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ECOLE DOCTORALE

CARNOT - PASTEUR

Titre : Théorie motivique des nceuds

Mots clés :

Théorie de ’homotopie motivique, Théorie des nceuds, Entrelacs,

Groupes de Witt, K-théorie de Milnor-Witt, Complexe de Rost-Schmid.

Résumé Dans ce manuscrit, nous
créons une théorie en géométrie al-
gébrique par analogie avec la théorie des
nceuds. Etant donné que cette nou-
velle théorie s’appuie sur la théorie de
I’homotopie motivique (plus précisément,
sur la théorie de l'intersection quadra-
tique), nous la nommons théorie mo-
tivique des neeuds. Plus précisément, nous
étudions ’enlacement motivique: com-
ment deux F-sous-schémas fermés dis-
joints dans un F-schéma ambiant peu-
vent étre enlacés (F étant un corps par-
fait). En théorie des nceuds, 'enlacement
d’un entrelacs orienté & deux composantes
(i.e. de deux nceuds orientés disjoints)
est un entier qui compte combien de fois
une des composantes tourne autour de
P’autre composante. Nous définissons des
analogues en géométrie algébrique des en-
trelacs orientés a deux composantes et
de l’enlacement; nous appelons ces ana-
logues de l'enlacement des enlacements
quadratiques. Nos enlacements quadra-
tiques ne sont pas nécessairement des
entiers; ceux que nous étudions le plus

sont des éléments du groupe de Witt du
corps de base F, qui est un groupe de
classes d’équivalence de formes bilinéaires
symétriques sur F (ou de maniére équiv-
alente, de formes quadratiques sur F,
quand la caractéristique de F est dif-
férente de 2). Dans un premier temps
nous répondons aux questions qui émer-
gent naturellement de ces enlacements
quadratiques et dans un second temps
nous créons des méthodes de calcul des
enlacements quadratiques. Ces méthodes
s’appuient sur des formules explicites pour
les morphismes de résidus de la K-théorie
de Milnor-Witt (qui permettent de cal-
culer des morphismes de bord pour les
complexes de Rost-Schmid) et pour le pro-
duit d’intersection de ’anneau de Rost-
Schmid (et en particulier de 'anneau de
Chow-Witt). Grace a ces méthodes, nous
calculons explicitement nos enlacements
quadratiques sur des exemples. Certains
de ces exemples sont inspirés de la théorie
des nceuds, plus spécifiquement des en-
trelacs toriques (notamment les entrelacs
de Hopf et de Salomon).

Title: Motivic knot theory

Keywords: Motivic homotopy theory, Knot theory, Links, Witt groups, Milnor-Witt

K-theory, Rost-Schmid complex.

Abstract: In this thesis, we introduce a
counterpart in algebraic geometry to knot
theory. Since this new theory uses motivic
homotopy theory (specifically, quadratic
intersection theory), we name it motivic
knot theory. We focus on motivic linking,
which means that we study how two dis-
joint closed F-subschemes of an ambient
F-scheme can be intertwined, i.e. linked
together (where F is a perfect field). In
knot theory, the linking number of an ori-
ented link with two components (i.e. of
two disjoint oriented knots) is an integer
which counts how many times one of the
components turns around the other com-
ponent. We define counterparts in alge-
braic geometry to oriented links with two
components and to the linking number;
we call these latter counterparts quadratic
linking degrees. Our quadratic linking de-
grees are not necessarily integers; the ones

we study the most take values in the Witt
group of the ground field F, which is a
group of equivalence classes of symmetric
bilinear forms over F' (or equivalently, of
quadratic forms over F', when the char-
acteristic of F is different from 2). Af-
ter answering questions which naturally
arise from these quadratic linking degrees,
we devise methods to compute them.
These methods rely on explicit formulas
for the residue morphisms of Milnor-Witt
K-theory (from which boundary maps
for the Rost-Schmid complexes are con-
structed) and for the intersection prod-
uct of the Rost-Schmid ring (and in par-
ticular of the Chow-Witt ring). Using
these methods, we explicitly compute our
quadratic linking degrees on examples.
Some of these examples are inspired by
knot theory, specifically by torus links (in-
cluding the Hopf and Solomon links).

Université Bourgogne Franche-Comté

32 avenue de I'Observatoire
25000 Besangon

UBFC /%Eﬂ

UNIVERSITE —
BOURGOGNE FRANCHE-COMTE






Introduction

Knot theory emerged in the end of the nineteenth century and is still widely
studied today. Motivic knot theory is a new theory which begins with
this thesis and is a counterpart in algebraic geometry to knot theory. We
call it motwic knot theory because it relies heavily on motivic homotopy
theory (specifically on quadratic intersection theory). Before we describe
the contents of this thesis, let us recall some notions from these theories we
have mentioned.

Knot theory

Knots in knot theory are similar to knots in everyday life, except that the
two ends of the piece of string are glued together and the string has no
thickness, so that a knot is an embedding of the circle S' in R3, or rather
in the 3-sphere S* (which is R? with a point at infinity). Knots have two
possible orientations (see Figure on page [23| for the orientations of the
trivial knot (i.e. the circle), which is called “unknot”) and oriented knots
(i.e. knots with a fixed orientation) are important objects of study in knot
theory.

In addition to (oriented) knots, knot theorists are also interested in
(oriented) links, which are finite disjoint unions of (oriented) knots (which
are called the components of the link). Of particular interest to us is the
linking number of an oriented link with two components, which is an integer
in Z which counts the number of times one of the components turns around
the other component (the sign indicating the direction it turns in). The
absolute value of the linking number does not depend on the orientations
(but it is important to have orientations in order to compute it). The linking
number has several applications outside of mathematics, one of which is in
the study of DNA supercoiling (see for instance the article [BOS02]).



INTRODUCTION

Motivic homotopy theory and quadratic
intersection theory

Motivic homotopy theory began in 1999 with Morel and Voevodsky’s article
[MV99] and has already proved very useful (for instance, motivic homotopy
theory was used to prove Milnor’s conjecture and later on its generalisation
the Bloch-Kato conjecture). This theory applies methods from algebraic
topology to algebraic geometry, which is why it is particularly useful for
our endeavor: creating a counterpart to knot theory in algebraic geome-
try. We are particularly interested in a theory which is central in motivic
homotopy theory: quadratic intersection theory. In quadratic intersection
theory, instead of considering Z-linear combinations of subvarieties of a
scheme, we consider subvarieties together with coefficients in Milnor-Witt
K-theory graded rings (which are constructions with a deep relationship
with motivic homotopy theory, see [Morl2, Corollary 1.25]) together with
“twists” which are very useful for considerations pertaining to orientations.
The term “quadratic” comes from the fact that for every perfect field F' and
for all n < 0, the n-th Milnor-Witt K-theory group KMW(F) is canonically
isomorphic to the Witt group W(F') and the ring K)™W(F) is canonically
isomorphic to the Grothendieck-Witt ring GW(F); the Witt ring W(F’) and
Grothendieck-Witt ring GW(F) being constructed from symmetric bilinear
forms on F', or equivalently from quadratic forms on F' if the characteristic
of F'is different from 2. Milnor-Witt K-theory comes with residue mor-
phisms from which “boundary maps” are constructed in quadratic intersec-
tion theory. These boundary maps, together with the intersection product
in quadratic intersection theory, which is the product of the “Rost-Schmid
ring”— which generalises the “Chow-Witt ring” and is the direct sum of the
“Rost-Schmid groups”— are tools which are crucial for this thesis.

A bird’s-eye view of the thesis

In this thesis, we define counterparts in algebraic geometry to oriented links
with two components and to the linking number. In a sense, we answer
the question “How many times does this closed F'-subscheme turn around
this other closed F-subscheme in this ambient F-scheme?” (where F'is a
perfect field and the two closed F-subschemes in question are disjoint). Our
answer is an element of the Witt group W(F') (thus is an integer in the case
F =R, but not in general) or of the Grothendieck-Witt group GW(F’) or
of the first Milnor-Witt K-theory group KMW(F), or is a couple of such
elements (depending on the context).
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A bird’s-eye view of the thesis

The first counterpart to the linking number we present in this thesis
is the ambient quadratic linking degree. It is thus named because it is
obtained from an element (called the ambient quadratic linking class) of
a Rost-Schmid group of the ambient F-scheme (similarly to the linking
number which can be obtained from an element of a singular cohomology
group of the ambient 3-sphere S). In the cases which are studied in this
thesis, the ambient quadratic linking degree is in the Witt group W(F') or
in the Grothendieck-Witt group GW (F').

The other counterpart to the linking number (or rather to the linking
couple, whose components are the linking number up to sign) we present in
this thesis is the quadratic linking degree couple. This couple is obtained
from an element (called the quadratic linking class) of a Rost-Schmid group
of the link (similarly to the linking couple which is obtained from an element
of a singular cohomology group of the link). In the cases which are studied
in this thesis, each of the components of the quadratic linking degree couple
is in W(F), in GW(F), or in KMV (F).

Unlike the quadratic linking class and the ambient quadratic linking
class which can be defined in a rather general context, the ambient quadratic
linking degree requires knowledge of the Rost-Schmid group in which the
ambient quadratic linking class lives (namely, an isomorphism between this
group and a well-known group, such as W(F')) and the quadratic linking
degree couple requires knowledge of the Rost-Schmid group in which the
quadratic linking class lives (namely, an isomorphism between this group
and a well-known group, such as W(F) & W(F)).

Thus, the ambient quadratic linking degree and the quadratic linking de-
gree couple complete each other well, since the former only requires knowl-
edge of Rost-Schmid groups of the ambient F-scheme (which is useful in
situations in which the Rost-Schmid groups of the link are not well-known)
while the latter only requires knowledge of a Rost-Schmid group of the link
and the fact that some Rost-Schmid groups of the ambient F-scheme are
zero (which is useful in situations in which the Rost-Schmid groups of the
ambient F-scheme are not well-known).

Since the ambient quadratic linking degree and the quadratic linking
degree couple depend on the orientation of the oriented link, we also define
“invariants of the quadratic linking degree”. These invariants are quantities
computed from the ambient quadratic linking degree or the quadratic link-
ing degree couple which do not depend on the orientation of the oriented
link and thus anwer more accurately the question “How many times does
this closed F-subscheme turn around this other closed F-subscheme in this
ambient F-scheme?”. In knot theory, the absolute value of the linking num-
ber is the answer to how many times one knot turns around another knot,

7
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and it answers completely this question since it is the only information we
can get from the linking number which does not depend on the choices of
orientations. In motivic knot theory, it is much harder to find interesting
invariants of the quadratic linking degree. We find several such invariants
by looking closely at the structure of the Witt group W(F') and at the
structure of the Grothendieck-Witt group GW(F).

After we define these new mathematical objects and prove results which
answer questions which naturally arise from these, we turn to computations.
There were two main difficulties to overcome in order to be able to compute
the ambient quadratic linking degree, the quadratic linking degree couple
and their invariants:

e The quadratic linking class (which is an intermediate step both for the
ambient quadratic linking degree and for the quadratic linking degree
couple) is defined as the image by a boundary map of an intersection
product in quadratic intersection theory, but the definitions of the
intersection product and of the boundary map are not well-suited to
computations. We gave an explicit definition (i.e. one well-suited
to computations) of the residue morphisms of Milnor-Witt K-theory
(and proved that it is equivalent to the classical definition) which
enabled computations of the boundary maps in the situations in which
we need them. A recent formula also enabled computations of the
intersection product in some of the situations in which we need it, so
that computing the quadratic linking class became possible in several
situations.

e To get the ambient quadratic linking degree or the quadratic linking
degree couple from the quadratic linking class, we need explicit (and
computable) isomorphisms between some Rost-Schmid groups and
well-known groups (such as W(F')). This has taken some work (and
will continue to take some work) since most results on the structure of
Rost-Schmid groups are abstract results (in the sense that they show
that a Rost-Schmid group is isomorphic to a well-known group in a
way which does not provide an isomorphism between these groups).

In this thesis, we present methods to compute the quadratic linking
class, the ambient quadratic linking class, the ambient quadratic linking
degree and the quadratic linking degree couple in some cases (in which the
ambient quadratic linking degree takes values in the Witt group W(F’) and
the quadratic linking degree couple takes values in W(F) & W(F)). We
then make explicit computations of these and of invariants of the quadratic
linking degree on several examples. The first of these examples, the Hopf



Outline of the thesis

link, is a simple example over any perfect field. The second example is rather
a family of examples, which we call binary links, over any perfect field of
characteristic different from 2, which we have created in order to realise
classes of binary quadratic forms in W(F') as ambient quadratic linking
degrees (and also as components of quadratic linking degree couples) and
to showcase the usefulness of an invariant of the quadratic linking degree
we have defined. (Note that classes of unary quadratic forms in W(F) can
be realised as ambient quadratic linking degrees (and also as components
of quadratic linking degree couples) of variants of the Hopf link.) The third
family of examples, which we consider over the field R of real numbers, is
inspired by knot theory: it is a family of examples, indexed by n € N, which
is a counterpart to a family of links in knot theory (which is also indexed
by n € N), and verifies that the absolute value of the ambient quadratic
linking degree (which is in W(R) ~ Z) of the n-th member of this family
(which is equal to n) is equal to the absolue value of the linking number of
its counterpart in knot theory. The same is true of the absolute value of
each component of the quadratic linking degree couple of the n-th member
of this family.

Outline of the thesis

We now discuss the contents of this thesis in some more detail.

Let us begin by highlighting the fact that there is a list of notations on
page [17] which recalls usual notations. Notations which are specific to this
thesis are introduced at the beginning of the section they are used in if they
are local notations and in environments (especially Notation environments)
if they are global notations. In any case, all important notations used in this
thesis are referenced (with page numbers) in the Index of notations and all
important words and phrases used in this thesis are referenced (with page
numbers) in the General index (you may find these at the end of this thesis).

This thesis is divided into two parts.

Part |l Mathematical background, presents material which is important
for the development of motivic knot theory. Most of this material is not new,
with an important exception: Theorem [2.46) which enables the computation
of the residue morphisms of Milnor-Witt K-theory (which we also included
in our preprint [Lem23|). In Chapter [l we present the aspects of knot
theory and higher-dimensional knot theory which are important for the
development of motivic knot theory. In Chapter [2, we present the Witt
ring, the Grothendieck-Witt ring and the Milnor-Witt K-theory ring. In
this chapter we also prove Theorem which will be used to compute
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boundary maps in Chapters [6] and [7] In Chapter 3] we present the aspects
of quadratic intersection theory which are useful for the development of
motivic knot theory.

Part [T, Motivic linking, is the beginning of motivic knot theory. In this
part, we define oriented links with two components in algebraic geometry
and we study their linking, i.e. how their components are intertwined.
Everything in this part is new (note that a study of oriented links of type
(AZ\ {0}, A%\ {0},A% \ {0}) was also included in our preprint [Lem23]).

In Chapter 4] we define counterparts in algebraic geometry to oriented
links with two components (i.e. couples of disjoint oriented knots) and to
the linking class (from which the linking number and the linking couple
can be defined). We call this latter counterpart the quadratic linking class.
The quadratic linking class is an interesting object of study because it
contains the linking information of the oriented link (i.e. the information
about how its components are intertwined) and does not depend on any
convention, unlike the ambient quadratic linking degree and the quadratic
linking degree couple. This allows the quadratic linking class to be defined
in a coherent manner in a very wide variety of contexts. More precisely,
we can associate a quadratic linking class to any couple (Z, Z3) of disjoint
irreducible smooth finite-type closed F-subschemes of same dimension in an
irreducible smooth finite-type F-scheme X (with F' a perfect field) which is
equipped with orientation classes of the normal sheaves of Z; and Z, in X
(in particular, the normal sheaves of Z; and Z5 in X need to be orientable,
which means that their determinants need to be isomorphic to squares).
One of the reasons behind our statement that the quadratic linking class
is defined in a coherent manner is Theorem the pullback along a
smooth morphism of the quadratic linking class of an oriented link with two
components is the quadratic linking class of the pullback of this oriented
link (under some minor additional assumptions). We end this chapter by
studying some special settings in which the study of the quadratic linking
class seems particularly interesting.

In Chapter [p] we define counterparts in algebraic geometry to the linking
number and to the linking couple, which we call respectively the ambient
quadratic linking degree and the quadratic linking degree couple. The inclu-
sion of the first component of the oriented link in the ambient F-scheme
induces a morphism of Rost-Schmid groups which takes the part of the
quadratic linking class which lives over this first component to what we
call the ambient quadratic linking class. Note that the inclusion of the
second component of the oriented link in the ambient F-scheme induces
a morphism of Rost-Schmid groups which takes the part of the quadratic
linking class which lives over this second component to the opposite of the

10



Outline of the thesis

ambient quadratic linking class. The ambient quadratic linking class, like
the quadratic linking class, does not depend on any convention. However,
both of these are hard to understand (or rather their values are hard to un-
derstand), since it is difficult to compare elements of Rost-Schmid groups
(especially in the case of the quadratic linking class, since it lives in a Rost-
Schmid group of the link). This is why we introduce the ambient quadratic
linking degree (respectively the quadratic linking degree couple), which is
obtained from the ambient quadratic linking class (resp. the quadratic link-
ing class) by an isomorphism between the Rost-Schmid group in which it
lives and a well-known group. These are easier to understand (in the sense
that comparisons of their values on different oriented links are easier to
make), at the price of the introduction of a convention: the choice of the
above-mentioned isomorphism (since there are several such isomorphisms
in general). In the case of the ambient quadratic linking degree, this means
that we fix a convention for the ambient F-scheme (an isomorphism between
one of its Rost-Schmid groups and a well-known group) but in the case of
the quadratic linking degree couple the situation is more complicated: we
need to fix a convention for each link (an isomorphism between one of
its Rost-Schmid groups and a well-known group) in a coherent manner (so
that we can compare the quadratic linking degree couples of different links).
This is why we introduce the notion of oriented links of type (Y7, Y5, X):
oriented links in the ambient F-scheme X together with a parametrisation
¢1 1 Y1 — X of their first component (i.e. a closed immersion ¢; : Y, — X
whose image is their first component) and a parametrisation ¢y : Yo — X of
their second component (i.e. a closed immersion ¢, : Y2 — X whose image
is their second component). By using the couple of orientation classes and
the couple of parametrisations of an oriented link of type (Y1, Y5, X), we
obtain an isomorphism between the twisted Rost-Schmid group in which
its quadratic linking class lives and the direct sum of an untwisted Rost-
Schmid group of Y] and of an untwisted Rost-Schmid group of Y, and it
suffices to fix once and for all an isomorphism between this direct sum and a
well-known group in order to have a quadratic linking degree couple which
is defined in a coherent manner for all oriented links of type (Y1, Ys, X).
We end this chapter with the creation of invariants of the quadratic linking
degree, which are quantities computed from the ambient quadratic linking
degree or from the quadratic linking degree couple which do not depend on
the orientations (nor on the parametrisations in some cases) of the oriented
link (of a certain type in the case of the quadratic linking degree couple).
See Propositions and for simple invariants of the quadratic link-
ing degree and Theorems and for more involved and potentially
more interesting invariants of the quadratic linking degree. In Section

11



INTRODUCTION

we give examples (over the field Q of rational numbers) which show the
usefulness of X5 (applied to the ambient quadratic linking degree or to a
component of the quadratic linking degree couple (in W(Q))) which is the
first of these more involved invariants. More precisely, we show that >, can
distinguish between infinitely many oriented links. In Propositions [5.26
and [5.31] we create complete invariants of the quadratic linking degree over
the field R of real numbers (for the ambient quadratic linking degree, and
for the quadratic linking degree couple when none of its components is in
KW (R)). By “complete invariants”, we mean invariants which capture all
the information in the ambient quadratic linking degree or in the quadratic
linking degree couple which does not depend on the orientations.

In Chapter [0} we give methods to compute the quadratic linking class
(see Theorem , the ambient quadratic linking class (see Corollary ,
the ambient quadratic linking degree (see Theorem and the quadratic
linking degree couple (see Theorem [6.4]) in the case A%\ {0} UAZ\ {0} —
A%\ {0} under reasonable assumptions on the oriented link (and under
assumptions on j; and js, which parametrise different (coherent) versions
of the quadratic linking class etc.). We also list other cases (in the beginning
of the chapter) in which similar theorems can be established (and have not
been established yet due to lack of time).

In Chapter [7} we give examples of oriented links in the case A%\ {0} U
AZ\ {0} — A%\ {0} and compute the quadratic linking class, the ambient
quadratic linking class, the ambient quadratic linking degree, the quadratic
linking degree couple and invariants of the quadratic linking degree on these
examples. We begin by a simple example (the Hopf link, see Section
which is defined over any perfect field F', then we consider a family of ex-
amples (the binary links, see Section which are defined over any perfect
field of characteristic different from 2 and which show that the class of any
binary quadratic form in W(F') can be realised as an ambient quadratic
linking degree (and as a component of a quadratic linking degree couple);
the Hopf link and its variants already show that the class of any unary
quadratic form in W(F') can be realised as an ambient quadratic linking
degree (and as a component of a quadratic linking degree couple). Finally,
in Section we consider a family of examples over R which is inspired by
knot theory (specifically, by the torus links 7'(2,2n)). More examples could
be tackled but have not been tackled yet due to lack of time.

Finally, let us highlight the fact that there is a list of future works on
page |16| which references (with page numbers) the Future work environ-
ments in this thesis.

12
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List of Notations

We denote by:

N the positive integers (e.g. 1 € N)

Ny the nonnegative integers (e.g. 0 € Ny)

Z the integers (e.g. —1 € Z)

Q the rational numbers (e.g. — E Q)

R the real numbers (e.g. m € R)

C the complex numbers (e.g. i € C)

R" the n-th (cartesian) power of R (Where n € N)

S the set {(z1,...,2,) € R", fo =1} (a.k.a. unit (n — 1)-sphere)
i=1

KUK, the union of the disjoint subsets K; and K, of a set

{1,...,n} the set whose elements are the integers m such that 1 < m <mn

|z the floor of x € R (i.e. the greatest integer n such that n < x)

[z] the ceiling of z € R (i.e. the least integer n such that n > x)

R* the group of units (a.k.a. invertible elements) of the ring R

char(R) the characteristic of the ring R (e.g. char(Q) = 0)

Spec(R) the spectrum of the ring R (as a scheme)

A% the scheme Spec(Flxy,...,x,]) (a.k.a. affine n-space)

AN\ {0} the affine n-space minus the origin (as a scheme)

Proj(R) the projective spectrum of the ring R (as a scheme)

P the scheme Proj(F[xzo,...,z,]) (a.k.a. projective n-space)

Iy the stalk of the sheaf F at the pomt p (and Ox,, = (Ox),)

k(p) the residue field of the point p of a scheme

ker(f) the kernel of the group morphism f (i.e. ker(f) = {z, f(x) = 0})

im(f) the image of the group morphism f (i.e. im(f) = {y,3z, f(x) =y})
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Chapter 1

Knot theory

Before we develop motivic linking in Part [[Il — a counterpart in algebraic
geometry to classical linking — we introduce in this chapter knot theory
(especially classical linking) to readers who are unfamiliar with it, in order
to give the intuition behind motivic linking (and more generally motivic
knot theory). In contrast to the following chapters, this chapter is rather
informal, as its goal is to present the ideas in knot theory which are of
particular interest for the development of motivic knot theory. If you wish
to know more about knot theory, we recommend these five introductory
books: [Ada94|, [Cro04], [Lic97], [Mur96], [Rol90].

In Section we paint the big picture of what knot theory consists of,
while in Section [1.2) we give formal definitions of important notions in knot
theory. In Section we focus on the linking number, which is the link
invariant to which we create (and study) counterparts in Part [[Il Section
focuses on torus links (from which all link classes which can be rep-
resented by complex algebraic varieties can be constructed), while Section
presents the fact that all link classes can be represented by real alge-
braic varieties, whose polynomial equations can be effectively determined.
Finally, in Section [1.6] we present higher dimensional knot theory and a
generalisation of the linking number.

1.1 What is knot theory?

You probably already encountered knots in your life (for instance, to tie
your shoelaces). You also probably already encountered links (for instance,
the links in a necklace or in a bracelet).

Knot theory is the study of knots and links. In knot theory, knots differ
slightly from knots in real life: the two ends of the piece of string (or rope,
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1. KNOT THEORY

etc.) are glued together and the string has no thickness. More formally, a
knot is an embedding of the circle S! in R? (or in S?; see below for details)
and a link is a finite disjoint union of knots.

The study of given knots or links goes back centuries, but the systematic
study of knots and links began at the end of the nineteenth century. Indeed,
that is when the classification of knots and links began. The goal of a
classification of a collection of objects is to gather these objects together in
classes which verify the following:

e When given an object of this collection, it is possible to determine to
which class it belongs.

e The objects in a class verify the same properties (among the properties
which interest you).

This means that once the classification is (at least partially) done, you can
easily determine the properties of an object (which has been classified) by
determining to which class it belongs then looking up the properties which
are verified by this class of objects. This way of thinking (by classifying)
is common in mathematics, but also in other sciences and in real life (with
less precision).

In knot theory, the collection of objects is the collection of oriented
links (which includes oriented knots). An oriented knot is a knot with a
direction in which to follow the knot (such as the clockwise direction or
the counterclockwise (a.k.a. trigonometric) direction for the circle) and
an oriented link is a link whose components/knots are all oriented (thus
a link with n components has 2" possible orientations). The properties
of oriented links which interest knot theorists are invariant under ambient
isotopy (a relationship between oriented links, see below for details) hence
the classes of oriented links are their classes for the equivalence relation of
being ambient isotopic.

See Figure[L.1]for the two possible orientations of the unknot (the circle).

It is hard (perhaps impossible) to classify every link (or even every knot)
in a meaningful way, so a link invariant (i.e. a characteristic of links which
is invariant under ambient isotopy) which takes values in the nonnegative
integers was chosen to order the classification (by ascending values), in order
to set realistic classification goals (classifying all links with a value of this
characteristic below a given value, then increasing this value to set a new
goal when this goal is achieved). This characteristic (which in a sense is
one way of measuring the complexity of a link) is the crossing number of a
link: the minimum of the number of times a two-dimensional picture of the
link crosses itself. It is important to take a minimum since two different
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1.1. What is knot theory?

(a) The unknot with the trigono-
metric (a.k.a. counterclockwise)
orientation.

(b) The unknot with the clock-
wise orientation.

Figure 1.1 — The unknot (a.k.a. circle) with the two orientations.

Figure 1.2 — The Hopf link is of crossing number 2 (you can see on this
drawing that its crossing number is at most 2).

link diagrams (i.e. two-dimensional pictures of the link) may have different
numbers of times the link diagram crosses itself. The links with crossing
number 0 are called unlinks (one example of which is the unknot). There
is no link with crossing number 1. The Hopf link has crossing number 2
(see Figure and the trefoil knot has crossing number 3 (see Figure[L.3).
When two strands of a knot cross in a picture, two lines are drawn around
the strand which is on top (i.e. nearer to you) and when two different knots
cross each other in a picture, the knot on top (i.e. nearer to you) is the one
whose colour you see at the crossing.

As the author writes these lines, the links with crossing number at most
16 have been classified (see [HTW9g| and [Hos05]). Tables with all the
classes of links whose components are prime (i.e. are not connected sums of
more than one knot), topologically linked (i.e. there is no homeomorphism
H of R? onto itself such that the image by H of one of the components
of the link and the image by H of another of the components of the link
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1. KNOT THEORY

f
I\

Figure 1.3 — The trefoil knot is of crossing number 3 (you can see on this
drawing that its crossing number is at most 3).

can be separated by a plane) and whose crossing number is between 0 and
16 are available in Knotscapdﬂ. There are 2 518 665 such classes of links
(including 1 701 936 classes of knots).

You can also find herd?]a table of the classes of prime knots with crossing
number at most 12, except for the unknot, the mirror images of knots in
the table, the knots with a reversed orientation from knots in the table, and
the mirror images with a reversed orientation from knots in the table.

The knot which is denoted ¢, in this table is the m-th knot of crossing
number ¢ (there are other names available by ticking squares in the Nomen-
clature section (and the meaning of each nomenclature is explained when
clicking on it)). Several invariants of oriented knots are available in this
table.

You can also find herd| a table of the classes of links with prime com-
ponents which are topologically linked and have crossing number at most
11, except for knots (which are in the previous table), the mirror images
of links in the table, the links with a reversed orientation from links in the
table, and the mirror images with a reversed orientation from links in the
table.

The link which is denoted Lckm{ey,...,e,} in this table is the m-th
link of crossing number ¢ which is alternating if k¥ = a (which means that
there exists a diagram of this link such that each component goes over then
under then over then under etc.), nonalternating if k& = n; the &; (which
are equal to 0 or 1) denote the changes in orientations from Lckm{0,...,0}
(click on Name in the Nomenclature section for more information; there are

'https://web.math.utk.edu/ morwen/knotscape.html
’https://knotinfo.math.indiana.edu/
3https://linkinfo.sitehost.iu.edu/
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1.2. Knots and links

other names available in the Nomenclature section). Several invariants of
oriented links are available in this table.
Let us now go into details!

1.2 Knots and links

Knots are topological subspaces of R? or of the 3-sphere S* which are home-
omorphic to S! and verify an additional tameness property (for instance,
smoothness). The 3-sphere S? can be constructed by adding a point at
infinity to R3, which is why it does not matter if we consider knots as be-
ing in R? or in S3. In the following, we will consider knots as topological
subspaces of the 3-sphere S?.

Definitions 1.1 (Knots and Links).

e A knot is the image K of a smooth (i.e. indefinitely differentiable) map
S' — S? such that the induced map S! — K is a homeomorphism.

e A link is a finite disjoint union of knots, which are called the compo-
nents of the link.

Knot theorists are interested in equivalence classes of links for the fol-
lowing equivalence relation (which corresponds well to what happens when
you move links around in real life).

Definition 1.2 (Ambient isotopy). An ambient isotopy from a topolog-

ical subspace N; of S® to a topological subspace N, of S? is a contin-

uwous map H : S§* x [0,1] — S? such that, denoting for all ¢t € [0,1]
3 3

H,: {Sx : H(Sx,t)’ Hy is the identity, H;(/N7) = Ny and for all ¢ € [0, 1],

H,; is a homeomorphism. If there is an ambient isotopy from N; to N5 then

N7 and N, are said to be ambient isotopic.

This is indeed an equivalence relation (take (x,t) — z for reflexivity,
(z,t) = H,; '(x) for symmetry and (z,t) — Hyo(H,(x,t),t) for transitivity).

Let us now talk about orientation.

Similarly to the circle S* which can be oriented in the clockwise direction
or in the counterclockwise (a.k.a. trigonometric) direction, a knot has two
possible orientations. The choice of an orientation of a knot K is the choice
of a generator of the singular homology group H;(K) ~ H,(S') ~ Z.

Definition 1.3 ((Homological) oriented fundamental class). An oriented
knot is a knot K together with a generator of the singular homology group
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1. KNOT THEORY

H,(K) which is called the (homological) oriented fundamental class of K.
An oriented link is a link whose components are oriented.

The homological oriented fundamental class (or oriented fundamental
class for short) is sometimes simply called the fundamental class, but we
will always call it the oriented fundamental class to stress out the fact that
it depends on the orientation of the knot.

This definition may seem rather abstract compared to the informal talk
on orientations which was made earlier, but it is equivalent to the more
visual definition of an orientation, or rather of an orientation class, of a
knot as the equivalence class of an orientation of its tangent bundle, i.e.
of the datum for each point p of K of a basis (e,) of the tangent space
T,K ~ R of K at p such that the (e,) vary continuously with p, for the
following equivalence relation: ((e,))pex and ((e;,))pex are equivalent if for
every point p in K there exists a positive real number 7, > 0 such that

e, = Tp.ep, which means visually that the arrow e, and the arrow e;, point

in the same direction. We denote by ((e,))ycx the class of ((e))pex-

Indeed, a generator of H;(K) is the class of a continuous map o : [0, 1] —
K which verifies that o(1) = ¢(0) and that its restriction to [0,1] is a
bijection with K. The homological oriented fundamental class of K is the
class in Hy(K) of such a o which goes in the direction pointed by the arrows
of the orientation (class) of the tangent bundle of K, and conversely the
orientation class of the tangent bundle of K is the one whose arrows point
in the direction in which o goes (as time moves from 0 to 1).

Note that since there is an orientation class ((ay, by, ¢,))pess of the ambi-
ent space S* (which verifies that at every point its tangent space is isomor-
phic to R?) which is fixed once and for all (by the “right-hand rule”), there is
an equivalent definition of orientation which uses the normal bundle of the
knot in the ambient space S? instead of its tangent bundle. An orientation
of the normal bundle of a knot K in S? is the datum for each point p of
K of a basis (fp,g,) of the normal space (NxS?), ~ R? of K in S* at p
such that the (f,,g,) vary continuously with p. An orientation class of a
knot K is an equivalence class of orientations of the normal bundle of K
in S* for the following equivalence relation: ((fp, gp))pex and ((f}, g}))pex
are equivalent if for every point p in K there exists a 2 X 2 real matrix A,

/
with positive determinant such that (g?) = A, (gp ) The relationship
p

between ((e,))pex and ((fp, gp))perx (When they give the same orientation
class of K) is that for every point p in K, the basis (e,, f,, g,) of the tangent
space T,S* = T,K & (NgS?), of S* at p verifies that there exists a 3 x 3
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1.3. The linking number

€p ap
real matrix B, with positive determinant such that | f, | = B, | b,
9p p

Remark 1.4. Note that having an orientation class ((e,)),ex of a knot K is
equivalent to having a cohomological oriented fundamental class of the knot
K, i.e. a generator of the singular cohomology group H'(K) ~ H'(S!) ~ Z.
Indeed, the cohomological oriented fundamental class of the knot K is the
class of the volume form w such that for every point p in K: w(p) = det(,)

(the determinant in the basis (e,)) and conversely the orientation class (e,,)
of the tangent bundle of K is the one such that det(,) = w(p).

Since ambient isotopy preserves orientation classes, we can consider
equivalence classes of oriented links for ambient isotopy. This is what knot
theorists strive to classify (see Section [L.I). Knot theorists also strive to
compute link invariants: quantities which are computed from an oriented
link and only depend on the equivalence class of the oriented link for am-
bient isotopy. In the next section, we consider such a link invariant for
oriented links with two components: the linking number.

1.3 The linking number

The linking number is an invariant of oriented links with two components
which counts the number of times one of the components turns around
the other component. The sign of the linking number indicates in which
direction this component turns around the other component. The linking
number has several applications outside of mathematics, one of which is in
the study of DNA supercoiling (in which the linking number is sometimes
called the topological entanglement); see for instance the article [BOS02].

In Chapters[dand [5| we will construct counterparts in algebraic geometry
of the linking number and in Chapters [f] and [7] we will compute these
counterparts. Before we do this, let us introduce the linking number.

See Figure for an example of a link of linking number 1 (the Hopf
link) and Figure for an example of a link of linking number 2 (the
Solomon link).

We say that a link with two components is topologically unlinked (or
split) if there is a homeomorphism H of R® = S§*\ {x} onto itself such
that the images by H of the two components of the link can be separated
by a plane (where % is a point which is not on the link). Note that links
with two components which are topologically unlinked are of linking num-
ber 0 (see Subfigure for an example) but the converse is false: the
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1. KNOT THEORY

Figure 1.4 — The Hopf link is of linking number 1.

Figure 1.5 — The Solomon link is of linking number 2.

Whitehead link in Subfigure is a counterexample. There is however
a weaker notion which is equivalent to being of linking number 0: being
homologically unlinked (or algebraically split). We say that a link with two
components is homologically unlinked if one of the components of the link
is the boundary of an orientable surface which is disjoint from the other
component. See [BOS02] (in which the “linking number” is the opposite of
the linking number (due to their choice of the “left-hand rule” instead of
the more commonly used “right-hand rule”) but this does not change the
instances in which the linking number is equal to 0)).

The fact that being homologically unlinked implies being of linking num-
ber 0 will come directly from the following definition of the linking number,
which uses the notion of Seifert surface of an oriented knot. A Seifert sur-
face of an oriented knot K is a compact connected oriented surface whose
oriented boundary is the oriented knot K. The following three steps give
the linking number of two disjoint oriented knots K; and K, (i.e. of the
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1.3. The linking number

(a) The unlink
(b) The Whitehead link

Figure 1.6 — The unlink and the Whitehead link are both of linking number
0 but the Whitehead link is topologically linked.

oriented link K; U K5).

e Pick a Seifert surface S5 for K5 such that the oriented intersection
of K; with S5 is a finite number of oriented points. This is always
possible (and the oriented intersection of K; with Sy is equal to the
oriented intersection of Sy with K7).

e Let P be one of the oriented points mentioned above. We want to
associate ep € {—1,1} to P by taking into account the orientation of
the oriented point P. To do this, place yourself so that near the point
P, the oriented knot K is coming towards you:

— If the Seifert surface Sy is oriented in a trigonometric (a.k.a.
counterclockwise) manner, set ep := 1 (see for instance Subfigure
1.7al).

— Otherwise (i.e. the Seifert surface Sy is oriented in a clockwise
manner), set ep := —1 (see for instance Subfigure [1.7b)).

e The linking number is the sum (over the oriented points P of the
oriented intersection of K with S) of the ep.

See [Rol90, Chapter 5, Section D] for this definition of the linking num-
ber (more precisely, (2) and (5) at the beginning of the cited section, (2)
being the visual definition (described in [Rol90] with a bicollar of a Seifert
surface) and (5) being the more formal definition as the intersection num-
ber of Sy with K (see below for an even more formal variant of this defi-
nition)). The fact that ep is as described above comes from the fact that
ep = 1 means that the orientation of the direct sum of tangent spaces
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1. KNOT THEORY

2y 2

(a) The red (dotted) Seifert sur-
face is oriented in a trigono-
metric (a.k.a. counterclockwise)
manner.

(b) The red (dotted) Seifert sur-
face is oriented in a clockwise
manner.

Figure 1.7 — In the two examples above, near the intersection of the blue
knot (on the left) with the red (dotted) Seifert surface (for the red knot),
the blue knot is coming towards you.

Tp(Ky) @ Tp(S2), which is canonically isomorphic to the tangent space
Tp(S?), corresponds to the orientation given by the “right-hand rule”.

Note that in |[Rol90, Chapter 5, Section D], knots are considered to
be polygonal rather than smooth, but this is inconsequential since every
smooth knot is ambient isotopic to a polygonal knot (and vice versa) and
the linking number is a link invariant.

The formal version of the definition above is as follows. We denote by L
the oriented link whose components are K7 and K5, by N an open tubular
neighbourhood of K5 which is disjoint from K; and by F the complement
of N in §%, ie. E := S*\ N. We can pick a Seifert surface Sy of Ko
which induces a class [Ss] in the singular cohomology group H'(E). The
linking number of L is the cup-product of the class (denoted [K;]) of K,
in H*(E,0F) with [Sy], or rather the image of this cup-product by the
isomorphism H?(E,0F) — 7 which is induced by the orientation of the
ambient space S* (more precisely, the isomorphism H3(FE,0F) — Z in
question is the Kronecker product with (or “evaluation on”) the fundamental
class [F, OF], a.k.a. the cap product with the fundamental class [E, OE]; see
[Bre97, Chapter VI]). Note that [K;]U[Ss] = (—1)?[S2] U[K;] = [Sa] U[K]].

Note that even though this definition is non-symmetric, the linking num-
ber does not depend on the order of the components K; and K, (see [Rol90,
Chapter 5, Section D, Theorem 6]). Further note that the linking number
only depends on the oriented link (not on a choice of Seifert surface for one
of the components); even better, it only depends on the class of the oriented
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link for ambient isotopy (see [Cro04, Theorem 3.8.2]), or even better, on
its class for concordance (which is a weaker equivalence relation than being
ambient isotopic; see [Rol90, Chapter 8, Section F|, especially Exercise 13).

We will introduce a new definition of the linking number which will be
more symmetric and which will only use classes in cohomology, not chains,
so that it will be easier to see that the linking number only depends on
the oriented link. To do this, we use Borel-Moore homology and singular
cohomology (see [BM60] and |[Mas78] for further information on these, as
well as [Bre97] for further information on singular cohomology).

Notation 1.5. Let A C M be Hausdorff topological spaces. We denote by
HBM(M, A) the Borel-Moore homology groups of the pair (M, A) and by
H*(M, A) the singular cohomology groups of the pair (M, A). We denote
HEM(M) := HEM(M,0) and H*(M) := H*(M, ).

We choose to work with these groups because they verify a Poincaré du-
ality theorem which gives an isomorphism H*(M\ B, M\ A) ~ HEM (A, B)
whenever M is an oriented topological manifold of dimension n, B C A are
locally compact closed subspaces of M and 0 < k < n. Note that this is
different from the better-known Poincaré duality theorem for singular ho-
mology H, and Cech cohomology H* which, under the same assumptions
and the extra assumption that A and B are compact, gives an isomorphism
H*(A,B) ~ H,_x(M\ B,M \ A). Indeed, in the former case the closed
subspaces A and B of M are on the homology side of the isomorphism (and
the open subspaces M \ B and M \ A are on the cohomology side) whereas
in the latter case the closed subspaces A and B are on the cohomology side
of the isomorphism (and the open subspaces M \ B and M \ A are on the
homology side).

This Poincaré duality theorem between Borel-Moore homology and sin-
gular cohomology, together with the Borel-Moore homology long exact se-
quence, straightforwardly imply the following theorem, which we will use
in our new definition of the linking number.

Theorem 1.6. Let M be an oriented topological manifold and A be a
locally compact closed submanifold of codimension ¢ in M. We have the
following long exact sequence, in which the maps are induced by the in-
clusions A — M and M \ A — M except for the maps 0 which are the
boundary maps (a.k.a. connecting morphisms):

. —— H*(M) —— H*(M \ A) —2= H*1=¢(A) —= HF1 (M) — . ..
We directly get the following corollary.
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Corollary 1.7. Let L be a link. We have the following long exact sequence,
in which the maps are induced by the inclusions L — S* and $* \ L — S3
except for the maps 0 which are the boundary maps:

. —— H¥S?) — H*(S?\ L) 2> HF1(L) — HMY(S?) — ...
In particular, the following sequence is exact:
HYS?) = 0— HY(S*\ L) —2> HO(L) — H%(S?*) = 0
i.e. the boundary map 0 : H'(S*\ L) — HY(L) is an isomorphism.
This corollary allows us to give the following definition.

Definition 1.8 (Couple of Seifert classes). Let L be an oriented link with
two components K; and K,. Let [og,] € H°(K;) (respectively [og,] €
H°(K5)) be the element which corresponds to the oriented fundamental
class of K; (resp. K,), which was defined in Definition [I.3] The couple of
Seifert classes of L is the (unique) couple (S, S2) of elements of H'(S*\ L)
such that 0(S1) = ([ox,],0) and 0(S2) = (0, [0k,]) (via the isomorphism
H°(L) ~ HY(K;) ® H°(K,) induced by the inclusions of K; and K, in
L = K, U K,). We call S; the Seifert class of K; (relative to the link L)
and S the Seifert class of Ky (relative to the link L).

By Poincaré duality, S; € H'(S?\ L) ~ HEM(S?, L) is the class of some
surfaces in S whose boundaries lie in the link L; in fact, it is precisely
the class of the Seifert surfaces of K7, and the same is true for S, and K.
See Figure for an example of a couple of Seifert surfaces (which in this
simple example are disks).

Remark 1.9. If you reverse the orientation of K; (respectively of K3) then
[0k, ] (resp. [0k,]) is turned into its opposite hence S; (resp. S) is turned
into its opposite since the boundary map is a group morphism.

Now we can define the linking class, from which we will define the linking
number.

Definition 1.10 (Linking class). Let L be an oriented link with two com-
ponents K7 and K and let (S7,S2) be its couple of Seifert classes, as defined
in Definition The linking class of L is the image by the boundary map
0 : H*(S*\ L) — H'(L) of the cup-product of S; with Sy, i.e. 9(S; U S»).
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1.3. The linking number

Figure 1.8 — The Hopf link with a Seifert surface hatched in blue for the
blue component (on the left) and a Seifert surface dotted in red for the red
component (on the right).

e o °
1 ° °
| | o o
| | °
| | | .
| ° °
e o °
e o

Figure 1.9 — The Hopf link and the oriented intersection of the blue
(hatched) Seifert surface with the red (dotted) Seifert surface.

See Figure for the oriented intersection of the blue Seifert surface
(on the left) with the red Seifert surface (on the right), which is an oriented
purple interval in this drawing. See Figure[I.10|for a portrayal of the linking
class of the Hopf link (by two oriented green points, one of which lies on
the blue component (which was chosen as first component) of the link and
one of which lies on the red component of the link).

Note that the linking class contains as much information as the cup-
product of S; with Sy, since the boundary map 8 : H*(S* \ L) — H*(L) is
injective (see Corollary [1.7|and note that H?(S?) = 0).

Remark 1.11. The linking class is turned into its opposite if you reverse
the order of the components, since Sy U S; = (—1)1(S; U Sy) = =51 U Sy
and the boundary map is a group morphism.

Remark 1.12. If you reverse the orientation of K (respectively of K5)
then the linking class is turned into its opposite since S (resp. Ss) is
turned into its opposite (see Remark [1.9).
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Figure 1.10 — The Hopf link and the oriented boundary of the oriented
intersection of the blue (hatched) Seifert surfaces with the red (dotted)
Seifert surface.

Let us now define the linking number.

Definition 1.13 (Linking number). The linking number of the oriented link
L = K U K, is the image of the part of the linking class of L which is in
H'(K,) by the composite of the morphism 4, : H'(K;) — H?(S*) which is
induced by the inclusion of K in S* and of the isomorphism r : H3(S?) — Z
which corresponds to the “right-hand rule”.

The fact that this definition of the linking number is equivalent to the
definition which was made earlier follows from the stability property of
the cup-product which is described in [Dol95, Chapter VII, 8.10]. Indeed,
in our case this property tells us that the part of the quadratic linking
class 9(S; U Sy) which is in H'(K7) is sent to [K;] U [Sy] by the morphism
H'(K,) — H3(E,0F) which is induced by the inclusion of K in E (since
the oriented knot K7 is the boundary of the Seifert surface S;). Also note
that the isomorphism H?(E,0F) — Z we mentioned earlier depends on the
choice of the (oriented) fundamental class [E,JFE], i.e. on the orientation
of E, and that we implicitly chose the orientation which is induced by the
orientation of S3, i.e. by the isomorphism r : H3(S*) — Z which corresponds
to the “right-hand rule”.

Remark 1.14. If you reverse the orientation of K (respectively of K5)
then the linking number is turned into its opposite since the linking class
is turned into its opposite (see Remark [L.12).

Remark 1.15. Note that the image of the part of the linking class of the
oriented link L = K; U K, which is in H'(K5) by the composite of the
morphism iy : H'(K3) — H?(S*) which is induced by the inclusion of K,
in S* and of the isomorphism r : H3(S®) — Z which corresponds to the
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“right-hand rule” is the opposite of the linking number. Indeed, the linking
class 0(S; U Sy) is in the kernel of the morphism H'(L) — H3(S?) which is
induced by the inclusion of L in S? (see Corollary and this morphism
is the composite of the isomorphism H'(L) — H'(K;) ® H'(K3) (which is
induced by the inclusions of K; and K5 in L = K; U K5) and of the direct
sum of the morphisms i; : H'(K;) — H3*(S?) and iy : H'(Ky) — H3(S?).
(Another way of proving this is to use the more general version of the
stability property of the cup-product (see [Dol95, Chapter VII, 8.19(2)|)
and to identify which part comes from H'(K;) and which part comes from
H'(K,).) It follows from this and from the fact that the linking class is
turned into its opposite if you reverse the order of the components (see
Remark that the linking number does not depend on the order of the

components.

Note that a definition similar to our definition of the linking number is
made between Exercise 8 and Exercise 9 in [Rol90, Chapter 5, Section D],
with an important difference: in Rolfsen’s definition, he considers Seifert
surfaces in the four-dimensional disc D* whose boundary is S* and defines
the linking number as the intersection number of these surfaces (which can
be chosen so as to intersect in a finite number of points since they are
surfaces in D*).

Remark 1.16. Note that the cohomological oriented fundamental classes
lwi,] € HY(K;) of Ky and [wy,] € H'(K>) of Ky (see Remark [L.4) fix an
isomorphism hy : H'(K;) — Z (the isomorphism which sends [wg,] to 1)
and an isomorphism hy : H*(K3) — Z (the isomorphism which sends [wp,]
to 1) respectively. Also note that the morphisms 4, : H'(K;) — H3(S?) and
iy HY(K,) — H3(S?) are surjective since they are in the following exact
sequences (see Theorem [1.6]):

HY(K;) 2> H3(S?) —= H3(S3\ K1) =0

HY(K,) —2> H3(S?) —= H3(S3\ K5) =0

(where H3(S®* \ K;) = 0 and H3(S® \ K3) = 0 since $* \ K; and S? \
K, are orientable connected noncompact manifolds). Therefore, the group
morphisms roiy 0 (hy)™':Z — Z and r oiy 0 (hy) ™' : Z — Z are surjective
hence each is the identity of Z or the opposite (which sends m € Z to —m).
It follows from this, Definition [I.13]and Remark that hy @ hy sends the
linking class of L = K, U K, to (n,n), (n,—n), (—n,n) or (—n, —n), where
n is the linking number of L.
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Definition 1.17 (Linking couple). The linking couple of the oriented link
L = K; U K, is the image of the linking class of L by the composite of
the isomorphism H'(L) — H'(K;) ® H'(K3) (which is induced by the
inclusions of K7 and Kj in L = K; Ll K3) and of the isomorphism hy @ hs :
H'(K:) ® H'(K) = Z ® Z (see Remark [1.16]).

Remark 1.18. If you reverse the order of the components then the linking
couple is either the same (if r o 4y o (hy)™! and 7 o iy o (hy)™! are both
the identity of Z or both the opposite) or is turned into its opposite (if
roiy o (hy)! is the identity of Z and r o iy o (hy)~! is the opposite or vice
versa).

Remark 1.19. If you reverse the orientation of the first component (respec-
tively the second component) of the oriented link then the first component
(resp. the second component) of the linking couple stays the same and
the second component (resp. the first component) of the linking couple is
turned into its opposite.

Finally, let us introduce link homotopy (which was defined by Milnor in
[Mil54]).

Definition 1.20 (Link homotopy). A link homotopy from an oriented link
L =K,U---UK, with n € N components to an oriented link L' = K U
-+ K with n components is the data of n continuous maps Hy,..., H, :
S' x [0,1] — S? such that, denoting for all 7 € {1,...,n} and ¢ € [0, 1],
1 3
it {Sm : Hi(Sﬂf,t)’ foralli € {1,...,n}, H;o(S') = K; and H;;(S*) =
K/, and for all t € [0, 1], the sets Hy4(S"), ..., H,.(S') are pairwise disjoint
(le. foralli # j € {1,...,n}, H;;(S') N H;,(S') = 0). If there is a link
homotopy from L to L’ then L and L’ are said to be link homotopic.

Note that link homotopy is an equivalence relation and that if n = 1 then
it is merely homotopy (hence every two oriented knots are link homotopic).
If n > 2 then two oriented links with n components are link homotopic if
and only if you can deform one continuously into the other while keeping
the n components pairwise disjoint. Note that any oriented link is link
homotopic to an oriented link whose components are all unknotted circles
(a.k.a. unknots). The class of an oriented link for link homotopy describes
how the components of the link are “linked” together, how they turn around
each other.

In the case of oriented links with two components, the linking number
is a complete invariant for link homotopy, i.e. two oriented links with two
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Figure 1.11 — The torus link 7°(2,6) (without orientation on this drawing).

components are link homotopic if and only if they have the same linking
number (see [Mil54] Section 5]).

Note that the unlink (see Subfigure has linking number 0, that the
Hopf link (see Figure has linking number 1 and that the Solomon link
(see Figure[L.5) has linking number 2. The Hopf link (a.k.a. 7'(2,2)) and the
Solomon link (a.k.a. 7'(2,4)) are part of a family of torus links (7'(2, 2n)),en
(see Figure for T'(2,6); for n > 3, T(2,2n) can be pictured as two
intertwined n-gons) which verifies that for all n € N, T'(2,2n) is of linking
number n (see the next section). Thus, the unlink, the family of torus links
(T'(2,2n))nen and the family given by reversing the orientation of one of the
components of T'(2,2n) (with n € N), make up a family of representatives
for the link homotopy classes of oriented links with two components (see
Remark [I.14). We present torus links in the following section.

1.4 Torus links

Torus links are links which can be drawn on the surface of a torus. They
are indexed by couples of integers (p,q) € Z x Z. If d € N is the greatest
common divisor of p and ¢ (by convention, d := 1if p = ¢ = 0) then T'(p, q)
is an oriented link with d components, each of which wraps around the
torus £ times meridionally and ¢ times longitudinally (the signs of p and
q indicating the directions). For further details on the definition of torus
links, see [Mur96, Chapter 7|]. Note that if the greatest common divisor
of p and ¢ is 2, then the linking number of the oriented torus link T'(p, q)

(which has two components) is equal to % See |[BES14, Theorem 4.2] but

note that there is a typo there: their result should be divided by 2 (their
proof consists in counting the number of crossings (which are all positive
here) in the braid representation, but the linking number is the number of
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crossings divided by 2 (when all the crossings are positive), not the number
of crossings).

For each p, ¢ € N, the torus link 7'(p, ¢) is a complex algebraic link, which
means that there is a complex polynomial R, , € C[u,v] and a positive real
number ¢, , > 0 such that:

e R, , vanishes at the origin (0,0) € C?;

e the origin is an isolated singularity for R, ,, i.e. the origin is a singu-
larity for R, , (which means that Bg% and a};% both vanish at the
origin) and there is an open neighbourhood U, , of the origin in C?
such that R, , has no singularity in U, , \ {(0,0)};

e forall0 < e <e¢,,, thereis a diffecomorphism h,,,. : S — S* such that
hpqe(V(Ryq) NS2) = T(p,q), where S? := {(u,v) € C* |u|* + |v]* =
g2} and V(R,,) := {(u,v) € C* R, ,(u,v) = 0}.

In fact, R, , can be chosen to be the complex polynomial u? —v9. Thus, the
torus link T'(p, q) is called the link of the singularity (0,0) of the complex
curve defined by u? —v9. See the classical reference [Mil69] or the historical
account [Dur99].

Note that not many links are complex algebraic links. Indeed, complex
algebraic links are all unions of iterated torus links (see [Ore2l| for the
definition of iterated torus links). However, there is a reasonable way to
define algebraic links in general so that every link is an algebraic link.

1.5 All links are algebraic

In their article [AK81], Akbulut and King defined algebraic links in a similar
manner to complex algebraic links, with two important differences: the
complex polynomial in two variables was replaced with two real polynomials
in four variables and the isolated singularity was replaced with a weakly
isolated singularity.

Definition 1.21 (Algebraic link). A link L is an algebraic link if there are
two real polynomials P, @ € Rz, y, z,t] and a positive real number gy > 0
such that:

e P and Q vanish at the origin (0,0,0,0) € R

e the origin is a weakly isolated singularity of (P, @), i.e. the origin is a
P 9P 9P 9P 9Q 9Q 0Q 0Q

singularity Of (P, Q) (Wthh means that Bz a_y’ 320 Bl Bz 8_y’ 2 ot
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all vanish at the origin) and there is an open neighbourhood U of
the origin in R* such that (P,Q) has no singularity in V(P,Q) N
(U \ {(0,0,0,0)}), where V(P,Q) := {(z,y, 2, t) € R, P(z,y,2,t) =
07 Q($7 y? 27 t) = 0};

e for all 0 < & < g, there is a diffeomorphism h. : S* — S? such that
he(V(P,Q)NS?) = L, where S? = {(x,y, 2,t) € R} 22+ 2+ 22 +1? =
e},

Note that a complex algebraic link is an algebraic link (you can take
the real part of the complex polynomial as P and the imaginary part of
the complex polynomial as (). In their article [AK81|, Akbulut and King
prove that every link is an algebraic link! However, their proof does not
give explicit polynomials P and () as in Definition In his recent paper
[Bod22|, Bode provides an algorithm which gives explicit polynomials P
and @ as in Definition [I.21]

1.6 Higher dimensional knot theory

In this section, we first consider the linking number of higher-dimensional
(smooth) links with two components, then we mention the different contexts
in which higher-dimensional knots and links are studied (to the best of our
knowledge).

Definitions 1.22 ((Higher-dimensional) knots and links).

e Smooth higher-dimensional knots are images of smooth maps from
the m-sphere S to the n-sphere S” for some integers m,n > 1.

e Smooth higher-dimensional links are finite disjoint unions of smooth
higher-dimensional knots which go into the same sphere (but may
come from spheres of different dimensions).

Definition 1.23 (Oriented fundamental class). A higher-dimensional knot
K ~ S™ is oriented if a generator of H°(K) ~ H°(S™) ~ Z has been chosen;
this generator is called the oriented fundamental class of K and is denoted
lok]. A higher-dimensional link is oriented if all its components (i.e. the
knots of which it is a union) are oriented.

Once an orientation of the ambient sphere (i.e. the sphere in which the
considered higher-dimensional links live) has been fixed, a classical way to
define the linking number of a higher-dimensional link L = K; U K, with
two components is as the intersection number of K with a “Seifert surface”
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of K5 (which is not necessarily a surface anymore) or as the intersection
number of a “Seifert surface” of K; with K, (which gives the same number
up to a sign). For this intersection number to be well-defined (and not
always zero), the sum of the dimensions of K; and K, needs to be one
less than the dimension of the ambiant sphere: if K; ~ S™ and K, ~ S",
then they need to lie in S™™ 1. Indeed, we want the intersection of the
dimension m chain K; and of a dimension n+ 1 “Seifert surface” of K5 to be
of dimension 0 in order to obtain an “intersection number” (by identifying
the zeroth homology group of the ambient sphere with Z). See [STS80,
Section 77| for further details on this definition of the higher-dimensional
linking number (and more generally [ST80, Chapter X]| for a discussion of
intersection numbers).

In the case where m = n > 1, we can give a definition of the higher-
dimensional linking number which generalises Definition Let us walk
you through this generalisa