Motivic knot theory

Clémentine Lemarié--Rieusset (Université de Bourgogne, France)

August 11, 2023

Clémentine Lemarié--Rieusset (Université de

Motivic knot theory

August 11, 2023 1 / 42

3

• A new project: develop a theory in **algebraic geometry** which is to be a counterpart to **knot theory**, by using tools from **motivic homotopy theory**. This new theory is called **motivic knot theory**.

- A new project: develop a theory in **algebraic geometry** which is to be a counterpart to **knot theory**, by using tools from **motivic homotopy theory**. This new theory is called **motivic knot theory**.
- What I have already contributed to this new project: the beginnings of motivic linking (⊂ motivic knot theory), which is a counterpart to linking (⊂ knot theory).

- A new project: develop a theory in **algebraic geometry** which is to be a counterpart to **knot theory**, by using tools from **motivic homotopy theory**. This new theory is called **motivic knot theory**.
- What I have already contributed to this new project: the beginnings of motivic linking (⊂ motivic knot theory), which is a counterpart to linking (⊂ knot theory).
- This has been the subject of my PhD, under the supervision of Frédéric Déglise and Adrien Dubouloz.

Contents

Classical knot theory (classical linking)

- Knots and links
- The linking number

Motivic knot theory (motivic linking)

- Oriented links in algebraic geometry
- Quadratic intersection theory
- Motivic linking
- Generalisation

< □ > < □ > < □ > < □ >

Contents

Classical knot theory (classical linking)

- Knots and links
- The linking number

Motivic knot theory (motivic linking)

- Oriented links in algebraic geometry
- Quadratic intersection theory
- Motivic linking
- Generalisation

< □ > < 同 > < 回 > < 回 >

Figure: The trefoil knot

< □ > < □ > < □ > < □ > < □ >

Knot theory in a nutshell

Topological objects of interest are knots and links.

 A knot is a (closed) topological subspace of the 3-sphere S³ which is homeomorphic to the circle S¹.

Knot theory in a nutshell

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3-sphere S³ which is homeomorphic to the circle S¹.
- An **oriented knot** is a knot with a "continuous" local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.

Knot theory in a nutshell

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3-sphere S³ which is homeomorphic to the circle S¹.
- An **oriented knot** is a knot with a "continuous" local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.
- A **link** is a finite union of disjoint knots. A link is **oriented** if all its components (i.e. its knots) are oriented.

< □ > < □ > < □ > < □ > < □ > < □ >

Figure: The Hopf link

Figure: The Solomon link

A D N A B N A B N A B N

Figure: The Hopf link

Figure: The Solomon link

The **linking number** of an oriented link with two components is the number of times one of the components turns around the other component (the sign indicating the direction).

Figure: The Hopf link

Figure: The Solomon link

The **linking number** of an oriented link with two components is the number of times one of the components turns around the other component (the sign indicating the direction). The linking number is a complete invariant of oriented links with two components for link homotopy (i.e. $L = K_1 \sqcup K_2$ and $L' = K'_1 \sqcup K'_2$ are link homotopic if and only if they have the same linking number).

Defining the linking number: Seifert surfaces

э

-

• • • • • • • • • • • •

Defining the linking number: Seifert surfaces

The class S_1 in $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{BM}(\mathbb{S}^3, L)$ of Seifert surfaces of the oriented knot K_1 is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_1 in $H^0(K_1) \subset H^0(L)$.

Defining the linking number: intersection of S. surfaces

Image: A match a ma

Defining the linking number: intersection of S. surfaces

This corresponds to the cup-product $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$.

< □ > < □ > < □ > < □ >

Defining the linking number: boundary of int. of S. surf.

Image: A mathematical states and a mathem

Defining the linking number: boundary of int. of S. surf.

This corresponds to $\partial(S_1 \cup S_2) \in H^1(L) \simeq H^1(K_1) \oplus H^1(K_2)$, which we call the linking class.

The linking number

The linking number

The linking number of *L* is the image of the part of the linking class which is in $H^1(K_1)$ by the composite of the morphism $i_* : H^1(L) \to H^3(\mathbb{S}^3)$ induced by the inclusion $i : L \to \mathbb{S}^3$ and of the "right-hand rule" $r : H^3(\mathbb{S}^3) \to \mathbb{Z}$.

イロト イポト イヨト イヨト

The linking number

The linking number

The linking number of *L* is the image of the part of the linking class which is in $H^1(K_1)$ by the composite of the morphism $i_* : H^1(L) \to H^3(\mathbb{S}^3)$ induced by the inclusion $i : L \to \mathbb{S}^3$ and of the "right-hand rule" $r : H^3(\mathbb{S}^3) \to \mathbb{Z}$.

The linking number does not depend on the order of the components of the oriented link, unlike the linking class.

The linking couple

The linking couple

The linking couple is the image of the linking class by the isomorphism $h_1 \oplus h_2 : H^1(K_1) \oplus H^1(K_2) \to \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms ω_{K_1} of K_1 and ω_{K_2} of K_2 .

イロト 不得 トイヨト イヨト 二日

The linking couple

The linking couple

The linking couple is the image of the linking class by the isomorphism $h_1 \oplus h_2 : H^1(K_1) \oplus H^1(K_2) \to \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms ω_{K_1} of K_1 and ω_{K_2} of K_2 .

The linking couple is equal to $(\pm n, \pm n)$ with *n* the linking number.

イロト 不得 トイヨト イヨト 二日

Contents

Classical knot theory (classical linking)

- Knots and links
- The linking number

2 Motivic knot theory (motivic linking)

- Oriented links in algebraic geometry
- Quadratic intersection theory
- Motivic linking
- Generalisation

Oriented links in algebraic geometry

Recall that for all $n \ge 1$, \mathbb{S}^n has the same homotopy type as $\mathbb{R}^{n+1} \setminus \{0\}$.

イロト 不得下 イヨト イヨト 二日

Oriented links in algebraic geometry

Recall that for all $n \ge 1$, \mathbb{S}^n has the same homotopy type as $\mathbb{R}^{n+1} \setminus \{0\}$. Let F be a perfect field.

Link with two components of type $(\mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^4 \setminus \{0\})$

A link with two components of type $(\mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^4 \setminus \{0\})$ is a couple of closed immersions $\varphi_i : \mathbb{A}_F^2 \setminus \{0\} \to \mathbb{A}_F^4 \setminus \{0\}$ with disjoint images Z_i (where $i \in \{1, 2\}$). The morphisms φ_1, φ_2 are called parametrisations of Z_1, Z_2 respectively.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Oriented links in algebraic geometry

Recall that for all $n \ge 1$, \mathbb{S}^n has the same homotopy type as $\mathbb{R}^{n+1} \setminus \{0\}$. Let F be a perfect field.

Link with two components of type $(\mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^4 \setminus \{0\})$

A link with two components of type $(\mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^4 \setminus \{0\})$ is a couple of closed immersions $\varphi_i : \mathbb{A}_F^2 \setminus \{0\} \to \mathbb{A}_F^4 \setminus \{0\}$ with disjoint images Z_i (where $i \in \{1, 2\}$). The morphisms φ_1, φ_2 are called parametrisations of Z_1, Z_2 respectively.

Oriented link with two components of type $(\mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^4 \setminus \{0\})$

An oriented link with two components of type $(\mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^2 \setminus \{0\}, \mathbb{A}_F^4 \setminus \{0\})$ is a link with two components $(\varphi_1 : \mathbb{A}_F^2 \setminus \{0\} \to Z_1, \varphi_2 : \mathbb{A}_F^2 \setminus \{0\} \to Z_2)$ together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/\mathbb{A}_F^4}\setminus\{0\}$ of Z_i in $\mathbb{A}_F^4\setminus\{0\}$ to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \det(\mathcal{N}_{Z_i/\mathbb{A}_F^4 \setminus \{0\}}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/\mathbb{A}_F^4}\setminus\{0\}$ of Z_i in $\mathbb{A}_F^4\setminus\{0\}$ to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \det(\mathcal{N}_{Z_i/\mathbb{A}_F^4 \setminus \{0\}}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

More concretely

In our examples, an orientation of a knot will be given by the choice of a first polynomial equation f and a second polynomial equation g such that the knot corresponds to $\{f = 0, g = 0\}$.

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

イロト 不得 トイヨト イヨト 二日

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

Proposition

Let $i \in \{1, 2\}$. The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

イロト イポト イヨト イヨト 二日

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

Proposition

Let $i \in \{1, 2\}$. The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

If $F = \mathbb{R}$ then $F^*/(F^*)^2$ has two elements.

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

Proposition

Let $i \in \{1, 2\}$. The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

If $F = \mathbb{R}$ then $F^*/(F^*)^2$ has two elements. If $F = \mathbb{C}$ then $F^*/(F^*)^2$ has one element.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

Proposition

Let $i \in \{1, 2\}$. The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

If $F = \mathbb{R}$ then $F^*/(F^*)^2$ has two elements.

If $F = \mathbb{C}$ then $F^*/(F^*)^2$ has one element.

If $F = \mathbb{Q}$ then $F^*/(F^*)^2$ has infinitely many elements (the classes of the integers without square factors).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The Hopf link in algebraic geometry

We fix coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 once and for all.

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

The Hopf link in algebraic geometry

We fix coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 once and for all.

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

• The parametrisation of the Hopf link:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$
The Hopf link in algebraic geometry

We fix coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 once and for all.

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

• The parametrisation of the Hopf link:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$

The orientation of the Hopf link:

$$o_1: \overline{x}^* \wedge \overline{y}^* \mapsto 1 \otimes 1, o_2: \overline{z}^* \wedge \overline{t}^* \mapsto 1 \otimes 1$$

Image: A matrix and A matrix

• The image is the same as the image of the Hopf link:

$$\{x = y, y = 0\} \sqcup \{z = 0, at = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

э

イロト イヨト イヨト イヨト

• The image is the same as the image of the Hopf link:

$$\{x = y, y = 0\} \sqcup \{z = 0, at = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

• The parametrisation is the same:

 $\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$

(日) (四) (日) (日) (日)

• The image is the same as the image of the Hopf link:

$$\{x = y, y = 0\} \sqcup \{z = 0, at = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

The parametrisation is the same:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$

• The orientation is different:

$$o_1: \overline{x-y}^* \wedge \overline{y}^* \mapsto 1 \otimes 1, o_2: \overline{z}^* \wedge \overline{at}^* \mapsto 1 \otimes 1$$

(日)

The singular complex and the Rost-Schmid complex

Classical algebraic topology

Each topological space X has a singular cochain complex:

$$\ldots \longrightarrow \mathcal{C}^i(X) \longrightarrow \mathcal{C}^{i+1}(X) \longrightarrow \ldots$$

The singular complex and the Rost-Schmid complex

Classical algebraic topology

Each topological space X has a singular cochain complex:

$$\ldots \longrightarrow \mathcal{C}^{i}(X) \longrightarrow \mathcal{C}^{i+1}(X) \longrightarrow \ldots$$

Motivic algebraic topology

Each smooth *F*-scheme *X* has a Rost-Schmid complex for each integer $j \in \mathbb{Z}$ and invertible \mathcal{O}_X -module \mathcal{L} :

< □ > < @ >

Classical algebraic topology

The *i*-th cohomology group $H^i(X)$ of X is the *i*-th cohomology group of the singular cochain complex of X.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical algebraic topology

The *i*-th cohomology group $H^i(X)$ of X is the *i*-th cohomology group of the singular cochain complex of X. The cup-product $H^i(X) \times H^{i'}(X) \to H^{i+i'}(X)$ makes $\bigoplus_{i \in \mathbb{N}_0} H^i(X)$ into a graded ring.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classical algebraic topology

The *i*-th cohomology group $H^i(X)$ of X is the *i*-th cohomology group of the singular cochain complex of X. The cup-product $H^i(X) \times H^{i'}(X) \to H^{i+i'}(X)$ makes $\bigoplus_{i \in \mathbb{N}_0} H^i(X)$ into a graded ring.

Motivic algebraic topology

The *i*-th Rost-Schmid group $H^i(X, \underline{K}_j^{MW} \{ \mathcal{L} \})$ of X with respect to j and \mathcal{L} is the *i*-th cohomology group of the Rost-Schmid complex of X w.r.t. j and \mathcal{L} . We denote $H^i(X, \underline{K}_j^{MW}) := H^i(X, \underline{K}_j^{MW} \{ \mathcal{O}_X \})$.

イロト イポト イヨト イヨト 二日

Classical algebraic topology

The *i*-th cohomology group $H^i(X)$ of X is the *i*-th cohomology group of the singular cochain complex of X. The cup-product $H^i(X) \times H^{i'}(X) \to H^{i+i'}(X)$ makes $\bigoplus_{i \in \mathbb{N}_0} H^i(X)$ into a graded ring.

Motivic algebraic topology

The *i*-th Rost-Schmid group $H^{i}(X, \underline{K}_{j}^{MW} \{ \mathcal{L} \})$ of X with respect to j and \mathcal{L} is the *i*-th cohomology group of the Rost-Schmid complex of X w.r.t. j and \mathcal{L} . We denote $H^{i}(X, \underline{K}_{j}^{MW}) := H^{i}(X, \underline{K}_{j}^{MW} \{ \mathcal{O}_{X} \})$. The intersection product $H^{i}(X, \underline{K}_{j}^{MW} \{ \mathcal{L} \}) \times H^{i'}(X, \underline{K}_{j'}^{MW} \{ \mathcal{L} ' \}) \rightarrow H^{i+i'}(X, \underline{K}_{j+j'}^{MW} \{ \mathcal{L} \otimes \mathcal{L} ' \})$ makes $\bigoplus_{i,j,\mathcal{L}} H^{i}(X, \underline{K}_{j}^{MW} \{ \mathcal{L} \})$ into a graded $K_{0}^{MW}(F)$ -algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (Z, i, X, j, U) be a boundary triple. We have the following long exact sequence (where ∂ is the boundary map):

$$\dots \longrightarrow H^n(Z) \xrightarrow{i_*} H^{n+d_X-d_Z}(X) \xrightarrow{j^*} H^{n+d_X-d_Z}(U) \xrightarrow{\partial} H^{n+1}(Z) -$$

・ロト ・四ト ・ヨト ・ヨト

Let (Z, i, X, j, U) be a boundary triple. We have the following long exact sequence (where ∂ is the boundary map):

$$\dots \longrightarrow H^n(Z) \xrightarrow{i_*} H^{n+d_X-d_Z}(X) \xrightarrow{j^*} H^{n+d_X-d_Z}(U) \xrightarrow{\partial} H^{n+1}(Z) \xrightarrow{i_Y} H^{n+d_X-d_Z}(U) \xrightarrow{i_Y} H^{n+d_X}(U) \xrightarrow{i_Y} H^{n+d_X}(U) \xrightarrow{i_Y} H^$$

Motivic algebraic topology

Let (Z, i, X, j, U) be a boundary triple. We have the localization long exact sequence (where ∂ is the boundary map):

$$\cdots \longrightarrow H^{n}(Z, \underline{K}_{m}^{\mathsf{MW}}\{\nu_{Z}\}) \xrightarrow{i_{*}} H^{n+d_{X}-d_{Z}}(X, \underline{K}_{m+d_{X}-d_{Z}}^{\mathsf{MW}}) \xrightarrow{j^{*}}$$

$$\xrightarrow{j^{*}} H^{n+d_{X}-d_{Z}}(U, \underline{K}_{m+d_{X}-d_{Z}}^{\mathsf{MW}}) \xrightarrow{\partial} H^{n+1}(Z, \underline{K}_{m}^{\mathsf{MW}}\{\nu_{Z}\}) \longrightarrow .$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $n \ge 2$ and $i \ge 0$ be integers. The singular cohomology group $H^{i}(\mathbb{S}^{n-1})$ is isomorphic to $\begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z} & \text{if } i = n-1. \\ 0 & \text{otherwise} \end{cases}$

イロト イポト イヨト イヨト 一日

Let $n \ge 2$ and $i \ge 0$ be integers. The singular cohomology group $H^{i}(\mathbb{S}^{n-1})$ is isomorphic to $\begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z} & \text{if } i = n-1. \\ 0 & \text{otherwise} \end{cases}$

Motivic algebraic topology

Let $n \ge 2$, $i \ge 0, j \in \mathbb{Z}$ be integers. The Rost-Schmid group $H^{i}(\mathbb{A}_{F}^{n} \setminus \{0\}, \underline{K}_{j}^{MW})$ is isomorphic to $\begin{cases}
\mathcal{K}_{j}^{MW}(F) & \text{if } i = 0 \\
\mathcal{K}_{j-n}^{MW}(F) & \text{if } i = n-1. \\
0 & \text{otherwise}
\end{cases}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Let $n \ge 2$ and $i \ge 0$ be integers. The singular cohomology group $H^{i}(\mathbb{S}^{n-1})$ is isomorphic to $\begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z} & \text{if } i = n-1. \\ 0 & \text{otherwise} \end{cases}$

Motivic algebraic topology

Let $n \ge 2$, $i \ge 0, j \in \mathbb{Z}$ be integers. The Rost-Schmid group $H^{i}(\mathbb{A}_{F}^{n} \setminus \{0\}, \underline{K}_{j}^{MW})$ is isomorphic to $\begin{cases} K_{j}^{MW}(F) & \text{if } i = 0 \\ K_{j-n}^{MW}(F) & \text{if } i = n-1 \\ 0 & \text{otherwise} \end{cases}$

In particular, $H^1(\mathbb{A}_F^2 \setminus \{0\}, \underline{K}_0^{MW}) \simeq K_{-2}^{MW}(F) \simeq W(F)$ and $H^3(\mathbb{A}_F^4 \setminus \{0\}, \underline{K}_2^{MW}) \simeq K_{-2}^{MW}(F) \simeq W(F)$. These iso. are not canonical.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Notations

- Let $L = K_1 \sqcup K_2$ be an oriented link (in knot theory).
- Let *L* be an oriented link with two components (in motivic knot theory), i.e. a couple of closed immersions φ_i : A²_F \ {0} → A⁴_F \ {0} with disjoint images Z_i and orientation classes o_i (with i ∈ {1,2}).
- We denote $Z := Z_1 \sqcup Z_2$ and $\nu_Z := det(\mathcal{N}_{Z/\mathbb{A}_F^4 \setminus \{0\}}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Knot theory

The class S_i in $H^1(\mathbb{S}^3 \setminus L)$ of Seifert surfaces of the oriented knot K_i is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_i in $H^0(K_i) \subset H^0(L)$.

イロト イポト イヨト イヨト

Oriented fundamental classes and Seifert classes

Let $i \in \{1, 2\}$.

Knot theory

The class S_i in $H^1(\mathbb{S}^3 \setminus L)$ of Seifert surfaces of the oriented knot K_i is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_i in $H^0(K_i) \subset H^0(L)$.

Motivic knot theory

We define the oriented fundamental class $[o_i]$ as the unique class in $H^0(Z_i, \underline{K}_{-1}^{MW} \{ \nu_{Z_i} \})$ that is sent by \tilde{o}_i to the class of η in $H^0(Z_i, \underline{K}_{-1}^{MW})$, then we define the Seifert class S_i as the unique class in $H^1(X \setminus Z, \underline{K}_1^{MW})$ that is sent by the boundary map ∂ to the oriented fundamental class $[o_i] \in H^0(Z, \underline{K}_{-1}^{MW} \{ \nu_Z \})$.

イロト 不得下 イヨト イヨト 二日

The quadratic linking class

Knot theory

The linking class of L is the image of the cup-product $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$ by the boundary map $\partial : H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$.

イロト 不得 トイヨト イヨト 二日

The quadratic linking class

Knot theory

The linking class of L is the image of the cup-product $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$ by the boundary map $\partial : H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$.

Motivic knot theory

We define the quadratic linking class of \mathscr{L} as the image of the intersection product $S_1 \cdot S_2 \in H^2(X \setminus Z, \underline{K}_2^{\mathsf{MW}})$ by the boundary map $\partial : H^2(X \setminus Z, \underline{K}_2^{\mathsf{MW}}) \to H^1(Z, \underline{K}_0^{\mathsf{MW}}\{\nu_Z\}).$

イロト 不得下 イヨト イヨト 二日

The ambient quadratic linking degree

Knot theory: the linking number

The linking number of the oriented link $L = K_1 \sqcup K_2$ is the image of the part of the linking class of L which is in $H^1(K_1)$ by the composite of the morphism $(i_1)_*$: $H^1(K_1) \to H^3(\mathbb{S}^3)$ which is induced by the inclusion $i_1: K_1 \to \mathbb{S}^3$ and of the isomorphism $r: H^3(\mathbb{S}^3) \to \mathbb{Z}$ which corresponds to the "right-hand rule".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The ambient quadratic linking degree

Knot theory: the linking number

The linking number of the oriented link $L = K_1 \sqcup K_2$ is the image of the part of the linking class of L which is in $H^1(K_1)$ by the composite of the morphism $(i_1)_*$: $H^1(K_1) \to H^3(\mathbb{S}^3)$ which is induced by the inclusion $i_1: K_1 \to \mathbb{S}^3$ and of the isomorphism $r: H^3(\mathbb{S}^3) \to \mathbb{Z}$ which corresponds to the "right-hand rule".

Motivic knot theory: the ambient quadratic linking degree

We define the ambient quadratic linking degree as the image of the part of the quadratic linking class which lives over Z_1 by the composite of the morphism $(i_1)_*$: $H^1(Z_1, \underline{K}_0^{MW}\{\nu_{Z_1}\}) \rightarrow H^3(\mathbb{A}_F^4 \setminus \{0\}, K_2^{MW})$ induced by the inclusion $i_1: Z_1 \to \mathbb{A}^4_F \setminus \{0\}$ and of an isomorphism between $H^{3}(\mathbb{A}_{F}^{4} \setminus \{0\}, K_{2}^{MW})$ and W(F) which has been fixed once and for all (thanks to the coordinates x, y, z, t).

The quadratic linking degree couple

The linking couple

The linking couple is the image of the linking class by the isomorphism $h_1 \oplus h_2 : H^1(K_1) \oplus H^1(K_2) \to \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms ω_{K_1} of K_1 and ω_{K_2} of K_2 .

(日)

The quadratic linking degree couple

The linking couple

The linking couple is the image of the linking class by the isomorphism $h_1 \oplus h_2 : H^1(K_1) \oplus H^1(K_2) \to \mathbb{Z} \oplus \mathbb{Z}$ which is induced by the volume forms ω_{K_1} of K_1 and ω_{K_2} of K_2 .

Motivic knot theory

We define the quadratic linking degree couple of \mathcal{L} as the image of the quadratic linking class of \mathscr{L} by the isomorphism $H^1(Z, \underline{K}_0^{\mathsf{MW}}\{\nu_Z\}) \to H^1(Z, \underline{K}_0^{\mathsf{MW}}) \to$ $H^1(\mathbb{A}^2_F \setminus \{0\}, K_0^{\mathsf{MW}}) \oplus H^1(\mathbb{A}^2_F \setminus \{0\}, K_0^{\mathsf{MW}}) \to \mathsf{W}(F) \oplus \mathsf{W}(F).$

This isomorphism between $H^1(\mathbb{A}^2_F \setminus \{0\}, \mathcal{K}^{MW}_0)$ and W(F) has been fixed once and for all (thanks to the coordinates u, v).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The Hopf link

Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

• The parametrisation of the Hopf link:

 $\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$

• The orientation of the Hopf link:

$$o_1: \overline{x}^* \wedge \overline{y}^* \mapsto 1, o_2: \overline{z}^* \wedge \overline{t}^* \mapsto 1$$

(日) (四) (日) (日) (日)

The (amb.) quadratic linking degree (cpl.) of the Hopf link

Or. fund. cl.	$\eta \otimes (\overline{x}^* \wedge \overline{y}^*)$		$\eta\otimes (\overline{z}^*\wedge\overline{t}^*)$
Seifert cl.	$\langle x angle \otimes \overline{y}^*$		$\langle z angle \otimes \overline{t}^*$
Apply int. prod.	$\langle xz angle \otimes ig(\overline{t}^* \wedge \overline{y}^* ig)$		
Quad. lk. class	$-\langle z angle\eta\otimes(\overline{t}^*\wedge\overline{x}^*\wedge\overline{y}^*)$	\oplus	$\langle x angle \eta \otimes (\overline{y}^* \wedge \overline{z}^* \wedge \overline{t}^*)$
Apply $(i_1)_*$	$-\langle z angle\eta\otimes(\overline{t}^*\wedge\overline{x}^*\wedge\overline{y}^*)$		
Apply ∂	$ -\eta^2\otimes(\overline{x}^*\wedge\overline{y}^*\wedge\overline{z}^*\wedge\overline{t}^*) $		
Amb. qld.	-1		
Quad. lk. class	$-\langle z angle\eta\otimes(\overline{t}^*\wedge\overline{x}^*\wedge\overline{y}^*)$	\oplus	$\langle x angle \eta \otimes (\overline{y}^* \wedge \overline{z}^* \wedge \overline{t}^*)$
Apply $\widetilde{o_1} \oplus \widetilde{o_2}$	$-\langle z angle\eta\otimes\overline{t}^{*}$	\oplus	$\langle {\sf x} angle \eta \otimes \overline{{\sf y}}^*$
Apply $arphi_1^*\oplusarphi_2^*$	$-\langle u angle\eta\otimes\overline{oldsymbol{ u}}^*$	\oplus	$\langle u angle\eta\otimes\overline{oldsymbol{ u}}^*$
Apply $\partial \oplus \partial$	$-\eta^2\otimes (\overline{u}^*\wedge\overline{v}^*)$	\oplus	$\eta^2 \otimes (\overline{u}^* \wedge \overline{v}^*)$
Qld. couple	-1	\oplus	1

3

(日)

• The image is the same as the Hopf link's image:

$$\{x = y, y = 0\} \sqcup \{z = 0, a \times t = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

• The parametrisation is the same:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$

• The orientation is different:

$$o_1: \overline{x-y}^* \wedge \overline{y}^* \mapsto 1, o_2: \overline{z}^* \wedge \overline{at}^* \mapsto 1$$

(日)

The quadratic linking degree of a variant of the Hopf link

$$\begin{split} \mathcal{S}_{1}^{\textit{var}} \cdot \mathcal{S}_{2}^{\textit{var}} &= \langle \mathbf{a} \rangle \mathcal{S}_{1}^{\textit{Hopf}} \cdot \mathcal{S}_{2}^{\textit{Hopf}} \\ \partial (\mathcal{S}_{1}^{\textit{var}} \cdot \mathcal{S}_{2}^{\textit{var}}) &= \langle \mathbf{a} \rangle \partial (\mathcal{S}_{1}^{\textit{Hopf}} \cdot \mathcal{S}_{2}^{\textit{Hopf}}) \end{split}$$

The ambient quadratic linking degree of the variant is $-\langle a \rangle$. The quadratic linking degree couple of the variant is $(-\langle a \rangle, 1)$.

Clémentine Lemarié--Rieusset (Université de

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image is different from the Hopf link we saw before:

$$\{z = x, t = y\} \sqcup \{z = -x, t = -y\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

But the change of coordinates x' = z - x, y' = t - y, z' = z + x, t' = t + y would give $\{x' = 0, y' = 0\} \sqcup \{z' = 0, t' = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$.

< ロト < 同ト < ヨト < ヨト

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image is different from the Hopf link we saw before:

$$\{z = x, t = y\} \sqcup \{z = -x, t = -y\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

But the change of coordinates x' = z - x, y' = t - y, z' = z + x, t' = t + y would give $\{x' = 0, y' = 0\} \sqcup \{z' = 0, t' = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$.

• The parametrisation is $\varphi_1 : (x, y, z, t) \leftrightarrow (u, v, u, v)$ and $\varphi_2 : (x, y, z, t) \leftrightarrow (u, v, -u, -v)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image is different from the Hopf link we saw before:

$$\{z = x, t = y\} \sqcup \{z = -x, t = -y\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

But the change of coordinates x' = z - x, y' = t - y, z' = z + x, t' = t + y would give $\{x' = 0, y' = 0\} \sqcup \{z' = 0, t' = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$.

- The parametrisation is $\varphi_1 : (x, y, z, t) \leftrightarrow (u, v, u, v)$ and $\varphi_2 : (x, y, z, t) \leftrightarrow (u, v, -u, -v)$.
- The orientation is the following:

$$o_1: \overline{z-x}^* \wedge \overline{t-y}^* \mapsto 1, o_2: \overline{z+x}^* \wedge \overline{t+y}^* \mapsto 1$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

• This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.

(日) (四) (日) (日) (日)

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by {z = x, t = y} ⊔ {z = -x, t = -y} in S_ε³ = {(x, y, z, t) ∈ ℝ⁴, x² + y² + z² + t² = ε²} for ε small enough and has linking number 1.
- Its ambient quadratic linking degree is −1 ∈ W(F).

イロト イヨト イヨト ・

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by {z = x, t = y} ⊔ {z = -x, t = -y} in S_ε³ = {(x, y, z, t) ∈ ℝ⁴, x² + y² + z² + t² = ε²} for ε small enough and has linking number 1.
- Its ambient quadratic linking degree is $-1 \in W(F)$.
- If we change its orientations and its parametrisations then we get $\langle a \rangle \in W(F)$ with $a \in F^*$.

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.
- Its ambient quadratic linking degree is $-1 \in W(F)$.
- If we change its orientations and its parametrisations then we get $\langle a \rangle \in W(F)$ with $a \in F^*$.
- Its quadratic linking degree couple is $(1, -1) \in W(F) \oplus W(F)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.
- Its ambient quadratic linking degree is $-1 \in W(F)$.
- If we change its orientations and its parametrisations then we get
 ⟨a⟩ ∈ W(F) with a ∈ F*.
- Its quadratic linking degree couple is $(1, -1) \in W(F) \oplus W(F)$.
- If we change its orientations and its parametrisations then we get
 (⟨b⟩, ⟨c⟩) ∈ W(F) ⊕ W(F) with b, c ∈ F*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
In knot theory, the Solomon link is given by {z = x² - y², t = 2xy}⊔ {z = -x² + y², t = -2xy} in S³_ε for ε small enough and has linking number 2.

イロト 不得 トイヨト イヨト 二日

- In knot theory, the Solomon link is given by {z = x² y², t = 2xy}⊔ {z = -x² + y², t = -2xy} in S³_ε for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$\{z = x^2 - y^2, t = 2xy\} \sqcup \{z = -x^2 + y^2, t = -2xy\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

イロト 不得 トイヨト イヨト 二日

- In knot theory, the Solomon link is given by {z = x² y², t = 2xy}⊔ {z = -x² + y², t = -2xy} in S³_ε for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$\{z = x^2 - y^2, t = 2xy\} \sqcup \{z = -x^2 + y^2, t = -2xy\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

• The parametrisation is $\varphi_1 : (x, y, z, t) \leftrightarrow (u, v, u^2 - v^2, 2uv)$ and $\varphi_2 : (x, y, z, t) \leftrightarrow (u, v, -u^2 + v^2, -2uv)$.

- In knot theory, the Solomon link is given by {z = x² − y², t = 2xy}⊔ {z = −x² + y², t = −2xy} in S³_ε for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$\{z = x^2 - y^2, t = 2xy\} \sqcup \{z = -x^2 + y^2, t = -2xy\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

- The parametrisation is $\varphi_1 : (x, y, z, t) \leftrightarrow (u, v, u^2 v^2, 2uv)$ and $\varphi_2 : (x, y, z, t) \leftrightarrow (u, v, -u^2 + v^2, -2uv)$.
- The orientation is the following:

$$o_1:\overline{z-x^2+y^2}^*\wedge\overline{t-2xy}^*\mapsto 1, o_2:\overline{z+x^2-y^2}^*\wedge\overline{t+2xy}^*\mapsto 1$$

Motivic linking

The Solomon link

• Its ambient quadratic linking degree is $\langle -1 \rangle + \langle -1 \rangle = -2 \in W(F)$.

3

(日)

- Its ambient quadratic linking degree is $\langle -1 \rangle + \langle -1 \rangle = -2 \in W(F)$.
- If we change its orientations and its parametrisations then we get $\langle a \rangle + \langle a \rangle \in W(F)$ with $a \in F^*$.

< □ > < 同 > < 回 > < 回 > < 回 >

- Its ambient quadratic linking degree is $\langle -1 \rangle + \langle -1 \rangle = -2 \in W(F)$.
- If we change its orientations and its parametrisations then we get $\langle a \rangle + \langle a \rangle \in W(F)$ with $a \in F^*$.
- Its quadratic linking degree couple is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$

(日)

- Its ambient quadratic linking degree is $\langle -1 \rangle + \langle -1 \rangle = -2 \in W(F)$.
- If we change its orientations and its parametrisations then we get $\langle a \rangle + \langle a \rangle \in W(F)$ with $a \in F^*$.
- Its quadratic linking degree couple is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrisations then we get
 (⟨b⟩ + ⟨b⟩, ⟨c⟩ + ⟨c⟩) ∈ W(F) ⊕ W(F) with b, c ∈ F*.

- Its ambient quadratic linking degree is $\langle -1 \rangle + \langle -1 \rangle = -2 \in W(F).$
- If we change its orientations and its parametrisations then we get $\langle a \rangle + \langle a \rangle \in W(F)$ with $a \in F^*$.
- Its quadratic linking degree couple is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrisations then we get
 (⟨b⟩ + ⟨b⟩, ⟨c⟩ + ⟨c⟩) ∈ W(F) ⊕ W(F) with b, c ∈ F*.
- We want to compute quantities from the ambient quadratic linking degree or from the quadratic linking degree couple which are invariant by changes of orientations and by changes of parametrisations of the oriented link. We call these *invariants of the quadratic linking degree*.

Proposition

Let \mathscr{L} be an oriented link with two components of ambient quadratic linking degree $\alpha \in W(F)$ and of quadratic linking degree couple $(\beta, \gamma) \in W(F) \oplus W(F)$. If \mathscr{L}' is obtained from \mathscr{L} by changing orientations and parametrisations then the ambient quadratic linking degree of \mathscr{L}' is equal to $\langle a \rangle \alpha$ for some $a \in F^*$ and the quadratic linking degree couple of \mathscr{L}' is equal to $(\langle b \rangle \beta, \langle c \rangle \gamma)$ for some $b, c \in F^*$.

イロト 不得下 イヨト イヨト 二日

Proposition

Let \mathscr{L} be an oriented link with two components of ambient quadratic linking degree $\alpha \in W(F)$ and of quadratic linking degree couple $(\beta, \gamma) \in W(F) \oplus W(F)$. If \mathscr{L}' is obtained from \mathscr{L} by changing orientations and parametrisations then the ambient quadratic linking degree of \mathscr{L}' is equal to $\langle a \rangle \alpha$ for some $a \in F^*$ and the quadratic linking degree couple of \mathscr{L}' is equal to $(\langle b \rangle \beta, \langle c \rangle \gamma)$ for some $b, c \in F^*$.

Case $F = \mathbb{R}$

The absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a \rangle$ for all $a \in \mathbb{R}^*$. This gives an invariant of the qld.

Proposition

Let \mathscr{L} be an oriented link with two components of ambient quadratic linking degree $\alpha \in W(F)$ and of quadratic linking degree couple $(\beta, \gamma) \in W(F) \oplus W(F)$. If \mathscr{L}' is obtained from \mathscr{L} by changing orientations and parametrisations then the ambient quadratic linking degree of \mathscr{L}' is equal to $\langle a \rangle \alpha$ for some $a \in F^*$ and the quadratic linking degree couple of \mathscr{L}' is equal to $(\langle b \rangle \beta, \langle c \rangle \gamma)$ for some $b, c \in F^*$.

Case $F = \mathbb{R}$

The absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a \rangle$ for all $a \in \mathbb{R}^*$. This gives an invariant of the qld.

General case

The rank modulo 2 is invariant by multiplication by $\langle a \rangle$ for all $a \in F^*$.

イロト 不得 トイヨト イヨト 二日

•
$$\Sigma_2 : \begin{cases} W(F) \to W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle \text{ (if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

•
$$\Sigma_2 : \begin{cases} W(F) \rightarrow W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

• $\Sigma_2(\langle a \rangle \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j \le n} \langle a^2 a_i a_j \rangle = \Sigma_2(\sum_{i=1}^n \langle a_i \rangle)$

•
$$\Sigma_2 : \begin{cases} W(F) \to W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

- $\Sigma_2(\langle a \rangle \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j \le n} \langle a^2 a_i a_j \rangle = \Sigma_2(\sum_{i=1}^n \langle a_i \rangle)$
- This is not interesting if W(F)/(1) = 0 (for instance if $F = \mathbb{R}$).

イロト 不得下 イヨト イヨト 二日

•
$$\Sigma_2 : \begin{cases} W(F) \to W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

- $\Sigma_2(\langle a \rangle \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j \le n} \langle a^2 a_i a_j \rangle = \Sigma_2(\sum_{i=1}^n \langle a_i \rangle)$
- This is not interesting if W(F)/(1) = 0 (for instance if $F = \mathbb{R}$).
- It is interesting for instance if $F = \mathbb{Q}$: $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z}).$

イロト イ理ト イヨト イヨト

•
$$\Sigma_2 : \begin{cases} W(F) \to W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

- $\Sigma_2(\langle a \rangle \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j \le n} \langle a^2 a_i a_j \rangle = \Sigma_2(\sum_{i=1}^n \langle a_i \rangle)$
- This is not interesting if W(F)/(1) = 0 (for instance if $F = \mathbb{R}$).
- It is interesting for instance if $F = \mathbb{Q}$: $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z}).$

•
$$\Sigma_4 : \begin{cases} W(F) \rightarrow \bigcup_{d \in W(F)} (W(F)/(1))/(\Sigma_2(d)) \\ & & \\ \sum_{i=1}^n \langle a_i \rangle \rightarrow \sum_{1 \leq i < j < k < l \leq n} \langle a_i a_j a_k a_l \rangle \end{cases}$$

< ロト < 同ト < ヨト < ヨト

•
$$\Sigma_2 : \begin{cases} W(F) \rightarrow W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \rightarrow \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

- $\Sigma_2(\langle a \rangle \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j \le n} \langle a^2 a_i a_j \rangle = \Sigma_2(\sum_{i=1}^n \langle a_i \rangle)$
- This is not interesting if W(F)/(1) = 0 (for instance if $F = \mathbb{R}$).
- It is interesting for instance if $F = \mathbb{Q}$: $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z}).$

•
$$\Sigma_4 : \begin{cases} W(F) \rightarrow \bigcup_{d \in W(F)} (W(F)/(1))/(\Sigma_2(d)) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j < k < l \le n} \langle a_i a_j a_k a_l \rangle \\ \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j < k < l \le n} \langle a^4 a_i a_j a_k a_l \rangle = \Sigma_4(\sum_{i=1}^n \langle a_i \rangle) \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$\Sigma_2 : \begin{cases} W(F) \to W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

- $\Sigma_2(\langle a \rangle \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j \le n} \langle a^2 a_i a_j \rangle = \Sigma_2(\sum_{i=1}^n \langle a_i \rangle)$
- This is not interesting if W(F)/(1) = 0 (for instance if $F = \mathbb{R}$).
- It is interesting for instance if $F = \mathbb{Q}$: $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z}).$

•
$$\Sigma_4 : \begin{cases} W(F) \rightarrow \bigcup_{d \in W(F)} (W(F)/(1))/(\Sigma_2(d)) \\ \sum_{i=1}^n \langle a_i \rangle \rightarrow \sum_{1 \le i < j < k < l \le n} \langle a_i a_j a_k a_l \rangle \\ \sum_{i=1}^n \langle a_i \rangle) = \sum_{1 \le i < j < k < l \le n} \langle a^4 a_i a_j a_k a_l \rangle = \Sigma_4(\sum_{i=1}^n \langle a_i \rangle) \\ e$$
 Etc. for Σ_{2m} with $m \in \mathbb{N}$

イロト イ理ト イヨト イヨト

The constructions I have presented can be done in a more general context: Z₁ ⊔ Z₂ ⊂ X where:

3

< □ > < 同 > < 回 > < 回 > < 回 >

- The constructions I have presented can be done in a more general context: Z₁ ⊔ Z₂ ⊂ X where:
- X is an irreducible finite type smooth F-scheme of dimension d_X ;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The constructions I have presented can be done in a more general context: Z₁ ⊔ Z₂ ⊂ X where:
- X is an irreducible finite type smooth F-scheme of dimension d_X ;
- Z₁ and Z₂ are disjoint irreducible finite type smooth closed
 F-subschemes of X of same dimension d; we denote by c := d_X d
 their codimension in X;

< □ > < 同 > < 回 > < 回 > < 回 >

- The constructions I have presented can be done in a more general context: Z₁ ⊔ Z₂ ⊂ X where:
- X is an irreducible finite type smooth F-scheme of dimension d_X ;
- Z₁ and Z₂ are disjoint irreducible finite type smooth closed
 F-subschemes of X of same dimension d; we denote by c := d_X d
 their codimension in X;
- $H^{c-1}(X, \underline{K}_{j_1+c}^{MW}) = 0$, $H^{c-1}(X, \underline{K}_{j_2+c}^{MW}) = 0$, $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ for some $j_1, j_2 \le 0$.

- The constructions I have presented can be done in a more general context: Z₁ ⊔ Z₂ ⊂ X where:
- X is an irreducible finite type smooth F-scheme of dimension d_X ;
- Z₁ and Z₂ are disjoint irreducible finite type smooth closed
 F-subschemes of X of same dimension d; we denote by c := d_X d
 their codimension in X;
- $H^{c-1}(X, \underline{K}_{j_1+c}^{MW}) = 0$, $H^{c-1}(X, \underline{K}_{j_2+c}^{MW}) = 0$, $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ for some $j_1, j_2 \le 0$.
- One family of examples is: $\mathbb{A}_{F}^{n+1} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n+1} \setminus \{0\} \subset \mathbb{A}_{F}^{2n+2} \setminus \{0\}$ with $n \ge 1$ and $j_1, j_2 \le 0$ (before we were considering $\mathbb{A}_{F}^{2} \setminus \{0\} \sqcup \mathbb{A}_{F}^{2} \setminus \{0\} \subset \mathbb{A}_{F}^{4} \setminus \{0\}$ with $j_1 = j_2 = -1$).

- The constructions I have presented can be done in a more general context: Z₁ ⊔ Z₂ ⊂ X where:
- X is an irreducible finite type smooth F-scheme of dimension d_X ;
- Z₁ and Z₂ are disjoint irreducible finite type smooth closed
 F-subschemes of X of same dimension d; we denote by c := d_X d
 their codimension in X;
- $H^{c-1}(X, \underline{K}_{j_1+c}^{MW}) = 0$, $H^{c-1}(X, \underline{K}_{j_2+c}^{MW}) = 0$, $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$ for some $j_1, j_2 \le 0$.
- One family of examples is: $\mathbb{A}_{F}^{n+1} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n+1} \setminus \{0\} \subset \mathbb{A}_{F}^{2n+2} \setminus \{0\}$ with $n \ge 1$ and $j_{1}, j_{2} \le 0$ (before we were considering $\mathbb{A}_{F}^{2} \setminus \{0\} \sqcup \mathbb{A}_{F}^{2} \setminus \{0\} \subset \mathbb{A}_{F}^{4} \setminus \{0\}$ with $j_{1} = j_{2} = -1$).
- Another family of examples is: $\mathbb{P}_{F}^{n} \sqcup \mathbb{P}_{F}^{n} \subset \mathbb{P}_{F}^{2n+1}$ with $n \ge 1$ odd and $j_{1}, j_{2} \le -2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

э

< □ > < 同 > < 回 > < 回 > < 回 >

A smooth model of $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth *F*-scheme which has the \mathbb{A}^1 -homotopy type of $S^i \wedge \mathbb{G}_m^{\wedge j}$.

< □ > < □ > < □ > < □ > < □ > < □ >

A smooth model of $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth *F*-scheme which has the \mathbb{A}^1 -homotopy type of $S^i \wedge \mathbb{G}_m^{\wedge j}$.

• $\mathbb{A}_{F}^{n+1} \setminus \{0\}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge (n+1)}$

A smooth model of $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth *F*-scheme which has the \mathbb{A}^1 -homotopy type of $S^i \wedge \mathbb{G}_m^{\wedge j}$.

- $\mathbb{A}_F^{n+1} \setminus \{0\}$ is a smooth model of $S^n \wedge \mathbb{G}_m^{\wedge (n+1)}$
- $Q_{2n+1} := \operatorname{Spec}(F[x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1}]/(\sum_{i=1}^{n+1} x_i y_i 1))$
- Q_{2n+1} is a smooth model of $S^n \wedge \mathbb{G}_m^{\wedge (n+1)}$

A smooth model of $S^i \wedge \mathbb{G}_m^{\wedge j}$ is a smooth *F*-scheme which has the \mathbb{A}^1 -homotopy type of $S^i \wedge \mathbb{G}_m^{\wedge j}$.

• $\mathbb{A}_F^{n+1} \setminus \{0\}$ is a smooth model of $S^n \wedge \mathbb{G}_m^{\wedge (n+1)}$

•
$$Q_{2n+1} := \operatorname{Spec}(F[x_1, \ldots, x_{n+1}, y_1, \ldots, y_{n+1}]/(\sum_{i=1}^{n+1} x_i y_i - 1))$$

•
$$Q_{2n+1}$$
 is a smooth model of $S^n \wedge \mathbb{G}_m^{\wedge (n+1)}$

- $Q_{2n} := \operatorname{Spec}(F[x_1, \ldots, x_n, y_1, \ldots, y_n, z]/(\sum_{i=1}^n x_i y_i z(1+z)))$
- Q_{2n} is a smooth model of $S^n \wedge \mathbb{G}_m^{\wedge n}$

▲日▼▲□▼▲目▼▲目▼ ヨーのなの

• $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc okay);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \ge 2$ (and ambient qlc okay); • $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \ge 3$;

- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$ with $n \ge 3$;
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);

- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}^n_F \setminus \{0\} \sqcup Q_n \to \mathbb{A}^{2n}_F \setminus \{0\}$ with $n \ge 3$;
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n + \lfloor \frac{n}{2} \rfloor + 1} \setminus \{0\}$ with $n \geq 3$;

- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}^n_F \setminus \{0\} \sqcup Q_n \to \mathbb{A}^{2n}_F \setminus \{0\}$ with $n \ge 3$;
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$;
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);

- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$ with $n \ge 3$;
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$;
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);
- $Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \ge 3$;
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc okay);
- $\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$ with $n \ge 3$;
- $\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);
- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \geq 3$;
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);
- $Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$ with $n \ge 3$;
- $Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1}$ with $n \ge 5$.

• $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup \mathbb{A}_{F}^{n} \setminus \{0\} \to \mathbb{A}_{F}^{2n} \setminus \{0\}$ with $n \geq 2$ (and ambient qlc okay);

•
$$\mathbb{A}_F^n \setminus \{0\} \sqcup Q_n \to \mathbb{A}_F^{2n} \setminus \{0\}$$
 with $n \ge 3$;

•
$$\mathbb{A}_F^2 \setminus \{0\} \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$$
 (and ambient qlc okay);

- $\mathbb{A}_{F}^{n} \setminus \{0\} \sqcup Q_{n} \to \mathbb{A}_{F}^{n + \lfloor \frac{n}{2} \rfloor + 1} \setminus \{0\}$ with $n \geq 3$;
- $Q_2 \sqcup Q_2 \to \mathbb{A}_F^4 \setminus \{0\}$ (and ambient qlc okay);

•
$$Q_n \sqcup Q_n \to \mathbb{A}_F^{n+\lfloor \frac{n}{2} \rfloor+1} \setminus \{0\}$$
 with $n \ge 3$;

•
$$Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1}$$
 with $n \ge 5$.

In the cases $Q_n \sqcup Q_n \to Q_{n+\lfloor \frac{n}{2} \rfloor+1} = X$ with $n \in \{2, 3, 4\}$, the only conditions which are not verified are the ones which are there to ensure the existence of Seifert classes: $H^c(X, \underline{K}_{j_1+c}^{MW}) = 0$ and $H^c(X, \underline{K}_{j_2+c}^{MW}) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

In these settings, the ambient quadratic linking degree is in W(F) or in GW(F) and each component of the quadratic linking degree couple is either in the zero group, in W(F), in GW(F) or in $\mathcal{K}_1^{MW}(F)$.

In the case of GW(F), we have refinements of the invariants of the quadratic linking degree we discussed before:

• In the case $F = \mathbb{R}$, the underlying pair $(GW(\mathbb{R}) \simeq \mathbb{Z} \oplus \mathbb{Z})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In these settings, the ambient quadratic linking degree is in W(F) or in GW(F) and each component of the quadratic linking degree couple is either in the zero group, in W(F), in GW(F) or in $\mathcal{K}_1^{MW}(F)$.

In the case of GW(F), we have refinements of the invariants of the quadratic linking degree we discussed before:

- In the case $F = \mathbb{R}$, the underlying pair $(GW(\mathbb{R}) \simeq \mathbb{Z} \oplus \mathbb{Z})$.
- In the general case, the rank, and:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In these settings, the ambient quadratic linking degree is in W(F) or in GW(F) and each component of the quadratic linking degree couple is either in the zero group, in W(F), in GW(F) or in $K_1^{MW}(F)$.

In the case of GW(F), we have refinements of the invariants of the quadratic linking degree we discussed before:

• In the case $F = \mathbb{R}$, the underlying pair $(GW(\mathbb{R}) \simeq \mathbb{Z} \oplus \mathbb{Z})$.

• In the general case, the rank, and:

•
$$\Sigma_k(\sum_{i=1}^n \varepsilon_i \langle a_i \rangle) = \sum_{1 \le i_1 < \dots < i_k \le n} (\prod_{1 \le l \le k} \varepsilon_{i_l}) \langle \prod_{1 \le j \le k} a_{i_j} \rangle$$
 with $k \ge 2$ even, where $\Sigma_k : \mathrm{GW}(F) \to \mathrm{GW}(F)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Everything new I presented can be found in my preprint or in my thesis:

- my preprint on arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG];
- my PhD thesis *Motivic knot theory* will be available in a couple of months at https://www.theses.fr/s245687 (you can also ask me for it by email).

Everything new I presented can be found in my preprint or in my thesis:

- my preprint on arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG];
- my PhD thesis *Motivic knot theory* will be available in a couple of months at https://www.theses.fr/s245687 (you can also ask me for it by email).

Thanks for your attention!