## Motivic knot theory

## Clémentine Lemarié--Rieusset (Université de Bourgogne, France)

August 11, 2023

## What this talk is about

- A new project: develop a theory in algebraic geometry which is to be a counterpart to knot theory, by using tools from motivic homotopy theory. This new theory is called motivic knot theory.


## What this talk is about

- A new project: develop a theory in algebraic geometry which is to be a counterpart to knot theory, by using tools from motivic homotopy theory. This new theory is called motivic knot theory.
- What I have already contributed to this new project: the beginnings of motivic linking ( $\subset$ motivic knot theory), which is a counterpart to linking ( $\subset$ knot theory).


## What this talk is about

- A new project: develop a theory in algebraic geometry which is to be a counterpart to knot theory, by using tools from motivic homotopy theory. This new theory is called motivic knot theory.
- What I have already contributed to this new project: the beginnings of motivic linking ( $\subset$ motivic knot theory), which is a counterpart to linking ( $\subset$ knot theory).
- This has been the subject of my PhD, under the supervision of Frédéric Déglise and Adrien Dubouloz.


## Contents

(1) Classical knot theory (classical linking)

- Knots and links
- The linking number
(2) Motivic knot theory (motivic linking)
- Oriented links in algebraic geometry
- Quadratic intersection theory
- Motivic linking
- Generalisation


## Contents

(1) Classical knot theory (classical linking)

- Knots and links
- The linking number
(2) Motivic knot theory (motivic linking)
- Oriented links in algebraic geometry
- Quadratic intersection theory
- Motivic linking
- Generalisation


Figure: The unknot


Figure: The trefoil knot

## Knot theory in a nutshell

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3 -sphere $\mathbb{S}^{3}$ which is homeomorphic to the circle $\mathbb{S}^{1}$.


## Knot theory in a nutshell

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3 -sphere $\mathbb{S}^{3}$ which is homeomorphic to the circle $\mathbb{S}^{1}$.
- An oriented knot is a knot with a "continuous"local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.


## Knot theory in a nutshell

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3 -sphere $\mathbb{S}^{3}$ which is homeomorphic to the circle $\mathbb{S}^{1}$.
- An oriented knot is a knot with a "continuous"local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.
- A link is a finite union of disjoint knots. A link is oriented if all its components (i.e. its knots) are oriented.


Figure: The Hopf link


Figure: The Solomon link


Figure: The Hopf link


Figure: The Solomon link

The linking number of an oriented link with two components is the number of times one of the components turns around the other component (the sign indicating the direction).


Figure: The Hopf link


Figure: The Solomon link

The linking number of an oriented link with two components is the number of times one of the components turns around the other component (the sign indicating the direction).
The linking number is a complete invariant of oriented links with two components for link homotopy (i.e. $L=K_{1} \sqcup K_{2}$ and $L^{\prime}=K_{1}^{\prime} \sqcup K_{2}^{\prime}$ are link homotopic if and only if they have the same linking number).

## Defining the linking number: Seifert surfaces



## Defining the linking number: Seifert surfaces



The class $S_{1}$ in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{\mathrm{BM}}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot $K_{1}$ is the unique class that is sent by the boundary map to the (oriented) fundamental class of $K_{1}$ in $H^{0}\left(K_{1}\right) \subset H^{0}(L)$.

## Defining the linking number: intersection of $S$. surfaces



## Defining the linking number: intersection of S . surfaces



This corresponds to the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$.

## Defining the linking number: boundary of int. of $S$. surf.



## Defining the linking number: boundary of int. of S. surf.



This corresponds to $\partial\left(S_{1} \cup S_{2}\right) \in H^{1}(L) \simeq H^{1}\left(K_{1}\right) \oplus H^{1}\left(K_{2}\right)$, which we call the linking class.

## The linking number

## The linking number

The linking number of $L$ is the image of the part of the linking class which is in $H^{1}\left(K_{1}\right)$ by the composite of the morphism $i_{*}: H^{1}(L) \rightarrow H^{3}\left(\mathbb{S}^{3}\right)$ induced by the inclusion $i: L \rightarrow \mathbb{S}^{3}$ and of the "right-hand rule" $r: H^{3}\left(\mathbb{S}^{3}\right) \rightarrow \mathbb{Z}$.

## The linking number

## The linking number

The linking number of $L$ is the image of the part of the linking class which is in $H^{1}\left(K_{1}\right)$ by the composite of the morphism $i_{*}: H^{1}(L) \rightarrow H^{3}\left(\mathbb{S}^{3}\right)$ induced by the inclusion $i: L \rightarrow \mathbb{S}^{3}$ and of the "right-hand rule" $r: H^{3}\left(\mathbb{S}^{3}\right) \rightarrow \mathbb{Z}$.

The linking number does not depend on the order of the components of the oriented link, unlike the linking class.

## The linking couple

## The linking couple

The linking couple is the image of the linking class by the isomorphism $h_{1} \oplus h_{2}: H^{1}\left(K_{1}\right) \oplus H^{1}\left(K_{2}\right) \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms $\omega_{K_{1}}$ of $K_{1}$ and $\omega_{K_{2}}$ of $K_{2}$.

## The linking couple

## The linking couple

The linking couple is the image of the linking class by the isomorphism $h_{1} \oplus h_{2}: H^{1}\left(K_{1}\right) \oplus H^{1}\left(K_{2}\right) \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms $\omega_{K_{1}}$ of $K_{1}$ and $\omega_{K_{2}}$ of $K_{2}$.

The linking couple is equal to ( $\pm n, \pm n$ ) with $n$ the linking number.

## Contents

(1) Classical knot theory (classical linking)

- Knots and links
- The linking number
(2) Motivic knot theory (motivic linking)
- Oriented links in algebraic geometry
- Quadratic intersection theory
- Motivic linking
- Generalisation


## Oriented links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

## Oriented links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$. Let $F$ be a perfect field.
Link with two components of type $\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{4} \backslash\{0\}\right)$

A link with two components of type $\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{4} \backslash\{0\}\right)$ is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images $Z_{i}$ (where $i \in\{1,2\}$ ). The morphisms $\varphi_{1}, \varphi_{2}$ are called parametrisations of $Z_{1}, Z_{2}$ respectively.

## Oriented links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$. Let $F$ be a perfect field.

```
Link with two components of type ( }\mp@subsup{\mathbb{A}}{F}{2}\{0},\mp@subsup{\mathbb{A}}{F}{2}\{0},\mp@subsup{\mathbb{A}}{F}{4}\{0}
```

A link with two components of type $\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{4} \backslash\{0\}\right)$ is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images $Z_{i}$ (where $i \in\{1,2\}$ ). The morphisms $\varphi_{1}, \varphi_{2}$ are called parametrisations of $Z_{1}, Z_{2}$ respectively.

Oriented link with two components of type $\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{4} \backslash\{0\}\right)$
An oriented link with two components of type $\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{2} \backslash\{0\}, \mathbb{A}_{F}^{4} \backslash\{0\}\right)$ is a link with two components $\left(\varphi_{1}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{2}\right)$ together with an orientation class $\overline{o_{1}}$ of $Z_{1}$ and an orientation class $\overline{O_{2}}$ of $Z_{2}$.

An orientation $o_{i}$ of $Z_{i}$ is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}$ of $Z_{i}$ in $\mathbb{A}_{F}^{4} \backslash\{0\}$ to the tensor product of an invertible $\mathcal{O}_{Z_{i}}$-module $\mathcal{L}_{i}$ with itself:

$$
o_{i}: \nu_{Z_{i}}:=\operatorname{det}\left(\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}\right) \simeq \mathcal{L}_{i} \otimes \mathcal{L}_{i}
$$

An orientation $o_{i}$ of $Z_{i}$ is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_{i} / \mathbb{A}_{E}^{4} \backslash\{0\}}$ of $Z_{i}$ in $\mathbb{A}_{F}^{4} \backslash\{0\}$ to the tensor product of an invertible $\mathcal{O}_{Z_{i}}$-module $\mathcal{L}_{i}$ with itself:

$$
o_{i}: \nu_{Z_{i}}:=\operatorname{det}\left(\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}\right) \simeq \mathcal{L}_{i} \otimes \mathcal{L}_{i}
$$

## More concretely

In our examples, an orientation of a knot will be given by the choice of a first polynomial equation $f$ and a second polynomial equation $g$ such that the knot corresponds to $\{f=0, g=0\}$.

## Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of $Z_{i}$ represent the same orientation class of $Z_{i}$ if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

## Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of $Z_{i}$ represent the same orientation class of $Z_{i}$ if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

## Proposition

Let $i \in\{1,2\}$. The orientation classes of $Z_{i}$ are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$ ).

## Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of $Z_{i}$ represent the same orientation class of $Z_{i}$ if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

## Proposition

Let $i \in\{1,2\}$. The orientation classes of $Z_{i}$ are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$ ).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.

## Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of $Z_{i}$ represent the same orientation class of $Z_{i}$ if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

## Proposition

Let $i \in\{1,2\}$. The orientation classes of $Z_{i}$ are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$ ).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.

## Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of $Z_{i}$ represent the same orientation class of $Z_{i}$ if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

## Proposition

Let $i \in\{1,2\}$. The orientation classes of $Z_{i}$ are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$ ).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.
If $F=\mathbb{Q}$ then $F^{*} /\left(F^{*}\right)^{2}$ has infinitely many elements (the classes of the integers without square factors).

## The Hopf link in algebraic geometry

We fix coordinates $x, y, z, t$ for $\mathbb{A}_{F}^{4}$ and $u, v$ for $\mathbb{A}_{F}^{2}$ once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

## The Hopf link in algebraic geometry

We fix coordinates $x, y, z, t$ for $\mathbb{A}_{F}^{4}$ and $u, v$ for $\mathbb{A}_{F}^{2}$ once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrisation of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

## The Hopf link in algebraic geometry

We fix coordinates $x, y, z, t$ for $\mathbb{A}_{F}^{4}$ and $u, v$ for $\mathbb{A}_{F}^{2}$ once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrisation of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1 \otimes 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1 \otimes 1
$$

## A variant of the Hopf link

- The image is the same as the image of the Hopf link:

$$
\{x=y, y=0\} \sqcup\{z=0, \text { at }=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

## A variant of the Hopf link

- The image is the same as the image of the Hopf link:

$$
\{x=y, y=0\} \sqcup\{z=0, a t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrisation is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

## A variant of the Hopf link

- The image is the same as the image of the Hopf link:

$$
\{x=y, y=0\} \sqcup\{z=0, a t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrisation is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1 \otimes 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1 \otimes 1
$$

## The singular complex and the Rost-Schmid complex

## Classical algebraic topology

Each topological space $X$ has a singular cochain complex:

$$
\ldots \longrightarrow \mathcal{C}^{i}(X) \longrightarrow \mathcal{C}^{i+1}(X) \longrightarrow \ldots
$$

## The singular complex and the Rost-Schmid complex

## Classical algebraic topology

Each topological space $X$ has a singular cochain complex:

$$
\ldots \longrightarrow \mathcal{C}^{i}(X) \longrightarrow \mathcal{C}^{i+1}(X) \longrightarrow \ldots
$$

## Motivic algebraic topology

Each smooth $F$-scheme $X$ has a Rost-Schmid complex for each integer $j \in \mathbb{Z}$ and invertible $\mathcal{O}_{X}$-module $\mathcal{L}$ :

$$
\begin{aligned}
\cdots \longrightarrow & \oplus_{p \in X^{(i)}} K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes_{\mathbb{Z}\left[\kappa(p)^{*}\right]} \mathbb{Z}\left[\left(\nu_{p} \otimes \mathcal{L}_{\mid p}\right) \backslash\{0\}\right] \\
& \downarrow \\
& \oplus_{q \in X^{(i+1)}} K_{j-i-1}^{\mathrm{MW}}(\kappa(q)) \otimes_{\mathbb{Z}\left[k(q)^{*}\right]} \mathbb{Z}\left[\left(\nu_{q} \otimes \mathcal{L}_{\mid q}\right) \backslash\{0\}\right] \longrightarrow \ldots
\end{aligned}
$$

## The singular cohomology ring and the Rost-Schmid ring

## Classical algebraic topology

The $i$-th cohomology group $H^{i}(X)$ of $X$ is the $i$-th cohomology group of the singular cochain complex of $X$.

## The singular cohomology ring and the Rost-Schmid ring

## Classical algebraic topology

The $i$-th cohomology group $H^{i}(X)$ of $X$ is the $i$-th cohomology group of the singular cochain complex of $X$. The cup-product $H^{i}(X) \times H^{i^{\prime}}(X) \rightarrow H^{i+i^{\prime}}(X)$ makes $\bigoplus_{i \in \mathbb{N}_{0}} H^{i}(X)$ into a graded ring.

## The singular cohomology ring and the Rost-Schmid ring

## Classical algebraic topology

The $i$-th cohomology group $H^{i}(X)$ of $X$ is the $i$-th cohomology group of the singular cochain complex of $X$. The cup-product $H^{i}(X) \times H^{i^{\prime}}(X) \rightarrow H^{i+i^{\prime}}(X)$ makes $\bigoplus_{i \in \mathbb{N}_{0}} H^{i}(X)$ into a graded ring.

## Motivic algebraic topology

The $i$-th Rost-Schmid group $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$ of $X$ with respect to $j$ and $\mathcal{L}$ is the $i$-th cohomology group of the Rost-Schmid complex of $X$ w.r.t. $j$ and $\mathcal{L}$. We denote $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\right):=H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\left\{\mathcal{O}_{X}\right\}\right)$.

## The singular cohomology ring and the Rost-Schmid ring

## Classical algebraic topology

The $i$-th cohomology group $H^{i}(X)$ of $X$ is the $i$-th cohomology group of the singular cochain complex of $X$. The cup-product $H^{i}(X) \times H^{i^{\prime}}(X) \rightarrow H^{i+i^{\prime}}(X)$ makes $\bigoplus_{i \in \mathbb{N}_{0}} H^{i}(X)$ into a graded ring.

## Motivic algebraic topology

The $i$-th Rost-Schmid group $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$ of $X$ with respect to $j$ and $\mathcal{L}$ is the $i$-th cohomology group of the Rost-Schmid complex of $X$ w.r.t. $j$ and $\mathcal{L}$. We denote $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\right):=H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\left\{\mathcal{O}_{X}\right\}\right)$. The intersection product $\left.H^{i}\left(X, K_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right) \times{H^{i^{\prime}}}^{( } X, \underline{K}_{j^{\prime}}^{\mathrm{MW}}\left\{\mathcal{L}^{\prime}\right\}\right) \rightarrow H^{i+i^{\prime}}\left(X, \underline{K}_{j+j^{\prime}}^{\mathrm{MW}}\left\{\mathcal{L} \otimes \mathcal{L}^{\prime}\right\}\right)$ makes $\bigoplus_{i, j, \mathcal{L}} H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$ into a graded $K_{0}^{\mathrm{MW}}(F)$-algebra.

## Classical algebraic topology

Let $(Z, i, X, j, U)$ be a boundary triple. We have the following long exact sequence (where $\partial$ is the boundary map):
$\cdots \longrightarrow H^{n}(Z) \xrightarrow{i_{*}} H^{n+d_{x}-d_{z}}(X) \xrightarrow{j^{*}} H^{n+d_{x}-d_{Z}}(U) \xrightarrow{\partial} H^{n+1}(Z)$

## Classical algebraic topology

Let $(Z, i, X, j, U)$ be a boundary triple. We have the following long exact sequence (where $\partial$ is the boundary map):
$\ldots \longrightarrow H^{n}(Z) \xrightarrow{i_{*}} H^{n+d_{x}-d_{Z}}(X) \xrightarrow{j^{*}} H^{n+d_{X}-d_{z}}(U) \xrightarrow{\partial} H^{n+1}(Z)$

## Motivic algebraic topology

Let $(Z, i, X, j, U)$ be a boundary triple. We have the localization long exact sequence (where $\partial$ is the boundary map):

$$
\begin{aligned}
\cdots & \longrightarrow H^{n}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \xrightarrow{i_{*}} H^{n+d_{x}-d_{Z}}\left(X, \underline{K}_{m+d_{X}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{j^{*}} \\
& \xrightarrow{j^{*}} H^{n+d_{x}-d_{Z}}\left(U, \underline{K}_{m+d_{X}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{\partial} H^{n+1}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \longrightarrow
\end{aligned}
$$

## Classical algebraic topology

Let $n \geq 2$ and $i \geq 0$ be integers. The singular cohomology group
$H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

## Classical algebraic topology

Let $n \geq 2$ and $i \geq 0$ be integers. The singular cohomology group
$H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

## Motivic algebraic topology

Let $n \geq 2, i \geq 0, j \in \mathbb{Z}$ be integers. The Rost-Schmid group
$H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, \underline{K}_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

## Classical algebraic topology

Let $n \geq 2$ and $i \geq 0$ be integers. The singular cohomology group
$H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

## Motivic algebraic topology

Let $n \geq 2, i \geq 0, j \in \mathbb{Z}$ be integers. The Rost-Schmid group
$H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, K_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$
In particular, $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \simeq K_{-2}^{\mathrm{MW}}(F) \simeq \mathrm{W}(F)$ and $H^{3}\left(\mathbb{A}_{F}^{4} \backslash\{0\}, \underline{K}_{2}^{\mathrm{MW}}\right) \simeq K_{-2}^{\mathrm{MW}}(F) \simeq \mathrm{W}(F)$. These iso. are not canonical.

## Notations

- Let $L=K_{1} \sqcup K_{2}$ be an oriented link (in knot theory).
- Let $\mathscr{L}$ be an oriented link with two components (in motivic knot theory), i.e. a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images $Z_{i}$ and orientation classes $\overline{o_{i}}$ (with $i \in\{1,2\}$ ).
- We denote $Z:=Z_{1} \sqcup Z_{2}$ and $\nu_{Z}:=\operatorname{det}\left(\mathcal{N}_{Z / \mathbb{A}_{F}^{4} \backslash\{0\}}\right)$.


## Oriented fundamental classes and Seifert classes

Let $i \in\{1,2\}$.

## Knot theory

The class $S_{i}$ in $H^{1}\left(\mathbb{S}^{3} \backslash L\right)$ of Seifert surfaces of the oriented knot $K_{i}$ is the unique class that is sent by the boundary map to the (oriented) fundamental class of $K_{i}$ in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

## Oriented fundamental classes and Seifert classes

Let $i \in\{1,2\}$.

## Knot theory

The class $S_{i}$ in $H^{1}\left(\mathbb{S}^{3} \backslash L\right)$ of Seifert surfaces of the oriented knot $K_{i}$ is the unique class that is sent by the boundary map to the (oriented) fundamental class of $K_{i}$ in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

## Motivic knot theory

We define the oriented fundamental class $\left[o_{i}\right]$ as the unique class in $H^{0}\left(Z_{i}, \underline{K}_{-1}^{\mathrm{MW}}\left\{\nu_{Z_{i}}\right\}\right)$ that is sent by $\widetilde{o}_{i}$ to the class of $\eta$ in $H^{0}\left(Z_{i}, \underline{K}_{-1}^{\mathrm{MW}}\right)$, then we define the Seifert class $\mathcal{S}_{i}$ as the unique class in $H^{1}\left(X \backslash Z, \underline{K}_{1}^{\mathrm{MW}}\right)$ that is sent by the boundary map $\partial$ to the oriented fundamental class $\left[o_{i}\right] \in H^{0}\left(Z, \underline{K}_{-1}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

## The quadratic linking class

## Knot theory

The linking class of $L$ is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$.

## The quadratic linking class

## Knot theory

The linking class of $L$ is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$.

## Motivic knot theory

We define the quadratic linking class of $\mathscr{L}$ as the image of the intersection product $\mathcal{S}_{1} \cdot \mathcal{S}_{2} \in H^{2}\left(X \backslash Z, K_{2}^{\mathrm{MW}}\right)$ by the boundary map $\partial: H^{2}\left(X \backslash Z, \underline{K}_{2}^{\mathrm{MW}}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

## The ambient quadratic linking degree

## Knot theory: the linking number

The linking number of the oriented link $L=K_{1} \sqcup K_{2}$ is the image of the part of the linking class of $L$ which is in $H^{1}\left(K_{1}\right)$ by the composite of the morphism $\left(i_{1}\right)_{*}: H^{1}\left(K_{1}\right) \rightarrow H^{3}\left(\mathbb{S}^{3}\right)$ which is induced by the inclusion $i_{1}: K_{1} \rightarrow \mathbb{S}^{3}$ and of the isomorphism $r: H^{3}\left(\mathbb{S}^{3}\right) \rightarrow \mathbb{Z}$ which corresponds to the "right-hand rule".

## The ambient quadratic linking degree

## Knot theory: the linking number

The linking number of the oriented link $L=K_{1} \sqcup K_{2}$ is the image of the part of the linking class of $L$ which is in $H^{1}\left(K_{1}\right)$ by the composite of the morphism $\left(i_{1}\right)_{*}: H^{1}\left(K_{1}\right) \rightarrow H^{3}\left(\mathbb{S}^{3}\right)$ which is induced by the inclusion $i_{1}: K_{1} \rightarrow \mathbb{S}^{3}$ and of the isomorphism $r: H^{3}\left(\mathbb{S}^{3}\right) \rightarrow \mathbb{Z}$ which corresponds to the "right-hand rule".

## Motivic knot theory: the ambient quadratic linking degree

We define the ambient quadratic linking degree as the image of the part of the quadratic linking class which lives over $Z_{1}$ by the composite of the morphism $\left(i_{1}\right)_{*}: H^{1}\left(Z_{1}, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z_{1}}\right\}\right) \rightarrow H^{3}\left(\mathbb{A}_{F}^{4} \backslash\{0\}, \underline{K}_{2}^{\mathrm{MW}}\right)$ induced by the inclusion $i_{1}: Z_{1} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ and of an isomorphism between $H^{3}\left(\mathbb{A}_{F}^{4} \backslash\{0\}, \underline{K}_{2}^{\mathrm{MW}}\right)$ and $\mathrm{W}(F)$ which has been fixed once and for all (thanks to the coordinates $x, y, z, t$ ).

## The quadratic linking degree couple

## The linking couple

The linking couple is the image of the linking class by the isomorphism $h_{1} \oplus h_{2}: H^{1}\left(K_{1}\right) \oplus H^{1}\left(K_{2}\right) \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms $\omega_{K_{1}}$ of $K_{1}$ and $\omega_{K_{2}}$ of $K_{2}$.

## The quadratic linking degree couple

## The linking couple

The linking couple is the image of the linking class by the isomorphism $h_{1} \oplus h_{2}: H^{1}\left(K_{1}\right) \oplus H^{1}\left(K_{2}\right) \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms $\omega_{K_{1}}$ of $K_{1}$ and $\omega_{K_{2}}$ of $K_{2}$.

## Motivic knot theory

We define the quadratic linking degree couple of $\mathscr{L}$ as the image of the quadratic linking class of $\mathscr{L}$ by the isomorphism
$H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow$
$H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \oplus H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow \mathrm{W}(F) \oplus \mathrm{W}(F)$.
This isomorphism between $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right)$ and $W(F)$ has been fixed once and for all (thanks to the coordinates $u, v$ ).

## The Hopf link

Recall that we fixed coordinates $x, y, z, t$ for $\mathbb{A}_{F}^{4}$ and $u, v$ for $\mathbb{A}_{F}^{2}$.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrisation of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1
$$

## The (amb.) quadratic linking degree (cpl.) of the Hopf link

| Or. fund. cl. | $\eta \otimes\left(\bar{x}^{*} \wedge \bar{y}^{*}\right)$ | $\eta \otimes\left(\bar{z}^{*} \wedge \bar{t}^{*}\right)$ |
| :---: | :---: | :---: |
| Seifert cl. | $\langle x\rangle \otimes \bar{y}^{*}$ | $\langle z\rangle \otimes \bar{t}^{*}$ |
| Apply int. prod. | $\langle x z\rangle \otimes\left(\bar{t}^{*} \wedge \bar{y}^{*}\right)$ |  |
| Quad. Ik. class | $-\langle z\rangle \eta \otimes\left(\bar{t}^{*} \wedge \bar{x}^{*} \wedge \bar{y}^{*}\right)$ | $\oplus\langle x\rangle \eta \otimes\left(\bar{y}^{*} \wedge \bar{z}^{*} \wedge \bar{t}^{*}\right)$ |
| Apply ( $i_{1}$ ) ${ }_{*}$ | $-\langle z\rangle \eta \otimes\left(\bar{t}^{*} \wedge \bar{x}^{*} \wedge \bar{y}^{*}\right)$ |  |
| Apply 3 | $-\eta^{2} \otimes\left(\bar{x}^{*} \wedge \bar{y}^{*} \wedge \bar{z}^{*} \wedge \bar{t}^{*}\right)$ |  |
| Amb. qld. | -1 |  |
| Quad. Ik. class | $-\langle z\rangle \eta \otimes\left(\bar{t}^{*} \wedge \bar{x}^{*} \wedge \bar{y}^{*}\right)$ | $\oplus\langle x\rangle \eta \otimes\left(\bar{y}^{*} \wedge \bar{z}^{*} \wedge \bar{t}^{*}\right)$ |
| Apply $\widetilde{o_{1}} \oplus \widetilde{o_{2}}$ | $-\langle z\rangle \eta \otimes \bar{t}^{*}$ | $\oplus \quad\langle x\rangle \eta \otimes \bar{y}^{*}$ |
| Apply $\varphi_{1}^{*} \oplus \varphi_{2}^{*}$ | $-\langle u\rangle \eta \otimes \bar{v}^{*}$ | $\oplus \quad\langle u\rangle \eta \otimes \bar{v}^{*}$ |
| Apply $\partial \oplus \partial$ | $-\eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$ | $\oplus \quad \eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$ |
| Qld. couple | -1 | $\oplus \quad 1$ |

## A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a \times t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrisation is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1
$$

## The quadratic linking degree of a variant of the Hopf link

$$
\left[o_{1}^{\text {var }}\right]=\eta \otimes \overline{x-y}^{*} \wedge \bar{y}^{*}=\left[o_{1}^{\text {Hopf }}\right] \quad\left[o_{2}^{\text {var }}\right]=\eta \otimes \bar{z}^{*} \wedge \overline{a t^{*}}=\langle a\rangle\left[o_{2}^{\text {Hopf }}\right]
$$

$$
\text { since }\binom{x-y}{y}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\binom{x}{y} \quad \text { since }\binom{z}{a t}=\left(\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right)\binom{z}{t}
$$

$$
\mathcal{S}_{1}^{\text {var }}=\mathcal{S}_{1}^{\text {Hopf }}
$$

$$
\mathcal{S}_{2}^{\mathrm{var}}=\langle\mathrm{a}\rangle \mathcal{S}_{2}^{\text {Hopf }}
$$

$$
\begin{aligned}
& \mathcal{S}_{1}^{\text {var } \cdot} \cdot \mathcal{S}_{2}^{\text {var }}=\langle a\rangle \mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }} \\
& \partial\left(\mathcal{S}_{1}^{\text {var }} \cdot \mathcal{S}_{2}^{\text {var }}\right)=\langle a\rangle \partial\left(\mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }}\right)
\end{aligned}
$$

The ambient quadratic linking degree of the variant is $-\langle a\rangle$.
The quadratic linking degree couple of the variant is $(-\langle a\rangle, 1)$.

## Another Hopf link

From now on, $F$ is a perfect field of characteristic different from 2. Recall that we fixed coordinates $x, y, z, t$ for $\mathbb{A}_{F}^{4}$ and $u, v$ for $\mathbb{A}_{F}^{2}$.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

## Another Hopf link

From now on, $F$ is a perfect field of characteristic different from 2. Recall that we fixed coordinates $x, y, z, t$ for $\mathbb{A}_{F}^{4}$ and $u, v$ for $\mathbb{A}_{F}^{2}$.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrisation is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)$.


## Another Hopf link

From now on, $F$ is a perfect field of characteristic different from 2. Recall that we fixed coordinates $x, y, z, t$ for $\mathbb{A}_{F}^{4}$ and $u, v$ for $\mathbb{A}_{F}^{2}$.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrisation is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)$.
- The orientation is the following:

$$
o_{1}: \overline{z-x}^{*} \wedge \overline{t-y}^{*} \mapsto 1, o_{2}: \overline{z+x}^{*} \wedge \overline{t+y}^{*} \mapsto 1
$$

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for $\varepsilon$ small enough and has linking number 1 .
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for $\varepsilon$ small enough and has linking number 1 .
- Its ambient quadratic linking degree is $-1 \in \mathrm{~W}(F)$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for $\varepsilon$ small enough and has linking number 1 .
- Its ambient quadratic linking degree is $-1 \in \mathrm{~W}(F)$.
- If we change its orientations and its parametrisations then we get $\langle a\rangle \in \mathrm{W}(F)$ with $a \in F^{*}$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for $\varepsilon$ small enough and has linking number 1 .
- Its ambient quadratic linking degree is $-1 \in \mathrm{~W}(F)$.
- If we change its orientations and its parametrisations then we get $\langle a\rangle \in \mathrm{W}(F)$ with $a \in F^{*}$.
- Its quadratic linking degree couple is $(1,-1) \in W(F) \oplus W(F)$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for $\varepsilon$ small enough and has linking number 1 .
- Its ambient quadratic linking degree is $-1 \in \mathrm{~W}(F)$.
- If we change its orientations and its parametrisations then we get $\langle a\rangle \in \mathrm{W}(F)$ with $a \in F^{*}$.
- Its quadratic linking degree couple is $(1,-1) \in W(F) \oplus W(F)$.
- If we change its orientations and its parametrisations then we get $(\langle b\rangle,\langle c\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $b, c \in F^{*}$.


## The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for $\varepsilon$ small enough and has linking number 2 .


## The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for $\varepsilon$ small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

## The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for $\varepsilon$ small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrisation is $\varphi_{1}:(x, y, z, t) \leftrightarrow\left(u, v, u^{2}-v^{2}, 2 u v\right)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow\left(u, v,-u^{2}+v^{2},-2 u v\right)$.


## The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for $\varepsilon$ small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrisation is $\varphi_{1}:(x, y, z, t) \leftrightarrow\left(u, v, u^{2}-v^{2}, 2 u v\right)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow\left(u, v,-u^{2}+v^{2},-2 u v\right)$.
- The orientation is the following:

$$
o_{1}:{\overline{z-x^{2}+y^{2}}}^{*} \wedge \overline{t-2 x y}^{*} \mapsto 1, o_{2}:{\overline{z+x^{2}-y^{2}}}^{*} \wedge \overline{t+2 x y}^{*} \mapsto 1
$$

## The Solomon link

- Its ambient quadratic linking degree is $\langle-1\rangle+\langle-1\rangle=-2 \in \mathrm{~W}(F)$.


## The Solomon link

- Its ambient quadratic linking degree is $\langle-1\rangle+\langle-1\rangle=-2 \in \mathrm{~W}(F)$.
- If we change its orientations and its parametrisations then we get $\langle a\rangle+\langle a\rangle \in \mathrm{W}(F)$ with $a \in F^{*}$.


## The Solomon link

- Its ambient quadratic linking degree is $\langle-1\rangle+\langle-1\rangle=-2 \in \mathrm{~W}(F)$.
- If we change its orientations and its parametrisations then we get $\langle a\rangle+\langle a\rangle \in \mathrm{W}(F)$ with $a \in F^{*}$.
- Its quadratic linking degree couple is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

## The Solomon link

- Its ambient quadratic linking degree is $\langle-1\rangle+\langle-1\rangle=-2 \in \mathrm{~W}(F)$.
- If we change its orientations and its parametrisations then we get $\langle a\rangle+\langle a\rangle \in \mathrm{W}(F)$ with $a \in F^{*}$.
- Its quadratic linking degree couple is
$(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrisations then we get $(\langle b\rangle+\langle b\rangle,\langle c\rangle+\langle c\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $b, c \in F^{*}$.


## The Solomon link

- Its ambient quadratic linking degree is $\langle-1\rangle+\langle-1\rangle=-2 \in \mathrm{~W}(F)$.
- If we change its orientations and its parametrisations then we get $\langle a\rangle+\langle a\rangle \in \mathrm{W}(F)$ with $a \in F^{*}$.
- Its quadratic linking degree couple is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrisations then we get $(\langle b\rangle+\langle b\rangle,\langle c\rangle+\langle c\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $b, c \in F^{*}$.
- We want to compute quantities from the ambient quadratic linking degree or from the quadratic linking degree couple which are invariant by changes of orientations and by changes of parametrisations of the oriented link. We call these invariants of the quadratic linking degree.


## Proposition

Let $\mathscr{L}$ be an oriented link with two components of ambient quadratic linking degree $\alpha \in \mathrm{W}(F)$ and of quadratic linking degree couple $(\beta, \gamma) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$. If $\mathscr{L}^{\prime}$ is obtained from $\mathscr{L}$ by changing orientations and parametrisations then the ambient quadratic linking degree of $\mathscr{L}^{\prime}$ is equal to $\langle a\rangle \alpha$ for some $a \in F^{*}$ and the quadratic linking degree couple of $\mathscr{L}^{\prime}$ is equal to $(\langle b\rangle \beta,\langle c\rangle \gamma)$ for some $b, c \in F^{*}$.

## Proposition

Let $\mathscr{L}$ be an oriented link with two components of ambient quadratic linking degree $\alpha \in \mathrm{W}(F)$ and of quadratic linking degree couple $(\beta, \gamma) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$. If $\mathscr{L}^{\prime}$ is obtained from $\mathscr{L}$ by changing orientations and parametrisations then the ambient quadratic linking degree of $\mathscr{L}^{\prime}$ is equal to $\langle a\rangle \alpha$ for some $a \in F^{*}$ and the quadratic linking degree couple of $\mathscr{L}^{\prime}$ is equal to $(\langle b\rangle \beta,\langle c\rangle \gamma)$ for some $b, c \in F^{*}$.

## Case $F=\mathbb{R}$

The absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in \mathbb{R}^{*}$. This gives an invariant of the qld.

## Proposition

Let $\mathscr{L}$ be an oriented link with two components of ambient quadratic linking degree $\alpha \in \mathrm{W}(F)$ and of quadratic linking degree couple $(\beta, \gamma) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$. If $\mathscr{L}^{\prime}$ is obtained from $\mathscr{L}$ by changing orientations and parametrisations then the ambient quadratic linking degree of $\mathscr{L}^{\prime}$ is equal to $\langle a\rangle \alpha$ for some $a \in F^{*}$ and the quadratic linking degree couple of $\mathscr{L}^{\prime}$ is equal to $(\langle b\rangle \beta,\langle c\rangle \gamma)$ for some $b, c \in F^{*}$.

## Case $F=\mathbb{R}$

The absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in \mathbb{R}^{*}$. This gives an invariant of the qld.

## General case

The rank modulo 2 is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\left(\right.\right.$ if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\left(\right.\right.$ if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$ ).
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$ ).
- It is interesting for instance if $F=\mathbb{Q}: W(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{2}:\left\{\begin{array}{lll}W(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$ ).
- It is interesting for instance if $F=\mathbb{Q}: W(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{4}:\left\{\begin{array}{llc}\mathrm{W}(F) & \rightarrow & \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j<k<l \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle\end{array}\right.$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$ ).
- It is interesting for instance if $F=\mathbb{Q}: W(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{4}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j<k<1 \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle\end{array}\right.$
- $\Sigma_{4}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j<k<l \leq n}\left\langle a^{4} a_{i} a_{j} a_{k} a_{l}\right\rangle=\Sigma_{4}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$ ).
- It is interesting for instance if $F=\mathbb{Q}: W(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$.
$\Sigma_{4}\left\{\begin{array}{l}\mathrm{W}(F) \rightarrow \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right)\end{array}\right.$
- $\Sigma_{4}:\left\{\begin{array}{lll}n & \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto\end{array} a_{i} a_{j} a_{k} a_{l}\right\rangle$
- $\Sigma_{4}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j<k<1 \leq n}\left\langle a^{4} a_{i} a_{j} a_{k} a_{l}\right\rangle=\Sigma_{4}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- Etc. for $\Sigma_{2 m}$ with $m \in \mathbb{N}$
- The constructions I have presented can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$ where:
- The constructions I have presented can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$ where:
- $X$ is an irreducible finite type smooth $F$-scheme of dimension $d_{X}$;
- The constructions I have presented can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$ where:
- $X$ is an irreducible finite type smooth $F$-scheme of dimension $d_{X}$;
- $Z_{1}$ and $Z_{2}$ are disjoint irreducible finite type smooth closed $F$-subschemes of $X$ of same dimension $d$; we denote by $c:=d_{X}-d$ their codimension in $X$;
- The constructions I have presented can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$ where:
- $X$ is an irreducible finite type smooth $F$-scheme of dimension $d_{X}$;
- $Z_{1}$ and $Z_{2}$ are disjoint irreducible finite type smooth closed $F$-subschemes of $X$ of same dimension $d$; we denote by $c:=d_{X}-d$ their codimension in $X$;
- $H^{c-1}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0, H^{c-1}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0, H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, K_{j_{2}+c}^{\mathrm{MW}}\right)=0$ for some $j_{1}, j_{2} \leq 0$.
- The constructions I have presented can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$ where:
- $X$ is an irreducible finite type smooth $F$-scheme of dimension $d_{X}$;
- $Z_{1}$ and $Z_{2}$ are disjoint irreducible finite type smooth closed $F$-subschemes of $X$ of same dimension $d$; we denote by $c:=d_{X}-d$ their codimension in $X$;
- $H^{c-1}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0, H^{c-1}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0, H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, K_{j_{2}+c}^{\mathrm{MW}}\right)=0$ for some $j_{1}, j_{2} \leq 0$.
- One family of examples is: $\mathbb{A}_{F}^{n+1} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n+1} \backslash\{0\} \subset \mathbb{A}_{F}^{2 n+2} \backslash\{0\}$ with $n \geq 1$ and $j_{1}, j_{2} \leq 0$ (before we were considering $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup \mathbb{A}_{F}^{2} \backslash\{0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$ with $\left.j_{1}=j_{2}=-1\right)$.
- The constructions I have presented can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$ where:
- $X$ is an irreducible finite type smooth $F$-scheme of dimension $d_{X}$;
- $Z_{1}$ and $Z_{2}$ are disjoint irreducible finite type smooth closed $F$-subschemes of $X$ of same dimension $d$; we denote by $c:=d_{X}-d$ their codimension in $X$;
- $H^{c-1}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0, H^{c-1}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0, H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, K_{j_{2}+c}^{\mathrm{MW}}\right)=0$ for some $j_{1}, j_{2} \leq 0$.
- One family of examples is: $\mathbb{A}_{F}^{n+1} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n+1} \backslash\{0\} \subset \mathbb{A}_{F}^{2 n+2} \backslash\{0\}$ with $n \geq 1$ and $j_{1}, j_{2} \leq 0$ (before we were considering $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup \mathbb{A}_{F}^{2} \backslash\{0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$ with $\left.j_{1}=j_{2}=-1\right)$.
- Another family of examples is: $\mathbb{P}_{F}^{n} \sqcup \mathbb{P}_{F}^{n} \subset \mathbb{P}_{F}^{2 n+1}$ with $n \geq 1$ odd and $j_{1}, j_{2} \leq-2$.


## Which closed immersions of smooth models of motivic spheres have

 a quadratic linking class?Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
A smooth model of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ is a smooth $F$-scheme which has the $\mathbb{A}^{1}$-homotopy type of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$.

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
A smooth model of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ is a smooth $F$-scheme which has the $\mathbb{A}^{1}$-homotopy type of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$.

- $\mathbb{A}_{F}^{n+1} \backslash\{0\}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
A smooth model of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ is a smooth $F$-scheme which has the $\mathbb{A}^{1}$-homotopy type of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$.

- $\mathbb{A}_{F}^{n+1} \backslash\{0\}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$
- $Q_{2 n+1}:=\operatorname{Spec}\left(F\left[x_{1}, \ldots, x_{n+1}, y_{1}, \ldots, y_{n+1}\right] /\left(\sum_{i=1}^{n+1} x_{i} y_{i}-1\right)\right)$
- $Q_{2 n+1}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
A smooth model of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ is a smooth $F$-scheme which has the $\mathbb{A}^{1}$-homotopy type of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$.

- $\mathbb{A}_{F}^{n+1} \backslash\{0\}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$
- $Q_{2 n+1}:=\operatorname{Spec}\left(F\left[x_{1}, \ldots, x_{n+1}, y_{1}, \ldots, y_{n+1}\right] /\left(\sum_{i=1}^{n+1} x_{i} y_{i}-1\right)\right)$
- $Q_{2 n+1}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$
- $Q_{2 n}:=\operatorname{Spec}\left(F\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right] /\left(\sum_{i=1}^{n} x_{i} y_{i}-z(1+z)\right)\right)$
- $Q_{2 n}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge n}$
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{2} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{2} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $Q_{n} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{2} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $Q_{n} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{n} \sqcup Q_{n} \rightarrow Q_{n+\left\lfloor\frac{n}{2}\right\rfloor+1}$ with $n \geq 5$.
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{2} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ (and ambient qlc okay);
- $Q_{n} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{n} \sqcup Q_{n} \rightarrow Q_{n+\left\lfloor\frac{n}{2}\right\rfloor+1}$ with $n \geq 5$.

In the cases $Q_{n} \sqcup Q_{n} \rightarrow Q_{n+\left\lfloor\frac{n}{2}\right\rfloor+1}=X$ with $n \in\{2,3,4\}$, the only conditions which are not verified are the ones which are there to ensure the existence of Seifert classes: $H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0$.

In these settings, the ambient quadratic linking degree is in $\mathrm{W}(F)$ or in GW $(F)$ and each component of the quadratic linking degree couple is either in the zero group, in $\mathrm{W}(F)$, in $\mathrm{GW}(F)$ or in $K_{1}^{\mathrm{MW}}(F)$.

In the case of $G W(F)$, we have refinements of the invariants of the quadratic linking degree we discussed before:

- In the case $F=\mathbb{R}$, the underlying pair $(\mathrm{GW}(\mathbb{R}) \simeq \mathbb{Z} \oplus \mathbb{Z})$.

In these settings, the ambient quadratic linking degree is in $\mathrm{W}(F)$ or in GW $(F)$ and each component of the quadratic linking degree couple is either in the zero group, in $\mathrm{W}(F)$, in $\mathrm{GW}(F)$ or in $K_{1}^{\mathrm{MW}}(F)$.

In the case of $G W(F)$, we have refinements of the invariants of the quadratic linking degree we discussed before:

- In the case $F=\mathbb{R}$, the underlying pair $(\mathrm{GW}(\mathbb{R}) \simeq \mathbb{Z} \oplus \mathbb{Z})$.
- In the general case, the rank, and:

In these settings, the ambient quadratic linking degree is in $\mathrm{W}(F)$ or in GW $(F)$ and each component of the quadratic linking degree couple is either in the zero group, in $\mathrm{W}(F)$, in $\mathrm{GW}(F)$ or in $K_{1}^{\mathrm{MW}}(F)$.

In the case of $G W(F)$, we have refinements of the invariants of the quadratic linking degree we discussed before:

- In the case $F=\mathbb{R}$, the underlying pair $(G W(\mathbb{R}) \simeq \mathbb{Z} \oplus \mathbb{Z})$.
- In the general case, the rank, and:
- $\Sigma_{k}\left(\sum_{i=1}^{n} \varepsilon_{i}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(\prod_{1 \leq I \leq k} \varepsilon_{i_{l}}\right)\left\langle\prod_{1 \leq j \leq k} a_{i_{j}}\right\rangle$ with $k \geq 2$ even, where $\Sigma_{k}: \operatorname{GW}(F) \rightarrow \mathrm{GW}(F)$.

Everything new I presented can be found in my preprint or in my thesis:

- my preprint on arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG];
- my PhD thesis Motivic knot theory will be available in a couple of months at https://www.theses.fr/s245687 (you can also ask me for it by email).

Everything new I presented can be found in my preprint or in my thesis:

- my preprint on arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG];
- my PhD thesis Motivic knot theory will be available in a couple of months at https://www.theses.fr/s245687 (you can also ask me for it by email).


## Thanks for your attention!

