude.

In Chapters 6 and 7 we use the following formula to compute the
quadratic linking class and the quadratic linking degree.

Corollary 3.32. Let n1, n2 ≥ 0 and D1, D2 be distinct smooth integral
divisors in X. For all i ∈ {1, 2}, let gi be a local parameter for Di and
fi be a unit in κ(Di) = OX,Di/mX,Di such that for all generic points x of
irreducible components of D1 ∩D2, fi ∈ κ(x) = OX,x/mX,x is a unit. The
intersection product of 〈f1〉ηn1⊗g1∗ ∈ H1(X,KMW

1−n1
) (over the generic point

of D1) with 〈f2〉ηn2 ⊗ g2
∗ ∈ H1(X,KMW

1−n2
) (over the generic point of D2)

is the class in H2(X,KMW
2−n1−n2

) of the sum over the generic points x of the
irreducible components of D1∩D2 of (mx)ε〈f1f2ux〉ηn1+n2⊗(πx

∗⊗g1∗) (over
the point x), where πx is a uniformizing parameter for OX,x/(g1), ux is a
unit in OX,x/(g1) and mx ∈ Z such that g2 = uxπ

mx
x ∈ OX,x/(g1).

Proof. First note that, with the notations above, fi ∈ κ(x) is well-de�ned
since if fi and f ′i are two representatives in OX,Di of fi ∈ κ(Di) (hence
di�er by an element of mX,Di) and if fi, f ′i ∈ OX,x are sent by the canonical
morphism ψ : OX,x → OX,Di to fi, f ′i ∈ OX,Di respectively, then fi, f

′
i ∈

OX,x di�er by an element of mX,x (since ψ−1(mX,Di) ⊂ mX,x).
Note that for all i ∈ {1, 2}, 〈fi〉ηni ⊗ gi∗ = ηni ⊗ figi

∗
with figi a local

parameter forDi (figi ∈ mX,Di/m
2
X,Di

is well-de�ned since fi ∈ OX,Di/mX,Di

and gi ∈ mX,Di and (a representative of) figi ∈ mX,Di is a generator of
mX,Di since (a representative of) fi is a unit in OX,Di and gi is a generator
of mX,Di).

Therefore, by Theorem 3.31, the intersection product of 〈f1〉ηn1 ⊗ g1
∗

with 〈f2〉ηn2 ⊗ g2
∗ is the sum over the generic points x of the irreducible

components of D1 ∩D2 of (mx)ε〈vx〉ηn1+n2 ⊗ (πx
∗ ⊗ f1g1

∗
) (over the point

x), where πx is a uniformizing parameter for OX,x/(f1g1), vx is a unit in
OX,x/(f1g1) and mx ∈ Z such that f2g2 = vxπ

mx
x ∈ OX,x/(f1g1).
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Note that since f2 is a unit in κ(x), ux := f−12 vx is a unit in κ(x) and
(mx)ε〈vx〉ηn1+n2⊗(πx

∗⊗f1g1
∗
) = (mx)ε〈f2ux〉ηn1+n2⊗(πx

∗⊗f1g1
∗
). Further

note that since f1 is a unit in κ(x), the ideal (f1g1) is equal to the ideal (g1)
inOX,x and (mx)ε〈f2ux〉ηn1+n2⊗(πx

∗⊗f1g1
∗
) = (mx)ε〈f1f2ux〉ηn1+n2⊗(πx

∗⊗
g1
∗). Finally note that, by de�nition of ux, g2 = uxπ

mx
x ∈ OX,x/(g1).

It would be very useful to have more general intersection formulas in or-
der to compute the quadratic linking class and the quadratic linking degree
in more cases (especially in cases which give a quadratic linking degree in
GW(F ) rather than in W(F )).

Future work 1 (More general formulas for the intersection product). The
formulas given in Theorem 3.31 and Corollary 3.32 can probably be gener-
alised to the following settings (by increasing order of di�culty):

� The assumptions on the right-hand term of the intersection product
could be greatly weakened (recall the asymmetry of the proof sketch
of Theorem 3.31 (and of the resulting formula)).

� The smooth integral divisor D1 could be replaced with a complete in-
tersection of smooth integral divisors (by taking intersection products
in a row, asking that each left-hand term be in H1(Y,KMW

j ) with Y
the intersection of the divisors which have already been considered
and j ≤ 1).

� The assumption that n1 ≥ 0 could probably be weakened, but the
proof of the intersection formula would have to be di�erent (since
we would not have the special element ηn1 anymore). If we had a
formula in the case where n1 = −1 (and n2 ≥ −1) then we could
compute the quadratic linking class and the quadratic linking degree
in all the cases of codimension 2 links. Under the same assumptions as
the ones of Corollary 3.32, a conjectural formula for the intersection
product of [f1] ⊗ g1∗ ∈ H1(X,KMW

2 ) (over the generic point of D1)
with [f2] ⊗ g2∗ ∈ H1(X,KMW

2 ) (over the generic point of D2) is the
following: the class in H2(X,KMW

4 ) of the sum over the generic points
x of the irreducible components ofD1∩D2 of (mx)ε[f2][f1]〈ux〉⊗(πx

∗⊗
g1
∗) (over the point x), with the same notations as in Corollary 3.32.

Note that [f2][f1] 6= [f1][f2] in general (in fact, [f2][f1] = ε[f1][f2];
see 5 in Proposition 2.32). If [f1] ⊗ g1

∗ ∈ H1(X,KMW
2 ) is replaced

with 〈f1〉ηn1 ⊗ g1
∗ ∈ H1(X,KMW

1−n1
) (where n1 ≥ 0), conjecturally

(mx)ε[f2][f1]〈ux〉 ⊗ (πx
∗ ⊗ g1∗) (over the point x) should be replaced

with (mx)ε[f2]〈f1ux〉ηn1 ⊗ (πx
∗ ⊗ g1

∗) (over the point x). If [f2] ⊗
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3. Quadratic intersection theory

g2
∗ ∈ H1(X,KMW

2 ) is replaced with 〈f2〉ηn2 ⊗ g2
∗ ∈ H1(X,KMW

1−n2
),

conjecturally (mx)ε[f2][f1]〈ux〉 ⊗ (πx
∗⊗ g1∗) (over the point x) should

be replaced with (mx)ε[f1]〈f2ux〉ηn2 ⊗ (πx
∗ ⊗ g1∗) (over the point x).

3.4 Computations of Rost-Schmid groups

In the following chapters, we will need to know the Rost-Schmid groups
of several smooth schemes. Furthermore, from Chapter 5 onwards (re-
spectively Chapter 6 onwards), we will need explicit isomorphisms (resp.
computable explicit isomorphisms) between these Rost-Schmid groups and
well-known groups. In this section, we provide these explicit isomorphisms.

Throughout this section, F is a perfect �eld, X is a smooth �nite-
type F -scheme, and for each n ∈ N, An

F = Spec(F [x1, . . . , xn]) and PnF =
Proj(F [x0, . . . , xn]).

We begin with the following basic result.

Proposition 3.33. Let i, j ∈ Z. The Rost-Schmid groupH i(Spec(F ), KMW
j )

is equal to KMW
j (F ) if i = 0, to 0 otherwise.

Proof. By de�nition, for all i, j ∈ Z, Ci(Spec(F ), KMW
j ) is equal toKMW

j (F )
if i = 0, to 0 otherwise. The result follows directly.

Homotopy invariance (Theorem 3.13) gives us the following corollary.

Corollary 3.34. Let n, i ∈ N, j ∈ Z and π : An
F → Spec(F ) be the pro-

jection. The morphisms π∗ : 0 = H i(Spec(F ), KMW
j )→ H i(An

F , K
MW
j ) and

π∗ : KMW
j (F ) = H0(Spec(F ), KMW

j )→ H0(An
F , K

MW
j ) are isomorphisms.

The last two results together with the localization long exact sequence
allow us to compute the Rost-Schmid groups of An

F \ {0} for n ≥ 2. Recall
De�nitions 3.18 (boundary maps) and 3.22 (orientations) and Notation 3.25.

Proposition 3.35. Let n ≥ 2 and i, j ∈ Z be integers. We denote by
ψ : An

F \ {0} → An
F the inclusion, by π : An

F → Spec(F ) the projection,
by ∂ the boundary map associated to the boundary triple ({0},An

F ,An
F \

{0}) and by o : det(N{0}/AnF ) → O{0} ⊗ O{0} the orientation of the normal
sheaf of {0} in An

F which maps x1∗ ∧ · · · ∧ xn∗ to 1 ⊗ 1. The morphisms
ψ∗ ◦ π∗ : KMW

j (F ) = H0(Spec(F ), KMW
j )→ H0(An

F \ {0}, KMW
j ) and õ ◦ ∂ :

Hn−1(An
F \{0}, KMW

j )→ H0({0}, KMW
j−n ) = KMW

j−n (F ) are isomorphisms and
if i /∈ {0, n− 1} then H i(An

F \ {0}, KMW
j ) = 0.
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3.4. Computations of Rost-Schmid groups

Proof. The localization long exact sequence (see Theorem 3.19) associated
to the boundary triple ({0},An

F ,An
F\{0}) gives the following exact sequences

for all j ∈ Z and i /∈ {0, n− 1}:

0 // H0(An
F , K

MW
j )

ψ∗ // H0(An
F \ {0}, KMW

j ) // 0

0 // Hn−1(An
F \ {0}, KMW

j ) ∂ // H0({0}, KMW
j−n{det(N{0}/AnF )}) // 0

0 // H i(An
F \ {0}, KMW

j ) // 0

The result follows directly from this, Proposition 3.33 and Corollary 3.34.

Notation 3.36. Let n ≥ 2 and j ≤ n be integers. We denote by ζn,j the
isomorphism which is the composite of the isomorphism õ ◦ ∂ : Hn−1(An

F \
{0}, KMW

j )→ KMW
j−n (F ) (see Proposition 3.35) and of the isomorphism γj−n

(see Theorem 2.33).

Remark 3.37. Note that the localization long exact sequence associated
to the boundary triple ({0},A1

F ,A1
F \ {0}) gives for all j ∈ Z and i 6= 0 the

equality H i(A1
F \ {0}, KMW

j ) = 0 and the following short exact sequence:

0 // H0(A1
F , K

MW
j )

ψ∗ // H0(A1
F \ {0}, KMW

j ) ∂ // H0({0}, KMW
j−1 {det(N{0}/A1

F
)}) //

∼

õ
��

0

KMW
j (F )

∼ π∗
OO

KMW
j−1 (F )

In particular, H0(A1
F \ {0}, KMW

j ) 6= 0.

Notation 3.38. Let n ∈ N.

Q2n := Spec(F [x1, . . . , xn, y1, . . . , yn, z]/(
n∑
i=1

xiyi − z(1 + z)))

Q2n−1 := Spec(F [x1, . . . , xn, y1, . . . , yn]/(
n∑
i=1

xiyi − 1))

In the following proposition and corollary, we explicitly compute the
Rost-Schmid groups of Q2n−1.

Proposition 3.39. Let n ≥ 2 and i, j ∈ Z be integers. Let p : Q2n−1 →
An
F \ {0} be the projection on x1, . . . , xn. The morphism p∗ : H i(An

F \
{0}, KMW

j )→ H i(Q2n−1, K
MW
j ) is an isomorphism.
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Proof. This result is the direct application of [AF14, Lemma 4.5] and its
proof to the strictly A1-invariant sheafKMW

j (see Theorem 3.20 and Remark
3.21).

We directly get the following corollary from Propositions 3.35 and 3.39.

Corollary 3.40. Let n ≥ 2 and i, j ∈ Z be integers. With the same
notations as in Propositions 3.35 and 3.39, the morphisms p∗ ◦ ψ∗ ◦ π∗ :
KMW
j (F ) = H0(Spec(F ), KMW

j ) → H0(Q2n−1, K
MW
j ) and õ ◦ ∂ ◦ (p∗)−1 :

Hn−1(Q2n−1, K
MW
j ) → H0({0}, KMW

j−n ) = KMW
j−n (F ) are isomorphisms, and

if i /∈ {0, n− 1} then H i(Q2n−1, K
MW
j ) = 0.

Notation 3.41. Let n ≥ 2 and j ≤ n be integers. We denote by ς2n−1,j the
composite of the isomorphism õ◦∂◦(p∗)−1 : Hn−1(Q2n−1, K

MW
j )→ KMW

j−n (F )
(see Corollary 3.40) and of the isomorphism γj−n (see Theorem 2.33).

Remark 3.42. Since the F -scheme Q1 = Spec(F [x, y]/(xy− 1)) is isomor-
phic to A1

F \ {0}, it follows from Remark 3.37 that for all j ∈ Z and i 6= 0,
H i(Q1, K

MW
j ) = 0 and H0(Q1, K

MW
j ) 6= 0.

In the following proposition, we compute (non-explicitly) the Rost-
Schmid groups of Q2n. For an explicit computation of the Rost-Schmid
groups of Q2, see Lemma 3.49 and Corollary 3.50.

Proposition 3.43. Let n ≥ 1 and i, j ∈ Z be integers. The Rost-Schmid
group H i(Q2n, K

MW
j ) is isomorphic to KMW

j (F ) if i = 0, to KMW
j−n (F ) if

i = n, to 0 otherwise.

Proof. This result is the direct application of [AF22, Proposition 1.1.5]
to the strictly A1-invariant sheaf KMW

j (see Theorem 3.20 and Remark
3.21).

By combining Corollary 3.40 and Proposition 3.43, we directly get the
following corollary.

Corollary 3.44. Let n ≥ 2 and i, j ∈ Z be integers. The Rost-Schmid
group H i(Qn, K

MW
j ) is isomorphic to KMW

j (F ) if i = 0, to KMW
j−dn

2
e(F ) if

i = bn
2
c, to 0 otherwise.

Future work 2 (Explicit isomorphisms for the Rost-Schmid groups of
Q2n). In order to de�ne the quadratic linking degree (in Chapter 5) in a
setting with Q2n, we need to explicitly compute the Rost-Schmid group
Hn(Q2n, K

MW
j ), i.e. to exhibit for each n ≥ 2 an isomorphism between

Hn(Q2n, K
MW
j ) and KMW

j−n (F ). To do this, it su�ces to show that the
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morphism i∗ : H0(Yn, K
MW
j−n{νYn/Q2n}) → Hn(Q2n, K

MW
j ) is an isomor-

phism, where Yn is the closed subscheme of the a�ne quadric Q2n =
Spec(F [x1, . . . , xn, y1, . . . , yn, z]/(

∑n
i=1 xiyi − z(1 + z))) which is de�ned by

the equations x1 = · · · = xn = z = 0 and i : Yn → Q2n is the inclusion.
Indeed, the tuple (x1, . . . , xn) induces an orientation of the normal sheaf of
Yn in Q2n, hence an isomorphism H0(Yn, K

MW
j−n ) → H0(Yn, K

MW
j−n{νYn/Q2n})

(see Notation 3.25), the coordinates y1, . . . , yn give an isomorphism between
An
F and Yn, hence an isomorphism H0(An

F , K
MW
j−n ) → H0(Yn, K

MW
j−n ), and

the projection π : An
F → Spec(F ) gives an isomorphism π∗ : KMW

j−n (F ) =

H0(Spec(F ), KMW
j−n ) → H0(An

F , K
MW
j−n ) (see Corollary 3.34). The consider-

ations in [ADF16, Section 2] should be useful to show that the morphism
i∗ : H0(Yn, K

MW
j−n{νYn/Q2n})→ Hn(Q2n, K

MW
j ) is an isomorphism.

We now give the Rost-Schmid groups of the projective space PnF when
F is of characteristic di�erent from 2. Recall De�nition 3.1.

Theorem 3.45 (Theorem 11.7 in [Fas13]). Let n ≥ 1 and i, j ∈ Z be
integers. If F is of characteristic di�erent from 2 then the Rost-Schmid
group H i(PnF , K

MW
j ) is isomorphic to KMW

j (F ) if i = 0, to KM
j−i(F ) if 0 <

i < n, to KM
j−n(F ) if i = n and n is even, to KMW

j−n (F ) if i = n and n is odd,
to 0 otherwise.

As before, we would like to explicitly compute the Rost-Schmid groups of
PnF (and to drop the assumption on the characteristic of F ). The following
proposition and corollary do this for n = 1.

Proposition 3.46 (Subsection 3.4 in [Dég23]). Let l ∈ Z, i : Spec(F ) →
P1
F be the closed immersion of image the point ∞ := [1 : 0] and j :

A1
F → P1

F be the open immersion of image P1
F \ {∞}. The morphism

j∗ : H0(P1
F , K

MW
l ) → H0(A1

F , K
MW
l ) is an isomorphism and the morphism

i∗ : H0(Spec(F ), KMW
l−1 {ν{∞}}) → H1(P1

F , K
MW
l ) is an isomorphism (where

ν{∞} is the normal sheaf of {∞} in P1
F ).

Recall De�nition 3.22 (orientations) and Notation 3.25. Propositions
3.46 and 3.33 and Corollary 3.34 directly give the following corollary.

Corollary 3.47. Let l ∈ Z and ∞ := [1 : 0] in P1
F .

1. The composite of the isomorphism õ∞ : KMW
l−1 (F ) = H0(Spec(F ), KMW

l−1 )→
H0(Spec(F ), KMW

l−1 {ν{∞}}) which is induced by the orientation o∞ :
ν{∞} → O{∞} ⊗ O{∞} of the normal sheaf ν{∞} of {∞} in P1

F which
maps x1

x0
to 1⊗1 and of the isomorphism i∗ : H0(Spec(F ), KMW

l−1 {ν{∞}})→
H1(P1

F , K
MW
l ) which is induced by the inclusion of {∞} in P1

F is an
isomorphism.
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2. The composite of the isomorphism j∗ : H0(P1
F , K

MW
l )→ H0(A1

F , K
MW
l )

which is induced by the inclusion of P1
F \ {∞} in P1

F and of the iso-
morphism (π∗)−1 : H0(A1

F , K
MW
l ) → H0(Spec(F ), KMW

l ) = KMW
l (F )

is an isomorphism.

3. If k /∈ {0, 1} then Hk(P1
F , K

MW
l ) = 0.

Notation 3.48. Let l ≤ 0 be an integer. We denote by %l the composite
of the isomorphism (i∗ ◦ õ∞)−1 : H1(P1

F , K
MW
l ) → KMW

l−1 (F ) (see Corollary
3.47) and of the isomorphism γl−1 : KMW

l−1 (F )→W(F ) (see Theorem 2.33).

Future work 3 (Explicit isomorphisms for the Rost-Schmid groups of PnF ).
In order to de�ne the quadratic linking degree (in Chapter 5) in a setting
with PnF where n is odd, we need to explicitly compute the Rost-Schmid
group Hn(PnF , K

MW
j ), i.e. to exhibit for each odd integer n ≥ 3 an isomor-

phism between Hn(PnF , K
MW
j ) and KMW

j−n (F ). To do this, it su�ces to show
that the morphism i∗ : H0(Spec(F ), KMW

j−n{ν{∞}}) → Hn(PnF , K
MW
j ) is an

isomorphism, where i : Spec(F )→ PnF is the closed immersion of image the
point∞ := [1 : 0 : . . . : 0]. Indeed, the tuple (x1

x0
, . . . , xn

x0
) induces an orienta-

tion of the normal sheaf of {∞} in PnF , hence an isomorphism KMW
j−n (F ) =

H0(Spec(F ), KMW
j−n ) → H0(Spec(F ), KMW

j−n{ν{∞}}). It may be possible to
adapt the proof (in [Dég23, Subsection 3.4]) of Proposition 3.46 to prove
that the morphism i∗ : H0(Spec(F ), KMW

j−n{ν{∞}}) → Hn(PnF , K
MW
j ) is an

isomorphism. Note that [Yan21, Theorem 1.1] may be useful to show that
the morphism i∗ : H0(Spec(F ), KMW

j−n{ν{∞}}) → Hn(PnF , K
MW
j ) is an iso-

morphism.

Finally, let us compute explicitly the Rost-Schmid groups of Q2. Recall
that Q2 = Spec(F [x, y, z]/(xy − z(1 + z))). The following lemma can be
proved in a similar way to Proposition 3.39 (since the morphism p which
is de�ned in the following lemma is an A1-weak equivalence, hence an iso-
morphism in the A1-homotopy category).

Lemma 3.49. Let i, j ∈ Z. Let p : Q2 → P1
F be the morphism which sends

(x, y, z) to [x : z] = [1 + z : y] (note that x, z, 1 + z, y cannot all be 0, so
that for any (x, y, z), [x : z] or [1 + z : y] is well-de�ned). The morphism
p∗ : H i(P1

F , K
MW
j )→ H i(Q2, K

MW
j ) is an isomorphism.

Lemma 3.49 and Corollary 3.47 directly give the following corollary.

Corollary 3.50. Let l ∈ Z and ∞ := [1 : 0] in P1
F . With the same

notations as in Corollary 3.47 and Lemma 3.49, the morphisms p∗ ◦ i∗ ◦ õ∞ :
KMW
l−1 (F ) → H1(Q2, K

MW
l ) and (π∗)−1 ◦ j∗ ◦ (p∗)−1 : H0(Q2, K

MW
l ) →

KMW
l (F ) are isomorphisms. If k /∈ {0, 1} then Hk(Q2, K

MW
l ) = 0.
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Notation 3.51. Let l ≤ 1 be an integer. We denote by φl the composite of
the isomorphism (p∗ ◦ i∗ ◦ õ∞)−1 : H1(Q2, K

MW
l )→ KMW

l−1 (F ) (see Corollary
3.50) and of the isomorphism γl−1 (see Theorem 2.33). We denote φ2 :=
(p∗ ◦ i∗ ◦ õ∞)−1 : H1(Q2, K

MW
2 )→ KMW

1 (F ) (see Corollary 3.50).
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Motivic linking
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Chapter 4

The quadratic linking class

In this chapter and Chapter 5, we use quadratic intersection theory (see
Chapter 3) � which is central in motivic homotopy theory � to study what
we call motivic linking: a counterpart in algebraic geometry to classical
linking (in knot theory and in higher-dimensional knot theory; see Chapter
1). More precisely, in this chapter we introduce and study counterparts in
algebraic geometry to:

� oriented links with two components (see De�nition 1.1 and its higher-
dimensional generalisation De�nition 1.22);

� the oriented fundamental class (see De�nition 1.3 and its higher-
dimensional generalisation De�nition 1.23);

� the couple of Seifert classes (see De�nition 1.8 and its higher-dimensional
generalisation De�nition 1.25);

� the linking class (see De�nition 1.10 and its higher-dimensional gener-
alisation De�nition 1.27; we call its counterpart the quadratic linking
class).

In Chapter 5 (which builds on this chapter), we will introduce and study
counterparts in algebraic geometry to the linking number (see De�nition
1.13 and its higher-dimensional generalisation De�nition 1.30; we call its
counterpart the ambient quadratic linking degree) and to the linking cou-
ple (see De�nition 1.17 and its higher-dimensional generalisation De�nition
1.34; we call its counterpart the quadratic linking degree (couple)).

In Section 4.1, we present the general context in which the above-
mentioned counterparts, such as the quadratic linking class, can be de-
�ned, and study some general properties of these counterparts. In Section
4.2, we prove functoriality properties of the quadratic linking class in this
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4. The quadratic linking class

general context. In Section 4.3, we explore which closed immersions be-
tween smooth models of motivic spheres are special cases of this general
context and what properties are veri�ed in these (quasi-a�ne) cases, and
in Section 4.4 we present a (projective) special case of this general context
which is not a closed immersion between smooth models of motivic spheres
but which is also reminiscent of classical knot theory. Note that the case
(A2

F \{0},A2
F \{0},A4

F \{0}) was partially included in our preprint [Lem23].

4.1 The general case

In this section, we introduce oriented links with two components in algebraic
geometry and de�ne the quadratic linking class, before studying how the
quadratic linking class changes when the order of the components of the
oriented link or the orientations are changed.

Throughout this section, F is a perfect �eld, X is an irreducible smooth
�nite-type F -scheme of dimension dX , Z1 and Z2 are disjoint irreducible
smooth �nite-type closed F -subschemes of X of same dimension d and
c := dX − d is their codimension in X.

We denote by Z the (disjoint) union of Z1 and Z2 in X and by νZ (resp.
νZ1 ,νZ2) the determinant of the normal sheaf NZ/X of Z (resp. Z1,Z2) in
X, i.e. the dual of the OZ-module IZ/I 2

Z with IZ the ideal sheaf of Z in
X.

De�ning the quadratic linking class

Similarly to oriented links with two components in knot theory which consist
of a couple of closed subspaces of the topological 3-sphere S3 which are
homeomorphic to the topological circle S1 (and verify a tameness property,
such as smoothness), together with orientations of their normal bundles in
S3 (see De�nitions 1.1 and 1.3 as well as the discussion which follows this
last de�nition), we de�ne oriented links with two components as follows.
See De�nition 3.22 (orientations and orientation classes).

De�nition 4.1 (Oriented link with two components). The couple (Z1, Z2)
of closed F -subschemes of X, together with a couple of orientation classes
(o1, o2), where o1 : νZ1 → L1 ⊗ L1 is an orientation of the normal sheaf
NZ1/X of Z1 in X and o2 : νZ2 → L2 ⊗ L2 is an orientation of the normal
sheaf NZ2/X of Z2 in X, is called an oriented link L with two components.
The closed F -subscheme Z1 of X is called the �rst component of L and
the closed F -subscheme Z2 of X is called the second component of L .
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4.1. The general case

Remark 4.2. If (Z1, Z2), (o1, o2) is an oriented link with two components
then in particular NZ1/X and NZ2/X are orientable (i.e. their determinants
are isomorphic to squares, see De�nition 3.22). If we were to de�ne (nonori-
ented) links (Z1, Z2) with two components, we should �rst ask ourselves if
it is better to require NZ1/X and NZ2/X to be orientable (so that a link can
always give rise to an oriented link) or to have a more general de�nition of
links. Also, note that even though we only de�ned oriented links with two
components, similar de�nitions for (oriented) knots (i.e. (oriented) links
with one component) and for (oriented) links with n components (with
n ∈ N) can be made.

For instance, oriented links with two components can be couples of dis-
joint closed F -subschemes of A4

F \ {0} which are isomorphic to A2
F \ {0}

together with orientation classes (this is almost the de�nition we chose in
our preprint [Lem23]; the only di�erence is that in our preprint we �xed
isomorphisms ϕ1 : A2

F \ {0} → Z1 and ϕ2 : A2
F \ {0} → Z2 (which were

used to de�ne the quadratic linking degree (couple) but were not used to
de�ne the quadratic linking class)). See Section 4.3 for this special case
(among others) and Chapter 7 for examples (especially Section 7.1 for a
simple example: the Hopf link). Note that A2

R \ {0}(R), i.e. R2 \ {0}, and
the topological circle S1 are of same homotopy type and that A4

R \ {0}(R),
i.e. R4 \ {0}, and the topological 3-sphere S3 are of same homotopy type,
so that the above-mentioned special case is quite close to the de�nition of
oriented links with two components in classical knot theory. More generally,
for n ≥ 1, oriented links with two components can be couples of disjoint
closed F -subschemes of A2n+2

F \ {0} which are isomorphic to An+1
F \ {0}

together with orientation classes (see Section 4.3 for this family of special
cases). This family of special cases is quite close to the family of oriented
links with two equidimensional components in higher-dimensional knot the-
ory for which there is a linking class and a linking number: SntSn → S2n+1

(see Section 1.6). Indeed, on the one hand An+1
R \ {0}(R), i.e. Rn+1 \ {0},

and the topological n-sphere Sn are of same homotopy type and on the
other hand A2n+2

R \ {0}(R), i.e. R2n+2 \ {0}, and the topological (2n + 1)-
sphere S2n+1 are of same homotopy type. Further note that on the one
hand An+1

R \ {0}(C), i.e. R2n+2 \ {0}, and the topological (2n + 1)-sphere
S2n+1 are of same homotopy type and on the other hand A2n+2

R \ {0}(C),
i.e. R4n+4 \ {0}, and the topological (4n + 3)-sphere S4n+3 are of same
homotopy type (and S2n+1 t S2n+1 → S4n+3 is simply a special case of
Sm t Sm → S2m+1). See Sections 4.3 and 4.4 for these and other families of
special cases.

Now that we have de�ned oriented links with two components, we can
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4. The quadratic linking class

de�ne the oriented fundamental classes of their components. Recall that in
De�nitions 1.3 and 1.23, the oriented fundamental class of a knot K was
the generator of the singular cohomology group H0(K) (or equivalently the
generator of the singular homology group Hn(K) if K ' Sn) which cor-
responded to the orientation of K. We are going to de�ne the oriented
fundamental class of the component Zi of the oriented link L as the el-
ement of the Rost-Schmid group H0(Zi, K

MW
ji
{νZi}) (see De�nition 3.10)

which corresponds to the orientation of Zi. Note that to do this, an integer
ji must be chosen (which was not the case in knot theory). Furthermore, we
need ji to be nonpositive to ensure that a special element can be isolated in
H0(Zi, K

MW
ji

), so that we can de�ne the oriented fundamental class as the
element of H0(Zi, K

MW
ji
{νZi}) which corresponds to this special element

in H0(Zi, K
MW
ji

) via the isomorphism õi (see Notation 3.25 and Proposi-
tion 3.26) induced by the orientation class oi (similarly to the fact in knot
theory that the oriented fundamental class is the element of H0(K) which
corresponds to 1 ∈ Z via the isomorphism induced by the orientation).

De�nition 4.3 (Oriented fundamental class). Let i ∈ {1, 2} and ji ≤ 0
be an integer. The oriented fundamental class of the ith component of L
with respect to ji is the (unique) element [oi]ji (denoted [oi] for short) of the
Rost-Schmid group H0(Zi, K

MW
ji
{νZi}) which is sent by the isomorphism õi

to the class in H0(Zi, K
MW
ji

) of the cycle whose coe�cient over the generic
point of Zi is η−ji .

See Section 7.1 for simple examples of oriented fundamental classes.

Remark 4.4. Let i ∈ {1, 2} and j′i ≤ ji ≤ 0 be integers. Note that product
by η (hence product by ηji−j

′
i) commutes with the di�erentials of the Rost-

Schmid complexes (since these are constructed from the residue morphisms
of Milnor-Witt K-theory) so that the class ηji−j

′
i [oi]ji ∈ H0(Zi, K

MW
j′i
{νZi})

is well-de�ned. Since, by de�nition of õi (see Notation 3.25), the following
diagram is commutative:

H0(Zi, K
MW
ji
{νZi})

õi //

×ηji−j
′
i

��

H0(Zi, K
MW
ji

)

×ηji−j
′
i

��
H0(Zi, K

MW
j′i
{νZi}) õi

// H0(Zi, K
MW
j′i

)

and the morphisms õi are isomorphisms (by de�nition, see Notation 3.25),
the oriented fundamental class [oi]j′i (which is sent to η−j

′
i by õi) is equal to

ηji−j
′
i [oi]ji (since [oi]ji is sent to η

−ji by õi).
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4.1. The general case

The following proposition will ensure that there exists a unique Seifert
class for each component of the oriented link. Recall De�nition 3.18 (bound-
ary maps).

Proposition 4.5. Let i ∈ {1, 2} and ji ≤ 0 be an integer.

1. IfHc−1(X,KMW
ji+c

) = 0 then the boundary map ∂ : Hc−1(X\Z,KMW
ji+c

)→
H0(Z,KMW

ji
{νZ}) is injective.

2. If Hc(X,KMW
ji+c

) = 0 then the boundary map ∂ : Hc−1(X \Z,KMW
ji+c

)→
H0(Z,KMW

ji
{νZ}) is surjective.

Proof. The boundary map ∂ : Hc−1(X \ Z,KMW
ji+c

) → H0(Z,KMW
ji
{νZ}) is

part of the localization long exact sequence (see Theorem 3.19):

. . . // Hc−1(X,KMW
ji+c

) // Hc−1(X \ Z,KMW
ji+c

) ∂ //

∂ // H0(Z,KMW
ji
{νZ}) // Hc(X,KMW

ji+c
) // . . .

We can now de�ne the couple of Seifert classes (in a similar fashion to
what was done in De�nitions 1.8 and 1.25).

De�nition 4.6 (Couple of Seifert classes). Let j1, j2 ≤ 0 be integers. We
assume Hc−1(X,KMW

j1+c
) = 0, Hc−1(X,KMW

j2+c
) = 0, Hc(X,KMW

j1+c
) = 0 and

Hc(X,KMW
j2+c

) = 0. The couple of Seifert classes of L with respect to
(j1, j2) is the (unique) element (So1,j1 ,So2,j2) (denoted (S1,S2) for short) of
Hc−1(X \ Z,KMW

j1+c
) ⊕ Hc−1(X \ Z,KMW

j2+c
) such that ∂(S1) = ([o1], 0) and

∂(S2) = (0, [o2]) (respectively via the isomorphism H0(Z,KMW
j1
{νZ}) '

H0(Z1, K
MW
j1
{νZ1})⊕H0(Z2, K

MW
j1
{νZ2}) and via the isomorphism

H0(Z,KMW
j2
{νZ}) ' H0(Z1, K

MW
j2
{νZ1}) ⊕ H0(Z2, K

MW
j2
{νZ2}) which are

induced by the inclusions of Z1 and Z2 in Z = Z1 t Z2). We call So1,j1 the
Seifert class of the component K1 (relative to the link L and j1) and So2,j2
the Seifert class of the component K2 (relative to the link L and j2).

See Section 7.1 for simple examples of couples of Seifert classes.

Remark 4.7. Note that the couple of Seifert classes of L with respect to
(j1, j2) is well-de�ned as soon as there exist a unique preimage of ([o1]j1 , 0)
by ∂ : Hc−1(X \ Z,KMW

j1+c
) → H0(Z,KMW

j1
{νZ}) and a unique preimage

of (0, [o2]j2) by ∂ : Hc−1(X \ Z,KMW
j2+c

) → H0(Z,KMW
j2
{νZ}), even if the

above-mentioned Rost-Schmid groups are nonzero.
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4. The quadratic linking class

Remark 4.8. Let j1, j2 ≤ 0 be integers such that the oriented link L
has a well-de�ned couple of Seifert classes with respect to (j1, j2) (see Re-
mark 4.7). Let j′1 ≤ j1 ≤ 0 and j′2 ≤ j2 ≤ 0 be integers such that
Hc−1(X,KMW

j′1+c
) = 0 and Hc−1(X,KMW

j′2+c
) = 0 (which ensures the unicity

of the couple of Seifert classes with respect to (j′1, j
′
2) if it exists). By

Remark 4.4, [o1]j′1 = ηj1−j
′
1 [o1]j1 and [o2]j′2 = ηj2−j

′
2 [o2]j2 . Since the bound-

ary map commutes to product by η (see De�nition 3.18), it follows that
(ηj1−j

′
1So1,j1 , ηj2−j

′
2So2,j2) is the (well-de�ned) couple of Seifert classes of L

with respect to (j′1, j
′
2).

We can now de�ne the quadratic linking class as the boundary of the
intersection of the Seifert classes, as was done in De�nitions 1.10 and 1.27
for the linking class. See De�nition 3.28 (intersection product).

De�nition 4.9 (Quadratic linking class). Let j1, j2 ≤ 0 be integers. We
assume Hc−1(X,KMW

j1+c
) = 0, Hc−1(X,KMW

j2+c
) = 0, Hc(X,KMW

j1+c
) = 0 and

Hc(X,KMW
j2+c

) = 0. The quadratic linking class of L with respect to (j1, j2),
denoted QlcL ,j1,j2 (or QlcL for short), is the image of the intersection prod-
uct of the Seifert class So1,j1 with the Seifert class So2,j2 by the boundary
map ∂ : H2c−2(X \ Z,KMW

j1+j2+2c)→ Hc−1(Z,KMW
j1+j2+c

{νZ}).

See Section 7.1 for simple examples of quadratic linking classes.

Remark 4.10. Note that the quadratic linking class of L with respect
to (j1, j2) is well-de�ned as soon as the couple of Seifert classes of L
with respect to (j1, j2) is well-de�ned (see Remark 4.7), even if the above-
mentioned Rost-Schmid groups are nonzero.

Remark 4.11. Let j1, j2 ≤ 0 be integers such that the oriented link L
has a well-de�ned quadratic linking class with respect to (j1, j2) (see Re-
mark 4.10). Let j′1 ≤ j1 ≤ 0 and j′2 ≤ j2 ≤ 0 be integers such that
Hc−1(X,KMW

j′1+c
) = 0 and Hc−1(X,KMW

j′2+c
) = 0 (which ensures the unicity of

the couple of Seifert classes with respect to (j′1, j
′
2) if it exists, hence the

unicity of the quadratic linking class with respect to (j′1, j
′
2) if it exists). By

Remark 4.8, (ηj1−j
′
1So1,j1 , ηj2−j

′
2So2,j2) is the (well-de�ned) couple of Seifert

classes (So1,j′1 ,So2,j′2) of L with respect to (j′1, j
′
2). It follows that if the

following diagram is commutative (which is veri�ed for instance under the
assumptions of Corollary 3.32):

Hc−1(X \ Z,KMW
j1+c

)×Hc−1(X \ Z,KMW
j2+c

) · //

(×ηj1−j
′
1 ,×ηj2−j

′
2 )
��

H2c−2(X \ Z,KMW
j1+j2+2c)

×ηj1+j2−(j′1+j
′
2)

��
Hc−1(X \ Z,KMW

j′1+c
)×Hc−1(X \ Z,KMW

j′2+c
) ·

// H2c−2(X \ Z,KMW
j′1+j

′
2+2c)
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4.1. The general case

then So1,j′1 ·So2,j′2 = ηj1+j2−(j
′
1+j

′
2)(So1,j1 ·So2,j2), and since the boundary map

commutes to product by η (see De�nition 3.18), the oriented link L has a
well-de�ned quadratic linking class QlcL ,j′1,j

′
2

= ηj1+j2−(j
′
1+j

′
2) QlcL ,j1,j2 .

In the following proposition, we show that the quadratic linking class is
in a speci�c subgroup of Hc−1(Z,KMW

j1+j2+c
{νZ}).

Proposition 4.12. Let i : Z → X be the inclusion of the closed sub-
scheme Z in X and i∗ : Hc−1(Z,KMW

j1+j2+c
{νZ}) → H2c−1(X,KMW

j1+j2+2c) be
the morphism induced by its push-forward. Then QlcL ,j1,j2 ∈ ker(i∗).

Proof. The boundary map which we used to de�ne the quadratic linking
class in De�nition 4.9 is part of the localization long exact sequence (see
Theorem 3.19):

. . . // H2c−2(X,KMW
j1+j2+2c) // H2c−2(X \ Z,KMW

j1+j2+2c)
∂ //

∂ // Hc−1(Z,KMW
j1+j2+c

{νZ})
i∗ // H2c−1(X,KMW

j1+j2+2c) // . . .

In the following proposition, we see that an additional assumption on
a Rost-Schmid group of X ensures that no information is lost between the
intersection product of the Seifert classes and the quadratic linking class.

Proposition 4.13. If H2c−2(X,KMW
j1+j2+2c) = 0 then the boundary map

∂ : H2c−2(X \ Z,KMW
j1+j2+2c)→ Hc−1(Z,KMW

j1+j2+c
{νZ}) is injective.

Proof. This boundary map is part of the localization long exact sequence
(see Theorem 3.19):

. . . // H2c−2(X,KMW
j1+j2+2c) // H2c−2(X \ Z,KMW

j1+j2+2c)
∂ //

∂ // Hc−1(Z,KMW
j1+j2+c

{νZ}) // H2c−1(X,KMW
j1+j2+2c) // . . .

Remark 4.14. The additional assumption in Proposition 4.13 is veri�ed
in all the special cases of Sections 4.3 and 4.4 except Z1 ' Q5 ' Z2 in
X ' Q8, Z1 ' Q3 ' Z2 in X ' Q5 and Z1 ' Q2 ' Z2 in X ' Q4 (recall
Notation 3.38). Note that in these last two cases, Hc(X,KMW

j1+c
) 6= 0 and

91



4. The quadratic linking class

Hc(X,KMW
j2+c

) 6= 0, so that the quadratic linking class does not necessar-
ily exist (but it is well-de�ned if it exists since Hc−1(X,KMW

j1+c
) = 0 and

Hc−1(X,KMW
j2+c

) = 0, see Proposition 4.5 and De�nitions 4.6 and 4.9).

In the next two subsections, we determine how the quadratic linking
class is a�ected by changes in the order of the components or in the orien-
tation classes.

Changing the order of the components

Recall that the linking class of an oriented link Sn t Sn → S2n+1 stayed the
same if the order of the components of the oriented link was changed and
n was even (i.e. the codimension n + 1 was odd), and was turned into its
opposite if the order of the components of the oriented link was changed
and n was odd (i.e. the codimension n+ 1 was even); see Remark 1.28.

Proposition 4.15. Let L ′ be the link (Z2, Z1), (o2, o1). Then:

QlcL ′,j2,j1 =


QlcL ,j1,j2 if c is odd and (j1 is odd or j2 is odd)

εQlcL ,j1,j2 if c is odd and j1 is even and j2 is even
−εQlcL ,j1,j2 if c is even and (j1 is odd or j2 is odd)

−QlcL ,j1,j2 if c is even and j1 is even and j2 is even

Proof. By Proposition 3.30 we have:

S2 · S1 =


S1 · S2 if c is odd and (j1 is odd or j2 is odd)

εS1 · S2 if c is odd and j1 is even and j2 is even
−εS1 · S2 if c is even and (j1 is odd or j2 is odd)

−S1 · S2 if c is even and j1 is even and j2 is even

We deduce the result by using Proposition 2.37 and the fact that the bound-
ary map is a group morphism (and is constructed from the residue mor-
phisms for Milnor-Witt K-theory).

Changing the orientation classes

In general, orientation classes can vary signi�cantly. However, if the Picard
group of the underlying scheme has no 2-torsion, then any two orientation
classes di�er from one another by the multiplication by a global invertible
function (see [DDØ22, Theorem 6.1.6]). If this is the case for Z1 and Z2

and if their global invertible functions are exactly the units of the ground
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4.1. The general case

�eld (note that all these assumptions are veri�ed in all the special cases
of Sections 4.3 and 4.4), then we know how the quadratic linking class is
changed by orientation changes.

Proposition 4.16. Let a = (a1, a2) be a couple of elements of F ∗. Let
La be the link obtained from L by changing the orientation class o1 into
o1 ◦ (×a1) and the orientation class o2 into o2 ◦ (×a2). Then

QlcLa
= 〈a1a2〉QlcL

Proof. Let i ∈ {1, 2}. Note that 〈a−1i 〉[oi] = 〈ai〉[oi] is sent by ˜oi ◦ (×ai)
to the class in H0(Zi, K

MW
ji

) of the cycle whose coe�cient over the generic
point of Zi is η−ji hence [oi ◦ (×ai)] = 〈ai〉[oi]. Therefore, by Proposition
2.37 and De�nition 4.6, Soi◦(×ai) = 〈ai〉Soi hence, by Proposition 3.29,

So1◦(×a1) · So2◦(×a2) = 〈a1a2〉So1 · So2

It follows from this and Proposition 2.37 that ∂(So1◦(×a1) · So2◦(×a2)) =
〈a1a2〉∂(So1 · So2), i.e. QlcLa

= 〈a1a2〉QlcL .

Note that in the case where the ground �eld is the �eld of real numbers
(i.e. F = R), this proposition is similar to what happens to the linking
class (see Remark 1.29): the quadratic linking class is the same if a1 and
a2 have the same sign (similarly to the linking class which is the same if
both orientations are reversed (or if they are both left unchanged)) and is
multiplied by 〈−1〉 if a1 and a2 have di�erent signs (similarly to the linking
class which is multiplied by −1 if exactly one of the orientations is reversed).

Future work 4 (More general changes of orientation classes). It would
be interesting to know how the quadratic linking class can be a�ected by
changes of orientation classes when the Picard groups of the components Z1

and Z2 of the oriented link have no 2-torsion but there are global invertible
functions of Z1 or of Z2 which are not units of the ground �eld. It would
also be interesting (but a priori even more di�cult) to study this when one
of these Picard groups has 2-torsion. This could be useful for the study of
the ambient quadratic linking degree (see De�nition 5.7).

In the following section, we consider some functoriality properties of the
quadratic linking class.
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4. The quadratic linking class

4.2 Functoriality properties

In this section, we de�ne the pullback of an oriented link with two compo-
nents along a smooth (surjective) morphism and show that it is an oriented
link with two components of quadratic linking class the pullback of the
quadratic linking class of the original oriented link.

Assumptions and notations

Throughout this section, F is a perfect �eld, ψ : X ′ → X is a smooth
surjective morphism between irreducible smooth �nite-type F -schemes of
respective dimensions dX′ and dX , Z1 and Z2 are disjoint irreducible smooth
�nite-type closed F -subschemes of X (of respective inclusions f1, f2 in X)
of same dimension d and c := dX − d is their codimension in X. We set
Z ′1 := ψ∗(Z1) and Z ′2 := ψ∗(Z2) and we assume Z ′1 and Z

′
2 to be irreducible.

Note that Z ′1 and Z
′
2 are disjoint closed F -subschemes of X ′ of codimen-

sion c in X ′. We denote by f ′1, f
′
2 their respective inclusions in X

′ and by d′

their dimension (so that we also have c = dX′ − d′). We set Z ′ := Z ′1 t Z ′2
and Z := Z1 t Z2. We denote by νZ′ (resp. νZ′1 ,νZ′2) the determinant of
the normal sheaf of Z ′ (resp. Z ′1,Z

′
2) in X

′ and by νZ (resp. νZ1 ,νZ2) the
determinant of the normal sheaf of Z (resp. Z1,Z2) in X.

We denote by ψ1 : Z ′1 → Z1 and ψ2 : Z ′2 → Z2 the morphisms induced
by ψ, thus we have the following commutative diagrams:

Z ′1
f ′1 //

ψ1

��

X ′

ψ

��
Z1 f1

// X

Z ′2
f ′2 //

ψ2

��

X ′

ψ

��
Z2 f2

// X

We �x an orientation o1 : νZ1 → L1⊗L1 of the normal sheaf of Z1 in X
and an orientation o2 : νZ2 → L2 ⊗ L2 of the normal sheaf of Z2 in X.

The pullback of an oriented link is an oriented link

Lemma-De�nition 4.17. Let i ∈ {1, 2}. There is a canonical isomor-
phism ζ : νZ′i → (ψi)

∗(νZi).

Proof. First note that there is a canonical isomorphismNZ′i/X′ → (ψi)
∗(NZi/X)

since ψi is �at and fi : Zi → X is a regular closed imbedding (see [Ful98,
B.7.4]; our normal sheaf NZ′i/X′ is the sheaf of sections of Fulton's normal
bundle NZ′i

X ′). Then note that �at pullback commutes with the determi-
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4.2. Functoriality properties

nant since it preserves the rank and commutes with the exterior product to
conclude that there is a canonical isomorphism νZ′i → (ψi)

∗(νZi).

The fact that �at pullback commutes with the tensor product gives us
the following lemma-de�nition.

Lemma-De�nition 4.18. Let i ∈ {1, 2}. There is a canonical isomor-
phism ξLi : (ψi)

∗(Li ⊗ Li)→ (ψi)
∗(Li)⊗ (ψi)

∗(Li).

By using the two preceding lemma-de�nitions, we can construct ori-
entations on Z ′1 and Z ′2 from o1 and o2. Better still, the classes of these
orientations on Z ′1 and Z

′
2 only depend on the orientation classes o1 and o2

rather than on the orientations o1 and o2.

Lemma-De�nition 4.19. Let i ∈ {1, 2}. The composite o′i := ξLi ◦
(ψi)

∗(oi) ◦ ζ is an orientation of the normal sheaf of Z ′i in X
′ and its orien-

tation class only depends on the orientation class of oi.

Proof. By de�nition, ξLi ◦ (ψi)
∗(oi) ◦ ζ : νZ′i → (ψi)

∗(Li) ⊗ (ψi)
∗(Li) is an

orientation if it is an isomorphism (since (ψi)
∗(Li) is an invertible OZ′i-

module, being the pullback along ψi of an invertible OZi-module). Since ζ
and ξLi are isomorphisms, it su�ces to show that (ψi)

∗(oi) : (ψi)
∗(νZi) →

(ψi)
∗(Li⊗Li) is an isomorphism. This follows from the fact that oi : νZi →

Li ⊗ Li is an isomorphism (since (ψi)
∗ is a functor). Now let us show that

the orientation class of o′i only depends on the orientation class of oi. Let
ϕi : Li → L′′i be an isomorphism of invertible OZi-modules. Note that
(ψi)

∗((ϕi ⊗ ϕi) ◦ oi) = (ψi)
∗(ϕi ⊗ ϕi) ◦ (ψi)

∗(oi) since (ψi)
∗ is a functor. In

addition, ξL′′i ◦ (ψi)
∗(ϕi⊗ϕi) = ((ψi)

∗(ϕi)⊗ (ψi)
∗(ϕi)) ◦ ξLi by naturality of

the commutation of �at pullback with the tensor product. It follows that
ξL′′i ◦ (ψi)

∗((ϕi ⊗ ϕi) ◦ oi) ◦ ζ = ((ψi)
∗(ϕi) ⊗ (ψi)

∗(ϕi)) ◦ ξLi ◦ (ψi)
∗(oi) ◦

ζ = ((ψi)
∗(ϕi) ⊗ (ψi)

∗(ϕi)) ◦ o′i. Since (ψi)
∗(ϕi) : (ψi)

∗Li → (ψi)
∗L′′i is an

isomorphism of invertible OZ′i-modules (by pullback of ϕi), it follows that
ξL′′i ◦ (ψi)

∗((ϕi⊗ϕi) ◦ oi) ◦ ζ is in the same orientation class as o′i. Thus the
orientation class of o′i only depends on the orientation class of oi.

Pullback

See [Fas20, Subsection 2.4] for more details on pullback.

Lemma 4.20. Let i ∈ {1, 2} and ji ≤ 0. We have (ψi)
∗([oi]ji) = [o′i]ji .

Proof. By de�nition, [o′i]ji (respectively [oi]ji) is the unique element of the
Rost-Schmid group H0(Z ′i, K

MW
ji
{νZ′i}) (resp. H

0(Zi, K
MW
ji
{νZi})) which is

95



4. The quadratic linking class

sent by õ′i (resp. õi) to the class in H0(Z ′i, K
MW
ji

) (resp. H0(Zi, K
MW
ji

)) of
the cycle whose coe�cient over the generic point of Z ′i (resp. Zi) is η

−ji .
Thus, since (ψi)

∗(η−ji) = η−ji (see for instance [Fas20, Example 2.11] and
note that ψi is smooth since ψ is), it su�ces to show that the following
diagram is commutative:

H0(Z ′i, K
MW
ji
{νZ′i})

õ′i //

(ψi)
∗

��

H0(Z ′i, K
MW
ji

)

(ψi)
∗

��
H0(Zi, K

MW
ji
{νZi}) õi

// H0(Zi, K
MW
ji

)

This follows from the de�nitions of õi and õ′i (see Notation 3.25 and Propo-
sition 3.26) and the fact that o′i = ξLi ◦ (ψi)

∗(oi) ◦ ζ.

We �x nonpositive integers j1, j2 ≤ 0 and assume thatHc−1(X ′, KMW
j1+c

) =

0,Hc−1(X ′, KMW
j2+c

) = 0,Hc(X ′, KMW
j1+c

) = 0,Hc(X ′, KMW
j2+c

) = 0,Hc−1(X,KMW
j1+c

) =

0, Hc−1(X,KMW
j2+c

) = 0, Hc(X,KMW
j1+c

) = 0 and Hc(X,KMW
j2+c

) = 0.

Lemma 4.21. Let i ∈ {1, 2}. The pullback along ψ of the Seifert class Soi
is equal to the Seifert class So′i .

Proof. Recall that the Seifert class So′i is the only element of Hc−1(X ′ \
Z ′, KMW

ji+c
) such that its image by the boundary map ∂ : Hc−1(X ′\Z ′, KMW

ji+c
)→

H0(Z ′, KMW
ji
{νZ′}) is ([o′1], 0) if i = 1, (0, [o′2]) if i = 2. Thus it su�ces to

prove that ∂(ψ∗(Soi)) is equal to ([o′1], 0) if i = 1, (0, [o′2]) if i = 2. Re-
call that by naturality of the boundary map (see [Rot88, Theorem 5.7] and
note that the boundary map is the connecting morphism for Rost-Schmid
cohomology by de�nition), it commutes with morphisms of Rost-Schmid
complexes. It follows from the fact that the pullback ψ∗ is a morphism of
complexes (see Theorem 2.14 in [Fas20]) that ∂(ψ∗(Soi)) = ψ∗(∂(Soi)) =
ψ∗([oi]) = (ψi)

∗([oi]) (by de�nition of the Seifert class Soi and of ψi). It
follows from Lemma 4.20 that ∂(ψ∗(Soi)) = [o′i], hence ψ

∗(Soi) = So′i .

Remark 4.22. We do not need the conditions Hc(X ′, KMW
j1+c

) = 0 and
Hc(X ′, KMW

j2+c
) = 0 (which ensure the existence of So′1 and So′2) since we

prove in Lemma 4.21 that the pullbacks along ψ of the Seifert classes So1
and So2 verify what is asked of the Seifert classes for o′1 and o

′
2 respectively.

Theorem 4.23. The pullback along ψ of the quadratic linking class of
(Z1, Z2), (o1, o2) is the quadratic linking class of (Z ′1, Z

′
2), (o′1, o

′
2).
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4.2. Functoriality properties

Proof. By Proposition 3.13 in [Fas20], the pullback ψ∗ is a ring morphism
with respect to the intersection product, hence

ψ∗(So1 · So2) = ψ∗(So1) · ψ∗(So2)

By Lemma 4.21, it follows that:

ψ∗(So1 · So2) = So′1 · So′2

Recall that by naturality of the boundary map (see [Rot88, Theorem 5.7]
and note that the boundary map is the connecting morphism for Rost-
Schmid cohomology by de�nition), it commutes with morphisms of Rost-
Schmid complexes. It follows from the fact that the pullback ψ∗ is a mor-
phism of complexes (see Theorem 2.14 in [Fas20]) that:

ψ∗(∂(So1 · So2)) = ∂(ψ∗(So1 · So2)) = ∂(So′1 · So′2)

In other words, the pullback along ψ of the quadratic linking class of
(Z1, Z2), (o1, o2) is the quadratic linking class of (Z ′1, Z

′
2), (o′1, o

′
2).

Remark 4.24. The assumption that ψ is smooth, instead of �at, was only
needed to invoke [Fas20, Theorem 2.14] (in Lemma 4.21 and Theorem 4.23)
and [Fas20, Example 2.11] (in Lemma 4.20).

Pushforward

See [Fas20, Subsection 2.3] for more details on pushforward.
We denote by Qlc(Z1,Z2),(o1,o2) (respectively Qlc(Z′1,Z′2),(o′1,o′2)

) the quadratic

linking class of the oriented link (Z1, Z2), (o1, o2) (resp. (Z ′1, Z
′
2), (o

′
1, o
′
2))

and by 1 = 〈1〉 ⊕ 〈1〉 ∈ H0(Z ′1, K
MW
0 )⊕H0(Z ′2, K

MW
0 ) the neutral element

for the intersection product of the Rost-Schmid ring of Z ′ = Z ′1 t Z ′2.

Theorem 4.25. If we further assume that the morphism ψ is proper then
the pushforward along ψ of the quadratic linking class Qlc(Z′1,Z′2),(o′1,o′2)

of

(Z ′1, Z
′
2), (o′1, o

′
2) is the intersection product ψ∗(1) ·Qlc(Z1,Z2),(o1,o2).

Proof. It follows directly from Theorem 4.23 that ψ∗(Qlc(Z′1,Z′2),(o′1,o′2)
) =

ψ∗(ψ
∗(Qlc(Z1,Z2),(o1,o2))) = ψ∗(1 · ψ∗(Qlc(Z1,Z2),(o1,o2))). Since ψ is proper,

it follows from the projection formula (see Theorem 3.19 in [Fas20]) that
ψ∗(Qlc(Z′1,Z′2),(o′1,o′2)

) = ψ∗(1) ·Qlc(Z1,Z2),(o1,o2).
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4. The quadratic linking class

Applications

Recall that the Rost-Schmid ring is a gradedKMW
0 (F )-algebra (see Proposi-

tion 3.29) and that KMW
0 (F ) is canonically isomorphic to the Grothendieck-

Witt ring GW(F ) of F (see Theorem 2.33).

Theorem 4.26. Let F ⊂ K be a �nite Galois extension, L = (Z1 ⊂
X,Z2 ⊂ X), (o1, o2) be an oriented link with two components (over F ), ψ :
X ′ := X ×Spec(F ) Spec(K)→ X be the canonical morphism, and j1, j2 ≤ 0
be integers. We assumeX ′, Z ′1 := ψ∗(Z1) and Z ′2 := ψ∗(Z2) to be irreducible
and Hc−1(X ′, KMW

j1+c
) = 0, Hc−1(X ′, KMW

j2+c
) = 0, Hc−1(X,KMW

j1+c
) = 0,

Hc−1(X,KMW
j2+c

) = 0, Hc(X,KMW
j1+c

) = 0 and Hc(X,KMW
j2+c

) = 0. The pull-
back along ψ of the quadratic linking class QlcL of L is the quadratic
linking class of (Z ′1, Z

′
2), (o

′
1, o
′
2) (see Lemma-De�nition 4.19) and the push-

forward along ψ of the quadratic linking class of (Z ′1, Z
′
2), (o′1, o

′
2) is equal

to TKF .QlcL , with TKF the class in KMW
0 (F ) ' GW(F ) of the restriction to

F × F of the trace form of K over F (which sends (x, y) ∈ K ×K to the
trace in F of (the multiplication by) xy).

Proof. The pullback along ψ of the quadratic linking class QlcL of L is
the quadratic linking class of (Z ′1, Z

′
2), (o

′
1, o
′
2) by Remark 4.22 and Theorem

4.23, since ψ is a smooth surjective morphism. Since ψ is also proper, by
Theorem 4.25 we have that the pushforward along ψ of the quadratic linking
class of (Z ′1, Z

′
2), (o′1, o

′
2) is the intersection product ψ∗(1) ·QlcL . The result

follows from this and [Fas20, Example 1.23] (recall that F is perfect).

Theorem 4.26 may be useful when computing the quadratic linking class
of an oriented link (in some cases it can be used to have linear equations
for the irreducible components which are considered when computing the
intersection product of the Seifert classes).

Theorem 4.27. Let h : An+1
F \ {0} → PnF be the Hopf map (which sends

(x0, . . . , xn) to [x0 : . . . : xn]), L = (Z1 ⊂ PnF , Z2 ⊂ PnF ), (o1, o2) be an
oriented link with two components, and j1, j2 ≤ 0 be integers. We assume
Z ′1 := ψ∗(Z1) and Z ′2 := ψ∗(Z2) to be irreducible and Hc−1(X ′, KMW

j1+c
) = 0,

Hc−1(X ′, KMW
j2+c

) = 0,Hc−1(X,KMW
j1+c

) = 0,Hc−1(X,KMW
j2+c

) = 0,Hc(X,KMW
j1+c

) =

0 and Hc(X,KMW
j2+c

) = 0. The pullback along h of the quadratic linking class
QlcL of L is the quadratic linking class of (Z ′1, Z

′
2), (o

′
1, o
′
2) (see Lemma-

De�nition 4.19).

Proof. The result follows directly from Remark 4.22 and Theorem 4.23 since
the Hopf map h is a smooth surjective morphism.
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4.3. Smooth models of motivic spheres

Remark 4.28. Since the Hopf link (see Section 7.1) with the adequate
orientation classes is the pullback along the Hopf map of the oriented link
L whose components are de�ned respectively by the equations x = 0, y = 0
and by the equations z = 0, t = 0 in P3

F (with some orientation classes),
by Theorem 4.27 the quadratic linking class of this variant of the Hopf
link, which is nonzero (see Section 7.1 and note that it is sent by a group
isomorphism to the couple (< a >,< b >) ∈ W(F ) ⊕ W(F ) for some
a, b ∈ F ∗), is the pullback along the Hopf map of the quadratic linking
class of L . In particular, the quadratic linking class of L is nonzero.
Thus we have an example of an oriented link of the form P1

F t P1
F → P3

F

whose quadratic linking class is nonzero without having had to make any
computation in this projective setting.

4.3 Smooth models of motivic spheres

In this section, we explore which closed immersions of smooth models of
motivic spheres give rise to a quadratic linking class.

Throughout this section, F is a perfect �eld, Gm is the multiplicative
group scheme over F and S1 is the simplicial circle over F .

Recall that a motivic sphere is a smash-product Si∧G∧jm for some i, j ∈ Z
(where Si := (S1)∧i) and that a smooth model of Si ∧G∧jm is a smooth F -
scheme which has the A1-homotopy type of Si ∧ G∧jm . See [ADF16] for
further details.

Note that not all motivic spheres have smooth models. Indeed, in
[ADF16, Proposition 2.3.1] it is shown that if k > l then Sk ∧ G∧lm does
not have a smooth model. However, it is shown in [ADF16, Theorem 2.2.5]
that if k = l then Sk ∧ G∧lm has a smooth model, and it is known since
[MV99, Example 2.20 in Subsection 3.2] that if k = l − 1 then Sk ∧ G∧lm
has a smooth model. More precisely, it is shown in [ADF16] that for ev-
ery l ∈ N, Al

F \ {0} and Q2l−1 (see Notation 3.38) are smooth models of
Sl−1 ∧G∧lm and Q2l (see Notation 3.38) is a smooth model of Sl ∧G∧lm .

In what follows, we study closed immersions of Qn or An
F \ {0} in Qm

or Am
F \ {0}.

Remark 4.29. There exist other smooth models of motivic spheres which
could be studied, for instance the smooth a�ne scheme Qf1,...,fn which is
Spec(F [x1, . . . , xn, y1, . . . , yn]/(

∑n
i=1 xifi(y1, . . . , yn) − 1) where n ∈ N and

f1, . . . , fn ∈ F [y1, . . . , yn] are such that {f1 = · · · = fn = 0} is a point in
Spec(F [y1, . . . , yn]) (see [AF14, Remark 4.13]). Note that Qf1,...,fn is not
necessarily isomorphic to Q2n−1; for instance if n = 2 and i, j are integers
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4. The quadratic linking class

such that i + j > 2 then Qyi1,y
j
2
is not isomorphic to Q3. This follows from

[DF14, Theorem 2.5] with the values m1 = 1, n1 = 1, p1 = 1,m2 = i, n2 =
j, p2 = 1.

Let m ≥ 2 be an integer and X be an F -scheme isomorphic to Am
F \ {0}

or Qm. Let n ∈ N and Z1, Z2 be disjoint closed F -subschemes of X such
that Z1 is isomorphic to An

F \ {0} or Qn and Z2 is isomorphic to An
F \ {0}

or Qn. Thus, Z1, Z2 and X verify the assumptions in the beginning of
Section 4.1: they are irreducible smooth �nite-type F -schemes and Z1 and
Z2 are disjoint closed F -subschemes of X of same dimension. We denote
by c := m − n the codimension of Z1 in X (which is also the codimension
of Z2 in X), by Z the (disjoint) union of Z1 and Z2 in X and by νZ (resp.
νZ1 ,νZ2) the determinant of the normal sheaf of Z (resp. Z1,Z2) in X, i.e.
the dual of the OZ-module IZ/I 2

Z with IZ the ideal sheaf of Z in X.
From now on, we assume that νZ1 and νZ2 are orientable, and we �x an

orientation class o1 of νZ1 and an orientation class o2 of νZ2 . We denote by
L the oriented link (Z1, Z2), (o1, o2).

For each i ∈ {1, 2} and integer ji ≤ 0, there exists a unique oriented
fundamental class [oi]ji with respect to ji (see De�nition 4.3). The following
lemma and theorem explore the existence and the unicity of the couple of
Seifert classes and of the quadratic linking class. Recall Proposition 4.5 and
De�nitions 4.6 and 4.9.

Lemma 4.30. Let j1, j2 ≤ 0 be integers.

1. The Rost-Schmid groupsHc−1(X,KMW
j1+c

) andHc−1(X,KMW
j2+c

) are equal
to 0 if and only if ((X ' Am

F \ {0} and c /∈ {1,m}) or (X ' Qm and
c /∈ {1, bm

2
c+ 1})).

2. The Rost-Schmid groups Hc(X,KMW
j1+c

) and Hc(X,KMW
j2+c

) are equal
to 0 if and only if ((X ' Am

F \ {0} and c /∈ {0,m − 1}) or (X ' Qm

and c /∈ {0, bm
2
c})).

Proof. By Proposition 3.35, for all i, j ∈ Z: H i(Am
F \ {0}, KMW

j ) = 0 if and
only if i /∈ {0,m−1}. By Corollary 3.44, for all i, j ∈ Z: H i(Qm, K

MW
j ) = 0

if and only if i /∈ {0, bm
2
c}. The results follow from applying this to i = c−1

and to i = c.

The following theorem is a direct consequence of Proposition 4.5 and
Lemma 4.30.
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Theorem 4.31.

1. If X ' Am
F \ {0}, m ≥ n + 2 and n ≥ 2 then for each couple of

nonpositive integers (j1, j2) there exists a unique couple of Seifert
classes of L with respect to j1, j2 and there exists a unique quadratic
linking class of L with respect to j1, j2.

2. If X ' Qm, m ≥ n+ 2 and n /∈ {m−bm
2
c−1,m−bm

2
c} then for each

couple of nonpositive integers (j1, j2) there exists a unique couple of
Seifert classes of L with respect to j1, j2 and there exists a unique
quadratic linking class of L with respect to j1, j2.

3. If X ' Am
F \ {0} and m ≥ n + 2 then for each couple of nonpositive

integers (j1, j2) the couple of Seifert classes of L with respect to j1, j2
is unique if it exists and the quadratic linking class of L with respect
to j1, j2 is unique if it exists.

4. If X ' Qm, m ≥ n + 2 and n 6= m − bm
2
c − 1 then for each couple

of nonpositive integers (j1, j2) the couple of Seifert classes of L with
respect to j1, j2 is unique if it exists and the quadratic linking class
of L with respect to j1, j2 is unique if it exists.

There is another important property to check: when is the Rost-Schmid
group in which the quadratic linking class of L lives (if it exists) nonzero?
Recall that this Rost-Schmid group is the following:

Hc−1(Z,KMW
j1+j2+c

{νZ}) ' Hc−1(Z1, K
MW
j1+j2+c

{νZ1})⊕Hc−1(Z2, K
MW
j1+j2+c

{νZ2})

Lemma 4.32. Let j1, j2 ≤ 0 be integers.

1. The Rost-Schmid group Hc−1(Z1, K
MW
j1+j2+c

{νZ1}) is di�erent from 0
if and only if ((Z1 ' An

F \ {0} and c ∈ {1, n}) or (Z1 ' Qn and
c ∈ {1, bn

2
c+ 1})).

2. The Rost-Schmid group Hc−1(Z2, K
MW
j1+j2+c

{νZ2}) is di�erent from 0
if and only if ((Z2 ' An

F \ {0} and c ∈ {1, n}) or (Z2 ' Qn and
c ∈ {1, bn

2
c+ 1})).

Proof. By Proposition 3.35 and Remark 3.37, for all i, j ∈ Z: H i(An
F \

{0}, KMW
j ) 6= 0 if and only if i ∈ {0, n − 1}. By Corollary 3.44 and

Remark 3.42, for all for all i, j ∈ Z: H i(Qn, K
MW
j ) 6= 0 if and only if

i ∈ {0, bn
2
c}. The results follow from applying this to i = c − 1 and

from the fact that Hc−1(Z1, K
MW
j1+j2+c

{νZ1}) ' Hc−1(Z1, K
MW
j1+j2+c

) (via õ1)
and Hc−1(Z2, K

MW
j1+j2+c

{νZ2}) ' Hc−1(Z2, K
MW
j1+j2+c

) (via õ2); see Notation
3.25.
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By combining Proposition 4.13, Theorem 4.31 and Lemma 4.32 (and
recalling that if n ≥ 2 then there is no closed immersion An

F \ {0} → Qm

since An
F \ {0} is not a�ne and Qm is a�ne), we get the following theorem.

Theorem 4.33.

1. If n ≥ 2, Z1 ' An
F \{0} or Z2 ' An

F \{0}, and X ' A2n
F \{0}, then for

each couple of nonpositive integers (j1, j2) there exists a unique couple
of Seifert classes of L with respect to j1, j2 and there exists a unique
quadratic linking class of L with respect to j1, j2, which is in the
Rost-Schmid group Hn−1(Z,KMW

j1+j2+n
{νZ}) 6= 0. Furthermore, the

boundary map ∂ : H2n−2(X\Z,KMW
j1+j2+2n)→ Hn−1(Z,KMW

j1+j2+n
{νZ})

is injective, which implies that the quadratic linking class of L con-
tains as much information as the intersection product of the Seifert
classes of L .

2. If n ≥ 2, Z1 ' Qn or Z2 ' Qn, and X ' An+bn
2
c+1

F \ {0}, then
for each couple of nonpositive integers (j1, j2) there exists a unique
couple of Seifert classes of L with respect to j1, j2 and there exists
a unique quadratic linking class of L with respect to j1, j2, which
is in the Rost-Schmid group Hb

n
2
c(Z,KMW

j1+j2+bn2 c+1{νZ}) 6= 0. Fur-
thermore, the boundary map ∂ : H2bn

2
c(X \ Z,KMW

j1+j2+2bn
2
c+2) →

Hb
n
2
c(Z,KMW

j1+j2+bn2 c+1{νZ}) is injective, which implies that the quadratic
linking class of L contains as much information as the intersection
product of the Seifert classes of L .

3. If n ≥ 5, Z1 ' Qn, Z2 ' Qn and X ' Qn+bn
2
c+1, then for each

couple of nonpositive integers (j1, j2) there exists a unique couple of
Seifert classes of L with respect to j1, j2 and there exists a unique
quadratic linking class of L with respect to j1, j2, which is in the
Rost-Schmid group Hb

n
2
c(Z,KMW

j1+j2+bn2 c+1{νZ}) 6= 0. Furthermore,
if n ≥ 6 then the boundary map ∂ : H2bn

2
c(X \ Z,KMW

j1+j2+2bn
2
c+2) →

Hb
n
2
c(Z,KMW

j1+j2+bn2 c+1{νZ}) is injective, which implies that the quadratic
linking class of L contains as much information as the intersection
product of the Seifert classes of L .

4. If n ∈ {2, 3, 4}, Z1 ' Qn, Z2 ' Qn and X ' Qn+bn
2
c+1, then for each

couple of nonpositive integers (j1, j2) the couple of Seifert classes of
L with respect to j1, j2 is unique if it exists and the quadratic linking
class of L with respect to j1, j2 is unique and is in the Rost-Schmid
group Hb

n
2
c(Z,KMW

j1+j2+bn2 c+1{νZ}) 6= 0, if it exists. Furthermore, if
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4.3. Smooth models of motivic spheres

n = 4 then the boundary map ∂ : H2bn
2
c(X \ Z,KMW

j1+j2+2bn
2
c+2) →

Hb
n
2
c(Z,KMW

j1+j2+bn2 c+1{νZ}) is injective, which implies that the quadratic
linking class of L contains as much information as the intersection
product of the Seifert classes of L .

This last case is interesting if one can exhibit a couple of Seifert classes
for L (which is the case under reasonable assumptions; see Chapter 6).

Let us now focus on orientation. The following proposition lets us see
how restrictive the assumption that νZ1 and νZ2 are orientable is.

Proposition 4.34.

1. For all n ≥ 2, the Picard group of An
F \ {0} is trivial (i.e. equal to 0)

and every invertible OAnF \{0}-module is orientable.

2. For all n ≥ 3, the Picard group of Qn is trivial (i.e. equal to 0) and
every invertible OQn-module is orientable.

3. For all n ≥ 1, the Picard group of PnF is isomorphic to Z. An invertible
OPnF -module is orientable if and only if it is even (as an integer).

4. The Picard group of Q2 is isomorphic to Z. An invertible OQ2-module
is orientable if and only if it is even (as an integer).

Proof. 1. The Picard group of An
F \ {0} is the divisor class group of

An
F \ {0} (see [Har77, Corollary 6.16 in Chapter II]) and there is a

surjective morphism from the divisor class group of An
F , which is trivial

(see [Har77, Example 6.3.1 in Chapter II]), to the divisor class group of
An
F \{0} (see [Har77, Proposition 6.5 in Chapter II]), hence the Picard

group of An
F \ {0} is trivial. Since OAnF \{0} is orientable (for instance,

the multiplication OAnF \{0} ⊗ OAnF \{0} → OAnF \{0} is an isomorphism),
it follows that every invertible OAnF \{0}-module is orientable.

2. If n ≥ 3 is odd then the projection p : Qn → A
n+1
2

F \{0} on x1, . . . , xn+1
2

is an A1-weak equivalence hence it induces an isomorphism between
the Picard group H1(A

n+1
2

F \ {0}, (O
A
n+1
2

F \{0}
)∗) of A

n+1
2

F \ {0} and the

Picard group H1(Qn, (OQn)∗) of Qn (by a similar argument to the one
used in the proof of Proposition 3.39). The result for n odd follows
from the previous item.

If n ≥ 4 is even then the projection p : Qn → A1
F on x1 is a trivial

�bre bundle outside of 0 (since if x1 6= 0 then y1 =
z(1+z)−

∑n
i=2 xiyi

x1
)
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4. The quadratic linking class

and its �bre over 0 is isomorphic to A1
F ×F Qn−2 (since

∑n
i=2 xiyi =

z(1 + z) and there is no restriction on y1) hence is integral, therefore
the Picard group of Qn is trivial and every invertible OQn-module
is orientable (since OQn is orientable; for instance the multiplication
OQn ⊗OQn → OQn is an isomorphism).

3. See [Har77, Proposition 6.4 and Corollary 6.16 in Chapter II] for the
fact that the Picard group of PnF is isomorphic to Z. The fact that
an invertible OPnF -module is orientable if and only if it is even (as
an integer) follows immediately from the de�nition of orientation (see
De�nition 3.22).

4. The morphism p : Q2 → P1
F which sends (x, y, z) to [x : z] = [1 +

z : y] is an A1-weak equivalence hence it induces an isomorphism
between the Picard group H1(P1

F , (OP1
F

)∗) of P1
F and the Picard group

H1(Q2, (OQ2)
∗) of Q2 (by a similar argument to the one used for

Lemma 3.49). The result follows from the previous item.

In the following proposition, we determine how changes of the orienta-
tion classes a�ect the quadratic linking class.

Proposition 4.35. Let L be as in one of the cases of Theorem 4.33 and
such that L has a quadratic linking class. Let a = (a1, a2) be a couple of
elements of F ∗ and La be the link obtained from L by changing the orien-
tation class o1 into o1 ◦ (×a1) and the orientation class o2 into o2 ◦ (×a2).
Then La has a quadratic linking class and QlcLa

= 〈a1a2〉QlcL .

Proof. The result follows from Proposition 4.16 (note that in the proof of
this proposition we show that (〈a1〉So1 , 〈a2〉So2) is a couple of Seifert classes
for La).

Remark 4.36. Proposition 4.35 covers all possible changes of the orienta-
tion classes since the global invertible functions of Z1 and of Z2 are exactly
the units of the ground �eld F (recall that for each i ∈ {1, 2}, Zi ' Qm

with m ≥ 2 or Zi ' Am
F \ {0} with m ≥ 2, and the global functions of

Am
F \ {0} extend uniquely to global functions of Am

F by [GW10, Theorem
6.45 (Hartogs' theorem)]) and any two orientation classes on Z1 or on Z2

di�er from one another by the multiplication by a global invertible function
(see [DDØ22, Theorem 6.1.6]) since the Picard groups of Z1 and of Z2 have
no 2-torsion (see Proposition 4.34).
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4.3. Smooth models of motivic spheres

In Tables 4.1 and 4.2, we recap the di�erent cases we have discussed in
this section. Speci�cally, Table 4.1 recaps the cases in which X ' Am

F \ {0}
and Table 4.2 recaps the cases in which X ' Qm. The �rst column lists the
di�erent cases, the second column speci�es whether the quadratic linking
class always exists, the third column speci�es whether all links are ori-
entable, the fourth column speci�es whether H := H2c−2(X,KMW

j1+j2+2c) = 0
(recall that this equality ensures that the quadratic linking class contains
as much information as the intersection product of the Seifert classes; see
Proposition 4.13) and the �fth column gives a well-known group which is
isomorphic to the group in which the quadratic linking class lives, namely
Hc−1(Z,KMW

j1+j2+c
{νZ}) (see Proposition 3.35 and Corollary 3.44). In these

two tables, χeven denotes the characteristic function of the set of even num-
bers (χeven(n) = 1 if n is even, χeven(n) = 0 if n is odd).

We end this section with the following research lead. Note that the
article [HWXZ21] may be useful for this investigation.

Future work 5 (Real realization and complex realization). In the case
A2

R \ {0} t A2
R \ {0} → A4

R \ {0} (or more generally: An
R \ {0} t An

R \
{0} → A2n

R \ {0} with n ≥ 2), one may ask whether the real realization of
the quadratic linking class is the linking class of the induced oriented link
S1tS1 → S3 (respectively Sn−1tSn−1 → S2n−1). One may also ask whether
the complex realization of the quadratic linking class is the linking class of
the induced oriented link S3tS3 → S7 (respectively S2n−1tS2n−1 → S4n−1).

Similar questions may be asked of the ambient quadratic linking de-
gree (see De�nition 5.7), compared with the linking number, and of the
quadratic linking degree couple (see De�nition 5.15), compared with the
linking couple.

In the following section, we study another family of cases (which is
summarised in Table 4.3) which give rise to a quadratic linking class. Unlike
the cases in this section, the schemes in the next section are not smooth
models of motivic spheres (except for the projective line P1

F which is a
smooth model of S1 ∧Gm).
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T
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q
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d
r
a
t
ic

l
in
k
in
g
c
l
a
s
s

Case ∃QLC?
All links
orient.?

H =
0 ? Group isomorphic to Hc−1(Z,KMW

j1+j2+c
{νZ})

An
F \ {0} t An

F \ {0} →
A2n
F \ {0} with n ≥ 2 Yes Yes Yes

KMW
j1+j2

(F ) ⊕ KMW
j1+j2

(F ) '{
GW(F )⊕GW(F ) if (j1, j2) = (0, 0)

W(F )⊕W(F ) otherwise
An
F \{0}tQn → A2n

F \{0}
with n ≥ 3 Yes Yes Yes KMW

j1+j2
(F )⊕ 0 '

{
GW(F )⊕ 0 if (j1, j2) = (0, 0)

W(F )⊕ 0 otherwise

A2
F \{0}tQ2 → A4

F \{0} Yes ? Yes

KMW
j1+j2

(F ) ⊕ KMW
j1+j2+1(F ) '

GW(F )⊕KMW
1 (F ) if (j1, j2) = (0, 0)

W(F )⊕GW(F ) if (j1, j2) ∈ {(−1, 0), (0,−1)}
W(F )⊕W(F ) otherwise

An
F \ {0} t Qn →

An+bn
2
c+1

F \ {0} with
n ≥ 3 Yes Yes Yes

0 ⊕ KMW
j1+j2+χeven(n)(F ) '

0⊕KMW
1 (F ) if (j1, j2) = (0, 0) and n is even

0⊕GW(F ) if (j1, j2) = (0, 0) and n is odd or
(j1, j2) ∈ {(−1, 0), (0,−1)} and n is even

0⊕W(F ) otherwise

QntQn → An+bn
2
c+1

F \{0}
with n ≥ 2 Yes

Yes if
n 6= 2 Yes

KMW
j1+j2+χeven(n)(F ) ⊕ KMW

j1+j2+χeven(n)(F ) '
KMW

1 (F )⊕KMW
1 (F ) if (j1, j2) = (0, 0) and n is even

GW(F )⊕GW(F ) if (j1, j2) = (0, 0) and n is odd or
(j1, j2) ∈ {(−1, 0), (0,−1)} and n is even

W(F )⊕W(F ) otherwise

Table 4.1 � The quadratic linking class when the ambient space X is the a�ne space minus the origin.
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ooth
m
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of
m
otivic

spheres
Case ∃QLC?

All links
orient.?

H =
0 ? Group isomorphic to Hc−1(Z,KMW

j1+j2+c
{νZ})

Qn t Qn → Qn+bn
2
c+1

with n ≥ 6 Yes Yes Yes

KMW
j1+j2+χeven(n)(F ) ⊕ KMW

j1+j2+χeven(n)(F ) '
KMW

1 (F )⊕KMW
1 (F ) if (j1, j2) = (0, 0) and n is even

GW(F )⊕GW(F ) if (j1, j2) = (0, 0) and n is odd or
(j1, j2) ∈ {(−1, 0), (0,−1)} and n is even

W(F )⊕W(F ) otherwise

Q5 tQ5 → Q8 Yes Yes No

KMW
j1+j2

(F ) ⊕ KMW
j1+j2

(F ) '{
GW(F )⊕GW(F ) if (j1, j2) = (0, 0)

W(F )⊕W(F ) otherwise

Q4 tQ4 → Q7 ? Yes Yes

KMW
j1+j2+1(F ) ⊕ KMW

j1+j2+1(F ) '
KMW

1 (F )⊕KMW
1 (F ) if (j1, j2) = (0, 0)

GW(F )⊕GW(F ) if (j1, j2) ∈ {(−1, 0), (0,−1)}
W(F )⊕W(F ) otherwise

Q3 tQ3 → Q5 ? Yes No

KMW
j1+j2

(F ) ⊕ KMW
j1+j2

(F ) '{
GW(F )⊕GW(F ) if (j1, j2) = (0, 0)

W(F )⊕W(F ) otherwise

Q2 tQ2 → Q4 ? ? No

KMW
j1+j2+1(F ) ⊕ KMW

j1+j2+1(F ) '
KMW

1 (F )⊕KMW
1 (F ) if (j1, j2) = (0, 0)

GW(F )⊕GW(F ) if (j1, j2) ∈ {(−1, 0), (0,−1)}
W(F )⊕W(F ) otherwise

Table 4.2 � The quadratic linking class when the ambient space X is the smooth a�ne quadric Qm.
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4. The quadratic linking class

4.4 A projective case

In this section, we explore which closed immersions Pn t Pn → Pm of pro-
jective spaces give rise to a quadratic linking class.

Throughout this section, F is a perfect �eld of characteristic di�erent
from 2 (this restriction is due to the same restriction in Theorem 3.45).

Let m ≥ 2 be an integer and X be an F -scheme isomorphic to PmF .
Let n ∈ N and Z1, Z2 be disjoint closed F -subschemes of X isomorphic
to PnF . Thus, Z1, Z2 and X verify the assumptions in the beginning of
Section 4.1: they are irreducible smooth �nite-type F -schemes and Z1 and
Z2 are disjoint closed F -subschemes of X of same dimension. We denote
by c := m − n the codimension of Z1 in X (which is also the codimension
of Z2 in X), by Z the (disjoint) union of Z1 and Z2 in X and by νZ (resp.
νZ1 ,νZ2) the determinant of the normal sheaf of Z (resp. Z1,Z2) in X, i.e.
the dual of the OZ-module IZ/I 2

Z with IZ the ideal sheaf of Z in X.
From now on, we assume that νZ1 and νZ2 are orientable, and we �x an

orientation class o1 of νZ1 and an orientation class o2 of νZ2 . We denote by
L the oriented link (Z1, Z2), (o1, o2).

For each i ∈ {1, 2} and integer ji ≤ 0, there exists a unique oriented
fundamental class [oi]ji with respect to ji (see De�nition 4.3). The following
lemma and theorem explore the existence and the unicity of the couple of
Seifert classes and of the quadratic linking class. Recall Proposition 4.5 and
De�nitions 4.6 and 4.9.

Lemma 4.37. Let j1, j2 ≤ 0 be integers.

1. The Rost-Schmid groupsHc−1(X,KMW
j1+c

) andHc−1(X,KMW
j2+c

) are equal
to 0 if and only if m ≥ n+ 2 and j1 ≤ −2 and j2 ≤ −2.

2. The Rost-Schmid groups Hc(X,KMW
j1+c

) and Hc(X,KMW
j2+c

) are equal
to 0 if and only if m ≥ n+ 1 and j1 ≤ −1 and j2 ≤ −1.

Proof. By Theorem 3.45, for all i, j ∈ Z: H0(PmF , K
MW
j ) ' KMW

j (F ) if
i = 0, H i(PmF , K

MW
j ) ' KM

j−i(F ) if 0 < i < m, Hm(PmF , K
MW
j ) ' KM

j−m(F )

if m is even, Hm(PmF , K
MW
j ) ' KMW

j−m(F ) if m is odd, and H i(PmF , K
MW
j ) = 0

otherwise. The results follow from applying this to i = c−1 and to i = c.

The following theorem follows directly from Proposition 4.5 and Lemma
4.37.

Theorem 4.38. If m ≥ n+ 2 then for each couple of integers (j1, j2) such
that j1 ≤ −2 and j2 ≤ −2, there exists a unique couple of Seifert classes of
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4.4. A projective case

L with respect to j1, j2 and there exists a unique quadratic linking class of
L with respect to j1, j2.

There is another important property to check: when is the Rost-Schmid
group in which the quadratic linking class of L lives (if it exists) nonzero?
Recall that this Rost-Schmid group is the following:

Hc−1(Z,KMW
j1+j2+c

{νZ}) ' Hc−1(Z1, K
MW
j1+j2+c

{νZ1})⊕Hc−1(Z2, K
MW
j1+j2+c

{νZ2})

Lemma 4.39. Let j1, j2 ≤ −2 be integers.

1. The Rost-Schmid group Hc−1(Z1, K
MW
j1+j2+c

{νZ1}) is di�erent from 0 if
and only if n is odd and m = 2n+ 1.

2. The Rost-Schmid group Hc−1(Z2, K
MW
j1+j2+c

{νZ2}) is di�erent from 0 if
and only if n is odd and m = 2n+ 1.

Proof. By Theorem 3.45, for all i, j ∈ Z: H0(PnF , K
MW
j ) ' KMW

j (F ) if
i = 0, H i(PnF , K

MW
j ) ' KM

j−i(F ) if 0 < i < n, Hn(PnF , K
MW
j ) ' KM

j−n(F )

if n is even, Hn(PnF , K
MW
j ) ' KMW

j−n (F ) if n is odd, and H i(PnF , K
MW
j ) = 0

otherwise. The results follow from applying this to i = c − 1 and from
the fact that Hc−1(Z1, K

MW
j1+j2+c

{νZ1}) ' Hc−1(Z1, K
MW
j1+j2+c

) (via õ1) and
Hc−1(Z2, K

MW
j1+j2+c

{νZ2}) ' Hc−1(Z2, K
MW
j1+j2+c

) (via õ2); see Notation 3.25.

By combining Proposition 4.13, Theorem 4.38 and Lemma 4.39, we get
the following theorem.

Theorem 4.40. If n ≥ 1 is odd, Z1 ' PnF , Z2 ' PnF and X ' P2n+1
F , then

for each couple of integers (j1, j2) such that j1 ≤ −2 and j2 ≤ −2, there
exists a unique couple of Seifert classes of L with respect to j1, j2 and there
exists a unique quadratic linking class of L with respect to j1, j2, which is
in the Rost-Schmid group Hn(Z,KMW

j1+j2+n+1{νZ}) 6= 0. Furthermore, the
boundary map ∂ : H2n(X \ Z,KMW

j1+j2+2n+2) → Hn(Z,KMW
j1+j2+n+1{νZ}) is

injective, which implies that the quadratic linking class of L contains as
much information as the intersection product of the Seifert classes of L .

In the following proposition, we show that in the case of Theorem 4.40,
the assumption we made earlier that νZ1 and νZ2 are orientable is not re-
strictive at all.

Proposition 4.41. Let n ≥ 1 be an odd integer. Let Z1 ' PnF and Z2 ' PnF
be disjoint closed F -subschemes of X ' P2n+1

F . Then νZ1 and νZ2 are
orientable.
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4. The quadratic linking class

Proof. Let i ∈ {1, 2}. By [Ful98, Paragraph B.7.2] and the fact that Zi and
X are smooth F -schemes, we have the following short exact sequence:

0 // TZi // (TX)|Zi
// NZi/X // 0

where TZi is the tangent sheaf of Zi, TX is the tangent sheaf of X, (TX)|Zi
is the restriction to Zi of the tangent sheaf of X, and NZi/X is the normal
sheaf of Zi in X. Therefore, νZi , which by de�nition is the determinant of
NZi/X , is isomorphic to the tensor product of the dual of the determinant
of TZi and of the restriction to Zi of the determinant of TX . The result
follows from the fact that these are squares of invertible OZi-modules, since
Zi ' PnF with n odd and X ' P2n+1

F (note that 2n+ 1 is odd).

Finally, let us focus on what happens to the quadratic linking class when
the orientation classes are changed.

Proposition 4.42. Let L be as in Theorem 4.40. Let a = (a1, a2) be a
couple of elements of F ∗ and La be the link obtained from L by changing
the orientation class o1 into o1 ◦ (×a1) and the orientation class o2 into
o2 ◦ (×a2). Then QlcLa

= 〈a1a2〉QlcL .

Proof. The result follows from Proposition 4.16.

Remark 4.43. Proposition 4.42 covers all possible changes of the orienta-
tion classes since the global invertible functions of Z1 and of Z2 are exactly
the units of the ground �eld F (recall that for each i ∈ {1, 2}, Zi ' PnF
with n ≥ 1) and any two orientation classes on Z1 or on Z2 di�er from one
another by the multiplication by a global invertible function (see [DDØ22,
Theorem 6.1.6]) since the Picard groups of Z1 and of Z2 have no 2-torsion
(see Proposition 4.34).

In Table 4.3, we recap the case we have discussed in this section. The
�rst column gives the case, the second column speci�es whether the quadratic
linking class always exists, the third column speci�es whether all links are
orientable, the fourth column speci�es whetherH := H2c−2(X,KMW

j1+j2+2c) =
0 (recall that this equality ensures that the quadratic linking class contains
as much information as the intersection product of the Seifert classes; see
Proposition 4.13) and the �fth column gives a well-known group which is
isomorphic to the group in which the quadratic linking class lives, namely
Hc−1(Z,KMW

j1+j2+c
{νZ}) (see Theorem 3.45).
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4.4. A projective case

Case ∃QLC?
All links
orient.?

H =
0 ?

Group isomorphic to
Hc−1(Z,KMW

j1+j2+c
{νZ})

PnF tPnF → P2n+1
F

with n ≥ 1 odd,
j1 ≤ −2 and
j2 ≤ −2 Yes Yes Yes

KMW
j1+j2+1(F )⊕KMW

j1+j2+1(F ) '
W(F )⊕W(F )

Table 4.3 � The quadratic linking class when the ambient space X is the
projective space. Here the characteristic of F is di�erent from 2.

We end this section with the following research lead. Note that the
article [HWXZ21] may be useful for this investigation.

Future work 6 (Real realization in a projective setting). In the case P1
R t

P1
R → P3

R, one may ask whether the real realization of the quadratic linking
class is equal to the linking classes of the oriented links S1 t S1 → S3

such that their image via the projection S3 → P3
R(R) is the induced map

P1
R(R) = S1 t P1

R(R) = S1 → P3
R(R). More generally, one may ask whether,

in the case PnR t PnR → P2n+1
R (with n ≥ 1 odd), the real realization of the

quadratic linking class is equal to the linking classes of the oriented links
Sn t Sn → S2n+1 which make the following diagram commute (where the
map in the bottom of the diagram is the map induced by the oriented link
PnR t PnR → P2n+1

R and the vertical maps are the projections):

Sn t Sn //

��

S2n+1

��
PnR(R) t PnR(R) // P2n+1

R (R)

Similar questions may be asked of the ambient quadratic linking degree (see
Future work 7), compared with the linking number, and of the quadratic
linking degree couple (see De�nition 5.21 and Future work 13), compared
with the linking couple.
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Chapter 5

The quadratic linking degree

In this chapter, we continue our study (which we started in Chapter 4)
of what we call motivic linking: a counterpart in algebraic geometry to
classical linking (in knot theory and in higher-dimensional knot theory; see
Chapter 1).

More precisely, in this chapter we introduce and study counterparts in
algebraic geometry to the linking number (see De�nition 1.13 and its higher-
dimensional generalisation De�nition 1.30) and to the linking couple (see
De�nition 1.17 and its higher-dimensional generalisation De�nition 1.34).

In Section 5.1, we de�ne the ambient quadratic linking class and the
ambient quadratic linking degree (our counterpart to the linking number)
and study some of their properties. In particular, we study how changes
of the orientation classes of the oriented link a�ect the ambient quadratic
linking class and the ambient quadratic linking degree. In Section 5.2,
we de�ne oriented links of a certain type (for instance, oriented links of
type (A2

F \ {0},A2
F \ {0},A4

F \ {0}), which are oriented links in A4
F \ {0}

whose components are isomorphic to A2
F \ {0} and which are equipped

with explicit isomorphisms (called parametrisations) between A2
F \ {0} and

each of their components) and the quadratic linking degree couple (our
counterpart to the linking couple) of such links. We also study some of its
properties, in particular how changes of the orientation classes and of the
parametrisations a�ect the quadratic linking degree couple. In Section 5.3,
we introduce invariants of the quadratic linking degree, which are quantities
computed from the ambient quadratic linking degree or from the quadratic
linking degree couple which do not depend on choices of orientation classes
(nor, in some cases, on choices of parametrisations). This is similar to the
absolute value of the linking number (or the absolute value of one of the
components of the linking couple) which does not depend on the orientations
of the components of the oriented link, but is more complicated in our case
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5. The quadratic linking degree

since the ambient quadratic linking degree takes values in the Witt ring
W(F ) of the ground �eld F or in the Grothendieck-Witt ring GW(F ) of
the ground �eld F , rather than in the ring of integers, and each component
of the quadratic linking degree couple takes values in W(F ), in GW(F )
or in the �rst Milnor-Witt K-theory group KMW

1 (F ) of the ground �eld
F , rather than in the ring of integers, and since the e�ects of changes of
the orientation classes are not merely changes of sign. Note that the case
(A2

F \{0},A2
F \{0},A4

F \{0}) was partially included in our preprint [Lem23].

5.1 The ambient quadratic linking degree

In this section we de�ne the ambient quadratic linking degree, which is
a counterpart in algebraic geometry to the linking number (see De�nition
1.13 and its higher-dimensional generalisation De�nition 1.30).

Throughout this section, F is a perfect �eld.
We �rst de�ne the ambient quadratic linking class (from which the am-

bient quadratic linking degree will be de�ned) and study some of its prop-
erties. Recall De�nitions 4.1 (oriented links with two components) and 4.9
(the quadratic linking class).

De�nition 5.1 (Ambient quadratic linking class). Let L = ((Z1 ⊂ X,Z2 ⊂
X), (o1, o2)) be an oriented link with two components and j1, j2 ≤ 0 be in-
tegers such that Hc−1(X,KMW

j1+c
) = 0, Hc−1(X,KMW

j2+c
) = 0, Hc(X,KMW

j1+c
) =

0 and Hc(X,KMW
j2+c

) = 0 (where c is the codimension of Z1 (or Z2) in
X). The ambient quadratic linking class of L with respect to (j1, j2), de-
noted AQlcL ,j1,j2 (or AQlcL for short), is the image of the part of the
quadratic linking class of L with respect to (j1, j2) which is in the group
Hc−1(Z1, K

MW
j1+j2+c

{νZ1}) (where c is the codimension of Z1 in X) by the
morphism (i1)∗ : Hc−1(Z1, K

MW
j1+j2+c

{νZ1}) → H2c−1(X,KMW
j1+j2+2c) induced

by the push-forward of the inclusion i1 : Z1 → X of the closed subscheme
Z1 in X.

See Section 7.1 for simple examples of ambient quadratic linking classes.

Remark 5.2. Note that the ambient quadratic linking class of L with
respect to (j1, j2) is well-de�ned as soon as the quadratic linking class of
L with respect to (j1, j2) is well-de�ned (see Remark 4.10), even if the
above-mentioned Rost-Schmid groups are nonzero.

Remark 5.3. Let j1, j2 ≤ 0 be integers such that the oriented link L has
a well-de�ned ambient quadratic linking class with respect to (j1, j2) (see
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5.1. The ambient quadratic linking degree

Remark 5.2). Let j′1 ≤ j1 ≤ 0 and j′2 ≤ j2 ≤ 0 be integers such that
Hc−1(X,KMW

j′1+c
) = 0 and Hc−1(X,KMW

j′2+c
) = 0 (which ensures the unicity

of the quadratic linking class with respect to (j′1, j
′
2) if it exists, hence the

unicity of the ambient quadratic linking class with respect to (j′1, j
′
2) if it

exists). By Remark 4.11, if the following diagram is commutative (which is
veri�ed for instance under the assumptions of Corollary 3.32):

Hc−1(X \ Z,KMW
j1+c

)×Hc−1(X \ Z,KMW
j2+c

) · //

(×ηj1−j
′
1 ,×ηj2−j

′
2 )
��

H2c−2(X \ Z,KMW
j1+j2+2c)

×ηj1+j2−(j′1+j
′
2)

��
Hc−1(X \ Z,KMW

j′1+c
)×Hc−1(X \ Z,KMW

j′2+c
) ·

// H2c−2(X \ Z,KMW
j′1+j

′
2+2c)

then the oriented linkL has a well-de�ned quadratic linking class QlcL ,j′1,j
′
2

=

ηj1+j2−(j
′
1+j

′
2) QlcL ,j1,j2 , hence it has a well-de�ned ambient quadratic link-

ing class AQlcL ,j′1,j
′
2

= ηj1+j2−(j
′
1+j

′
2) AQlcL ,j1,j2 (since (i1)∗ commutes to

product by η; see Remark 3.15, Notation 3.16 and Remark 3.17).

One may want to de�ne the ambient quadratic linking class by consider-
ing the second component of the quadratic linking class rather than the �rst
one: this gives the opposite of the ambient quadratic linking class (as is the
case in classical knot theory, see Remark 1.15 and its higher-dimensional
generalisation Remark 1.32).

Remark 5.4. Note that if i : Z = Z1 tZ2 → X (respectively i1 : Z1 → X,
i2 : Z2 → X) is the inclusion of the closed subscheme Z (resp. Z1,Z2) in
X then i∗ = (i1)∗ ⊕ (i2)∗ via the isomorphism Hc−1(Z,KMW

j1+j2+c
{νZ}) '

Hc−1(Z1, K
MW
j1+j2+c

{νZ1}) ⊕ Hc−1(Z2, K
MW
j1+j2+c

{νZ2}) induced by the inclu-
sions of Z1 and Z2 in Z. It follows from this and from Proposition 4.12,
which states that QlcL ,j1,j2 ∈ ker(i∗), that the image of the part of the
quadratic linking class of L with respect to (j1, j2) which is in the group
Hc−1(Z2, K

MW
j1+j2+c

{νZ2}) by the morphism (i2)∗ : Hc−1(Z2, K
MW
j1+j2+c

{νZ2})→
H2c−1(X,KMW

j1+j2+2c) is the opposite of the ambient quadratic linking class.

Let us now see what happens to the ambient quadratic linking class
when we reverse the order of the components of the oriented link.

Proposition 5.5. Let L = ((Z1 ⊂ X,Z2 ⊂ X), (o1, o2)) be an oriented link
with two components and j1, j2 ≤ 0 be integers such that Hc−1(X,KMW

j1+c
) =

0, Hc−1(X,KMW
j2+c

) = 0, Hc(X,KMW
j1+c

) = 0 and Hc(X,KMW
j2+c

) = 0. Let L ′
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5. The quadratic linking degree

be the oriented link (Z2, Z1), (o2, o1). Then:

AQlcL ′,j2,j1 =


−AQlcL ,j1,j2 if c is odd and (j1 is odd or j2 is odd)

−εAQlcL ,j1,j2 if c is odd and j1 is even and j2 is even
εAQlcL ,j1,j2 if c is even and (j1 is odd or j2 is odd)

AQlcL ,j1,j2 if c is even and j1 is even and j2 is even

Proof. By Proposition 4.15:

QlcL ′,j2,j1 =


QlcL ,j1,j2 if c is odd and (j1 is odd or j2 is odd)

εQlcL ,j1,j2 if c is odd and j1 is even and j2 is even
−εQlcL ,j1,j2 if c is even and (j1 is odd or j2 is odd)

−QlcL ,j1,j2 if c is even and j1 is even and j2 is even

The result follows from this, Remark 5.4 and the fact that (i1)∗ and (i2)∗
are group morphisms which commute to product by ε (see Remark 3.15,
Notation 3.16 and Remark 3.17).

Recall that if the Picard group of the underlying scheme has no 2-torsion,
then any two orientation classes di�er from one another by the multiplica-
tion by a global invertible function (see [DDØ22, Theorem 6.1.6]). If this is
the case for Z1 and Z2 and if their global invertible functions are exactly the
units of the ground �eld, then we know how the ambient quadratic linking
class is changed by orientation changes.

Proposition 5.6. Let L = ((Z1 ⊂ X,Z2 ⊂ X), (o1, o2)) be an oriented link
with two components and j1, j2 ≤ 0 be integers such that Hc−1(X,KMW

j1+c
) =

0, Hc−1(X,KMW
j2+c

) = 0, Hc(X,KMW
j1+c

) = 0 and Hc(X,KMW
j2+c

) = 0. Let
a = (a1, a2) be a couple of elements of F ∗. Let La be the link obtained from
L by changing the orientation class o1 into o1 ◦ (×a1) and the orientation
class o2 into o2 ◦ (×a2). Then

AQlcLa
= 〈a1a2〉AQlcL

Proof. By Proposition 4.16, QlcLa
= 〈a1a2〉QlcL . The result follows from

this and the fact that (i1)∗ commutes to product by 〈a1a2〉 (see Remark
3.15, Notation 3.16 and Remark 3.17).

Similarly to the linking number (see De�nition 1.13 and its higher-
dimensional generalisation De�nition 1.30) which depends on an orientation
of the ambient space (which is �xed once and for all), or equivalently on the
choice of an isomorphism H3(S3)→ Z (more generally, H2n+1(S2n+1)→ Z),

116



5.1. The ambient quadratic linking degree

the ambient quadratic linking degree will be de�ned as the image of the am-
bient quadratic linking class by an isomorphism (which will depend on the
ambient space X but not on the oriented link) between H2c−1(X,KMW

j1+j2+2c)
and a well-known group. Before we �x these isomorphisms and de�ne the
ambient quadratic linking degree, let us see which cases are interesting.

Recall that in the cases which were studied in Section 4.3, the ambient
space X was either A2n

F \{0}, A
n+bn

2
c+1

F \{0} or Qn+bn
2
c+1, where Z = Z1tZ2

was of dimension n ≥ 2. Note that for all n ≥ 3 and j1, j2 ≤ 0, H2n−1(A2n
F \

{0}, KMW
j1+j2+2n) ' KMW

j1+j2
(F ) and H2bn

2
c+1(An+bn

2
c+1

F \ {0}, KMW
j1+j2+2bn

2
c+2) =

0, and that for n = 2, H2n−1(A2n
F \ {0}, KMW

j1+j2+2n) = H2bn
2
c+1(An+bn

2
c+1

F \
{0}, KMW

j1+j2+2bn
2
c+2) ' KMW

j1+j2
(F ). Also note that for all n ≥ 2 and j1, j2 ≤ 0,

H2bn
2
c+1(Qn+bn

2
c+1, K

MW
j1+j2+2bn

2
c+2) = 0. Therefore, the only cases of Section

4.3 for which the ambient quadratic linking class is in a nonzero group are
the ones which are in Table 5.1 (recall that the quadratic linking class is
in Hc−1(Z,KMW

j1+j2+c
{νZ}) and that the ambient quadratic linking class is in

H2c−1(X,KMW
j1+j2+2c)).

Recall that the case which was studied in Section 4.4 was PnF t PnF →
P2n+1
F with n ≥ 1 odd, j1 ≤ −2 and j2 ≤ −2 (with F of characteristic di�er-

ent from 2). Since H2n+1(P2n+1
F , KMW

j1+j2+2n+2) ' KMW
j1+j2+1(F ), the ambient

quadratic linking class is in a nonzero group in this case. See Table 5.2 for
this case (recall that the quadratic linking class is in Hc−1(Z,KMW

j1+j2+c
{νZ})

and that the ambient quadratic linking class is in H2c−1(X,KMW
j1+j2+2c)).

In the cases of Table 5.1, we de�ne the ambient quadratic linking degree
as follows. Recall De�nition 5.1 (the ambient quadratic linking class).

De�nition 5.7 (Ambient quadratic linking degree). Let n ≥ 2 be an integer
and L = ((Z1 ⊂ A2n

F \ {0}, Z2 ⊂ A2n
F \ {0}), (o1, o2)) be an oriented link

with two components of dimension n (i.e. Z1 and Z2 are of dimension n).
The ambient quadratic linking degree of L with respect to a couple of
nonpositive integers (j1, j2), denoted AQldL ,j1,j2 (or AQldL for short), is
the image of the ambient quadratic linking class of L with respect to (j1, j2)
by the isomorphism ζ2n,j1+j2+2n (see Notation 3.36).

See Section 7.1 for simple examples of ambient quadratic linking degrees.
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Case Group isomorphic to Hc−1(Z,KMW
j1+j2+c

{νZ})
Group isomorphic to
H2c−1(X,KMW

j1+j2+2c)

An
F \ {0} t An

F \ {0} →
A2n
F \ {0} with n ≥ 2

KMW
j1+j2

(F ) ⊕ KMW
j1+j2

(F ) '{
GW(F )⊕GW(F ) if (j1, j2) = (0, 0)

W(F )⊕W(F ) otherwise

KMW
j1+j2

(F ) '{
GW(F ) if (j1, j2) = (0, 0)

W(F ) otherwise

A2
F \{0}tQ2 → A4

F \{0}

KMW
j1+j2

(F ) ⊕ KMW
j1+j2+1(F ) '

GW(F )⊕KMW
1 (F ) if (j1, j2) = (0, 0)

W(F )⊕GW(F ) if (j1, j2) ∈ {(−1, 0), (0,−1)}
W(F )⊕W(F ) otherwise

KMW
j1+j2

(F ) '{
GW(F ) if (j1, j2) = (0, 0)

W(F ) otherwise

Q2 tQ2 → A4
F \ {0}

KMW
j1+j2+1(F ) ⊕ KMW

j1+j2+1(F ) '
KMW

1 (F )⊕KMW
1 (F ) if (j1, j2) = (0, 0)

GW(F )⊕GW(F ) if (j1, j2) ∈ {(−1, 0), (0,−1)}
W(F )⊕W(F ) otherwise

KMW
j1+j2

(F ) '{
GW(F ) if (j1, j2) = (0, 0)

W(F ) otherwise

Table 5.1 � The ambient quadratic linking class for closed immersions of smooth models of motivic spheres.

Case Group isomorphic to Hc−1(Z,KMW
j1+j2+c

{νZ})
Group isomorphic to
H2c−1(X,KMW

j1+j2+2c)

PnF t PnF → P2n+1
F with

n ≥ 1 odd, j1 ≤ −2 and
j2 ≤ −2 KMW

j1+j2+1(F )⊕KMW
j1+j2+1(F ) 'W(F )⊕W(F ) KMW

j1+j2+1(F ) 'W(F )

Table 5.2 � The ambient quadratic linking class when the ambient space X is the projective space. Here the
characteristic of F is di�erent from 2.
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5.1. The ambient quadratic linking degree

Remark 5.8. Let j′1 ≤ j1 ≤ 0 and j′2 ≤ j2 ≤ 0 be integers. By Remark
5.3, if the following diagram is commutative (which is veri�ed for instance
under the assumptions of Corollary 3.32; here X := A2n

F \ {0}):

Hc−1(X \ Z,KMW
j1+c

)×Hc−1(X \ Z,KMW
j2+c

) · //

(×ηj1−j
′
1 ,×ηj2−j

′
2 )
��

H2c−2(X \ Z,KMW
j1+j2+2c)

×ηj1+j2−(j′1+j
′
2)

��
Hc−1(X \ Z,KMW

j′1+c
)×Hc−1(X \ Z,KMW

j′2+c
) ·

// H2c−2(X \ Z,KMW
j′1+j

′
2+2c)

then AQlcL ,j′1,j
′
2

= ηj1+j2−(j
′
1+j

′
2) AQlcL ,j1,j2 , hence:

AQldL ,j′1,j
′
2

= AQldL ,j1,j2

(with a slight abuse of notation when (j1, j2) = (0, 0) and (j′1, j
′
2) 6= (0, 0):

in this case, the canonical morphism GW(F )→W(F ) maps AQldL ,j1,j2 to
AQldL ,j′1,j

′
2
). See Notation 3.36 and Theorem 2.33 and note that ∂ and õ

commute to product by η.

In classical knot theory, the alternative de�nition of the linking number
(by considering the second component rather than the �rst one) gives the
opposite of the linking number (see Remark 1.15 and its higher-dimensional
generalisation Remark 1.32). This is also true of the ambient quadratic
linking degree.

Remark 5.9. Let i2 : Z2 → X := A2n
F \ {0} be the inclusion of the closed

subscheme Z2 in X. It follows from Remark 5.4 that the image of the
part of the quadratic linking class of L with respect to (j1, j2) which is
in the Rost-Schmid group Hc−1(Z2, K

MW
j1+j2+c

{νZ2}) by the composite of the
morphism (i2)∗ : Hc−1(Z2, K

MW
j1+j2+c

{νZ2}) → H2c−1(X,KMW
j1+j2+2c) and of

the isomorphism ζ2n,j1+j2+2n is the opposite of the ambient quadratic linking
degree.

Similarly to the linking number which stays the same when the order
of the components of the oriented link is reversed and the codimension is
even, and is turned into its opposite when the order of the components
of the oriented link is reversed and the codimension is odd (see Remark
1.32 and note that in this Remark, the codimension is n+ 1), we have the
following result for the ambient quadratic linking degree.

Proposition 5.10. Let n ≥ 2 be an integer, L = ((Z1 ⊂ A2n
F \ {0}, Z2 ⊂

A2n
F \{0}), (o1, o2)) be an oriented link with two components of dimension n
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5. The quadratic linking degree

(denote by c := n the codimension) and j1, j2 ≤ 0 be integers such that
(j1, j2) 6= (0, 0). Let L ′ be the oriented link (Z2, Z1), (o2, o1). Then:

AQldL ′,j2,j1 =

{
−AQldL ,j1,j2 if c is odd
AQldL ,j1,j2 if c is even

AQldL ′,0,0 =

{
〈−1〉AQldL ,0,0 if c is odd
AQldL ,0,0 if c is even

Note that AQldL ′,j2,j1 ∈W(F ) whereas AQldL ′,0,0 ∈ GW(F ).

Proof. By Proposition 5.5:

AQlcL ′,j2,j1 =


−AQlcL ,j1,j2 if c is odd and (j1 is odd or j2 is odd)

−εAQlcL ,j1,j2 if c is odd and j1 is even and j2 is even
εAQlcL ,j1,j2 if c is even and (j1 is odd or j2 is odd)

AQlcL ,j1,j2 if c is even and j1 is even and j2 is even

AQlcL ′,0,0 =

{
−εAQlcL ,0,0 if c is odd
AQlcL ,0,0 if c is even

The result follows from the fact that the ambient quadratic linking degree
AQldL ,j1,j2 (respectively AQldL ,0,0) is the image of the ambient quadratic
linking class AQlcL ,j1,j2 (resp. AQlcL ,0,0) by the composite of the mor-
phism õ◦∂ (which commutes to product by ε) and of the morphism γj1+j2 :
KMW
j1+j2

(F )→W(F ) which sends 〈a〉η−(j1+j2) to< a > (resp. γ0 : KMW
0 (F )→

GW(F ) which sends 〈a〉 to 〈a〉).

Let us now see how the ambient quadratic linking degree is changed by
some orientation changes. Note that when the oriented link corresponds to
one of the cases in Table 5.1 then, by Remark 4.36, Proposition 5.11 covers
all possible changes of the orientation classes.

Proposition 5.11. Let n ≥ 2 be an integer, L = ((Z1 ⊂ A2n
F \ {0}, Z2 ⊂

A2n
F \{0}), (o1, o2)) be an oriented link with two components of dimension n

and j1, j2 ≤ 0 be integers such that (j1, j2) 6= (0, 0). Let a = (a1, a2) be a
couple of elements of F ∗ and La be the link obtained from L by changing
the orientation class o1 into o1 ◦ (×a1) and the orientation class o2 into
o2 ◦ (×a2). Then:

AQldLa,j1,j2 =< a1a2 > AQldL ,j1,j2

AQldLa,0,0 = 〈a1a2〉AQldL ,0,0

Note that AQldLa,j1,j2 ∈W(F ) whereas AQldLa,0,0 ∈ GW(F ).
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5.2. The quadratic linking degree couple

Proof. By Proposition 5.6, AQlcLa,j1,j2 = 〈a1a2〉AQlcL ,j1,j2 and AQlcLa,0,0 =
〈a1a2〉AQlcL ,0,0. The result follows from the fact that the ambient quadratic
linking degree AQldL ,j1,j2 (respectively AQldL ,0,0) is the image of the am-
bient quadratic linking class AQlcL ,j1,j2 (resp. AQlcL ,0,0) by the composite
of the morphism õ ◦ ∂ (which commutes to product by 〈a1a2〉) and of the
morphism γj1+j2 : KMW

j1+j2
(F ) → W(F ) which sends 〈a〉η−(j1+j2) to < a >

(resp. γ0 : KMW
0 (F )→ GW(F ) which sends 〈a〉 to 〈a〉).

Remark 5.12. In the case where the ground �eld is the �eld of real numbers
(i.e. F = R), this proposition is similar to what happens to the linking
number (see Remark 1.31): the ambient quadratic linking degree is the same
if a1 and a2 have the same sign (similarly to the linking number which is the
same if both orientations are reversed (or if they are both left unchanged))
and is multiplied by < −1 >= −1 ∈W(F ) or by 〈−1〉 ∈ GW(F ) if a1 and
a2 have di�erent signs (similarly to the linking number which is multiplied
by −1 if exactly one of the orientations is reversed).

Future work 7 (Ambient quadratic linking degree in a projective setting).
Since we do not yet have an explicit isomorphism between the Rost-Schmid
group H2n+1(P2n+1

F , KMW
j1+j2+2n+2) and K

MW
j1+j2+1(F ) (see Future work 3), we

cannot de�ne the ambient quadratic linking degree for the case in Table
5.2. When Future work 3 will be completed, we will be able to de�ne the
ambient quadratic linking degree for the case in Table 5.2 as the image of
the ambient quadratic linking class by the composite of the explicit iso-
morphism between H2n+1(P2n+1

F , KMW
j1+j2+2n+2) and KMW

j1+j2+1(F ) and of the
isomorphism γj1+j2+1 : KMW

j1+j2+1(F )→W(F ) (see Theorem 2.33).

5.2 The quadratic linking degree couple

In this section we de�ne the quadratic linking degree (couple), which is a
counterpart in algebraic geometry to the linking couple (see De�nition 1.17
and its higher-dimensional generalisation De�nition 1.34).

Throughout this section, F is a perfect �eld.
We begin by giving a de�nition of oriented links with two components

which has more information than what was needed to de�ne the quadratic
linking class in Chapter 4.

De�nition 5.13 (Oriented link with two components of a certain type).
An oriented link L with two components of type (Y1, Y2, X) is a couple
of closed immersions (ϕ1 : Y1 → X,ϕ2 : Y2 → X), where X, Y1, Y2 are
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irreducible smooth �nite-type F -schemes and Y1 and Y2 are of same dimen-
sion, such that the image Z1 of ϕ1 and the image Z2 of ϕ2 are disjoint,
together with a couple of orientation classes (o1, o2), where o1 : νZ1 :=
det(NZ1/X) → L1 ⊗ L1 is an orientation of the normal sheaf of Z1 in X
and o2 : νZ2 := det(NZ2/X)→ L2⊗L2 is an orientation of the normal sheaf
of Z2 in X. In other words, an oriented link L with two components of
type (Y1, Y2, X) is an oriented link with two components (Z1, Z2), (o1, o2)
in the sense of De�nition 4.1 together with a parametrisation ϕ1 of Z1 and
a parametrisation ϕ2 of Z2.

Remark 5.14. If (Z1, Z2), (o1, o2), (ϕ1, ϕ2) is an oriented link with two
components of a certain type then in particular NZ1/X and NZ2/X are ori-
entable (i.e. their determinants are isomorphic to squares, see De�nition
3.22). Similar considerations to the ones in Remark 4.2 apply to links of
a certain type: (nonoriented) links (Z1, Z2), (ϕ1, ϕ2) with two components
of a certain type could be required to be orientable or not. Also, note
that even though we only de�ned oriented links with two components of a
certain type, similar de�nitions for (oriented) knots of a certain type (i.e.
(oriented) links with one component of a certain type) and for (oriented)
links with n components of a certain type (with n ∈ N) can be made.

See Chapter 7 for examples (especially Section 7.1 for a simple example:
the Hopf link).

In the following two subsections, we de�ne quadratic linking degree cou-
ples by these three steps:

1. Apply the isomorphism Hc−1(Z,KMW
j1+j2+c

{νZ}) → Hc−1(Z,KMW
j1+j2+c

)
induced by the orientation classes o1 and o2 to the quadratic linking
class.

2. Apply the isomorphism Hc−1(Z,KMW
j1+j2+c

) → Hc−1(Y1, K
MW
j1+j2+c

) ⊕
Hc−1(Y2, K

MW
j1+j2+c

) induced by the couple of isomorphisms of F -schemes
(ϕ1 : Y1 → Z1, ϕ2 : Y2 → Z2) to the result of the �rst step.

3. Apply an isomorphism (which only depends on Y1 and Y2, not on the
speci�c oriented link) betweenHc−1(Y1, K

MW
j1+j2+c

)⊕Hc−1(Y2, K
MW
j1+j2+c

)
and a well-known group to the result of the second step to get the
quadratic linking degree couple.

Note that step 3 will use an isomorphism which has been �xed once and
for all but which is not canonical (similarly to what was done to de�ne the
ambient quadratic linking degree from the ambient quadratic linking class).
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5.2. The quadratic linking degree couple

Smooth models of motivic spheres

In this subsection, we de�ne the quadratic linking degree couple for oriented
links with two components of type (Y1, Y2, X) with Y1, Y2, X smooth models
of motivic spheres, as in Section 4.3. Recall Tables 4.1 and 4.2.

De�nition 5.15 (Quadratic linking degree couple). Let (j1, j2) be a couple
of nonpositive integers and L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented
link with two components of type (Y1, Y2, X), with (Y1, Y2, X) equal to:

1. (An
F \ {0},An

F \ {0},A2n
F \ {0}) for some n ≥ 2;

2. (An
F \ {0}, Qn,A2n

F \ {0}) for some n ≥ 3;

3. (Qn,An
F \ {0},A2n

F \ {0}) for some n ≥ 3;

4. (A2
F \ {0}, Q2,A4

F \ {0});

5. (Q2,A2
F \ {0},A4

F \ {0});

6. (An
F \ {0}, Qn,A

n+bn
2
c+1

F \ {0}) for some n ≥ 3 odd;

7. (Qn,An
F \ {0},A

n+bn
2
c+1

F \ {0}) for some n ≥ 3 odd;

8. (Q2, Q2,A4
F \ {0});

9. (Qn, Qn,A
n+bn

2
c+1

F \ {0}) for some n ≥ 3 odd;

10. (Qn, Qn, Qn+bn
2
c+1) for some n ≥ 5 odd;

11. (Q3, Q3, Q5);

12. (Q2, Q2, Q4).

In the cases 11 and 12, assume that L has a well-de�ned quadratic link-
ing class with respect to (j1, j2) (see Remark 4.10; this is always veri�ed
in the other cases). The quadratic linking degree couple of L with re-
spect to (j1, j2), denoted QldL ,j1,j2 (or QldL for short), is the image of
the quadratic linking class of L with respect to (j1, j2) by the compos-
ite of four isomorphisms (in a nutshell, this quadratic linking degree cou-
ple is the image of (ϕ∗1 ⊕ ϕ∗2)((õ1 ⊕ õ2)($(QlcL ,j1,j2))) by an isomorphism
which depends on the type of the oriented link L ). The �rst of these is
the isomorphism $ : Hc−1(Z,KMW

j1+j2+c
{νZ}) → Hc−1(Z1, K

MW
j1+j2+c

{νZ1}) ⊕
Hc−1(Z2, K

MW
j1+j2+c

{νZ2}) which is induced by the inclusions of Z1, Z2 in
Z := Z1 t Z2 (where c is the codimension of Z1 in X and νZ , νZ1 , νZ2
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5. The quadratic linking degree

are the determinants of the normal sheaves of Z,Z1, Z2 in X respectively).
The second of these isomorphisms is õ1 ⊕ õ2 : Hc−1(Z1, K

MW
j1+j2+c

{νZ1}) ⊕
Hc−1(Z2, K

MW
j1+j2+c

{νZ2}) → Hc−1(Z1, K
MW
j1+j2+c

) ⊕ Hc−1(Z2, K
MW
j1+j2+c

) (see
Notation 3.25). The third of these isomorphisms is ϕ∗1⊕ϕ∗2 : Hc−1(Z1, K

MW
j1+j2+c

)⊕
Hc−1(Z2, K

MW
j1+j2+c

)→ Hc−1(Y1, K
MW
j1+j2+c

)⊕Hc−1(Y2, K
MW
j1+j2+c

). The last of
these isomorphisms depends on the type of the oriented link L and is listed
below in the same order as above (see Notations 3.36, 3.41 and 3.51):

1. ζn,j1+j2+n ⊕ ζn,j1+j2+n

2. ζn,j1+j2+n ⊕ 0

3. 0⊕ ζn,j1+j2+n

4. ζ2,j1+j2+2 ⊕ φj1+j2+2

5. φj1+j2+2 ⊕ ζ2,j1+j2+2

6. 0⊕ ςn,j1+j2+bn2 c+1

7. ςn,j1+j2+bn2 c+1 ⊕ 0

8. φj1+j2+2 ⊕ φj1+j2+2

9. ςn,j1+j2+bn2 c+1 ⊕ ςn,j1+j2+bn2 c+1

10. ςn,j1+j2+bn2 c+1 ⊕ ςn,j1+j2+bn2 c+1

11. ς3,j1+j2+2 ⊕ ς3,j1+j2+2

12. φj1+j2+2 ⊕ φj1+j2+2

See Section 7.1 for simple examples of quadratic linking degree couples.

Future work 8 (Additional quadratic linking degree couples). Since we do
not yet have an explicit isomorphism θn,j1+j2+bn2 c+1 : Hb

n
2
c(Qn, K

MW
j1+j2+bn2 c+1)→

KMW
j1+j2+1(F ) when n ≥ 4 is even (see Future work 2), we cannot de�ne the

quadratic linking degree couple for the following types (Y1, Y2, X):

13. (An
F \ {0}, Qn,A

n+bn
2
c+1

F \ {0}) for some n ≥ 4 even;

14. (Qn,An
F \ {0},A

n+bn
2
c+1

F \ {0}) for some n ≥ 4 even;

15. (Qn, Qn,A
n+bn

2
c+1

F \ {0}) for some n ≥ 4 even;

16. (Qn, Qn, Qn+bn
2
c+1) for some n ≥ 6 even;
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5.2. The quadratic linking degree couple

17. (Q4, Q4, Q7) (note that in this case, there is a priori not necessarily a
well-de�ned quadratic linking class).

When Future work 2 will be completed, we will be able to de�ne the
quadratic linking degree couple of an oriented link L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2)
of type (Y1, Y2, X) with respect to a couple of nonpositive integers (j1, j2)
(for the �ve cases listed above) as the image of the quadratic linking class of
L with respect to (j1, j2) by the composite of the �rst three isomorphisms
which were described in De�nition 5.15 and of the following isomorphism
(which depends on the type of the oriented link L and is listed below in the
same order as above; see Theorem 2.33 for γj1+j2+1 when (j1, j2) 6= (0, 0),
and conventionally γ1 is the identity of KMW

1 (F )):

13. 0⊕ γj1+j2+1 ◦ θn,j1+j2+bn2 c+1

14. γj1+j2+1 ◦ θn,j1+j2+bn2 c+1 ⊕ 0

15. γj1+j2+1 ◦ θn,j1+j2+bn2 c+1 ⊕ γj1+j2+1 ◦ θn,j1+j2+bn2 c+1

16. γj1+j2+1 ◦ θn,j1+j2+bn2 c+1 ⊕ γj1+j2+1 ◦ θn,j1+j2+bn2 c+1

17. γj1+j2+1 ◦ θ4,j1+j2+3 ⊕ γj1+j2+1 ◦ θ4,j1+j2+3

Note that in the cases 1, 4, 5 and 8 above, there is an ambient quadratic
linking degree as well (see De�nition 5.7), whereas in the other cases the am-
bient quadratic linking class is in the zero group (and we can conventionally
say that the ambient quadratic linking degree is zero in these cases).

Future work 9 (Ambient quad. link. degree and quad. link. degree
couple). In classical knot theory, each component of the linking couple is
the linking number up to a sign (see Remark 1.16 and its higher-dimensional
generalisation Remark 1.33). Since the morphism (i1)∗ : Hc−1(Z1, K

MW
j1+j2+c

{νZ1})→
H2c−1(X,KMW

j1+j2+2c) and the morphism (i2)∗ : Hc−1(Z2, K
MW
j1+j2+c

{νZ2}) →
H2c−1(X,KMW

j1+j2+2c) induced by the inclusions Z1 → X and Z2 → X respec-
tively are a priori neither the identity nor the opposite (a contrario from
their counterparts in classical knot theory, which are surjective morphisms
from a group isomorphic to Z to a group isomorphic to Z), the compo-
nents of the quadratic linking degree couple are a priori not the ambient
quadratic linking degree up to a sign. It would be interesting to investi-
gate the relationship between the ambient quadratic linking degree and the
quadratic linking degree couple and especially to answer the following ques-
tion: must the quadratic linking degree couple be zero when the ambient
quadratic linking degree is zero? In particular, can the quadratic linking
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5. The quadratic linking degree

degree couple be nonzero in the cases 2, 3, 6, 7, 9, 10, 11, 12 and (when
it will be de�ned) 13, 14, 15, 16, 17 ? (Note that the ambient quadratic
linking degree is necessarily zero in all these cases.)

Remark 5.16. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with
two components of type (Y1, Y2, X) in one of the twelve cases of De�nition
5.15 and j1, j2 ≤ 0 be integers such that L has a well-de�ned quadratic
linking degree with respect to (j1, j2). Let j′1 ≤ j1 ≤ 0 and j′2 ≤ j2 ≤ 0
be integers such that Hc−1(X,KMW

j′1+c
) = 0 and Hc−1(X,KMW

j′2+c
) = 0 (which

ensures the unicity of the quadratic linking class with respect to (j′1, j
′
2) if

it exists, hence the unicity of the quadratic linking degree with respect to
(j′1, j

′
2) if it exists). By Remark 4.11, if the following diagram is commutative

(which is veri�ed for instance under the assumptions of Corollary 3.32):

Hc−1(X \ Z,KMW
j1+c

)×Hc−1(X \ Z,KMW
j2+c

) · //

(×ηj1−j
′
1 ,×ηj2−j

′
2 )
��

H2c−2(X \ Z,KMW
j1+j2+2c)

×ηj1+j2−(j′1+j
′
2)

��
Hc−1(X \ Z,KMW

j′1+c
)×Hc−1(X \ Z,KMW

j′2+c
) ·

// H2c−2(X \ Z,KMW
j′1+j

′
2+2c)

then the oriented linkL has a well-de�ned quadratic linking class QlcL ,j′1,j
′
2

=

ηj1+j2−(j
′
1+j

′
2) QlcL ,j1,j2 , hence it has a well-de�ned quadratic linking degree

QldL ,j′1,j
′
2
which is equal to QldL ,j1,j2 , with the following conventions:

� an element α of W(F ) and an element β of GW(F ) are conventionally
equal if the canonical morphism GW(F )→W(F ) maps β to α;

� an element β of GW(F ) and an element δ of KMW
1 (F ) are conven-

tionally equal if the morphism γ0 maps ηδ to β;

� an element α of W(F ) and an element δ ofKMW
1 (F ) are conventionally

equal if the morphism γ−1 maps η2δ to α (note that for all m ≥ 2,
γ−1 maps η2δ to α if and only if γ−m+1 maps ηmδ to α);

� as usual, a couple (a1, a2) is equal to a couple (b1, b2) if a1 = b1, a2 = b2.

Indeed, the isomorphisms $, õ1 ⊕ õ2, ϕ∗1 ⊕ ϕ∗2, and φ2 commute to product
by η and the isomorphisms ζ, ς and φl with l ≤ 1 are composites of iso-
morphisms which commute to product by η and of γ (recall De�nition 5.15,
Notations 3.36, 3.41, 3.51 and Theorem 2.33).

Let us now see what happens to the quadratic linking degree couple
when the order of the components of the oriented link is reversed.
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5.2. The quadratic linking degree couple

Proposition 5.17. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link
with two components of type (Y1, Y2, X) in one of the twelve cases of De�ni-
tion 5.15 and j1, j2 ≤ 0 be integers such that L has a well-de�ned quadratic
linking degree couple QldL ,j1,j2 = (d1, d2) with respect to (j1, j2). Let L ′

be the oriented link (Z2, Z1), (o2, o1), (ϕ2, ϕ1) of type (Y2, Y1, X). Then
the oriented link L ′ has a well-de�ned quadratic linking degree couple
QldL ′,j2,j1 which veri�es (recall that ε = −〈−1〉 ∈ KMW

0 (F ), and conven-
tionally ε := −〈−1〉 ∈ GW(F ) and ε := 1 ∈W(F )):

QldL ′,j2,j1 =


(d2, d1) if c is odd and (j1 is odd or j2 is odd)

(εd2, εd1) if c is odd and j1 is even and j2 is even
(−εd2,−εd1) if c is even and (j1 is odd or j2 is odd)

(−d2,−d1) if c is even and j1 is even and j2 is even

Proof. By Proposition 4.15:

QlcL ′,j2,j1 =


QlcL ,j1,j2 if c is odd and (j1 is odd or j2 is odd)

εQlcL ,j1,j2 if c is odd and j1 is even and j2 is even
−εQlcL ,j1,j2 if c is even and (j1 is odd or j2 is odd)

−QlcL ,j1,j2 if c is even and j1 is even and j2 is even

The result follows from the fact that the isomorphisms $, õ1⊕ õ2, ϕ∗1⊕ϕ∗2,
and φ2 commute to product by ε and the isomorphisms ζ, ς and φl with
l ≤ 1 are composites of isomorphisms which commute to product by ε and of
γ (recall De�nition 5.15, Notations 3.36, 3.41, 3.51 and Theorem 2.33).

Future work 10 (The two components of the quadratic linking degree
couple). It would be interesting to determine the relationship (if there is
one) between the �rst component of the quadratic linking degree couple and
the second component of the quadratic linking degree couple (it would allow
us for instance to make Proposition 5.17 more precise). The fact that the
quadratic linking class is in the kernel of i∗ (see Proposition 4.12) may be
useful for this (since the corresponding fact in knot theory is useful to show
that the �rst component of the linking couple is the second component of
the linking couple up to a sign, see Remark 1.16 and its higher-dimensional
generalisation Remark 1.33).

Similarly to the linking couple whose �rst component (respectively sec-
ond component) stays the same and whose second component (resp. �rst
component) is turned into its opposite if the orientation of the �rst compo-
nent (resp. second component) of the oriented link is reversed (see Remark
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1.36), the quadratic linking degree couple is changed in the following way
by orientation changes. Recall Remark 4.36.

Proposition 5.18. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link
with two components of type (Y1, Y2, X) in one of the twelve cases of Def-
inition 5.15 and j1, j2 ≤ 0 be integers such that L has a well-de�ned
quadratic linking degree couple QldL ,j1,j2 = (d1, d2) with respect to (j1, j2).
Let a = (a1, a2) be a couple of elements of F ∗. Let La be the link ob-
tained from L by changing the orientation class o1 into o1 ◦ (×a1) and the
orientation class o2 into o2 ◦ (×a2). Then La has a well-de�ned quadratic
linking degree couple QldLa,j1,j2 with respect to (j1, j2) which veri�es:

QldLa,j1,j2 = (〈a2〉d1, 〈a1〉d2)

(with slight abuses of notation: if d1 ∈W(F ) then 〈a2〉 should be replaced
with < a2 >, if d2 ∈W(F ) then 〈a1〉 should be replaced with < a1 >, if d1
is in the zero group (see cases 3 and 6) then conventionally 〈a2〉d1 = 0, if
d2 is in the zero group (see cases 2 and 7) then conventionally 〈a1〉d2 = 0).

Proof. By Proposition 4.16, QlcLa,j1,j2 = 〈a1a2〉QlcL ,j1,j2 hence$(QlcLa,j1,j2) =
〈a1a2〉$(QlcL ,j1,j2) (see De�nition 5.15). Thus, denoting (σ1, σ2) := $(QlcL ,j1,j2),
we have $(QlcLa,j1,j2) = (〈a1a2〉σ1, 〈a1a2〉σ2). Let i 6= j ∈ {1, 2}. Note

that ˜oi ◦ (×ai)(〈a1a2〉σi) = 〈ai〉õi(〈a1a2〉σi) = 〈a2i aj〉õi(σi) = 〈aj〉õi(σi)
(see Notation 3.25). Therefore, ϕ∗i ( ˜oi ◦ (×ai)(〈a1a2〉σi)) = ϕ∗i (〈aj〉õi(σi)) =
〈aj〉ϕ∗i (õi(σi)) (since aj ∈ F ∗). Since the i-th component of the quadratic
linking degree couple QldL ,j1,j2 (respectively QldLa,j1,j2) is obtained from
ϕ∗i (õi(σi)) (respectively 〈aj〉ϕ∗i (õi(σi))) by applying the isomorphism from
the relevant case in De�nition 5.15 and since these isomorphisms commute
to product by 〈aj〉 (in the case of φ2 (see Notation 3.51)) or are composites
of isomorphisms which commute to product by 〈aj〉 and of γ (in the case of
ζ, ς and φl with l ≤ 1 (see Notations 3.36, 3.41, 3.51 and Theorem 2.33)),
the i-th component of QldLa,j1,j2 is equal to 〈aj〉di (with the same slight
abuses of notation as above).

Let us now focus on changes of parametrisations.

Remark 5.19. Let n ≥ 2 and ψ be an automorphism of An
F \ {0}. By

composing with the inclusion An
F \ {0} → An

F , we get from ψ an n-tuple of
elements of OAnF (An

F \ {0}). By [GW10, Theorem 6.45 (Hartogs' theorem)],
the restriction OAnF (An

F )→ OAnF (An
F \{0}) is an isomorphism, hence ψ is the

restriction of an endomorphism of An
F , which in fact is an automorphism

128



5.2. The quadratic linking degree couple

of An
F (which preserves the origin) since the same arguments can be ap-

plied to the inverse of ψ. Since we have de�ned An
F as Spec(F [x1, . . . , xn])

(thus �xing coordinates x1, . . . , xn), this automorphism of An
F has a Jaco-

bian determinant, which we denote by Jψ. Note that Jψ is in F ∗ since
(F [x1, . . . , xn])∗ = F ∗.

Proposition 5.20. Let i ∈ {1, 2}. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be
an oriented link with two components of type (Y1, Y2, X) in one of the cases
of De�nition 5.15 such that Zi ' An

F \ {0} and X ' A2n
F \ {0}. Let (j1, j2)

be a couple of nonpositive integers, ψi be an automorphism of An
F \ {0}

and Lψi be the link obtained from L by changing ϕi : An
F \ {0} → X into

ϕi ◦ ψi : An
F \ {0} → X. Then, denoting (d1, d2) := QldL ,j1,j2 and by k the

only element of {1, 2} \ {i}:

� the i-th component of QldLψi
,j1,j2 is equal to 〈Jψi〉di;

� the k-th component of QldLψi
,j1,j2 is equal to dk.

Proof. Recall that the quadratic linking class does not depend on the choice
of parametrisations (see De�nitions 4.1 and 4.9), thus QlcLψ ,j1,j2

= QlcL ,j1,j2 .
It follows immediately that (õ1⊕õ2)($(QlcLψ ,j1,j2

)) = (õ1⊕õ2)($(QlcL ,j1,j2))
(see De�nition 5.15). By [Fas20, Theorem 2.14], the following diagram is
commutative (where the ψi on the right is the restriction to 0 of the (unique)
extension of ψi to An

F ; see Remark 5.19):

Hn−1(An
F \ {0}, KMW

j1+j2+n
) ∂ //

ψ∗i
��

H0({0}, KMW
j1+j2
{det(N{0}/AnF )})

ψ∗i
��

Hn−1(An
F \ {0}, KMW

j1+j2+n
)

∂
// H0({0}, KMW

j1+j2
{det(N{0}/AnF )})

It follows from this and from the equality (ϕi ◦ψi)∗ = ψ∗i ◦ϕ∗i that, denoting
(σ1, σ2) := $(QlcL ,j1,j2), ∂((ϕi ◦ ψi)∗(õi(σi))) = ψ∗i (∂(ϕ∗i (õi(σi)))). The
result follows from this and from the fact that for all α ∈ KMW

j1+j2
(F ), ψ∗i (α⊗

(u1
∗ ∧ · · · ∧ un∗)) = 〈Jψi〉α ⊗ (u1

∗ ∧ · · · ∧ un∗) (recall De�nition 5.15 and
Notation 3.36).

Future work 11 (Changes of parametrisations for Qn). When Zi ' Qn

instead of Zi ' An
F \ {0}, it should be feasible to get a similar result as the

one in Proposition 5.20 but with another de�nition of Jψi (where ψi is an
automorphism of Qn). We should �x a volume form ω on Qn (for instance,
1
∂f
∂x1

x2 ∧ · · · ∧ xm ∧ y1 ∧ · · · ∧ ym if n = 2m− 1 and f =
∑m

i=1 xiyi − 1 (note
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that up to sign it is equal to
1
∂f
∂x2

x1 ∧ x3 ∧ · · · ∧ xm ∧ y1 ∧ · · · ∧ ym, etc.), or

1
∂g
∂x1

x2 ∧ · · · ∧ xm ∧ y1 ∧ · · · ∧ ym ∧ z if n = 2m and g =
∑m

i=1 xiyi− z(1 + z)

(note that up to sign it is equal to
1
∂f
∂x2

x1 ∧ x3 ∧ · · · ∧ xm ∧ y1 ∧ · · · ∧ ym ∧ z,

etc.)) and de�ne Jψi (if possible) as the element of F ∗ such that for all
α ∈ KMW

∗ (F ), ψ∗i (α⊗ ω) = 〈Jψi〉α⊗ ω.

Before we move on to a projective case, let us mention the following
future work.

Future work 12 (A1-ambient isotopy). It would be interesting to de�ne a
notion of A1-ambient isotopy for which the ambient quadratic linking degree
and the quadratic linking degree couple would be invariants or invariants up
to multiplication (of each component) by some 〈a〉 with a ∈ F ∗ (similarly
to ambient isotopy (see De�nition 1.2) for which the linking number is
an invariant and for which each component of the linking couple is an
invariant up to sign). A naïve version of A1-ambient isotopy could be
constructed from natural transformations h : A1

F → Aut(X) such that
hF (0) = IdX (the identity of X) and for all i ∈ {1, 2}, (hF (1))∗(Zi) = Z ′i
and ξLi ◦ (hF (1))∗(oi) ◦ ζi = o′i (see Lemma-De�nitions 4.17, 4.18 and 4.19)

A projective case

In this subsection, we de�ne the quadratic linking degree couple for oriented
links with two components of type (P1

F ,P1
F ,P3

F ).
Throughout this subsection, F is assumed of characteristic di�erent

from 2.
Recall Section 4.4 and Table 4.3.

De�nition 5.21 (Quadratic linking degree couple). Let L = (Z1, Z2), (o1, o2),
(ϕ1, ϕ2) be an oriented link with two components of type (P1

F ,P1
F ,P3

F ) and
j1, j2 ≤ −2 be integers. The quadratic linking degree couple of L with
respect to (j1, j2), denoted QldL ,j1,j2 (or QldL for short), is the image of
the quadratic linking class of L with respect to (j1, j2) by the composite
of four isomorphisms (in a nutshell, this quadratic linking degree couple is
(%j1+j2+2⊕%j1+j2+2)((ϕ

∗
1⊕ϕ∗2)((õ1⊕ õ2)($(QlcL ,j1,j2))))). The �rst of these

is the isomorphism $ : H1(Z,KMW
j1+j2+2{νZ}) → H1(Z1, K

MW
j1+j2+2{νZ1}) ⊕

H1(Z2, K
MW
j1+j2+2{νZ2}) which is induced by the inclusions of Z1, Z2 in Z :=

Z1 t Z2 (where νZ , νZ1 , νZ2 are the determinants of the normal sheaves of
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Z,Z1, Z2 in P3
F respectively). The second of these isomorphisms is õ1⊕ õ2 :

H1(Z1, K
MW
j1+j2+2)⊕H1(Z2, K

MW
j1+j2+2)→ H1(Z1, K

MW
j1+j2+2)⊕H1(Z2, K

MW
j1+j2+2)

(see Notation 3.25). The third of these isomorphisms is ϕ∗1⊕ϕ∗2 : H1(Z1, K
MW
j1+j2+2)⊕

H1(Z2, K
MW
j1+j2+2)→ H1(P1

F , K
MW
j1+j2+2)⊕H1(P1

F , K
MW
j1+j2+2). The last of these

isomorphisms is the isomorphism %j1+j2+2 ⊕ %j1+j2+2 : H1(P1
F , K

MW
j1+j2+2) ⊕

H1(P1
F , K

MW
j1+j2+2)→W(F )⊕W(F ) (see Notation 3.48).

Future work 13 (Additional projective quadratic linking degree couples).
Since we do not yet have an explicit isomorphism ϑn,j1+j2+n+1 : Hn(PnF , K

MW
j1+j2+n+1)→

KMW
j1+j2+1(F ) when n ≥ 3 is odd (see Future work 3), we cannot de�ne the

quadratic linking degree couple for oriented links of type (PnF ,PnF ,P2n+1
F )

with n ≥ 3 odd. When Future work 3 will be completed, we will be
able to de�ne the quadratic linking degree couple of an oriented link L =
(Z1, Z2), (o1, o2), (ϕ1, ϕ2) of type (PnF ,PnF ,P2n+1

F ) with respect to a couple of
integers j1, j2 ≤ −2 as the image of the quadratic linking class of L with
respect to (j1, j2) by the composite of the �rst three isomorphisms which
were described in De�nition 5.21 and of the composite of the isomorphism
ϑn,j1+j2+n+1 ⊕ ϑn,j1+j2+n+1 and of the isomorphism γj1+j2+1 ⊕ γj1+j2+1 (see
Theorem 2.33). When this future work and Future work 7 will be com-
pleted, it would be interesting to investigate the relationship between the
ambient quadratic linking degree and the quadratic linking degree couple
and especially to answer the following question: must the quadratic linking
degree couple be zero when the ambient quadratic linking degree is zero?
This last research lead is similar to the one in Future work 9.

Remark 5.22. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with
two components of type (P1

F ,P1
F ,P3

F ) and j′1 ≤ j1 ≤ −2 and j′2 ≤ j2 ≤ −2 be
integers. By Remark 4.11, denoting Z := Z1 t Z2, if the following diagram
is commutative (which is veri�ed for instance under the assumptions of
Corollary 3.32):

H1(P3
F \ Z,KMW

j1+2)×H1(P3
F \ Z,KMW

j2+2)
· //

(×ηj1−j
′
1 ,×ηj2−j

′
2 )
��

H2(P3
F \ Z,KMW

j1+j2+4)

×ηj1+j2−(j′1+j
′
2)

��
H1(P3

F \ Z,KMW
j′1+2)×H1(P3

F \ Z,KMW
j′2+2) ·

// H2(P3
F \ Z,KMW

j′1+j
′
2+4)

then the oriented linkL has a well-de�ned quadratic linking class QlcL ,j′1,j
′
2

=

ηj1+j2−(j
′
1+j

′
2) QlcL ,j1,j2 , hence it has a well-de�ned quadratic linking degree

QldL ,j′1,j
′
2
which is equal to QldL ,j1,j2 . Indeed, the isomorphisms $, õ1⊕ õ2

and ϕ∗1⊕ϕ∗2 commute to product by η and the isomorphism %j1+j2+2⊕%j1+j2+2

is the composite of an isomorphism which commutes to product by η and
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5. The quadratic linking degree

of the isomorphism γj1+j2+1 ⊕ γj1+j2+1 : KMW
j1+j2+1(F ) ⊕ KMW

j1+j2+1(F ) →
W(F )⊕W(F ) (recall De�nition 5.21, Notation 3.48 and Theorem 2.33).

Let us now see what happens to the quadratic linking degree couple
when the order of the components of the oriented link is reversed.

Proposition 5.23. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link
with two components of type (P1

F ,P1
F ,P3

F ), j1, j2 ≤ −2 be integers and
(d1, d2) := QldL ,j1,j2 . Let L ′ be the oriented link (Z2, Z1), (o2, o1), (ϕ2, ϕ1)
of type (P1

F ,P1
F ,P3

F ). Then QldL ′,j2,j1 = (−d2,−d1).

Proof. By Proposition 4.15:

QlcL ′,j2,j1 =

{
−εQlcL ,j1,j2 if (j1 is odd or j2 is odd)

−QlcL ,j1,j2 if j1 is even and j2 is even

The result follows from the fact that the isomorphisms$, õ1⊕õ2 and ϕ∗1⊕ϕ∗2
commute to product by ε and that the isomorphism %j1+j2+2 ⊕ %j1+j2+2 is
the composite of an isomorphism which commutes to product by ε and of
the isomorphism γj1+j2+1⊕γj1+j2+1 : KMW

j1+j2+1(F )⊕KMW
j1+j2+1(F )→W(F )⊕

W(F ) (recall De�nition 5.21, Notation 3.48 and Theorem 2.33).

Future work 14 (The two comp. of the projective quad. link. degree
couple). It would be interesting to determine the relationship (if there is
one) between the �rst component of the quadratic linking degree couple and
the second component of the quadratic linking degree couple (it would allow
us for instance to make Proposition 5.23 more precise). The fact that the
quadratic linking class is in the kernel of i∗ (see Proposition 4.12) may be
useful for this (since the corresponding fact in knot theory is useful to show
that the �rst component of the linking couple is the second component of
the linking couple up to a sign, see Remark 1.16 and its higher-dimensional
generalisation Remark 1.33).

Similarly to the linking couple whose �rst component (respectively sec-
ond component) stays the same and whose second component (resp. �rst
component) is turned into its opposite if the orientation of the �rst compo-
nent (resp. second component) of the oriented link is reversed (see Remark
1.36), the quadratic linking degree couple is changed in the following way
by orientation changes. Recall Remark 4.43.

Proposition 5.24. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link
with two components of type (P1

F ,P1
F ,P3

F ) and j1, j2 ≤ −2 be integers. Let
a = (a1, a2) be a couple of elements of F ∗. Let La be the link obtained from
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5.3. Invariants of the quadratic linking degree

L by changing the orientation class o1 into o1 ◦ (×a1) and the orientation
class o2 into o2 ◦ (×a2). Then, denoting (d1, d2) := QldL ,j1,j2 , we have
QldLa,j1,j2 = (〈a2〉d1, 〈a1〉d2).

Proof. By Proposition 4.16, QlcLa,j1,j2 = 〈a1a2〉QlcL ,j1,j2 hence$(QlcLa,j1,j2) =
〈a1a2〉$(QlcL ,j1,j2) (see De�nition 5.15). Thus, denoting (σ1, σ2) := $(QlcL ,j1,j2),
we have $(QlcLa,j1,j2) = (〈a1a2〉σ1, 〈a1a2〉σ2). Let i 6= j ∈ {1, 2}. Note

that ˜oi ◦ (×ai)(〈a1a2〉σi) = 〈ai〉õi(〈a1a2〉σi) = 〈a2i aj〉õi(σi) = 〈aj〉õi(σi)
(see Notation 3.25). Therefore, ϕ∗i ( ˜oi ◦ (×ai)(〈a1a2〉σi)) = ϕ∗i (〈aj〉õi(σi)) =
〈aj〉ϕ∗i (õi(σi)) (since aj ∈ F ∗). Since the i-th component of the quadratic
linking degree couple QldL ,j1,j2 (respectively QldLa,j1,j2) is obtained from
ϕ∗i (õi(σi)) (respectively 〈aj〉ϕ∗i (õi(σi))) by applying the isomorphism %j1+j2+2

(see De�nition 5.21) and since this isomorphism is the composite of an iso-
morphism which commutes to product by 〈aj〉 and of γj1+j2+1 : KMW

j1+j2+1(F )→
W(F ) (see Notation 3.48 and Theorem 2.33), the i-th component of QldLa,j1,j2

is equal to 〈aj〉di.

Let us �nally mention the following future works.

Future work 15 (Changes of parametrisations for PnF ). It should be fea-
sible to get a similar result for the case (P1

F ,P1
F ,P3

F ) (or more generally the
case (PnF ,PnF ,P2n+1

F ) with n ≥ 1 odd, see Future work 13) as the one in
Proposition 5.20. Indeed, the group of automorphisms of PnF is isomorphic
to PGLn(F ) := GLn+1(F )/F ∗ (where GLn+1(F ) is the group of invertible
(n+1)×(n+1) matrices with coe�cients in F ; see [Har77, Example 7.1.1]).
Therefore, the Jacobian determinant Jψ of an automorphism ψ of PnF is well-
de�ned up to multiplication by the (n + 1)-th power of an element of F ∗,
hence 〈Jψ〉 is well-de�ned if n is odd.

Future work 16 (A1-ambient isotopy in a projective setting). It would be
interesting to de�ne a notion of A1-ambient isotopy for the projective case
studied in this subsection (see Future work 12 for more details).

5.3 Invariants of the quadratic linking degree

By construction, the ambient quadratic linking degree (see De�nition 5.7)
and the quadratic linking degree couple (see De�nitions 5.15 and 5.21)
depend on choices of orientation classes (o1, o2) and the quadratic linking
degree couple depends on choices of parametrisations (ϕ1, ϕ2). Recall that
the ambient quadratic linking degree is in the Witt ring W(F ) of the ground
�eld F or in the Grothendieck-Witt ring GW(F ) of the ground �eld F and
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5. The quadratic linking degree

that the quadratic linking degree couple is a couple whose components are
each in the zero group 0 or in W(F ) or in GW(F ) or in the �rst Milnor-Witt
K-theory group KMW

1 (F ) of the ground �eld F .
In the �rst (respectively second) subsection, we construct functions on

the Witt ring W(F ) (resp. the Grothendieck-Witt ring GW(F )) which
are invariant by multiplication by < a > (resp. by 〈a〉) for all a ∈ F ∗.
When applied to the ambient quadratic linking degree or to a component
of the quadratic linking degree couple (in the cases for which it is in W(F )
(resp. in GW(F ))), these functions provide quantities which are invariant
by changes of the orientation classes (o1, o2) (see Propositions 5.11, 5.18 and
5.24; note that even when applied to a component of the quadratic linking
degree couple, these quantities are probably also invariant by changes of
parametrisations (ϕ1, ϕ2) (see Future works 11 and 15)) and which we call
invariants of the quadratic linking degree.

Throughout this section, F is a perfect �eld.

Cases in the Witt ring W(F )

Let us begin with the easiest (nontrivial) invariant.

Proposition 5.25.

1. Let L = (Z1, Z2), (o1, o2) be an oriented link with two components
satisfying the assumptions of De�nition 5.7 and (j1, j2) 6= (0, 0) be
a couple of nonpositive integers. The rank modulo 2 of the ambient
quadratic linking degree of L with respect to (j1, j2) (which is in
W(F )) is invariant under changes of the orientation classes o1, o2.

2. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with two com-
ponents of type (Y1, Y2, X), (j1, j2) be a couple of nonpositive integers
and i ∈ {1, 2} satisfying the assumptions of De�nition 5.15 or of De�-
nition 5.21 and such that the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) is in the Witt ring W(F ) of
F . The rank modulo 2 of the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) is invariant under changes
of the orientation classes o1, o2.

Proof. The results follow directly from Propositions 5.11, 5.18 and 5.24
since the rank modulo 2 of an element of the Witt ring W(F ) is invariant
under the multiplication by < a > for all a ∈ F ∗.
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5.3. Invariants of the quadratic linking degree

In Chapter 7, there are examples of oriented links whose ambient quadratic
linking degree is of rank modulo 2 equal to 0 as well as examples of oriented
links whose ambient quadratic linking degree is of rank modulo 2 equal to 1.

Let us now give an invariant when the ground �eld is the �eld R of real
numbers. Recall that W(R) ' Z (via the signature).

Proposition 5.26. Assume that F = R.

1. Let L = (Z1, Z2), (o1, o2) be an oriented link with two components
satisfying the assumptions of De�nition 5.7 and (j1, j2) 6= (0, 0) be
a couple of nonpositive integers. The absolute value of the ambient
quadratic linking degree of L with respect to (j1, j2) (which is in
W(R) which is isomorphic to Z via the signature) is invariant under
changes of the orientation classes o1, o2.

2. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with two com-
ponents of type (Y1, Y2, X), (j1, j2) be a couple of nonpositive integers
and i ∈ {1, 2} satisfying the assumptions of De�nition 5.15 or of De�-
nition 5.21 and such that the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) is in the Witt ring W(R) of
R. The absolute value of the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) (which is in W(R) ' Z) is
invariant under changes of the orientation classes o1, o2.

Proof. For all a ∈ R∗, < a >=< 1 >= 1 or < a >=< −1 >= −1 since
every real number is a square or the opposite of a square. The results follow
directly from Propositions 5.11, 5.18 and 5.24 since the absolute value of an
element of the Witt ring W(R) ' Z is invariant under the multiplication
by 1 and under the multiplication by −1.

Note that no better invariant of the quadratic linking degree can be
given in the case where the ground �eld is R since the signs of the ambient
quadratic linking degree and of each component of the quadratic linking
degree couple can be changed by changing o1 into o1 ◦ (×(−1)) or o2 into
o2 ◦ (×(−1)) (see Propositions 5.11, 5.18 and 5.24).

In Section 7.3, we give an example for each n ∈ N of a link of am-
bient quadratic linking degree whose absolute value is n (and in Section
7.2 we give (among others) examples of links of ambient quadratic linking
degree 0).

We will now give a family of invariants in the general case. Before
we do this, we need the following lemma-de�nition which is an inductive
de�nition. For each d ∈ W(F ), with k ranging over the nonnegative even
integers, we de�ne an abelian group Qd,k and an element Σk(d) ∈ Qd,k.
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5. The quadratic linking degree

Lemma-De�nition 5.27. Let d ∈W(F ). There exists a unique sequence
of abelian groups Qd,k and of elements Σk(d) ∈ Qd,k, where k ranges over
the nonnegative even integers, such that:

� Qd,0 = W(F ) and Σ0(d) = 1 ∈ Qd,0;

� for each positive even integer k, Qd,k is the quotient groupQd,k−2/(Σk−2(d));

� for each positive even integer k, Σk(d) =
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >∈ Qd,k

as soon as n ∈ N0 and a1, . . . , an ∈ F ∗ verify that
n∑
i=1

< ai >= d.

Proof. Recall the following presentation of the abelian group W(F ) (see
Theorem 2.17): its generators are the < a > for a ∈ F ∗ and its relations
are the following:

1. < ab2 >=< a > for all a, b ∈ F ∗;

2. < a > + < b >=< a+ b > + < (a+ b)ab > for all a, b ∈ F ∗ such that
a+ b 6= 0;

3. < −1 > + < 1 >= 0.

We denote by G the free abelian group of generators the < a > for a ∈ F ∗,
by G1 the quotient of G by the �rst relation above and by G2 the quotient
of G1 by the second relation above.

Let k be a nonnegative even integer such that for all nonnegative even
integers l < k, Qd,l is an abelian group and Σl(d) ∈ Qd,l which verify
the conditions of the statement. Note that the quotient of the abelian
group Qd,k−2 by its subgroup (Σk−2(d)) is well-de�ned, so we can �x Qd,k =
Qd,k−2/(Σk−2(d)). Let n ∈ N0 and a1, . . . , an ∈ F ∗ be such that the class

of
n∑
i=1

< ai >∈ G in W(F ) is d. Note that
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >∈ Qd,k

is well-de�ned (since it is well-de�ned in G and Qd,k is obtained from G by
quotienting several times). In fact,

∑
1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >∈ Qd,k only

depends on the class of
n∑
i=1

< ai > in G1 since for all b ∈ F ∗,
∑

2≤i2<···<ik≤n

<

a1b
2
∏

2≤j≤k

aij > +
∑

2≤i1<···<ik≤n

<
∏

1≤j≤k

aij >=
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >∈
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Qd,k−2 (since this equality is already true in W(F ) and Qd,k is obtained
from W(F ) by quotienting several times) and similarly for other indices.

Furthermore,
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >∈ Qd,k only depends on the class

of
n∑
i=1

< ai > in G2 since if a1 + a2 6= 0 then in Qd,k:∑
3≤i3<···<ik≤n

< (a1 + a2)
2a1a2

∏
3≤j≤k

aij > +
∑

3≤i1<···<ik≤n

<
∏

1≤j≤k

aij >

+
∑

3≤i2<···<ik≤n

< (a1 + a2)
∏

2≤j≤k

aij > +
∑

3≤i2<···<ik≤n

< (a1 + a2)a1a2
∏

2≤j≤k

aij >

=
∑

3≤i3<···<ik≤n

< a1a2
∏

3≤j≤k

aij > +
∑

3≤i1<···<ik≤n

<
∏

1≤j≤k

aij >

+ (< a1 + a2 > + < (a1 + a2)a1a2 >)
∑

3≤i2<···<ik≤n

<
∏

2≤j≤k

aij >

=
∑

3≤i3<···<ik≤n

< a1a2
∏

3≤j≤k

aij > +
∑

3≤i1<···<ik≤n

<
∏

1≤j≤k

aij >

+ (< a1 > + < a2 >)
∑

3≤i2<···<ik≤n

<
∏

2≤j≤k

aij >

=
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >

(since these equalities are already true in W(F )) and similarly for other
indices.

Finally,
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >∈ Qd,k only depends on the class of

n∑
i=1

< ai > in W(F ), i.e. on d, since, with the convention that
∑

1≤i3<···<i2≤n

<∏
3≤j≤2

aij >= 1:

∑
1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >+ (< 1 > + < −1 >)
∑

1≤i2<···<ik≤n

<
∏

2≤j≤k

aij >

+ < −1 >
∑

1≤i3<···<ik≤n

<
∏

3≤j≤k

aij >

is equal to
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij > −Σk−2(d) in Qd,k (since this equality is

already true in W(F )) which is equal to
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij > in Qd,k =
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Qd,k−2/(Σk−2(d)). Thus we can �x Σk(d) =
∑

1≤i1<···<ik≤n

<
∏

1≤j≤k

aij >∈ Qd,k

(since there exist a1, . . . , an ∈ F ∗ such that
n∑
i=1

< ai >= d ∈W(F )).

It follows from Lemma-De�nition 5.27 that we have a map

Σk : W(F )→
⋃

d∈W(F )

Qd,k

which veri�es that for all d ∈ W(F ), Σk(d) ∈ Qd,k. This provides new
invariants of the quadratic linking degree.

Theorem 5.28.

1. Let L = (Z1, Z2), (o1, o2) be an oriented link with two components
satisfying the assumptions of De�nition 5.7, (j1, j2) 6= (0, 0) be a
couple of nonpositive integers and k be a positive even integer. The
image by Σk of the ambient quadratic linking degree of L with respect
to (j1, j2) is invariant under changes of the orientation classes o1, o2.

2. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with two com-
ponents of type (Y1, Y2, X), (j1, j2) be a couple of nonpositive integers
and i ∈ {1, 2} satisfying the assumptions of De�nition 5.15 or of De�-
nition 5.21 and such that the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) is in the Witt ring W(F )
of F . Let k be a positive even integer. The image by Σk of the i-th
component of the quadratic linking degree couple of L with respect
to (j1, j2) is invariant under changes of the orientation classes o1, o2.

Proof. First, let us show that Σk is invariant under the multiplication by
< b > for all b ∈ F ∗. Let

∑
1≤i≤n

< ai >∈ W(F ). For all b ∈ F ∗, Σk(<

b >
∑

1≤i≤n < ai >) =
∑

1≤i1<···<ik≤n < bk
∏

1≤j≤k aij > hence (bk being
a square since k is even) Σk(< b >

∑
1≤i≤n < ai >) =

∑
1≤i1<···<ik≤n <∏

1≤j≤k aij >= Σk(
∑

1≤i≤n < ai >). The results follow directly from this
and from Propositions 5.11, 5.18 and 5.24.

Note that even though these invariants are not interesting for some
�elds, e.g. the �eld R of real numbers (which veri�es that for all d ∈W(R),
Qd,2 = W(R)/(1) = 0 since W(R) ' Z, hence all Qd,k = 0 and all Σk(d) = 0
as soon as k > 0), they are interesting for other �elds, e.g. the �eld Q of
rational numbers. Indeed, in Section 7.2, we show that Σ2 (applied to the
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ambient quadratic linking degree or to a component of the quadratic linking
degree couple (overQ)) distinguishes between in�nitely many oriented links.

Before we move on to the cases in which the quadratic linking degrees
are in GW(F ) instead of being in W(F ), let us make the following remark.

Remark 5.29. Let p : GW(F )→W(F ) be the canonical morphism (which
sends 〈a〉 to < a > for all a ∈ F ∗) and k be a positive even integer.

1. The composite of p and of the rank modulo 2 is invariant under the
multiplication by 〈a〉 for all a ∈ F ∗.

2. In the case F = R, the composite of p (of the signature) and of
the absolute value is invariant under the multiplication by 〈a〉 for all
a ∈ F ∗.

3. The composite of p and of Σk is invariant under the multiplication by
〈a〉 for all a ∈ F ∗.

It follows from Propositions 5.11, 5.18 and 5.24 that these functions (applied
to the ambient quadratic linking degree or to a component of the quadratic
linking degree couple) provide invariants of the quadratic linking degree
when it is in GW(F ). However, we will provide better invariants than each
of these in the following subsection.

Cases in the Grothendieck-Witt ring GW(F )

Let us begin with the invariant which is a better version of the invariant
which stems from the invariant of Proposition 5.25 (see Remark 5.29).

Proposition 5.30.

1. Let L = (Z1, Z2), (o1, o2) be an oriented link with two components
satisfying the assumptions of De�nition 5.7. The rank of the ambi-
ent quadratic linking degree of L with respect to (0, 0) (which is in
GW(F )) is invariant under changes of the orientation classes o1, o2.

2. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with two com-
ponents of type (Y1, Y2, X), (j1, j2) be a couple of nonpositive integers
and i ∈ {1, 2} satisfying the assumptions of De�nition 5.15 or of De�-
nition 5.21 and such that the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) is in the Grothendieck-Witt
ring GW(F ) of F . The rank of the i-th component of the quadratic
linking degree couple of L with respect to (j1, j2) is invariant under
changes of the orientation classes o1, o2.
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Proof. These results follow directly from Propositions 5.11, 5.18 and 5.24
since the rank of an element of the Grothendieck-Witt ring GW(F ) is in-
variant under the multiplication by 〈a〉 for all a ∈ F ∗.

Let us now give the invariant which is a better version of the invariant
which stems from the invariant of Proposition 5.26 (when the ground �eld is
the �eld R of real numbers; see Remark 5.29). Recall that GW(R) ' Z⊕Z
(via the signature couple).

Proposition 5.31. Assume that F = R.

1. Let L = (Z1, Z2), (o1, o2) be an oriented link with two components
satisfying the assumptions of De�nition 5.7. The unordered pair (i.e.
set of two elements) which underlies the ambient quadratic linking
degree of L with respect to (0, 0) (which is in GW(R) which is iso-
morphic to Z⊕Z via the signature couple) is invariant under changes
of the orientation classes o1, o2.

2. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with two com-
ponents of type (Y1, Y2, X), (j1, j2) be a couple of nonpositive integers
and i ∈ {1, 2} satisfying the assumptions of De�nition 5.15 or of De�-
nition 5.21 and such that the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) is in the Grothendieck-
Witt ring GW(R) of R. The unordered pair (i.e. set of two elements)
which underlies the i-th component of the quadratic linking degree
couple of L with respect to (j1, j2) (which is in GW(R) ' Z⊕ Z) is
invariant under changes of the orientation classes o1, o2.

Proof. For all a ∈ R∗, 〈a〉 = 〈1〉 = 1 or 〈a〉 = 〈−1〉 since every real number
is a square or the opposite of a square. The results follow directly from
Propositions 5.11, 5.18 and 5.24 since in GW(R) ' Z ⊕ Z, multiplication
by 1 is the identity and multiplication by 〈−1〉 is the function which maps
(a, b) to (b, a) for all a, b ∈ Z (and the sets {a, b} and {b, a} are equal).

Note that no better invariant of the quadratic linking degree can be
given in the case where the ground �eld is R since the components of the
ambient quadratic linking degree and of each component of the quadratic
linking degree couple can be switched by changing o1 into o1 ◦ (×(−1)) or
o2 into o2 ◦ (×(−1)) (see Propositions 5.11, 5.18 and 5.24).

We will now give a family of invariants in the general case (which is a
better version of the family of invariants which stems from the family of
invariants of Theorem 5.28; see Remark 5.29). Before we do this, we need
the following lemma-de�nition.
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Lemma-De�nition 5.32. Let k be a positive even integer. The map Σk :

GW(F )→ GW(F ) which maps d to Σk(d) =
∑

1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉,

as soon as n ∈ N0, ε1, . . . , εn ∈ {−1, 1} and a1, . . . , an ∈ F ∗ verify that
n∑
i=1

εi〈ai〉 = d, is well-de�ned.

Proof. Recall the following presentation of the abelian group GW(F ) (see
Theorem 2.13): its generators are the 〈a〉 for a ∈ F ∗ and its relations are
the following:

1. 〈ab2〉 = 〈a〉 for all a, b ∈ F ∗;

2. 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈(a+ b)ab〉 for all a, b ∈ F ∗ such that a+ b 6= 0.

We denote by G the free abelian group of generators the 〈a〉 for a ∈ F ∗

and by G1 the quotient of G by the �rst relation above. Let d ∈ GW(F )
and n ∈ N0, ε1, . . . , εn ∈ {−1, 1} and a1, . . . , an ∈ F ∗ be such that the

class of
n∑
i=1

εi〈ai〉 ∈ G in GW(F ) is d. Let k be a positive even integer.

Note that
∑

1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉 ∈ GW(F ) is well-de�ned (since it

is well-de�ned in G and GW(F ) is obtained from G by quotienting). In
fact,

∑
1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉 ∈ GW(F ) only depends on the class of

n∑
i=1

εi〈ai〉 in G1 since for all b ∈ F ∗,
∑

2≤i2<···<ik≤n

ε1(
∏

2≤l≤k

εil)〈a1b2
∏

2≤j≤k

aij〉+∑
2≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉 =
∑

1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉 ∈ GW(F )

and similarly for other indices.

Finally,
∑

1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉 ∈ GW(F ) only depends on the

class of
n∑
i=1

εi〈ai〉 in GW(F ), i.e. on d, since if a1 + a2 6= 0 and ε1 = ε2 =: ε
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then in GW(F ):∑
3≤i3<···<ik≤n

(
∏

3≤l≤k

εil)〈(a1 + a2)
2a1a2

∏
3≤j≤k

aij〉+
∑

3≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉

+
∑

3≤i2<···<ik≤n

ε(
∏

2≤l≤k

εil)(〈(a1 + a2)
∏

2≤j≤k

aij〉+ 〈(a1 + a2)a1a2
∏

2≤j≤k

aij〉)

=
∑

3≤i3<···<ik≤n

(
∏

3≤l≤k

εil)〈a1a2
∏

3≤j≤k

aij〉+
∑

3≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉

+ (〈a1 + a2〉+ 〈(a1 + a2)a1a2〉)
∑

3≤i2<···<ik≤n

ε(
∏

2≤l≤k

εil)〈
∏

2≤j≤k

aij〉

=
∑

3≤i3<···<ik≤n

(
∏

3≤l≤k

εil)〈a1a2
∏

3≤j≤k

aij〉+
∑

3≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉

+ (〈a1〉+ 〈a2〉)
∑

3≤i2<···<ik≤n

ε(
∏

2≤l≤k

εil)〈
∏

2≤j≤k

aij〉

=
∑

1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉

and similarly for other indices.

This provides new invariants of the quadratic linking degree.

Theorem 5.33.

1. Let L = (Z1, Z2), (o1, o2) be an oriented link with two components
satisfying the assumptions of De�nition 5.7 and k be a positive even
integer. The image by Σk of the ambient quadratic linking degree of
L with respect to (0, 0) is invariant under changes of the orientation
classes o1, o2.

2. Let L = (Z1, Z2), (o1, o2), (ϕ1, ϕ2) be an oriented link with two com-
ponents of type (Y1, Y2, X), (j1, j2) be a couple of nonpositive integers
and i ∈ {1, 2} satisfying the assumptions of De�nition 5.15 or of De�-
nition 5.21 and such that the i-th component of the quadratic linking
degree couple of L with respect to (j1, j2) is in the Grothendieck-Witt
ring GW(F ) of F . Let k be a positive even integer. The image by
Σk of the i-th component of the quadratic linking degree couple of L
with respect to (j1, j2) is invariant under changes of the orientation
classes o1, o2.
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5.3. Invariants of the quadratic linking degree

Proof. First, let us show that Σk is invariant under the multiplication by
〈b〉 for all b ∈ F ∗. Let

∑
1≤i≤n

εi〈ai〉 ∈ GW(F ). For all b ∈ F ∗:

Σk(〈b〉
∑

1≤i≤n

εi〈ai〉) =
∑

1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈bk
∏

1≤j≤k

aij〉

=
∑

1≤i1<···<ik≤n

(
∏

1≤l≤k

εil)〈
∏

1≤j≤k

aij〉

= Σk(
∑

1≤i≤n

εi〈ai〉)

since bk is a square as k is even. The results follow directly from this and
from Propositions 5.11, 5.18 and 5.24.

Remark 5.34. Let p : KMW
1 (F ) → GW(F ) be the composite of the mor-

phism KMW
1 (F ) → KMW

0 (F ) which is the multiplication by η and of the
ring isomorphism γ0 : KMW

0 (F )→ GW(F ) (see Theorem 2.33). Let k be a
positive even integer.

1. The composite of p and of the rank is invariant under the multiplica-
tion by 〈a〉 for all a ∈ F ∗.

2. In the case F = R, the composite of p (of the signature couple) and
of the map (a, b) 7→ {a, b} is invariant under the multiplication by 〈a〉
for all a ∈ F ∗.

3. The composite of p and of Σk is invariant under the multiplication by
〈a〉 for all a ∈ F ∗.

It follows from Propositions 5.18 and 5.24 that these functions (applied to
a component of the quadratic linking degree couple) provide invariants of
the quadratic linking degree when it is in KMW

1 (F ) (however the �rst one is
the trivial invariant since for all a ∈ F ∗, γ0(η[a]) = 〈a〉 − 〈1〉 is of rank 0).

Future work 17 (Invariants of the quad. link. degree in the caseKMW
1 (F )).

It would be interesting to devise better invariants of the quadratic linking
degree for the cases in KMW

1 (F ). Note that [Mor12, De�nition 3.3 and
Lemma 3.4] give a presentation of the abelian group KMW

n (F ) for n ≥ 1 (in
particular ofKMW

1 (F )) which may be useful for this. Also note that [Mor03,
Theorem 6.4.5] gives, when the characteristic of F is di�erent from 2, an
isomorphism of graded rings between KMW

∗ (F ) and another graded ring
which is constructed from Milnor K-theory (see De�nition 3.1) and Witt
K-theory. (Note that Witt K-theory KW

∗ (F ) veri�es that for all m ≤ 0,
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5. The quadratic linking degree

KW
m (F ) = W(F ) and for all n ≥ 1, KW

n (F ) = I(F )n, where I(F ) is the
kernel of the ring morphism W(F )→ Z/2Z induced by the rank.) This iso-
morphism gives for instance the following isomorphism between the abelian
groupKMW

1 (R) and the �bre product of abelian groups R∗×R∗/(R∗)2'2Z/4Z2Z
(which is the set of couples (x, n) ∈ R∗×2Z such that either x > 0 and n is
a multiple of 4 or x < 0 and n is not a multiple of 4 (hence is congruent to 2
modulo 4 since it is even) with the addition (x, n) + (y,m) = (xy, n+m)):∑

i∈I

εi[ai] 7→
∑
i∈I

εi(ai,−2χneg(ai))

where I is a �nite set, εi ∈ {−1, 1}, ai ∈ R∗ and χneg is the characteristic
function of the negative numbers (i.e. χneg maps negative numbers to 1 and
other numbers to 0; note that−2χneg(ai) is necessarily even and is a multiple
of 4 precisely when ai > 0). Note that −(ai,−2χneg(ai)) = (a−1i , 2χneg(ai)).
The inverse isomorphism (from R∗ ×R∗/(R∗)2'2Z/4Z 2Z to KMW

1 (R)) is the
following (where x ∈ R∗ (and |x| is its absolute value) and k ∈ Z (even if
x > 0, odd otherwise)):

(x, 2k) 7→

{
[x] if k = 0

−k[−|x|− 1
k ] otherwise

144



Chapter 6

Computing methods

In this chapter, we give methods to compute the quadratic linking class
(see De�nition 4.9), the ambient quadratic linking degree (see De�nition
5.7) and the quadratic linking degree couple (see De�nition 5.15) in the case
A2
F \{0}tA2

F \{0} → A4
F \{0} with j1 ≤ −1 and j2 ≤ −1, under reasonable

assumptions on the oriented link (which are veri�ed in the examples of
Chapter 7). Similar methods can be worked out for the following cases:

� the quadratic linking class, the ambient quadratic linking degree and
the quadratic linking degree couple for oriented links with two com-
ponents of type (A2

F \ {0}, Q2,A4
F \ {0}), (Q2,A2

F \ {0},A4
F \ {0})), or

(Q2, Q2,A4
F \ {0}) with j1 ≤ −1 and j2 ≤ −1 (recall De�nitions 4.1

and 5.13);

� the quadratic linking class and the ambient quadratic linking degree
for oriented links with two components of dimension 2 in A4

F \ {0},
with j1 ≤ −1 and j2 ≤ −1 (recall De�nition 5.7);

� the quadratic linking class and the quadratic linking degree couple for
oriented links with two components of type (A3

F \ {0}, Q3,A5
F \ {0}),

(Q3,A3
F \{0},A5

F \{0}), (Q3, Q3,A5
F \{0}) with j1 ≤ −1 and j2 ≤ −1;

� the quadratic linking class and the quadratic linking degree couple for
oriented links with two components of type (P1

F ,P1
F ,P3

F ) with j1 ≤ −2
and j2 ≤ −2 (recall De�nition 5.21 and Remark 4.28));

� the quadratic linking class and the quadratic linking degree couple
(when they are well-de�ned, which should be the case under reason-
able assumptions on the oriented link) for oriented links with two
components of type (Q2, Q2, Q4) or (Q3, Q3, Q5) with j1 ≤ −1 and
j2 ≤ −1.
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6. Computing methods

The codimension 2 assumption and the assumption that j1 ≤ −1 and
j2 ≤ −1 which are in all these cases come from the fact that the method
uses the formula to compute the intersection product which is in Corollary
3.32 on the couple of Seifert classes of the oriented link (see De�nition 4.6).
Note that in the case (P1

F ,P1
F ,P3

F ), it is assumed that j1 ≤ −2 and j2 ≤ −2
in order to have a well-de�ned quadratic linking class in a nonzero group.
Note that under these assumptions, all of the ambient quadratic linking
degrees and the quadratic linking degree couples take values in the Witt
group W(F ) of the perfect �eld F or in W(F )⊕W(F ).

By Remarks 4.4 (recall De�nition 4.3), 4.8, 4.11, 5.3 (recall De�nition
5.1), 5.8, 5.16 and 5.22, in the cases above it su�ces to give computing
methods for j1 = −1 and j2 = −1 (except for the case (P1

F ,P1
F ,P3

F ), for
which it su�ces to give computing methods for j1 = −2 and j2 = −2).

As soon as Future work 1 is (at least partially) completed, more cases
become e�ectively computable (in particular, cases with ambient quadratic
linking degree in GW(F ) or with a component of the quadratic linking
degree couple in GW(F ) or in KMW

1 (F )).
Section 6.1 gives the assumptions and notations under which we can

e�ectively compute the quadratic linking class and the ambient quadratic
linking class of an oriented link (Z1 ⊂ A4

F \{0}, Z2 ⊂ A4
F \{0}), (o1, o2) such

that Z1 ' A2
F \ {0} and Z2 ' A2

F \ {0}. In Section 6.2, we compute the
quadratic linking class with respect to (−1,−1) and the ambient quadratic
linking class with respect to (−1,−1) of an oriented link which veri�es
the assumptions of Section 6.1. In Section 6.3, we compute the ambient
quadratic linking degree with respect to (−1,−1) of an oriented link which
veri�es the assumptions of Section 6.1. Finally, in Section 6.4, under the
additional assumption that a choice of parametrisations (i.e. isomorphisms)
ϕ1 : A2

F \{0} → Z1 and ϕ2 : A2
F \{0} → Z2 has been made, we compute the

quadratic linking degree couple with respect to (−1,−1) of an oriented link
which veri�es the assumptions of Section 6.1. Note that we also included
these computing methods in our preprint [Lem23].

6.1 Assumptions and notations

In this section, we give the assumptions under which we will compute the
quadratic linking class and the ambient quadratic linking class (in Section
6.2), the ambient quadratic linking degree (in Section 6.3) and the quadratic
linking degree couple (in Section 6.4), as well as useful notations.
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6.1. Assumptions and notations

We assume that:

� F is a perfect �eld and X = A4
F \ {0}, where A4

F = Spec(F [x, y, z, t])
(so that coordinates are �xed once and for all);

� Z1 and Z2 are disjoint closed F -subschemes of X and are isomorphic
to A2

F \ {0}, where A2
F = Spec(F [u, v]); we denote Z := Z1 t Z2;

� for each i ∈ {1, 2}, the closure Zi of Zi in A4
F is given by two equations

fi(x, y, z, t) = 0, gi(x, y, z, t) = 0

where fi and gi are irreducible polynomials in F [x, y, z, t];

� L is the oriented link (Z1, Z2), (o1 := of1,g1 , o2 := of2,g2) (see below
for the de�nition of the oriented classes of1,g1 and of2,g2);

� the subscheme of X \ Z given by the equations g1 = 0, g2 = 0 is of
codimension 2 in X \ Z;

� for each generic point p of an irreducible component of the subscheme
of X \ Z given by the equations g1 = 0, g2 = 0, the images of f1
and of f2 in the residue �eld κ(p) (by the composite of the canoni-
cal morphism F [x, y, z, t] = OA4

F
(A4

F ) → OA4
F ,p

and of the canonical
morphism OA4

F ,p
→ κ(p)) are units.

These last two assumptions are here to ensure that we can use the
formula for the intersection product in Corollary 3.32 on the couple of Seifert
classes of the oriented link (Z1, Z2), (of1,g1 , of2,g2).

Let i ∈ {1, 2}. Note that the conormal sheaf CZi/X := IZi/I
2
Zi

of Zi in
X (where IZi is the ideal sheaf of Zi in X) �ts in the following short exact
sequence (see [Ful98, Paragraph B.7.4] for a di�erent formulation):

0 // (CV (gi)/A4
F

)|Zi
// CZi/X = (CZi/A4

F
)|Zi

// (CV (fi)/A4
F

)|Zi
// 0

so that the determinant of the dual of the conormal sheaf of Zi in X,
which we denote νZi , is canonically isomorphic to det(((CV (fi)/A4

F
)|Zi)

∨) ⊗
det(((CV (gi)/A4

F
)|Zi)

∨). We de�ne ofi,gi as the isomorphism νZi → OZi ⊗OZi
which maps fi

∗ ∧ gi∗ to 1⊗ 1 and ofi,gi as the orientation class of ofi,gi (see
De�nition 3.22).

Note that if we want to compute the quadratic linking class of L =
(Z1, Z2), (o1, o2) for some orientation classes o1, o2 rather than L = (Z1, Z2),
(of1,g1 , of2,g2), we simply need to �nd ai ∈ F ∗ such that oi = ofi,gi ◦ (×ai)
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(such an ai exists by Remark 4.36) and use Proposition 4.16 (see also Propo-
sitions 5.6, 5.11 and 5.18). Also note that by de�nition ofi,gi ◦ (×ai) =
oa−1

i fi,gi
, so that oi = oa−1

i fi,gi
, and that if (pi, qi) is another couple of irre-

ducible polynomials such that Zi is given by the equations pi = 0, qi = 0
then opi,qi = ofi,gi ◦ (×(Ji)−1) with Ji the determinant of the 2×2 matrix Ai

such that Ai

(
fi
gi

)
=

(
pi
qi

)
(note that the coe�cients of Ai are in F [x, y, z, t]

but Ji ∈ (F [x, y, z, t])∗ = F ∗ since Ai is invertible).
Now that we have presented our assumptions, let us turn to notations.

We recall the following notations:

� we denote by χodd : Z → {0, 1} the characteristic function of the set
of odd numbers (i.e. χodd(n) = 1 if n is odd, χodd(n) = 0 if n is even);

� we denote ε := −〈−1〉 ∈ KMW
0 (F );

� for all n ∈ N0, we denote nε :=
∑n

i=1〈(−1)i−1〉 ∈ KMW
0 (F ) and we

denote (−n)ε := ε nε ∈ KMW
0 (F ).

Let us now introduce notations which will be useful to explicitly compute
the quadratic linking class, the ambient quadratic linking class, the ambient
quadratic linking degree and the quadratic linking degree couple. Note that
these will not depend on the choices of uniformizing parameters made below
(see De�nitions 4.9, 5.1, 5.7 and 5.15).

� We denote by I the set of generic points of irreducible components
of the subscheme of X \ Z given by the equations g1 = 0, g2 = 0.

� For every p ∈ I, we denote by πp a uniformizing parameter of the
discrete valuation ring OX\Z,p/(g1), by up a unit in OX\Z,p/(g1) and
by mp ∈ Z an integer such that g2 = upπ

mp
p ∈ OX\Z,p/(g1).

� For every p ∈ I and q ∈ {p}
(1)
∩Z, we denote by πp,q a uniformizing

parameter of the discrete valuation ring O{p},q, by up,q a unit in
O{p},q and by mp,q ∈ Z an integer such that f1f2up = up,qπ

mp,q
p,q ∈

O{p},q.

6.2 The quadratic linking class

In this section, we compute the quadratic linking class with respect to
(−1,−1) and the ambient quadratic linking class with respect to (−1,−1)
of an oriented link which veri�es the assumptions of Section 6.1.

148



6.2. The quadratic linking class

Theorem 6.1. Under the assumptions and with the notations of Section
6.1, the cycle∑

p∈I

∑
q∈{p}(1)∩Z

〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗)

where 〈up,q〉η χodd(mpmp,q) ⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗) ∈ KMW

−1 (κ(q), νq ⊗ (νZ)|q)
(with νq = det(Nq/Z) (see Notation 3.7) and νZ = det(NZ/X)), represents
the quadratic linking class of L with respect to (−1,−1) (which is in
H1(Z,KMW

0 {νZ}), see De�nition 4.9).

Proof. From De�nition 4.3, the oriented fundamental class [oi] is the class
in H0(Zi, K

MW
−1 {νZi}) of η ⊗ (fi

∗ ∧ gi∗) (over the generic point of Zi). It
follows from De�nition 4.6 and Theorem 2.46 that the Seifert class Si of
Zi is the class in H1(X \ Z,KMW

1 ) of 〈fi〉 ⊗ gi∗ (over the generic point pi
of the hypersurface of X \ Z of equation gi = 0). In the expression above,
〈fi〉 ∈ KMW

0 (κ(pi)) and gi∗ ∈ Z[det(N{pi}/X\Z) \ {0}]; with a slight abuse of
notation, we denoted by fi the image in the fraction �eld of F [x, y, z, t]/(gi)
of fi ∈ F [x, y, z, t]. We will make similar slight abuses of notation below.

By Corollary 3.32, the intersection product of the Seifert class S1 of Z1

with the Seifert class S2 of Z2 is the class in H2(X \ Z,KMW
2 ) of the cycle:∑

p∈I

(mp)ε〈f1f2up〉 ⊗ (πp
∗ ⊗ g1∗)

The quadratic linking class is the image of this intersection product by
the boundary map ∂ : H2(X \Z,KMW

2 )→ H1(Z,KMW
0 {νZ}) thus the cycle∑

p∈I

∑
q∈{p}(1)∩Z

(mp)ε∂
πp,q
vq (〈f1f2up〉)⊗ (πp,q

∗ ⊗ πp∗ ⊗ g1∗)

represents the quadratic linking class (note that we used Proposition 2.37
to extract (mp)ε from the morphism ∂

πp,q
vq ). By Theorem 2.46 and Lemma

2.45, the cycle∑
p∈I

∑
q∈{p}(1)∩Z

〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗)

represents the quadratic linking class of L .

The following corollary is a direct consequence of Theorem 6.1.
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Corollary 6.2. Under the assumptions and with the notations of Section
6.1, the cycle∑

p∈I

∑
q∈{p}(1)∩Z1

〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗ ⊗ πp∗ ⊗ g1∗)

where 〈up,q〉η χodd(mpmp,q)⊗ (πp,q
∗⊗πp∗⊗g1∗) ∈ KMW

−1 (κ(q), νq) (with νq =
det(Nq/X) (see Notation 3.7)), represents the ambient quadratic linking
class of L with respect to (−1,−1) (which is inH3(X,KMW

2 ), see De�nition
5.1).

Let us now compute the ambient quadratic linking degree from the am-
bient quadratic linking class.

6.3 The ambient quadratic linking degree

In this section, we compute the ambient quadratic linking degree with re-
spect to (−1,−1) of an oriented link which veri�es the assumptions of Sec-
tion 6.1.

Recall the notations in Section 6.1. We introduce the following addi-
tional notations:

� for every p ∈ I and q ∈ {p}
(1)
∩ Z1, we denote by v′p,q,0 the discrete

valuation of O{q},0, by π′p,q,0 a uniformizing parameter for v′p,q,0,
by u′p,q,0 a unit in O{q},0 and by m′p,q,0 ∈ Z an integer such that
up,q = u′p,q,0(π

′
p,q,0)

m′p,q,0 ;

� for every p ∈ I and q ∈ {p}
(1)
∩Z1, we denote by λ′p,q,0 an element of

KMW
0 (F ) such that η2⊗(π′p,q,0

∗⊗πp,q∗⊗πp∗⊗g1∗) = λ′p,q,0 η
2⊗(x∗∧y∗∧

z∗∧ t∗). Note that such a λ′p,q,0 exists since π′p,q,0
∗⊗πp,q∗⊗πp∗⊗ g1∗ ∈

Z[(det(N{0}/A4
F

)|0) \ {0}].

Theorem 6.3. Under the assumptions and with the notations of Section
6.1 (and the notations above), the ambient quadratic linking degree of L
with respect to (−1,−1) is the following element of the Witt ring W(F ):∑

p∈I

∑
q∈{p}(1)∩Z1

λ′p,q,0 < u′p,q,0 > χodd(mpmp,qm
′
p,q,0)

(with the following abuse of notation: if λ′p,q,0 =
∑m

i=1〈ui〉 ∈ KMW
0 (F ) then

the λ′p,q,0 in the expression above is in fact
∑m

i=1 < ui >∈ W(F ); in other
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6.4. The quadratic linking degree couple

words, the λ′p,q,0 in the expression above should be replaced with the image
of λ′p,q,0η

2 by the isomorphism γ−2 : KMW
−2 (F )→W(F ) (see Theorem 2.33)).

Proof. By De�nition 5.7 and Notation 3.36, the �rst step consists in apply-
ing the boundary map ∂ : H3(A4

F\{0}, KMW
2 )→ H0({0}, KMW

−2 {det(N{0}/A4
F

)})
to the ambient quadratic linking class. By Corollary 6.2, the cycle∑

p∈I

∑
q∈{p}(1)∩Z1

∂
π′p,q,0
v′p,q,0

(〈up,q〉η χodd(mpmp,q))⊗ (π′p,q,0
∗ ⊗ πp,q∗ ⊗ πp∗ ⊗ g1∗)

represents the image of the ambient quadratic linking class by the boundary
map. By Theorem 2.46, the cycle∑

p∈I

∑
q∈{p}(1)∩Z1

〈u′p,q,0〉η2 χodd(mpmp,qm
′
p,q,0)⊗ (π′p,q,0

∗ ⊗ πp,q∗ ⊗ πp∗ ⊗ g1∗)

represents the image of the ambient quadratic linking class by the boundary
map. It follows that the cycle∑

p∈I

∑
q∈{p}(1)∩Z1

λ′p,q,0〈u′p,q,0〉η2 χodd(mpmp,qm
′
p,q,0)⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗)

represents the image of the ambient quadratic linking class by the boundary
map. Therefore, by De�nition 5.7 and Notation 3.36, the ambient quadratic
linking degree of L is the following element of W(F ):∑

p∈I

∑
q∈{p}(1)∩Z1

γ−2(λ
′
p,q,0η

2) < u′p,q,0 > χodd(mpmp,qm
′
p,q,0)

6.4 The quadratic linking degree couple

In this section, we compute the quadratic linking degree couple with respect
to (−1,−1) of an oriented link which veri�es the assumptions of Section 6.1,
together with a closed immersion ϕ1 : A2

F \ {0} → A4
F \ {0} whose image

is Z1 and a closed immersion ϕ2 : A2
F \ {0} → A4

F \ {0} whose image is
Z2. In other words, (Z1, Z2), (o1, o2), (ϕ1, ϕ2) is an oriented link of type
(A2

F \ {0},A2
F \ {0},A4

F \ {0}) (see De�nition 5.13).
Recall the notations in Section 6.1. We introduce the following addi-

tional notations:

151
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� for every i ∈ {1, 2}, p ∈ I and q ∈ {p}
(1)
∩ Zi, we denote by τp,q an

element of νq = det(Nq/Zi) (see Notation 3.7) such that πp,q∗⊗πp∗⊗
g1
∗ = τp,q ⊗ (fi

∗ ∧ gi∗). Note that such a τp,q exists since πp,q∗⊗ πp∗⊗
g1
∗ ∈ Z[(νq ⊗κ(q) (νZi)|q) \ {0}];

� for every i ∈ {1, 2}, p ∈ I and q ∈ {p}
(1)
∩ Zi, we denote by vp,q,0

the discrete valuation of O{ϕ−1
i (q)},0, by πp,q,0 a uniformizing pa-

rameter for vp,q,0, by up,q,0 a unit in O{ϕ−1
i (q)},0 and by mp,q,0 ∈ Z an

integer such that ϕ∗i (up,q) = up,q,0π
mp,q,0
p,q,0 ;

� for every i ∈ {1, 2}, p ∈ I and q ∈ {p}
(1)
∩ Zi, we denote by λp,q,0 an

element of KMW
0 (F ) such that η2 ⊗ (πp,q,0

∗ ⊗ ϕ∗i (τp,q)) = λp,q,0 η
2 ⊗

(u∗ ∧ v∗). Note that such a λp,q,0 exists since πp,q,0∗ ⊗ ϕ∗i (τp,q) ∈
Z[(det(N{0}/A2

F
)|0) \ {0}].

Theorem 6.4. Under the assumptions and with the notations of Sec-
tion 6.1 (and the notations above), the quadratic linking degree couple
of (Z1, Z2), (o1, o2), (ϕ1, ϕ2) with respect to (−1,−1) is the following couple
of elements of the Witt ring W(F ) (i.e. element of W(F )⊕W(F )):∑

p∈I

∑
q∈{p}(1)∩Z1

λp,q,0 < up,q,0 > χodd(mpmp,qmp,q,0)

⊕
∑
p∈I

∑
q∈{p}(1)∩Z2

λp,q,0 < up,q,0 > χodd(mpmp,qmp,q,0)

(with the following abuse of notation: if λp,q,0 =
∑m

i=1〈ui〉 ∈ KMW
0 (F ) then

the λp,q,0 in the expression above is in fact
∑m

i=1 < ui >∈ W(F ); in other
words, the λp,q,0 in the expression above should be replaced with the image
of λp,q,0η2 by the isomorphism γ−2 : KMW

−2 (F )→W(F ) (see Theorem 2.33)).

Proof. Recall from De�nition 5.15 that the �rst step in computing the
quadratic linking degree from the quadratic linking class consists in ap-
plying (õ1 ⊕ õ2) ◦$. It follows from Theorem 6.1 and from the de�nitions
of o1 = of1,g1 and o2 = of2,g2 that the couple of cycles∑

p∈I

∑
q∈{p}(1)∩Z1

〈up,q〉η χodd(mpmp,q)⊗ τp,q

⊕
∑
p∈I

∑
q∈{p}(1)∩Z2

〈up,q〉η χodd(mpmp,q)⊗ τp,q
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6.4. The quadratic linking degree couple

where 〈up,q〉η χodd(mpmp,q)⊗τp,q ∈ KMW
−1 (κ(q), νq), represents (õ1⊕õ2)($(QlcL )).

It follows that the couple of cycles∑
p∈I

∑
q∈{p}(1)∩Z1

〈ϕ∗1(up,q)〉η χodd(mpmp,q)⊗ ϕ∗1(τp,q)

⊕
∑
p∈I

∑
q∈{p}(1)∩Z2

〈ϕ∗2(up,q)〉η χodd(mpmp,q)⊗ ϕ∗2(τp,q)

where for all i ∈ {1, 2}, 〈ϕ∗i (up,q)〉η χodd(mpmp,q)⊗ϕ∗i (τp,q) ∈ KMW
−1 (κ(ϕ−1i (q)), νϕ−1

i (q)),
represents (ϕ∗1⊕ϕ∗2)(õ1⊕õ2)($(QlcL )). This is the second step in computing
the quadratic linking degree (see De�nition 5.15).

Recall from De�nition 5.15 and Notation 3.36 that the third step in
computing the quadratic linking degree consists in applying the boundary
map

∂ : H1(A2
F \ {0}, KMW

0 )→ H0({0}, KMW
−2 {det(N{0}/A2

F
)})

to each element of the couple above, which gives:∑
p∈I

∑
q∈{p}(1)∩Z1

∂πp,q,0vp,q,0
(〈ϕ∗1(up,q)〉)η χodd(mpmp,q)⊗ (πp,q,0

∗ ⊗ ϕ∗1(τp,q))

⊕
∑
p∈I

∑
q∈{p}(1)∩Z2

∂πp,q,0vp,q,0
(〈ϕ∗2(up,q)〉)η χodd(mpmp,q)⊗ (πp,q,0

∗ ⊗ ϕ∗2(τp,q))

where for all i ∈ {1, 2}, ∂πp,q,0vp,q,0 (〈ϕ∗i (up,q)〉)η χodd(mpmp,q)⊗(πp,q,0
∗⊗ϕ∗i (τp,q)) ∈

KMW
−2 (κ(0), det(N{0}/A2

F
)).

By Theorem 2.46, for every i ∈ {1, 2} we have ∂πp,q,0vp,q,0 (〈ϕ∗i (up,q)〉) =
〈up,q,0〉η χodd(mp,q,0) thus the third step gives:∑

p∈I

∑
q∈{p}(1)∩Z1

〈up,q,0〉 η2 χodd(mpmp,qmp,q,0)⊗ (πp,q,0
∗ ⊗ ϕ∗1(τp,q))

⊕
∑
p∈I

∑
q∈{p}(1)∩Z2

〈up,q,0〉 η2 χodd(mpmp,qmp,q,0)⊗ (πp,q,0
∗ ⊗ ϕ∗2(τp,q))

It follows that the third step gives:∑
p∈I

∑
q∈{p}(1)∩Z1

λp,q,0〈up,q,0〉 η2 χodd(mpmp,qmp,q,0)⊗ (u∗ ∧ v∗)

⊕
∑
p∈I

∑
q∈{p}(1)∩Z2

λp,q,0〈up,q,0〉 η2 χodd(mpmp,qmp,q,0)⊗ (u∗ ∧ v∗)
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6. Computing methods

Therefore, by De�nition 5.15 and Notation 3.36, the quadratic linking
degree couple of (Z1, Z2), (o1, o2), (ϕ1, ϕ2) with respect to (−1,−1) is the
following couple of elements of the Witt ring W(F ):∑

p∈I

∑
q∈{p}(1)∩Z1

γ−2(λp,q,0η
2) < up,q,0 > χodd(mpmp,qmp,q,0)

⊕
∑
p∈I

∑
q∈{p}(1)∩Z2

γ−2(λp,q,0η
2) < up,q,0 > χodd(mpmp,qmp,q,0)

Future work 18 (Additional computing methods). In addition to the cases
mentioned at the beginning of this chapter (and to the case tackled in this
chapter), there are other cases in which the quadratic linking class etc. have
been de�ned (and in which it would be interesting to compute the quadratic
linking class etc.). Unlike previously mentioned cases, the following cases
need Future work 1 to be (at least partially) completed before they can be
tackled:

� the cases mentioned at the beginning of this chapter (except the case
(P1

F ,P1
F ,P3

F )) and the case tackled in this chapter, with j1 = 0 (and
j2 ≤ 0) or j2 = 0 (and j1 ≤ 0) instead of j1, j2 ≤ −1;

� higher codimensional cases (see De�nitions 5.7 and 5.15) with j1 ≤ 0
and j2 ≤ 0; note that Future works 2 and 3, once completed, would
add other higher codimensional cases (as well as an ambient quadratic
linking degree in the case (P1

F ,P1
F ,P3

F ), see Future work 7).
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Chapter 7

Examples and computations

In this chapter, we compute the quadratic linking class, the ambient quadratic
linking degree (and its invariants) and the quadratic linking degree couple
(and its invariants) on examples, by using the methods given in Chapter 6.

In Section 7.1, we give a simple example over a perfect �eld F : the
Hopf link. By changing its orientations, one can get any < a >∈ W(F )
as ambient quadratic linking degree (or as a component of the quadratic
linking degree couple). In Section 7.2, we give a family of examples, which
we call binary links, over a perfect �eld F of characteristic di�erent from
2, such that, by changing their orientations, one can get any < a > + <
b >∈W(F ) (i.e. any class in W(F ) of a binary quadratic form) as ambient
quadratic linking degree (or as a component of the quadratic linking degree
couple). Finally, in Section 7.3, we give for each n ∈ N a counterpart
over R to the torus link T (2, 2n) (whose linking number is n; see Section
1.4). The ambient quadratic linking degree of our counterpart of T (2, 2n)
is −n ∈ W(R) ' Z and its quadratic linking degree couple is (n,−n) ∈
W(R)⊕W(R) ' Z⊕ Z. Note that we also included these computations in
our preprint [Lem23].

7.1 The Hopf link

In this section, we present a simple example of oriented link with two
components (see De�nition 4.1) and compute oriented fundamental classes
and Seifert classes for its components, as well as its quadratic linking
class, its ambient quadratic linking class and its ambient quadratic link-
ing degree. We then enrich this oriented link into an oriented link of type
(A2

F \ {0},A2
F \ {0},A4

F \ {0}) (which means that we �x isomorphisms be-
tween A2

F \ {0} and each of its components (which lie in A4
F \ {0}); see
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7. Examples and computations

De�nition 5.13) and compute its quadratic linking degree couple.
Let F be a perfect �eld. Recall that A4

F = Spec(F [x, y, z, t]) and A2
F =

Spec(F [u, v]) (so that coordinates are �xed once and for all). We de�ne the
Hopf link over F as follows:

� Z1 is the intersection of the closed subscheme of A4
F of ideal (x, y)

and of X := A4
F \ {0} (hence is a closed F -subscheme of X; in other

words, Z1 is the closed F -subscheme of A4
F \{0} given by the equations

x = 0, y = 0);

� Z2 is the intersection of the closed subscheme of A4
F of ideal (z, t) and

of X (hence is a closed F -subscheme of X; in other words, Z2 is the
closed F -subscheme of A4

F \ {0} given by the equations z = 0, t = 0);
note that Z1 and Z2 are disjoint (see [GW10, Proposition 3.35]);

� o1 = ox,y is the orientation class associated to the couple (x, y) (see
Section 6.1; in other words, o1 is the class (see De�nition 3.22) of
the isomorphism ox,y : νZ1 := det(NZ1/X) → OZ1 ⊗ OZ1 which maps
x∗ ∧ y∗ to 1⊗ 1);

� o2 = oz,t is the orientation class associated to the couple (z, t) (see
Section 6.1; in other words, o2 is the class (see De�nition 3.22) of the
isomorphism oz,t : νZ2 := det(NZ2/X)→ OZ2⊗OZ2 which maps z∗∧t∗

to 1⊗ 1).

The reason behind the name of the Hopf link will be made apparent
in Section 7.3. See Table 7.1 for a recap in the case j1 = j2 = −1 of
the computations made below (note that for the last three lines, closed
immersions ϕ1, ϕ2 : A2

F \ {0} → A4
F \ {0} need to be �xed; this is done

below). The quadratic linking class is given in two di�erent lines since it
is used to compute the ambient quadratic linking degree on the one hand
and the quadratic linking degree couple on the other hand. Note that the
second column gives cycles which represent the classes in question (except
for the ambient quadratic linking degree which is in the Witt ring W(F )
and the quadratic linking degree couple which is in W(F )⊕W(F )), without
specifying the points over which these cycles live, but that in the case of
this table these points are the obvious ones (for instance 〈x〉 ⊗ y∗ (which
represents a class in H1(X \ Z,KMW

1 )) lives over the generic point of the
hypersurface of X \ Z of equation y = 0).

Instead of applying Theorem 6.1 to get the quadratic linking class of
the Hopf link, we go through the di�erent steps which lead to the quadratic
linking class in order to illustrate the proof of Theorem 6.1 and to give
examples of the mathematical objects we have introduced in Chapter 4.
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7.1. The Hopf link

Oriented fund. cl. η ⊗ (x∗ ∧ y∗) | η ⊗ (z∗ ∧ t∗)
Seifert classes 〈x〉 ⊗ y∗ | 〈z〉 ⊗ t∗

Int. prod. of Seif. cl. 〈xz〉 ⊗ (t
∗ ∧ y∗)

Quad. linking class −〈z〉η ⊗ (t
∗ ∧ x∗ ∧ y∗) ⊕ 〈x〉η ⊗ (y∗ ∧ z∗ ∧ t∗)

Amb. quad. link. cl. −〈z〉η ⊗ (t
∗ ∧ x∗ ∧ y∗)

Apply ∂ −η2 ⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗)
Amb. quad. lk. deg. −1

Quad. linking class −〈z〉η ⊗ (t
∗ ∧ x∗ ∧ y∗) ⊕ 〈x〉η ⊗ (y∗ ∧ z∗ ∧ t∗)

Apply (õ1 ⊕ õ2) ◦$ −〈z〉η ⊗ t∗ ⊕ 〈x〉η ⊗ y∗
Apply ϕ∗1 ⊕ ϕ∗2 −〈u〉η ⊗ v∗ ⊕ 〈u〉η ⊗ v∗
Apply ∂ ⊕ ∂ −η2 ⊗ (u∗ ∧ v∗) ⊕ η2 ⊗ (u∗ ∧ v∗)
Quad. link. deg. cpl. −1 ⊕ 1

Table 7.1 � The ambient quadratic linking degree and the quadratic linking
degree couple of the Hopf link.

First note that it follows immediately from De�nition 4.3 (also recall
Notation 3.25 and Proposition 3.26) that the oriented fundamental class
[o1]j1 of the �rst component of the Hopf link with respect to j1 ≤ 0 is the
class in H0(Z1, K

MW
j1
{νZ1}) of the cycle η−j1 ⊗ x∗ ∧ y∗ (over the generic

point of Z1), since by de�nition o1 is the orientation class of ox,y. Similarly,
the oriented fundamental class [o2]j2 of the second component of the Hopf
link with respect to j2 ≤ 0 is the class in H0(Z2, K

MW
j2
{νZ2}) of the cycle

η−j2 ⊗ z∗ ∧ t∗ (over the generic point of Z2), since by de�nition o2 is the
orientation class of oz,t.

By Theorem 2.46 (see also De�nitions 3.8 and 3.18), the image by the
boundary map of the cycle [x]⊗y∗ (over the generic point of the hypersurface
of X \ Z of equation y = 0) is the cycle 1⊗ x∗ ∧ y∗ (over the generic point
of Z1) and for each j1 ≤ −1 the image by the boundary map of the cycle
〈x〉η−j1−1⊗y∗ (over the generic point of the hypersurface ofX\Z of equation
y = 0) is the cycle 〈x〉η−j1⊗y∗ (over the generic point of Z1). It follows from
De�nition 4.6 that the class in H1(X \ Z,KMW

2 ) of [x] ⊗ y∗ is the Seifert
class So1,0 of the �rst component of the Hopf link with respect to 0 and
that for each j1 ≤ −1, the class in H1(X \Z,KMW

j1+2) of 〈x〉η−j1−1⊗y∗ is the
Seifert class So1,j1 of the �rst component of the Hopf link with respect to j1.
Similarly, the Seifert class So2,0 of the second component of the Hopf link
with respect to 0 is the class in H1(X \ Z,KMW

2 ) of the cycle [z]⊗ t∗ (over
the generic point of the hypersurface of X \ Z of equation t = 0) and that
for each j2 ≤ −1, the class in H1(X \ Z,KMW

j2+2) of the cycle 〈z〉η−j2−1 ⊗ t
∗

(over the generic point of the hypersurface of X \Z of equation t = 0) is the
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Seifert class So2,j2 of the second component of the Hopf link with respect
to j2. Recalling Remark 4.8, it may seem surprising that on the one hand
So2,0 is the class of [z] ⊗ t

∗ and on the other hand So2,−1 is the class of
〈z〉 ⊗ t∗ rather than the class of η[z] ⊗ t∗. This surprise evaporates when
one remembers that we are talking of classes and not of cycles. Indeed, the
cycle 〈z〉⊗ t∗ and the cycle η[z]⊗ t∗ have the same class in H1(X \Z,KMW

1 )
since their di�erence is the cycle 1 ⊗ t∗ which is the image of the cycle [t]
(over the generic point of X \ Z) by the di�erential of the Rost-Schmid
complex of X \ Z (see Theorem 2.46 and De�nition 3.8).

Recall from De�nition 4.9 that the quadratic linking class with respect
to a couple (j1, j2) of nonpositive integers is the image by the boundary map
∂ : H2(X \Z,KMW

j1+j2+4)→ H1(Z,KMW
j1+j2+2{νZ}) of the intersection product

So1,j1 · So2,j2 . With the formula for the intersection product which is in
Corollary 3.32, we can compute So1,j1 · So2,j2 when j1 ≤ −1 and j2 ≤ −1.
First note that the intersection of the hypersurfaces of X \ Z of respective
equations y = 0 and t = 0 is irreducible and is the closed subscheme of X\Z
which is given by the equations y = 0, t = 0. It follows from Corollary 3.32
that the cycle mε〈xzw〉η−(j1+j2+2) ⊗ (π∗ ⊗ y∗) (over the generic point p of
the closed subscheme of X \Z which is given by the equations y = 0, t = 0)
represents the intersection product So1,j1 · So2,j2 , where π is a uniformizing
parameter for OX\Z,p/(y), w is a unit in OX\Z,p/(y) and m ∈ Z is an
integer such that t = wπm in OX\Z,p/(y). Note that the ring OX\Z,p/(y) is
canonically isomorphic to OA4

F ,p
/(y) hence to F [x, y, z, t](y,t)/(y) hence to

F [x, z, t](t), i.e. to the localization of the ring F [x, z, t] at the prime ideal
(t). We can therefore take π = t, m = 1 and w = 1, so that the cycle
〈xz〉η−(j1+j2+2)⊗ (t

∗ ∧ y∗) (over the generic point p of the closed subscheme
of X \ Z which is given by the equations y = 0, t = 0) represents the
intersection product So1,j1 · So2,j2 . By De�nition 3.18 (see also De�ntion
3.8), it follows that for all j1, j2 ≤ −1, the quadratic linking class of the
Hopf link with respect to (j1, j2) is the class in H1(Z,KMW

j1+j2+2{νZ}) of the
following cycle:

∂xvx(〈xz〉η
−(j1+j2+2))⊗ (x∗ ∧ t∗ ∧ y∗)⊕ ∂zvz(〈xz〉η

−(j1+j2+2))⊗ (z∗ ∧ t∗ ∧ y∗)

where vx (respectively vz) is the discrete valuation of O{p},qx (resp. O{p},qz)
with qx (resp. qz) the generic point of the hypersurface of {p} of equation
x = 0 (resp. z = 0). By Theorem 2.46, the quadratic linking class of the
Hopf link with respect to (j1, j2) is the class in H1(Z,KMW

j1+j2+2{νZ}) of the
following cycle:

〈z〉η−(j1+j2+1) ⊗ (x∗ ∧ t∗ ∧ y∗)⊕ 〈x〉η−(j1+j2+1) ⊗ (z∗ ∧ t∗ ∧ y∗)

158



7.1. The Hopf link

hence of the following cycle:

−〈z〉η−(j1+j2+1) ⊗ (t
∗ ∧ x∗ ∧ y∗)⊕ 〈x〉η−(j1+j2+1) ⊗ (y∗ ∧ z∗ ∧ t∗)

Note that by Remark 4.11, we could have restricted ourselves to the case
(j1, j2) = (−1,−1) and deduced the other cases (j1 ≤ −1 and j2 ≤ −1)
from it, but for expository purposes we chose to directly compute these
cases.

Let us now turn to the ambient quadratic linking class and the ambient
quadratic linking degree.

It follows from our computation of the quadratic linking class and De�-
nition 5.1 (or Corollary 6.2) that the ambient quadratic linking class of the
Hopf link with respect to (j1, j2) (where j1 ≤ −1 and j2 ≤ −1) is the class
in H3(X,KMW

j1+j2+4) of the following cycle:

−〈z〉η−(j1+j2+1) ⊗ (t
∗ ∧ x∗ ∧ y∗)

We could apply Theorem 6.3 to get the ambient quadratic linking degree
but we will rather go through the di�erent steps which lead to the ambient
quadratic linking degree from the ambient quadratic linking class in order
to illustrate the proof of this theorem. Recall De�nition 5.7.

The �rst step consists in applying the boundary map ∂ : H3(A4
F \

{0}, KMW
j1+j2+4) → H0({0}, KMW

j1+j2
{det(N{0}/A4

F
)}) to the ambient quadratic

linking class. This gives the class of the cycle −η−(j1+j2)⊗ (z∗∧ t∗∧x∗∧ y∗)
which is the class of the cycle −η−(j1+j2)⊗(x∗∧y∗∧z∗∧t∗). The second step
consists in applying the isomorphism H0({0}, KMW

j1+j2
{det(N{0}/A4

F
)}) →

H0({0}, KMW
j1+j2

) = KMW
j1+j2

(F ) (denoted õ in Notation 3.36) induced by the
orientation of A4

F \ {0}, which gives −η−(j1+j2). The last step consists in
applying the isomorphism γj1+j2 : KMW

j1+j2
(F ) → W(F ), which gives −1 as

ambient quadratic linking degree of the Hopf link.
Note that if we change one (or both) of the orientation classes of the

Hopf link, then the ambient quadratic linking degree will be equal to <
a >∈ W(F ) for some a ∈ F ∗, and that all such values can be obtained by
changing one of the orientation classes (see Proposition 5.11 and Remark
4.36). In any case, we have our invariants of the quadratic linking degree:
the rank modulo 2 of the ambient quadratic linking degree of the Hopf link
(and of all its variants for which one or both of the the orientation classes
are changed) is equal to 1, all of the Σk map the ambient quadratic linking
degree of the Hopf link to 0, and in the case F = R, the absolute value of the
ambient quadratic linking degree of the Hopf link (which is in W(R) ' Z
(via the signature)) is equal to 1.
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Let us now turn to the quadratic linking degree couple. Recall that
the quadratic linking degree couple (see De�nition 5.15) is associated to
oriented links of a certain type (see De�nition 5.13), so that we need to
introduce parametrisations ϕ1 and ϕ2. We set the following.

� ϕ1 : A2
F \{0} → A4

F \{0} is the morphism associated to the morphism
of F -algebras F [x, y, z, t] → F [u, v] which maps x, y, z, t to 0, 0, u, v
respectively;

� ϕ2 : A2
F \{0} → A4

F \{0} is the morphism associated to the morphism
of F -algebras F [x, y, z, t] → F [u, v] which maps x, y, z, t to u, v, 0, 0
respectively.

We could apply Theorem 6.4 to get the quadratic linking degree couple
but we will rather go through the di�erent steps which lead to the quadratic
linking degree couple from the quadratic linking class in order to illustrate
the proof of this theorem.

Recall De�nition 5.15. By applying the isomorphism $ to the quadratic
linking class, we consider that the cycle −〈z〉η−(j1+j2+1)⊗(t

∗∧x∗∧y∗) (over
the generic point of the hypersurface of Z1 given by the equation t = 0) rep-
resents a class inH1(Z1, K

MW
j1+j2+2{νZ1}) rather than inH1(Z,KMW

j1+j2+2{νZ})
and that the cycle 〈x〉η−(j1+j2+1) ⊗ (y∗ ∧ z∗ ∧ t∗) (over the generic point of
the hypersurface of Z2 given by the equation y = 0) represents a class
in H1(Z2, K

MW
j1+j2+2{νZ2}) rather than in H1(Z,KMW

j1+j2+2{νZ}). The isomor-
phism õ1 maps the class of−〈z〉η−(j1+j2+1)⊗(t

∗∧x∗∧y∗) inH1(Z1, K
MW
j1+j2+2{νZ1})

to the class of −〈z〉η−(j1+j2+1)⊗t∗ in H1(Z1, K
MW
j1+j2+2) (since o1 is the orien-

tation class of ox,y) and the isomorphism õ2 maps the class of 〈x〉η−(j1+j2+1)⊗
(y∗ ∧ z∗ ∧ t∗) in H1(Z2, K

MW
j1+j2+2{νZ2}) to the class of 〈x〉η−(j1+j2+1) ⊗ y∗

in H1(Z2, K
MW
j1+j2+2) (since o2 is the orientation class of oz,t). By de�nition,

ϕ∗1 maps the class of −〈z〉η−(j1+j2+1) ⊗ t∗ in H1(Z1, K
MW
j1+j2+2) to the class

of −〈u〉η−(j1+j2+1) ⊗ v∗ in H1(A2
F \ {0}, KMW

j1+j2+2) and ϕ∗2 maps the class
of 〈x〉η−(j1+j2+1) ⊗ y∗ in H1(Z2, K

MW
j1+j2+2) to the class of 〈u〉η−(j1+j2+1) ⊗ v∗

in H1(A2
F \ {0}, KMW

j1+j2+2). We then apply the boundary map ∂ : H1(A2
F \

{0}, KMW
j1+j2+2)→ H0({0}, KMW

j1+j2
{det(N{0}/A2

F
)}) to each of these, to get re-

spectively the class of−η−(j1+j2)⊗(u∗∧v∗) and the class of η−(j1+j2)⊗(u∗∧v∗)
in H0({0}, KMW

j1+j2
{det(N{0}/A2

F
)}). By applying to each of these the iso-

morphism H0({0}, KMW
j1+j2
{det(N{0}/A2

F
)}) → H0({0}, KMW

j1+j2
) = KMW

j1+j2
(F )

(denoted õ in Notation 3.36) induced by the orientation of A2
F \ {0}, we get

respectively −η−(j1+j2) ∈ KMW
j1+j2

(F ) and η−(j1+j2) ∈ KMW
j1+j2

(F ). Finally, by
applying to each of these the isomorphism γj1+j2 : KMW

j1+j2
(F ) → W(F ), we
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7.2. Binary links

have that the quadratic linking degree couple of the Hopf link with respect
to (j1, j2) is (−1, 1) ∈W(F )⊕W(F ).

Note that if we change one (or both) of the orientation classes of the Hopf
link, or one (or both) of the parametrisations ϕ1, ϕ2, then the quadratic
linking degree couple will be equal to (< a >,< b >) ∈ W(F )⊕W(F ) for
some a, b ∈ F ∗, and that all such values can be obtained by changing one
of the orientation classes (or by changing one of the parametrisations; see
Proposition 5.18 and Remark 4.36 for orientation changes and Remark 5.19
and Proposition 5.20 for parametrisation changes). In any case, we have
our invariants of the quadratic linking degree: the rank modulo 2 of each
component of the quadratic linking degree couple of the Hopf link (and of
all its variants for which one or both of the the orientation classes (or of
the parametrisations) are changed) is equal to 1, all of the Σk map each
component of the quadratic linking degree couple of the Hopf link to 0, and
in the case F = R, the absolute value of each component of the quadratic
linking degree couple of the Hopf link (which is in W(R) ' Z (via the
signature)) is equal to 1.

7.2 Binary links

In the previous section, we presented an oriented link (the Hopf link) of
ambient quadratic linking degree −1 ∈ W(F ) (with F a perfect �eld),
whose variants (by changing one of its orientation classes) give examples of
oriented links of ambient quadratic linking degree < a >∈ W(F ) for each
a ∈ F ∗. In this section, we present for each a ∈ F ∗ (with F a perfect
�eld of characteristic di�erent from 2) an oriented link (which we call the
binary link Ba) with ambient quadratic linking degree 1+ < a >∈ W(F ).
Its variants (by changing one of its orientation classes) give examples of
oriented links of ambient quadratic linking degree < b > + < ba >∈W(F )
for each b ∈ F ∗ (see Proposition 5.11 and Remark 4.36). Thus, for each
b, c ∈ F ∗, we have an example of oriented link whose ambient quadratic
linking degree is < b > + < c > (take B c

b
and change o1 into o1 ◦ (×b)).

Let F be a perfect �eld of characteristic di�erent from 2 and a ∈ F ∗.
We de�ne the binary link Ba over F as follows:

� Z1 is the intersection of the closed subscheme of A4
F of ideal (f1 :=

t− ((1 + a)x− y)y, g1 := z − x(x− y)) and of X := A4
F \ {0} (hence

is a closed F -subscheme of X; in other words, Z1 is the closed F -
subscheme of A4

F \ {0} given by the equations f1 = 0, g1 = 0);
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7. Examples and computations

� Z2 is the intersection of the closed subscheme of A4
F of ideal (f2 :=

t + ((1 + a)x − y)y, g2 := z + x(x − y)) and of X (hence is a closed
F -subscheme of X; in other words, Z1 is the closed F -subscheme of
A4
F \ {0} given by the equations f2 = 0, g2 = 0); note that Z1 and Z2

are disjoint (see [GW10, Proposition 3.35]);

� o1 = of1,g1 is the orientation class associated to the couple (f1, g1)
(see Section 6.1; in other words, o1 is the class (see De�nition 3.22) of
the isomorphism of1,g1 : νZ1 := det(NZ1/X)→ OZ1 ⊗OZ1 which maps
f1
∗ ∧ g1∗ to 1⊗ 1);

� o2 = of2,g2 is the orientation class associated to the couple (f2, g2)
(see Section 6.1; in other words, o2 is the class (see De�nition 3.22) of
the isomorphism of2,g2 : νZ2 := det(NZ2/X)→ OZ2 ⊗OZ2 which maps
f2
∗ ∧ g2∗ to 1⊗ 1).

As in Section 7.1, we can compute the ambient quadratic linking degree
and the quadratic linking degree couple of the binary links with respect to
(j1, j2) for all j1 ≤ −1 and j2 ≤ −1. By using Remarks 4.4, 4.8, 4.11, 5.3,
5.8 and 5.16, we restrict ourselves to (j1, j2) = (−1,−1).

See Table 7.2 for a recap of the computations made below (note that
for the last three lines, closed immersions ϕ1, ϕ2 : A2

F \ {0} → A4
F \ {0}

need to be �xed; this is done below). The quadratic linking class is given in
two di�erent lines since it is used to compute the ambient quadratic linking
degree on the one hand and the quadratic linking degree couple on the
other hand. Note that the second column gives cycles which represent the
classes in question (except for the ambient quadratic linking degree which
is in the Witt ring W(F ) and the quadratic linking degree couple which is
in W(F ) ⊕W(F )), without specifying the points over which these cycles
live, but that in the case of this table these points are the obvious ones.

Instead of applying Theorem 6.1 to get the quadratic linking class of
the binary link Ba, we go through the di�erent steps which lead to the
quadratic linking class in order to highlight a di�culty which arises from
the fact that the equations which de�ne the components of our link are no
longer of degree 1 (compared with those for the Hopf link in Section 7.1).

There is no di�culty in computing the oriented fundamental classes (η⊗
(f1
∗∧g1∗) and η⊗ (f2

∗∧g2∗) respectively) and the Seifert classes (〈f1〉⊗g1∗
and 〈f2〉 ⊗ g2∗ respectively) of the binary link Ba. The di�culty (or rather
di�culty lying in wait) appears when we want to compute the intersection
product of the Seifert classes. By Corollary 3.32, the intersection product
of 〈f1〉⊗g1∗ (over the generic point of the hypersurface of X \Z of equation
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7.2. Binary links

g1 = 0) with 〈f2〉 ⊗ g2∗ (over the generic point of the hypersurface of X \Z
of equation g2 = 0) is the class in H2(X \ Z,KMW

2 ) of the cycle

(mp)ε〈f1f2up〉 ⊗ (πp
∗ ⊗ g1∗) + (mq)ε〈f1f2uq〉 ⊗ (πq

∗ ⊗ g1∗)

where (mp)ε〈f1f2up〉⊗ (πp
∗⊗g1∗) lives over the generic point p of the closed

subscheme ofX\Z given by the equations z = 0, x = y (with πp a uniformiz-
ing parameter for OX\Z,p/(g1), up a unit in OX\Z,p/(g1) and mp ∈ Z an in-
teger such that g2 = upπ

mp
p ∈ OX\Z,p/(g1)) and (mq)ε〈f1f2uq〉 ⊗ (πq

∗ ⊗ g1∗)
lives over the generic point q of the closed subscheme of X \ Z given
by the equations z = 0, x = 0 (with πq a uniformizing parameter for
OX\Z,q/(g1), uq a unit in OX\Z,q/(g1) and mq ∈ Z an integer such that
g2 = uqπ

mq
q ∈ OX\Z,q/(g1)).

The di�culty lying in wait for us lies in the choices of πp and πq.
If one were to choose πp = g2 ∈ OX\Z,p/(g1) (i.e. πp = 2x(x − y) ∈
F [x, y, z, t](z,x−y)/(z−x(x−y)) ' F [x, y, t](x−y)) and πq = g2 ∈ OX\Z,q/(g1)
(i.e. πq = 2(x − y)x ∈ F [x, y, z, t](z,x)/(z − x(x − y)) ' F [x, y, t](x)), com-
puting the ambient quadratic linking degree or the quadratic linking degree
couple would be horrendous. We choose πp = x−y ∈ F [x, y, z, t](z,x−y)/(z−
x(x − y)) ' F [x, y, t](x−y) (hence up = 2x and mp = 1) and πq = x ∈
F [x, y, z, t](z,x)/(z − x(x − y)) ' F [x, y, t](x) (hence uq = 2(x − y) and
mq = 1) in order to have simple computations in what follows.

Thus, the intersection product of 〈f1〉 ⊗ g1∗ with 〈f2〉 ⊗ g2∗ is the class
in H2(X \ Z,KMW

2 ) of the cycle

〈f1f22x〉 ⊗ (x− y∗⊗ z − x(x− y)
∗
) + 〈f1f22(x− y)〉 ⊗ (x∗⊗ z − x(x− y)

∗
)

hence of the cycle

〈f1f22x〉 ⊗ (x− y∗ ⊗ z∗) + 〈f1f22(x− y)〉 ⊗ (x∗ ⊗ z∗)

Therefore, the quadratic linking class is the class in H1(Z,KMW
0 {νZ})

of the cycle

∂f1v1,f1
(〈f1f22x〉)⊗ (f1

∗ ⊗ x− y∗ ⊗ z∗) + ∂f1v2,f1
(〈f1f22(x− y)〉)⊗ (f1

∗ ⊗ x∗ ⊗ z∗)

+∂f2v1,f2
(〈f1f22x〉)⊗ (f2

∗ ⊗ x− y∗ ⊗ z∗) + ∂f2v2,f2
(〈f1f22(x− y)〉)⊗ (f2

∗ ⊗ x∗ ⊗ z∗)

where v1,f1 (respectively v2,f1 , v1,f2 , v2,f2) is the discrete valuation of O{p},r1,1
(resp. O{q},r2,1 , O{p},r1,2 , O{q},r2,2) with r1,1 (resp. r2,1, r1,2, r2,2) the generic
point of the hypersurface of {p} (resp. {q}, {p}, {q}) of equation f1 = 0
(resp. f1 = 0, f2 = 0, f2 = 0).
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E
x
a
m
p
l
e
s
a
n
d
c
o
m
p
u
t
a
t
io
n
s

Oriented fund. classes η ⊗ (f1
∗ ∧ g1∗) | η ⊗ (f2

∗ ∧ g2∗)
Seifert classes 〈f1〉 ⊗ g1∗ | 〈f2〉 ⊗ g2∗
Intersection product
of Seifert classes

〈2xf1f2〉 ⊗ (x− y∗ ∧ z∗)
+〈2(x− y)f1f2〉 ⊗ (x∗ ∧ z∗)

Quadratic linking
class

〈ay〉η ⊗ (t− ay2∗ ∧ x− y∗ ∧ z∗) ⊕ −〈ay〉η ⊗ (t+ ay2
∗ ∧ x− y∗ ∧ z∗)

+〈y〉η ⊗ (t+ y2
∗ ∧ x∗ ∧ z∗) −〈y〉η ⊗ (t− y2∗ ∧ x∗ ∧ z∗)

Ambient quadratic
linking class

〈ay〉η ⊗ (t− ay2∗ ∧ x− y∗ ∧ z∗)
+〈y〉η ⊗ (t+ y2

∗ ∧ x∗ ∧ z∗)

Apply ∂
−〈a〉η2 ⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗)
−η2 ⊗ (x∗ ∧ y∗ ∧ z∗ ∧ t∗)

Ambient quad. link. deg. −(1+ < a >)

Quadratic linking
class

〈ay〉η ⊗ (t− ay2∗ ∧ x− y∗ ∧ z∗) ⊕ −〈ay〉η ⊗ (t+ ay2
∗ ∧ x− y∗ ∧ z∗)

+〈y〉η ⊗ (t+ y2
∗ ∧ x∗ ∧ z∗) −〈y〉η ⊗ (t− y2∗ ∧ x∗ ∧ z∗)

Apply (õ1 ⊕ õ2) ◦$
−〈ay〉η ⊗ x− y∗ ⊕ 〈ay〉η ⊗ x− y∗

−〈y〉η ⊗ x∗ +〈y〉η ⊗ x∗

Apply ϕ∗1 ⊕ ϕ∗2
−〈av〉η ⊗ u− v∗ ⊕ 〈av〉η ⊗ u− v∗

−〈v〉η ⊗ u∗ +〈v〉η ⊗ u∗
Apply ∂ ⊕ ∂ (1 + 〈a〉)η2 ⊗ (u∗ ∧ v∗) ⊕ −(1 + 〈a〉)η2 ⊗ (u∗ ∧ v∗)
Quad. link. deg. couple 1+ < a > ⊕ −(1+ < a >)

Table 7.2 � The ambient quadratic linking degree and the quadratic linking degree couple of the binary link Ba with
a ∈ F ∗ (and F of characteristic di�erent from 2).
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By Theorem 2.46, the quadratic linking class of the binary link Ba with
respect to (−1,−1) is the class in H1(Z,KMW

0 {νZ}) of the following cycle:

〈f22x〉η ⊗ (f1
∗ ⊗ x− y∗ ⊗ z∗) + 〈f22(x− y)〉η ⊗ (f1

∗ ⊗ x∗ ⊗ z∗)
+〈f12x〉η ⊗ (f2

∗ ⊗ x− y∗ ⊗ z∗) + 〈f12(x− y)〉η ⊗ (f2
∗ ⊗ x∗ ⊗ z∗)

hence of the following cycle:

〈ay〉η ⊗ (t− ay2∗ ∧ x− y∗ ∧ z∗) + 〈y〉η ⊗ (t+ y2
∗ ∧ x∗ ∧ z∗)

−〈ay〉η ⊗ (t+ ay2
∗ ∧ x− y∗ ∧ z∗)− 〈y〉η ⊗ (t− y2∗ ∧ x∗ ∧ z∗)

From now on, there is no di�culty in the computations if one chooses
y as uniformizing parameter (see Corollary 6.2 and Theorems 6.3 and 6.4).
Note that in general, the choice of the uniformizing parameter π′p,q,0 for
the computation of the ambient quadratic linking degree (see Section 6.3)
(or the choice of the uniformizing parameter πp,q,0 for the computation of
the quadratic linking degree couple (see Section 6.4)) a�ects the di�culty
of the computations, so that it is not always a good idea to pick the �rst
uniformizing parameter which comes to mind. See Table 7.2 for the ambient
quadratic linking degree of the binary link Ba and the quadratic linking
degree couple of the binary link Ba together with:

� ϕ1 : A2
F \{0} → A4

F \{0} is the morphism associated to the morphism
of F -algebras F [x, y, z, t]→ F [u, v] which maps x, y, z, t to u, v, u(u−
v), ((1 + a)u− v)v respectively;

� ϕ2 : A2
F \ {0} → A4

F \ {0} is the morphism associated to the mor-
phism of F -algebras F [x, y, z, t] → F [u, v] which maps x, y, z, t to
u, v,−u(u− v),−((1 + a)u− v)v respectively.

Let us now discuss the values of the invariants of the quadratic linking
degree of the binary link Ba.

The rank modulo 2 of the ambient quadratic linking degree of Ba (which
is −(1+ < a >) ∈ W(F ), see Table 7.2) is equal to 0 (thus the invariant
presented in Proposition 5.25 distinguishes between the Hopf link and the
binary links).

The image by Σ2 of the ambient quadratic linking degree of the binary
link Ba is 〈a〉 ∈ W(F )/(1). For instance, if F = Q, Σ2 distinguishes
between all the Bp with p prime numbers since if p 6= q are prime numbers
then 〈p〉 ∈ W(Q)/(1) corresponds to 1 ∈ W(Z/pZ) ⊂

⊕
r prime W(Z/rZ)

and 〈q〉 ∈W(Q)/(1) corresponds to 1 ∈W(Z/qZ) ⊂
⊕

r prime W(Z/rZ) via

the isomorphism W(Q)/(1)→
⊕
r prime

W(Z/rZ) induced by the isomorphism
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W(Q) → W(R) ⊕
⊕
r prime

W(Z/rZ) described in Example 2.27. Thus the

invariant induced by Σ2 in Theorem 5.28 can distinguish between in�nitely
many oriented links.

In the case F = R, the absolute value of the ambient quadratic linking
degree of the binary link Ba (which is in W(R) ' Z via the signature) is
equal to 2 if a > 0 and is equal to 0 if a < 0 (hence the invariant presented in
Proposition 5.26 distinguishes between the Hopf link and the binary links,
as well as between the binary links with positive parameter and the binary
links with negative parameter).

We get the same results for the invariants of each component of the
quadratic linking degree couple of the binary link Ba (since the quadratic
linking degree couple of Ba (together with ϕ1, ϕ2) is equal to (1+ < a >
,−(1+ < a >)), see Table 7.2).

Future work 19 (The values of the quadratic linking degrees). We created
the binary links so that their ambient quadratic linking degree would be the
class in W(F ) of a binary quadratic form, and so that by considering all
our binary links with all their possible orientations, we could get the class
in W(F ) of any binary quadratic form as ambient quadratic linking de-
gree. Similarly, it seems feasible to construct ternary links (whose ambient
quadratic linking degree would be the class in W(F ) of a ternary quadratic
form), so that by considering all these ternary links with all their possi-
ble orientations, we would get most classes in W(F ) of ternary quadratic
forms (if not all) as ambient quadratic linking degrees. More generally,
the question arises as to which elements of W(F ) can be obtained as the
ambient quadratic linking degree of an oriented link (or as a component
of the quadratic linking degree couple of an oriented link). It would be
interesting to exhibit for each positive even integer k examples of oriented
links on which Σk (applied to the ambient quadratic linking degree or to
a component of the quadratic linking degree couple) takes di�erent values
(similarly to what we have done above for Σ2).

7.3 Torus links

In this section, we de�ne counterparts over R to the torus links T (2, 2n)
(with n ≥ 1 an integer) from knot theory (see Section 1.4) and compute
their ambient quadratic linking degrees and their quadratic linking degree
couples. Note that in knot theory T (2, 2) is the Hopf link (see Figure 1.4),
T (2, 4) is the Solomon link (see Figure 1.5) and for each n ≥ 3, T (2, 2n)
can be pictured as two intertwined n-gons (see Figure 1.11 for T (2, 6)). The
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similarity between the link we described in Section 7.1 (whose components
are of respective equations x = 0, y = 0 and z = 0, t = 0 in A4

F \{0}) and our
counterpart of the Hopf link T (2, 2) (whose components are of respective
equations z = x, t = y and z = −x, t = −y in A4

R \ {0}) is the reason why
we called the former the Hopf link.

Let n ∈ N. Recall that in knot theory one of the components of T (2, 2n)
is the intersection of {(a, b) ∈ C2, b = an} with S3

ε, the 3-sphere of radius
ε, and that the other component of T (2, 2n) is the intersection of {(a, b) ∈
C2, b = −an} with S3

ε (for ε > 0 small enough; see Section 1.4). By writing
a = x+ iy and b = z + it (with x, y, z, t ∈ R), the equation b = an becomes
the system of equations

t =

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)kxn−2k−1y2k+1

z =

bn
2
c∑

k=0

(
n

2k

)
(−1)kxn−2ky2k

and the equation b = −an becomes the system of equations
t = −

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)kxn−2k−1y2k+1

z = −
bn
2
c∑

k=0

(
n

2k

)
(−1)kxn−2ky2k

From now on, we denote

Σt(x, y) :=

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)kxn−2k−1y2k+1, f1 := t− Σt(x, y), f2 := t+ Σt(x, y),

Σz(x, y) :=

bn
2
c∑

k=0

(
n

2k

)
(−1)kxn−2ky2k, g1 := z − Σz(x, y), g2 := z + Σz(x, y).

Consequently, we de�ne our counterpart over R to the torus link T (2, 2n)
as follows:

� Z1 is the intersection of the closed subscheme of A4
R of ideal (f1, g1)

and of X := A4
R \ {0} (hence is a closed R-subscheme of X; in other

words, Z1 is the closed R-subscheme of A4
R\{0} given by the equations

f1 = 0, g1 = 0);
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� Z2 is the intersection of the closed subscheme of A4
R of ideal (f2, g2) and

of X (hence is a closed R-subscheme of X; in other words, Z2 is the
closed R-subscheme of A4

R\{0} given by the equations f2 = 0, g2 = 0);
note that Z1 and Z2 are disjoint (see [GW10, Proposition 3.35]);

� o1 = of1,g1 is the orientation class associated to the couple (f1, g1)
(see Section 6.1; in other words, o1 is the class (see De�nition 3.22) of
the isomorphism of1,g1 : νZ1 := det(NZ1/X)→ OZ1 ⊗OZ1 which maps
f1
∗ ∧ g1∗ to 1⊗ 1);

� o2 = of2,g2 is the orientation class associated to the couple (f2, g2)
(see Section 6.1; in other words, o2 is the class (see De�nition 3.22) of
the isomorphism of2,g2 : νZ2 := det(NZ2/X)→ OZ2 ⊗OZ2 which maps
f2
∗ ∧ g2∗ to 1⊗ 1).

As in Section 7.1, we can compute the ambient quadratic linking degree
and the quadratic linking degree couple of the torus links with respect to
(j1, j2) for all j1 ≤ −1 and j2 ≤ −1. By using Remarks 4.4, 4.8, 4.11, 5.3,
5.8 and 5.16, we restrict ourselves to (j1, j2) = (−1,−1).

For expository reasons, instead of applying Theorem 6.1 to get the
quadratic linking class of the torus link T (2, 2n), we go through the dif-
ferent steps which lead to the quadratic linking class.

There is no di�culty in computing the oriented fundamental classes
(η ⊗ (f1

∗ ∧ g1∗) and η ⊗ (f2
∗ ∧ g2∗) respectively) and the Seifert classes

(〈f1〉 ⊗ g1∗ and 〈f2〉 ⊗ g2∗ respectively) of the torus link T (2, 2n).
The �rst di�culty lies in determining the irreducible components of the

intersection of the hypersurfaces of X \ Z of respective equations g1 = 0
and g2 = 0, i.e. of the closed subscheme of X \ Z given by the equations
z −

∑bn
2
c

k=0

(
n
2k

)
(−1)kxn−2ky2k, z +

∑bn
2
c

k=0

(
n
2k

)
(−1)kxn−2ky2k. This boils down

to �nding the irreducible factors of
∑bn

2
c

k=0

(
n
2k

)
(−1)kxn−2ky2k. This may seem

di�cult, but if we remember that this is the real part of (x+ iy)n, then the
following line of reasoning leads us to the irreducible factors we are seeking.

Denoting x+ iy = ρeiθ with x, y, θ ∈ R and ρ > 0, we have:

<((x+ iy)n) = 0⇔ cos(nθ) = 0

⇔ θ =
(2j + 1)π

2n
mod 2π for some j ∈ {0, . . . , 2n− 1}

⇔ x = tan

(
(n− 1− 2j)π

2n

)
y for some j ∈ {0, . . . , n− 1}
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For this last equivalence, visualize the usual orthogonal triangle (of sides
of lengths |x|, |y| and ρ) and take the tangent of the angle between the side
of length |y| and the hypotenuse (also note that the tangent is π-periodic).

From now on, for every j ∈ {0, . . . , n−1}, we denote θj :=
(n− 1− 2j)π

2n
.

Since
∑bn

2
c

k=0

(
n
2k

)
(−1)kxn−2ky2k is equal to

∏n−1
j=0 (x− tan(θj)y) and since

the tan(θj), with j ∈ {0, . . . , n−1}, are distinct (as they are the roots of the
polynomial (x+i)n+(x−i)n which is coprime with its derivative), the closed
subscheme of X \Z given by the equations z−

∑bn
2
c

k=0

(
n
2k

)
(−1)kxn−2ky2k, z+∑bn

2
c

k=0

(
n
2k

)
(−1)kxn−2ky2k has n irreducible components, whose generic points

we denote by P0, . . . , Pn−1, where for all j ∈ {0, . . . , n− 1}, the component
of generic point Pj is given in X \ Z by the equations z = 0, x = tan(θj)y.

It follows from Corollary 3.32 that the intersection product of 〈f1〉⊗ g1∗
(over the generic point of the hypersurface of X \Z of equation g1 = 0) with
〈f2〉 ⊗ g2∗ (over the generic point of the hypersurface of X \ Z of equation
g2 = 0) is the class in H2(X \ Z,KMW

2 ) of the cycle

n−1∑
j=0

(mj)ε〈f1f2uj〉 ⊗ (πj
∗ ⊗ g1∗)

where (mj)ε〈f1f2uj〉 ⊗ (πj
∗ ∧ g1∗) lives over Pj (which corresponds to the

equations z = 0, x = tan(θj)y), πj is a uniformizing parameter forOX\Z,Pj/(g1),
uj is a unit in OX\Z,Pj/(g1) and mj ∈ Z is an integer such that g2 =
ujπ

mj
j ∈ OX\Z,Pj/(g1). The second di�culty (or rather di�culty lying

in wait) in our computations lies in the choice of πj (similarly to the
di�culty highlighted in Section 7.2). We choose πj = x − tan(θj)y ∈
R[x, y, z, t](z,x−tan(θj)y)/(z−

∏n−1
i=0 (x−tan(θi)y)) ' R[x, y, t](x−tan(θj)y) (hence

uq = 2
∏n−1

i 6=j,i=0(x − tan(θi)y) and mq = 1) in order to have simple compu-
tations in what follows.

Thus, the intersection product of 〈f1〉 ⊗ g1∗ with 〈f2〉 ⊗ g2∗ is the class
in H2(X \ Z,KMW

2 ) of the cycle

n−1∑
j=0

〈f1f2 2
n−1∏

i 6=j,i=0

(x− tan(θi)y)〉 ⊗ (x− tan(θj)y
∗
⊗ z −

n−1∏
i=0

(x− tan(θi)y)

∗

)

hence of the cycle

n−1∑
j=0

〈f1f2 2
n−1∏

i 6=j,i=0

(x− tan(θi)y)〉 ⊗ (x− tan(θj)y
∗
⊗ z∗)
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It follows from Theorem 2.46 that the quadratic linking class of the torus
link T (2, 2n) with respect to (−1,−1) is the class in H1(Z,KMW

0 {νZ}) of
the cycle

n−1∑
j=0

〈f22
n−1∏

i 6=j,i=0

(x− tan(θi)y)〉η ⊗ (f1
∗ ⊗ x− tan(θj)y

∗
⊗ z∗)

+
n−1∑
k=0

〈f12
n−1∏

l 6=k,l=0

(x− tan(θl)y)〉η ⊗ (f2
∗ ⊗ x− tan(θk)y

∗
⊗ z∗)

Let us now turn to the ambient quadratic linking class and the ambient
quadratic linking degree.

It follows from our computation of the quadratic linking class and De�-
nition 5.1 (or Corollary 6.2) that the ambient quadratic linking class of the
torus link T (2, 2n) with respect to (−1,−1) is the class in H3(X,KMW

2 ) of
the cycle

n−1∑
j=0

〈f22
n−1∏

i 6=j,i=0

(x− tan(θi)y)〉η ⊗ (f1
∗ ⊗ x− tan(θj)y

∗
⊗ z∗)

hence of the cycle

n−1∑
j=0

〈(
bn−1

2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1)(
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi)))y〉η

⊗(f1
∗ ⊗ x− tan(θj)y

∗
⊗ z∗)

We could apply Theorem 6.3 to get the ambient quadratic linking de-
gree but, for expository purposes, we will rather go through the di�erent
steps which lead to the ambient quadratic linking degree from the ambient
quadratic linking class. Recall De�nition 5.7.

The �rst step consists in applying the boundary map ∂ : H3(A4
F \

{0}, KMW
2 )→ H0({0}, KMW

−2 {det(N{0}/A4
F

)}) to the ambient quadratic link-
ing class. This gives the class in H0({0}, KMW

−2 {det(N{0}/A4
F

)}) of the fol-
lowing cycle:

n−1∑
j=0

〈(
bn−1

2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1)
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi))〉η2

⊗(y∗ ⊗ f1
∗ ⊗ x− tan(θj)y

∗
⊗ z∗)
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hence of the following cycle:

n−1∑
j=0

〈−(

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1)
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi))〉η2

⊗(x∗ ∧ y∗ ∧ z∗ ∧ t∗)

The second step consists in applying the isomorphismH0({0}, KMW
−2 {det(N{0}/A4

F
)})→

H0({0}, KMW
−2 ) = KMW

−2 (R) (denoted õ in Notation 3.36) induced by the ori-
entation of A4

F \ {0}, which gives:

n−1∑
j=0

〈−(

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1)
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi))〉η2

The last step consists in applying the isomorphism γ−2 : KMW
−2 (R)→W(R),

which gives

n−1∑
j=0

< −(

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1)
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi)) >

Recall that in W(R), < a >= 1 if a is positive and < a >= −1 if a is

negative. Since
∑bn−1

2
c

k=0

(
n

2k+1

)
(−1)k(tan(θj))

n−2k−1 is the imaginary part of
(tan(θj) + i)n, it has the same sign as sin( (2j+1)π

2
) hence is positive if j is

even and negative if j is odd. Also note that for all k ∈ {0, . . . , n−1}, −π
2
<

θk <
π
2
so that for all i < j, tan(θj) − tan(θi) is negative and for all i > j,

tan(θj)− tan(θi) is positive, hence
∏n−1

i 6=j,i=0(tan(θj)− tan(θi)) is positive if
j is even and negative if j is odd. Therefore, for all j ∈ {0, . . . , n− 1}:

< −(

bn−1
2
c∑

k=0

(
n

2k + 1

)
(−1)k(tan(θj))

n−2k−1)
n−1∏

i 6=j,i=0

(tan(θj)− tan(θi)) >= −1

and it follows that −n ∈ W(R) ' Z (via the signature) is the ambient
quadratic linking degree of the torus link T (2, 2n).

Note that if we change one of the orientation classes of the torus link
T (2, 2n) then we get n as ambient quadratic linking degree (similarly to the
linking number of the topological torus link T (2, 2n) which is equal to n)
and that if we change both orientation classes then we get −n as ambient
quadratic linking degree (see Proposition 5.11 and Remark 4.36). In any
case, the absolute value of the ambient quadratic linking degree of the torus
link T (2, 2n) is equal to n.
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Let us now turn to the quadratic linking degree couple. Recall that
the quadratic linking degree couple (see De�nition 5.15) is associated to
oriented links of a certain type (see De�nition 5.13), so that we need to
introduce parametrisations ϕ1 and ϕ2. We set the following.

� ϕ1 : A2
R \ {0} → A4

R \ {0} is the morphism associated to the mor-
phism of R-algebras R[x, y, z, t] → R[u, v] which maps x, y, z, t to
u, v,Σz(u, v),Σt(u, v) respectively;

� ϕ2 : A2
R \ {0} → A4

R \ {0} is the morphism associated to the mor-
phism of R-algebras R[x, y, z, t] → R[u, v] which maps x, y, z, t to
u, v,−Σz(u, v),−Σt(u, v) respectively.

The computations are similar to the ones for the ambient quadratic linking
degree and give (n,−n) ∈W(R)⊕W(R) ' Z⊕Z as quadratic linking degree
couple. Thus, each component of the quadratic linking degree couple of the
torus link T (2, 2n) has the same absolute value as the ambient quadratic
linking degree of the torus link T (2, 2n).

Future work 20 (More general torus links). It would not be much more
di�cult to compute the ambient quadratic linking degree of a counterpart
over R to T (2p, 2q) with p and q coprime (see Section 1.4). Note that
when p, q ≥ 2 the components of T (2p, 2q) would no longer be isomorphic
to A2

R \ {0} but we do not need this to compute the ambient quadratic
linking degree (see De�nition 5.7). It would also be interesting to study
counterparts to other links than torus links (see Section 1.5).

We end this chapter with the two following future works.

Future work 21 (Examples over other speci�c �elds than R). We plan to
study examples over speci�c �elds other than the �eld R of real numbers
and see whether we can get any element of the Witt ring of these �elds as
the ambient quadratic linking degree of an oriented link. (Note that this
is the case for R since the ambient quadratic linking degree of the binary
link Ba is equal to 0 if a is negative (see Section 7.2) and for each n ∈ N,
the ambient quadratic linking degree of T (2, 2n) is equal to −n and the
ambient quadratic linking degree of T (2, 2n) with its �rst orientation class
reversed is equal to n.)

Future work 22 (Examples in other cases). We also plan to study exam-
ples in several other interesting cases than A2

F \{0}tA2
F \{0} → A4

F \{0} (see
the bullets in the beginning of Chapter 6). In addition to these cases, there
are also cases in which we would want to compute the ambient quadratic

172



7.3. Torus links

linking degree or the quadratic linking degree couple but for which we do not
yet have an intersection formula (see Future works 1 and 18) or for which
we do not yet have an explicit isomorphism between the Rost-Schmid group
in question and W(F ), GW(F ) or KMW

1 (F ) (see Future works 2 and 3).
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oriented fundamental class

in higher-dimensional knot
theory, 39

in knot theory, 26
in motivic knot theory, 88
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in motivic knot theory, 87

oriented knot of a certain type,
122
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in knot theory, 26
in motivic knot theory, 86
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121

orthogonal sum, 48

parametrisation, 122
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residue morphism
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Seifert surface, 28
signature, 51

for �nite �elds, 52
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Solomon link
in knot theory, 28
in motivic knot theory, 166

tensor product, 48
torus link

in knot theory, 37

in motivic knot theory, 166
torus link T (2, 6)

in knot theory, 37
in motivic knot theory, 166

Witt ring, 50
Witt-equivalence, 50

185


	Title, keywords and abstract (in French and in English)
	Introduction
	Knot theory
	Motivic homotopy theory and quadratic intersection theory
	A bird's-eye view of the thesis
	Outline of the thesis

	Contents
	List of Figures
	List of Tables
	List of Notations
	Mathematical background
	Knot theory
	What is knot theory?
	Knots and links
	The linking number
	Torus links
	All links are algebraic
	Higher dimensional knot theory

	The Witt, Grothendieck-Witt and Milnor-Witt K-theory rings
	The Witt ring and the Grothendieck-Witt ring
	The Milnor-Witt K-theory ring

	Quadratic intersection theory
	Intersection theory à la Rost
	The Rost-Schmid complex and Chow-Witt groups
	The intersection product
	Computations of Rost-Schmid groups


	Motivic linking
	The quadratic linking class
	The general case
	Functoriality properties
	Smooth models of motivic spheres
	A projective case

	The quadratic linking degree
	The ambient quadratic linking degree
	The quadratic linking degree couple
	Invariants of the quadratic linking degree

	Computing methods
	Assumptions and notations
	The quadratic linking class
	The ambient quadratic linking degree
	The quadratic linking degree couple

	Examples and computations
	The Hopf link
	Binary links
	Torus links

	Bibliography
	Index of notations
	General index


