Motivic knot theory

Clémentine Lemarié--Rieusset (Université de Bourgogne, France)

April 27, 2023

Contents

(1) Classical knot theory (classical linking theory)

- Knots and links
- The linking number
(2) Motivic knot theory (motivic linking theory)
- Oriented links in algebraic geometry
- Tools for motivic knot theory
- The quadratic linking degree
- Invariants of the quadratic linking degree
- Generalisation

Figure: The unknot

Figure: The trefoil knot

Knot theory in a nutshell

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3 -sphere \mathbb{S}^{3} which is homeomorphic to the circle \mathbb{S}^{1}.
- An oriented knot is a knot with a "continuous" local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.
- A link is a finite union of disjoint knots. A link is oriented if all its components (i.e. its knots) are oriented.

Figure: The Hopf link

Figure: The Solomon link

The linking number of an (oriented) link with two components is the number of times one of the components turns around the other component.

Defining the linking number: Seifert surfaces

Defining the linking number: Seifert surfaces

The class S_{1} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{\mathrm{BM}}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{1} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{1} in $H^{0}\left(K_{1}\right) \subset H^{0}(L)$.

Defining the linking number: intersection of S. surfaces

Defining the linking number: intersection of S . surfaces

This corresponds to the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$.

Defining the linking number: boundary of int. of S . surf.

Defining the linking number: boundary of int. of S. surf.

This corresponds to $\partial\left(S_{1} \cup S_{2}\right) \in H^{1}(L) \simeq H^{1}\left(Z_{1}\right) \oplus H^{1}\left(Z_{2}\right)$.

Defining the linking number: boundary of int. of S . surf.

This corresponds to $\partial\left(S_{1} \cup S_{2}\right) \in H^{1}(L) \simeq H^{1}\left(Z_{1}\right) \oplus H^{1}\left(Z_{2}\right)$. By comparing orientations, we get a number!

The formal definition of the linking number

Let $L=K_{1} \sqcup K_{2}$ be an oriented link with two components.

The formal definition of the linking number

Let $L=K_{1} \sqcup K_{2}$ be an oriented link with two components.

Oriented fundamental class and Seifert class

Let $i \in\{1,2\}$. The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{\mathrm{BM}}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

The formal definition of the linking number

Let $L=K_{1} \sqcup K_{2}$ be an oriented link with two components.

Oriented fundamental class and Seifert class

Let $i \in\{1,2\}$. The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{B M}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

Linking class and linking number

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$. The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to $\left(n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]\right)$ (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

When are two spaces "the same" homotopically?

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times[0,1] \rightarrow Y$ such that for all $x \in X, H(x, 0)=f(x)$ and $H(x, 1)=g(x)$.

When are two spaces "the same" homotopically?

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times[0,1] \rightarrow Y$ such that for all $x \in X, H(x, 0)=f(x)$ and $H(x, 1)=g(x)$.

Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple $(i: X \rightarrow Y, j: Y \rightarrow X)$ of continuous maps such that $j \circ i$ is homotopic to the identity of X and $i \circ j$ is homotopic to the identity of Y.

When are two spaces "the same"homotopically?

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times[0,1] \rightarrow Y$ such that for all $x \in X, H(x, 0)=f(x)$ and $H(x, 1)=g(x)$.

Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple $(i: X \rightarrow Y, j: Y \rightarrow X)$ of continuous maps such that $j \circ i$ is homotopic to the identity of X and $i \circ j$ is homotopic to the identity of Y.

Important example

For all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

Contents

(1) Classical knot theory (classical linking theory)

- Knots and links
- The linking number
(2) Motivic knot theory (motivic linking theory)
- Oriented links in algebraic geometry
- Tools for motivic knot theory
- The quadratic linking degree
- Invariants of the quadratic linking degree
- Generalisation

Links in algebraic geometry

Let F be a perfect field.

Link with two components

A link with two components is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

Links in algebraic geometry

Let F be a perfect field.

Link with two components

A link with two components is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

An orientation o_{i} of Z_{i} is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_{i} / \mathbb{A}_{E}^{4} \backslash\{0\}}$ of Z_{i} in $\mathbb{A}_{F}^{4} \backslash\{0\}$ to the tensor product of an invertible $\mathcal{O}_{Z_{i}}$-module \mathcal{L}_{i} with itself:

$$
o_{i}: \nu_{Z_{i}}:=\operatorname{det}\left(\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}\right) \simeq \mathcal{L}_{i} \otimes \mathcal{L}_{i}
$$

Links in algebraic geometry

Let F be a perfect field.

Link with two components

A link with two components is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

An orientation o_{i} of Z_{i} is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}$ of Z_{i} in $\mathbb{A}_{F}^{4} \backslash\{0\}$ to the tensor product of an invertible $\mathcal{O}_{Z_{i}}$-module \mathcal{L}_{i} with itself:

$$
o_{i}: \nu_{Z_{i}}:=\operatorname{det}\left(\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}\right) \simeq \mathcal{L}_{i} \otimes \mathcal{L}_{i}
$$

More concretely

In our examples, an orientation of a knot will be given by the choice of a first polynomial equation f and a second polynomial equation g such that the knot corresponds to $\{f=0, g=0\}$.

Oriented links in algebraic geometry

Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of Z_{i} represent the same orientation class of Z_{i} if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

Oriented links in algebraic geometry

Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of Z_{i} represent the same orientation class of Z_{i} if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

Oriented link with two components

An oriented link with two components is a link with two components $\left(\varphi_{1}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{2}\right)$ together with an orientation class $\overline{o_{1}}$ of Z_{1} and an orientation class $\overline{O_{2}}$ of Z_{2}.

Orientation classes in algebraic geometry

Proposition

Let $i \in\{1,2\}$. The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

Orientation classes in algebraic geometry

Proposition

Let $i \in\{1,2\}$. The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.

Orientation classes in algebraic geometry

Proposition

Let $i \in\{1,2\}$. The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.

Orientation classes in algebraic geometry

Proposition

Let $i \in\{1,2\}$. The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.
If $F=\mathbb{Q}$ then $F^{*} /\left(F^{*}\right)^{2}$ has infinitely many elements (the classes of the integers without square factors).

The Hopf link in algebraic geometry

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

The Hopf link in algebraic geometry

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

The Hopf link in algebraic geometry

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1 \otimes 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1 \otimes 1
$$

A variant of the Hopf link

- The image is the same as the image of the Hopf link:

$$
\{x=y, y=0\} \sqcup\{z=0, a t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

A variant of the Hopf link

- The image is the same as the image of the Hopf link:

$$
\{x=y, y=0\} \sqcup\{z=0, a t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

A variant of the Hopf link

- The image is the same as the image of the Hopf link:

$$
\{x=y, y=0\} \sqcup\{z=0, a t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1 \otimes 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1 \otimes 1
$$

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article Chow groups with coefficients (1996); Rost redefines Chow groups as some homology groups $A_{p}(X, q)$ of complexes $C(X, q)$, namely $C H_{p}(X)=A_{p}(X,-p)$

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article Chow groups with coefficients (1996); Rost redefines Chow groups as some homology groups $A_{p}(X, q)$ of complexes $C(X, q)$, namely $C H_{p}(X)=A_{p}(X,-p)$
- You may know the following exact sequence where $Y \subset X$ is closed:

$$
\mathrm{CH}_{p}(Y) \longrightarrow \mathrm{CH}_{p}(X) \longrightarrow \mathrm{CH}_{p}(X \backslash Y) \longrightarrow 0
$$

It can be extended into the following long exact sequence:

$$
\cdots \rightarrow A_{p+1}(X \backslash Y,-p) \rightarrow C H_{p}(Y) \rightarrow C H_{p}(X) \rightarrow C H_{p}(X \backslash Y) \rightarrow 0
$$

Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)

Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)
- In cohomological notation, instead of considering the Rost complexes
$\ldots \longrightarrow \bigoplus_{p \in Y^{(i)}} K_{j-i}^{\mathrm{M}}(\kappa(p)) \longrightarrow \bigoplus_{q \in Y^{(i+1)}} K_{j-i-1}^{\mathrm{M}}(\kappa(q)) \longrightarrow \ldots$
(for each $j \in \mathbb{Z}$) whose cohomology groups are the Rost groups $A^{i}(Y, j)$ (the i-th Chow group $C H^{i}(Y)$ when $i=j$), we consider

$$
\begin{aligned}
\cdots \longrightarrow & \bigoplus_{p \in Y^{(i)}} K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes_{\mathbb{Z}\left[\kappa(p)^{*}\right]} \mathbb{Z}\left[\left(\nu_{p} \otimes \mathcal{L}_{\mid p}\right) \backslash\{0\}\right] \\
& \bigoplus_{q \in Y^{(i+1)}} K_{j-i-1}^{\mathrm{MW}}(\kappa(q)) \otimes_{\mathbb{Z}\left[\kappa(q)^{*}\right]} \mathbb{Z}\left[\left(\nu_{q} \otimes \mathcal{L}_{\mid q}\right) \backslash\{0\}\right]
\end{aligned}
$$

Milnor-Witt K-theory

Definition

The Milnor-Witt K-theory ring associated to F, denoted $K_{*}^{\mathrm{MW}}(F)$, is the \mathbb{Z}-graded ring with unit generated by the elements [a] of degree 1, for $a \in F^{*}$, and the element η of degree -1 , subject to the relations:

- $[a b]=[a]+[b]+\eta[a][b]$ for all $a, b \in F^{*}$
- $[a][1-a]=0$ for all $a \in F \backslash\{0,1\}$ (Steinberg relation)
- $\eta[a]=[a] \eta$ for all $a \in F^{*}$
- $\eta(\eta[-1]+2)=0$

The Milnor K-theory ring associated to F is $K_{*}^{\mathrm{M}}(F)=K_{*}^{\mathrm{MW}}(F) /(\eta)$.

Notations

- We denote $\langle a\rangle:=\eta[a]+1 \in K_{0}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$.

Notations

- We denote $\langle a\rangle:=\eta[a]+1 \in K_{0}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$.
- We also denote by $\langle a\rangle$ the class of the symmetric bilinear form $\left\{\begin{array}{rll}F \times F & \rightarrow & F \\ (x, y) & \mapsto & a x y\end{array}\right.$ in $\mathrm{GW}(F)$ and in $\mathrm{W}(F)$. If F is of char. $\neq 2$ then $\langle a\rangle$ is the class of the quadratic form $\left\{\begin{array}{clc}F & \rightarrow & F \\ x & \mapsto & a x^{2} .\end{array}\right.$

Notations

- We denote $\langle a\rangle:=\eta[a]+1 \in K_{0}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$.
- We also denote by $\langle a\rangle$ the class of the symmetric bilinear form $\left\{\begin{array}{rlc}F \times F & \rightarrow & F \\ (x, y) & \mapsto & a x y\end{array}\right.$ in $\mathrm{GW}(F)$ and in $\mathrm{W}(F)$. If F is of char. $\neq 2$ then $\langle a\rangle$ is the class of the quadratic form $\left\{\begin{array}{clc}F & \rightarrow & F \\ x & \mapsto & a x^{2} .\end{array}\right.$
- $G W(F)$ is made up of \mathbb{Z}-linear combinations of $\langle a\rangle$ and $\mathrm{W}(F)=\mathrm{GW}(F) /(\langle 1\rangle+\langle-1\rangle)$ is made up of sums of $\langle a\rangle$.

Milnor-Witt K-theory and quadratic forms

Theorem

The ring $K_{0}^{\mathrm{MW}}(F)$ is isomorphic to the Grothendieck-Witt ring $\mathrm{GW}(F)$ of the field F via $\langle a\rangle \in K_{0}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{GW}(F)$.

Milnor-Witt K-theory and quadratic forms

Theorem

The ring $K_{0}^{\mathrm{MW}}(F)$ is isomorphic to the Grothendieck-Witt ring $\mathrm{GW}(F)$ of the field F via $\langle a\rangle \in K_{0}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{GW}(F)$.

Theorem

For all $n<0$, the abelian group $K_{n}^{\mathrm{MW}}(F)$ is isomorphic to the Witt group $\mathrm{W}(F)$ of the field F via $\langle a\rangle \eta^{-n} \in K_{n}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{W}(F)$.

The singular complex and the Rost-Schmid complex

Classical algebraic topology

Each topological space X has a singular cochain complex:

$$
\ldots \longrightarrow \mathcal{C}^{i}(X) \longrightarrow \mathcal{C}^{i+1}(X) \longrightarrow \ldots
$$

The singular complex and the Rost-Schmid complex

Classical algebraic topology

Each topological space X has a singular cochain complex:

$$
\ldots \longrightarrow \mathcal{C}^{i}(X) \longrightarrow \mathcal{C}^{i+1}(X) \longrightarrow \ldots
$$

Motivic algebraic topology

Each smooth F-scheme X has a Rost-Schmid complex for each integer $j \in \mathbb{Z}$ and invertible \mathcal{O}_{X}-module \mathcal{L} :

$$
\begin{aligned}
\cdots \longrightarrow & \oplus_{p \in X^{(i)}} K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes_{\mathbb{Z}\left[\kappa(p)^{*}\right]} \mathbb{Z}\left[\left(\nu_{p} \otimes \mathcal{L}_{\mid p}\right) \backslash\{0\}\right] \\
& \downarrow \\
& \oplus_{q \in X^{(i+1)}} K_{j-i-1}^{\mathrm{MW}}(\kappa(q)) \otimes_{\mathbb{Z}\left[k(q)^{*}\right]} \mathbb{Z}\left[\left(\nu_{q} \otimes \mathcal{L}_{\mid q}\right) \backslash\{0\}\right] \longrightarrow \ldots
\end{aligned}
$$

The singular cohomology ring and the Rost-Schmid ring

Classical algebraic topology

The i-th cohomology group $H^{i}(X)$ of X is the i-th cohomology group of the singular cochain complex of X.

The singular cohomology ring and the Rost-Schmid ring

Classical algebraic topology

The i-th cohomology group $H^{i}(X)$ of X is the i-th cohomology group of the singular cochain complex of X. The cup-product $H^{i}(X) \times H^{i^{\prime}}(X) \rightarrow H^{i+i^{\prime}}(X)$ makes $\bigoplus_{i \in \mathbb{N}_{0}} H^{i}(X)$ into a graded ring.

The singular cohomology ring and the Rost-Schmid ring

Classical algebraic topology

The i-th cohomology group $H^{i}(X)$ of X is the i-th cohomology group of the singular cochain complex of X. The cup-product $H^{i}(X) \times H^{i^{\prime}}(X) \rightarrow H^{i+i^{\prime}}(X)$ makes $\bigoplus_{i \in \mathbb{N}_{0}} H^{i}(X)$ into a graded ring.

Motivic algebraic topology

The i-th Rost-Schmid group $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$ of X with respect to j and \mathcal{L} is the i-th cohomology group of the Rost-Schmid complex of X w.r.t. j and \mathcal{L}. We denote $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\right):=H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\left\{\mathcal{O}_{X}\right\}\right)$.

The singular cohomology ring and the Rost-Schmid ring

Classical algebraic topology

The i-th cohomology group $H^{i}(X)$ of X is the i-th cohomology group of the singular cochain complex of X. The cup-product $H^{i}(X) \times H^{i}(X) \rightarrow H^{i+i^{\prime}}(X)$ makes $\bigoplus_{i \in \mathbb{N}_{0}} H^{i}(X)$ into a graded ring.

Motivic algebraic topology

The i-th Rost-Schmid group $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$ of X with respect to j and \mathcal{L} is the i-th cohomology group of the Rost-Schmid complex of X w.r.t. j and \mathcal{L}. We denote $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\right):=H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\left\{\mathcal{O}_{X}\right\}\right)$. The intersection product $H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right) \times H^{i^{\prime}}\left(X, \underline{K}_{j^{\prime}}^{\mathrm{MW}}\left\{\mathcal{L}^{\prime}\right\}\right) \rightarrow H^{i+i^{\prime}}\left(X, \underline{K}_{j+j^{\prime}}^{\mathrm{MW}}\left\{\mathcal{L} \otimes \mathcal{L}^{\prime}\right\}\right)$ makes $\bigoplus_{i, j, \mathcal{L}} H^{i}\left(X, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$ into a graded $K_{0}^{\mathrm{MW}}(F)$-algebra.

In particular, the intersection product makes $\bigoplus_{i \in \mathbb{N}_{0}} \widetilde{C H}^{i}(Y)$ into a graded $K_{0}^{\mathrm{MW}}(F)$-algebra (the Chow-Witt ring; where $\widetilde{C H}^{i}(Y)=H^{i}\left(X, \underline{K}_{i}^{\mathrm{MW}}\right)$).

Classical algebraic topology

Let (Z, i, X, j, U) be a boundary triple. We have the following long exact sequence (where ∂ is the boundary map):
$\cdots \longrightarrow H^{n}(Z) \xrightarrow{i_{*}} H^{n+d_{x}-d_{z}}(X) \xrightarrow{j^{*}} H^{n+d_{x}-d_{Z}}(U) \xrightarrow{\partial} H^{n+1}(Z)$

Classical algebraic topology

Let (Z, i, X, j, U) be a boundary triple. We have the following long exact sequence (where ∂ is the boundary map):
$\ldots \longrightarrow H^{n}(Z) \xrightarrow{i_{*}} H^{n+d_{x}-d_{Z}}(X) \xrightarrow{j^{*}} H^{n+d_{X}-d_{z}}(U) \xrightarrow{\partial} H^{n+1}(Z)$

Motivic algebraic topology

Let (Z, i, X, j, U) be a boundary triple. We have the localization long exact sequence (where ∂ is the boundary map):

$$
\begin{aligned}
\cdots & \longrightarrow H^{n}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \xrightarrow{i_{*}} H^{n+d_{x}-d_{Z}}\left(X, \underline{K}_{m+d_{X}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{j^{*}} \\
& \xrightarrow{j^{*}} H^{n+d_{x}-d_{Z}}\left(U, \underline{K}_{m+d_{X}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{\partial} H^{n+1}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \longrightarrow
\end{aligned}
$$

Classical algebraic topology

Let $n \geq 2$ and $i \geq 0$ be integers. The singular cohomology group
$H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

Classical algebraic topology

Let $n \geq 2$ and $i \geq 0$ be integers. The singular cohomology group
$H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

Motivic algebraic topology

Let $n \geq 2, i \geq 0, j \in \mathbb{Z}$ be integers. The Rost-Schmid group
$H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, K_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

Classical algebraic topology

Let $n \geq 2$ and $i \geq 0$ be integers. The singular cohomology group
$H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

Motivic algebraic topology

Let $n \geq 2, i \geq 0, j \in \mathbb{Z}$ be integers. The Rost-Schmid group $H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, K_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

In particular, $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \simeq K_{-2}^{\mathrm{MW}}(F) \simeq \mathrm{W}(F)$. We can fix such an isomorphism, but it is not canonical.

The linking number and the quadratic linking degree

- Let $L=K_{1} \sqcup K_{2}$ be an oriented link (in knot theory).
- Let \mathscr{L} be an oriented link with two components (in motivic knot theory), i.e. a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} and orientation classes $\overline{\sigma_{i}}$ (with $i \in\{1,2\}$).
- We denote $Z:=Z_{1} \sqcup Z_{2}$ and $\nu_{Z}:=\operatorname{det}\left(\mathcal{N}_{Z / \mathbb{A}_{F}^{4} \backslash\{0\}}\right)$.

Step 1: oriented fundamental classes and Seifert classes

Let $i \in\{1,2\}$.

Knot theory

The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

Step 1: oriented fundamental classes and Seifert classes

Let $i \in\{1,2\}$.

Knot theory

The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

Motivic knot theory

We define the oriented fundamental class $\left[o_{i}\right]$ as the unique class in $H^{0}\left(Z_{i}, \underline{K}_{-1}^{\mathrm{MW}}\left\{\nu_{Z_{i}}\right\}\right)$ that is sent by \widetilde{o}_{i} to the class of η in $H^{0}\left(Z_{i}, \underline{K}_{-1}^{\mathrm{MW}}\right)$, then we define the Seifert class \mathcal{S}_{i} as the unique class in $H^{1}\left(X \backslash Z, \underline{K}_{1}^{\mathrm{MW}}\right)$ that is sent by the boundary map ∂ to the oriented fundamental class $\left[o_{i}\right] \in H^{0}\left(Z, \underline{K}_{-1}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

Step 2: the quadratic linking class

Knot theory

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$.

Step 2: the quadratic linking class

Knot theory

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$.

Motivic knot theory

We define the quadratic linking class of \mathscr{L} as the image of the intersection product $\mathcal{S}_{1} \cdot \mathcal{S}_{2} \in H^{2}\left(X \backslash Z, K_{2}^{\mathrm{MW}}\right)$ by the boundary map $\partial: H^{2}\left(X \backslash Z, \underline{K}_{2}^{\mathrm{MW}}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

Step 3: the quadratic linking degree

Knot theory

The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to ($n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]$) (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

Step 3: the quadratic linking degree

Knot theory

The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to ($n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]$) (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

Motivic knot theory

We define the quadratic linking degree of \mathscr{L} as the image of the quadratic linking class of \mathscr{L} by the isomorphism
$H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow$
$H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \oplus H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow \mathrm{W}(F) \oplus \mathrm{W}(F)$.
We fixed an isomorphism $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, K_{0}^{\mathrm{MW}}\right) \rightarrow K_{-2}^{\mathrm{MW}}(F)$ once and for all and there is a canonical isomorphism $K_{-2}^{\mathrm{MW}}(F) \rightarrow \mathrm{W}(F)$.

The Hopf link

Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1
$$

The quadratic linking degree of the Hopf link

Or. fund. classes	$\eta \otimes\left(\bar{x}^{*} \wedge \bar{y}^{*}\right)$	$\eta \otimes\left(\bar{z}^{*} \wedge \bar{t}^{*}\right)$	
Seifert classes	$\langle x\rangle \otimes \bar{y}^{*}$		
Apply int. prod.	$\langle x z\rangle \otimes\left(\bar{t}^{*} \wedge \bar{y}^{*}\right)$		
Quad. link. class	$-\langle z\rangle \eta \otimes\left(\bar{t}^{*} \wedge \bar{x}^{*} \wedge \bar{t}^{*}\right)$	\oplus	
Apply $\widetilde{o_{1}} \oplus \widetilde{o_{2}}$	$-\langle z\rangle \eta \otimes \bar{t}^{*}$	\oplus	
Apply $\varphi_{1}^{*} \oplus \varphi_{2}^{*}$	$\left.-\langle u\rangle \eta \otimes \bar{y}^{*} \wedge \bar{z}^{*} \wedge \bar{t}^{*}\right)$		
Apply $\partial \oplus \partial$	$\oplus x\rangle \eta \otimes \bar{y}^{*}$		
Quad. link. degree	$-\eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus	

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a \times t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1
$$

The quadratic linking degree of a variant of the Hopf link

$\left[o_{1}^{\text {var }}\right]=\eta \otimes \overline{x-y^{*}} \wedge \bar{y}^{*}=\left[o_{1}^{\text {Hopf }}\right] \quad\left[o_{2}^{\text {var }}\right]=\eta \otimes \bar{z}^{*} \wedge \overline{a t}{ }^{*}=\langle a\rangle\left[o_{2}^{\text {Hopf }}\right]$
since $\binom{x-y}{y}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\binom{x}{y} \quad$ since $\binom{z}{a t}=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)\binom{z}{t}$
$\mathcal{S}_{1}^{\text {var }}=\mathcal{S}_{1}^{\text {Hopf }}$
$\mathcal{S}_{2}^{\text {var }}=\langle\mathrm{a}\rangle \mathcal{S}_{2}^{\text {Hopf }}$

$$
\begin{aligned}
& \mathcal{S}_{1}^{\text {var } \cdot} \cdot \mathcal{S}_{2}^{\text {var }}=\langle a\rangle \mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }} \\
& \partial\left(\mathcal{S}_{1}^{\text {var }} \cdot \mathcal{S}_{2}^{\text {var }}\right)=\langle a\rangle \partial\left(\mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }}\right)
\end{aligned}
$$

The quadratic linking degree of the variant is $(-\langle a\rangle, 1)$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and

$$
\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)
$$

- The orientation is the following:

$$
o_{1}: \overline{z-x}^{*} \wedge \overline{t-y}^{*} \mapsto 1, o_{2}: \overline{z+x}^{*} \wedge \overline{t+y}{ }^{*} \mapsto 1
$$

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 (i.e. linking class $(1,-1)$).
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 (i.e. linking class $(1,-1)$).
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 (i.e. linking class $(1,-1)$).
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$.
- Had we used the change of coordinates above and our first Hopf link to define the parametrizations and the orientations of this Hopf link, we would have had the same quadratic linking degree as for our first Hopf link (i.e. $(-1,1) \in W(F) \oplus W(F)$).
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 (i.e. linking class $(1,-1)$).
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$.
- Had we used the change of coordinates above and our first Hopf link to define the parametrizations and the orientations of this Hopf link, we would have had the same quadratic linking degree as for our first Hopf link (i.e. $(-1,1) \in W(F) \oplus W(F)$).
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.

The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for ε small enough and has linking number 2 .

The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow\left(u, v, u^{2}-v^{2}, 2 u v\right)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow\left(u, v,-u^{2}+v^{2},-2 u v\right)$.

The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow\left(u, v, u^{2}-v^{2}, 2 u v\right)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow\left(u, v,-u^{2}+v^{2},-2 u v\right)$.
- The orientation is the following:

$$
o_{1}:{\overline{z-x^{2}+y^{2}}}^{*} \wedge \overline{t-2 x y}^{*} \mapsto 1, o_{2}:{\overline{z+x^{2}-y^{2}}}^{*} \wedge \overline{t+2 x y}^{*} \mapsto 1
$$

- Its quadratic linking degree is $(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- We want a means of saying that $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle)$ is "fundamentally different" from $(\langle c\rangle,\langle d\rangle)$ for all $a, b, c, d \in F^{*}$ (the Solomon link is "more" different from the Hopf link than the variants of the Hopf link are different from the Hopf link).
- Its quadratic linking degree is $(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$ with $a, b \in F^{*}$.
- We want a means of saying that $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle)$ is "fundamentally different" from $(\langle c\rangle,\langle d\rangle)$ for all $a, b, c, d \in F^{*}$ (the Solomon link is "more" different from the Hopf link than the variants of the Hopf link are different from the Hopf link).
- More generally, we want to compute quantities from the quadratic linking degree which are invariant by changes of orientations and changes of parametrizations of the oriented link.

Proposition

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$. If \mathscr{L}^{\prime} is obtained from \mathscr{L} by changing orientations and parametrisations (isomorphisms with $\mathbb{A}_{F}^{2} \backslash\{0\}$) then the quadratic linking degree of \mathscr{L}^{\prime} is equal to $\left(\langle a\rangle d_{1},\langle b\rangle d_{2}\right)$ for some $a, b \in F^{*}$.

Proposition

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$. If \mathscr{L}^{\prime} is obtained from \mathscr{L} by changing orientations and parametrisations (isomorphisms with $\mathbb{A}_{F}^{2} \backslash\{0\}$) then the quadratic linking degree of \mathscr{L}^{\prime} is equal to $\left(\langle a\rangle d_{1},\langle b\rangle d_{2}\right)$ for some $a, b \in F^{*}$.

Case $F=\mathbb{R}$

If $F=\mathbb{R}$, the absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$, thus $\left(\left|d_{1}\right|,\left|d_{2}\right|\right)$ is invariant.

Proposition

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$. If \mathscr{L}^{\prime} is obtained from \mathscr{L} by changing orientations and parametrisations (isomorphisms with $\mathbb{A}_{F}^{2} \backslash\{0\}$) then the quadratic linking degree of \mathscr{L}^{\prime} is equal to $\left(\langle a\rangle d_{1},\langle b\rangle d_{2}\right)$ for some $a, b \in F^{*}$.

Case $F=\mathbb{R}$

If $F=\mathbb{R}$, the absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$, thus $\left(\left|d_{1}\right|,\left|d_{2}\right|\right)$ is invariant.

General case

The rank modulo 2 is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\left(\right.\right.$ if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $\mathrm{W}(\mathbb{Q}) /(1) \simeq$

- $\Sigma_{2}:\left\{\begin{array}{lll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $W(\mathbb{Q}) /(1) \simeq \underset{p \text { prime }}{\bigoplus} W(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{4}:\left\{\begin{array}{llc}\mathrm{W}(F) & \rightarrow & \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j<k<l \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle\end{array}\right.$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $W(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{4}:\left\{\begin{array}{lll}W(F) & \rightarrow & \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j<k<1 \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle\end{array}\right.$
- $\Sigma_{4}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j<k<l \leq n}\left\langle a^{4} a_{i} a_{j} a_{k} a_{l}\right\rangle=\Sigma_{4}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- $\Sigma_{2}:\left\{\begin{array}{rll}W(F) & \rightarrow & W(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j \leq n}\left\langle a^{2} a_{i} a_{j}\right\rangle=\Sigma_{2}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $W(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{4}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j<k<1 \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle\end{array}\right.$
- $\Sigma_{4}\left(\langle a\rangle \sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)=\sum_{1 \leq i<j<k<1 \leq n}\left\langle a^{4} a_{i} a_{j} a_{k} a_{l}\right\rangle=\Sigma_{4}\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle\right)$
- Etc. for $\Sigma_{2 m}$ with $m \in \mathbb{N}$

Everything new I presented up until now can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. 〈hal-03821736〉
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG]
- The constructions above (oriented links with two components, Seifert classes, the quadratic linking class, and sometimes the quadratic linking degree) can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$
- The constructions above (oriented links with two components, Seifert classes, the quadratic linking class, and sometimes the quadratic linking degree) can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$
- X is an irreducible finite type smooth F-scheme of dimension d_{X};
- The constructions above (oriented links with two components, Seifert classes, the quadratic linking class, and sometimes the quadratic linking degree) can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$
- X is an irreducible finite type smooth F-scheme of dimension d_{X};
- Z_{1} and Z_{2} are disjoint irreducible finite type smooth closed F-subschemes of X of same dimension d; we denote by $c:=d_{X}-d$ their codimension in X;
- The constructions above (oriented links with two components, Seifert classes, the quadratic linking class, and sometimes the quadratic linking degree) can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$
- X is an irreducible finite type smooth F-scheme of dimension d_{X};
- Z_{1} and Z_{2} are disjoint irreducible finite type smooth closed F-subschemes of X of same dimension d; we denote by $c:=d_{X}-d$ their codimension in X;
- $H^{c-1}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0, H^{c-1}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0, H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, K_{j_{2}+c}^{\mathrm{MW}}\right)=0$ for some $j_{1}, j_{2} \leq 0$.
- The constructions above (oriented links with two components, Seifert classes, the quadratic linking class, and sometimes the quadratic linking degree) can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$
- X is an irreducible finite type smooth F-scheme of dimension d_{X};
- Z_{1} and Z_{2} are disjoint irreducible finite type smooth closed F-subschemes of X of same dimension d; we denote by $c:=d_{X}-d$ their codimension in X;
- $H^{c-1}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0, H^{c-1}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0, H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, K_{j_{2}+c}^{\mathrm{MW}}\right)=0$ for some $j_{1}, j_{2} \leq 0$.
- One family of examples is: $\mathbb{A}_{F}^{n+1} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n+1} \backslash\{0\} \subset \mathbb{A}_{F}^{2 n+2} \backslash\{0\}$ with $n \geq 1$ and $j_{1}, j_{2} \leq 0$.
- The constructions above (oriented links with two components, Seifert classes, the quadratic linking class, and sometimes the quadratic linking degree) can be done in a more general context: $Z_{1} \sqcup Z_{2} \subset X$
- X is an irreducible finite type smooth F-scheme of dimension d_{X};
- Z_{1} and Z_{2} are disjoint irreducible finite type smooth closed F-subschemes of X of same dimension d; we denote by $c:=d_{X}-d$ their codimension in X;
- $H^{c-1}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0, H^{c-1}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0, H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, K_{j_{2}+c}^{\mathrm{MW}}\right)=0$ for some $j_{1}, j_{2} \leq 0$.
- One family of examples is: $\mathbb{A}_{F}^{n+1} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n+1} \backslash\{0\} \subset \mathbb{A}_{F}^{2 n+2} \backslash\{0\}$ with $n \geq 1$ and $j_{1}, j_{2} \leq 0$.
- Another family of examples is: $\mathbb{P}_{F}^{n} \sqcup \mathbb{P}_{F}^{n} \subset \mathbb{P}_{F}^{2 n+1}$ with $n \geq 1$ odd and $j_{1}, j_{2} \leq-2$.

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
There are two analogues of the circle $[0,1] /\{0,1\}$ in motivic homotopy theory: $S^{1}:=\mathbb{A}_{F}^{1} /\{0,1\}$ and the multiplicative group $\mathbb{G}_{m}:=\mathbb{G}_{m, F}$.

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
There are two analogues of the circle $[0,1] /\{0,1\}$ in motivic homotopy theory: $S^{1}:=\mathbb{A}_{F}^{1} /\{0,1\}$ and the multiplicative group $\mathbb{G}_{m}:=\mathbb{G}_{m, F}$.

Motivic spheres

For all $i, j \in \mathbb{Z}$, we denote by S^{i} the i-th smash-product of S^{1} and we call the smash-product $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ (in the stable homotopy category) a motivic sphere.

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
There are two analogues of the circle $[0,1] /\{0,1\}$ in motivic homotopy theory: $S^{1}:=\mathbb{A}_{F}^{1} /\{0,1\}$ and the multiplicative group $\mathbb{G}_{m}:=\mathbb{G}_{m, F}$.

Motivic spheres

For all $i, j \in \mathbb{Z}$, we denote by S^{i} the i-th smash-product of S^{1} and we call the smash-product $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ (in the stable homotopy category) a motivic sphere.

A smooth model of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ is a smooth F-scheme which has the \mathbb{A}^{1}-homotopy type of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$.

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
There are two analogues of the circle $[0,1] /\{0,1\}$ in motivic homotopy theory: $S^{1}:=\mathbb{A}_{F}^{1} /\{0,1\}$ and the multiplicative group $\mathbb{G}_{m}:=\mathbb{G}_{m, F}$.

Motivic spheres

For all $i, j \in \mathbb{Z}$, we denote by S^{i} the i-th smash-product of S^{1} and we call the smash-product $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ (in the stable homotopy category) a motivic sphere.

A smooth model of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ is a smooth F-scheme which has the \mathbb{A}^{1}-homotopy type of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$.
For instance, $\mathbb{A}_{F}^{n+1} \backslash\{0\}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$ for $n \geq 0$.

Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
There are two analogues of the circle $[0,1] /\{0,1\}$ in motivic homotopy theory: $S^{1}:=\mathbb{A}_{F}^{1} /\{0,1\}$ and the multiplicative group $\mathbb{G}_{m}:=\mathbb{G}_{m, F}$.

Motivic spheres

For all $i, j \in \mathbb{Z}$, we denote by S^{i} the i-th smash-product of S^{1} and we call the smash-product $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ (in the stable homotopy category) a motivic sphere.

A smooth model of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ is a smooth F-scheme which has the \mathbb{A}^{1}-homotopy type of $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$.
For instance, $\mathbb{A}_{F}^{n+1} \backslash\{0\}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$ for $n \geq 0$. The projective line \mathbb{P}_{F}^{1} is a smooth model of $S^{1} \wedge \mathbb{G}_{m}$.

- $Q_{2 n}:=\operatorname{Spec}\left(F\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z\right] /\left(\sum_{i=1}^{n} x_{i} y_{i}-z(1+z)\right)\right)$
- $Q_{2 n}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge n}$
- $Q_{2 n+1}:=\operatorname{Spec}\left(F\left[x_{1}, \ldots, x_{n+1}, y_{1}, \ldots, y_{n+1}\right] /\left(\sum_{i=1}^{n+1} x_{i} y_{i}-1\right)\right)$
- $Q_{2 n+1}$ is a smooth model of $S^{n} \wedge \mathbb{G}_{m}^{\wedge(n+1)}$
- Which closed immersions of smooth models of motivic spheres have a quadratic linking class?
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\} ;$
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\} ;$
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\} ;$
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{n} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\} ;$
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{n} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 2$;
- $Q_{n} \sqcup Q_{n} \rightarrow Q_{n+\left\lfloor\frac{n}{2}\right\rfloor+1}$ with $n \geq 5$.
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup \mathbb{A}_{F}^{n} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 2$;
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{2 n} \backslash\{0\}$ with $n \geq 3$;
- $\mathbb{A}_{F}^{2} \backslash\{0\} \sqcup Q_{2} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\} ;$
- $\mathbb{A}_{F}^{n} \backslash\{0\} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 3$;
- $Q_{n} \sqcup Q_{n} \rightarrow \mathbb{A}_{F}^{n+\left\lfloor\frac{n}{2}\right\rfloor+1} \backslash\{0\}$ with $n \geq 2$;
- $Q_{n} \sqcup Q_{n} \rightarrow Q_{n+\left\lfloor\frac{n}{2}\right\rfloor+1}$ with $n \geq 5$.

In the cases $Q_{n} \sqcup Q_{n} \rightarrow Q_{n+\left\lfloor\frac{n}{2}\right\rfloor+1}=X$ with $n \in\{2,3,4\}$, the only conditions which are not verified are the ones which are there to ensure the existence of Seifert classes: $H^{c}\left(X, \underline{K}_{j_{1}+c}^{\mathrm{MW}}\right)=0$ and $H^{c}\left(X, \underline{K}_{j_{2}+c}^{\mathrm{MW}}\right)=0$.

Depending on $j_{1}, j_{2} \leq 0$, the quadratic linking class lives in a group isomorphic to $\mathrm{W}(F) \oplus \mathrm{W}(F), \mathrm{GW}(F) \oplus \mathrm{GW}(F), K_{1}^{\mathrm{MW}}(F) \oplus K_{1}^{\mathrm{MW}}(F)$ (or $\left.\mathrm{W}(F), \mathrm{GW}(F), K_{1}^{\mathrm{MW}}(F)\right)$.

Depending on $j_{1}, j_{2} \leq 0$, the quadratic linking class lives in a group isomorphic to $\mathrm{W}(F) \oplus \mathrm{W}(F), \mathrm{GW}(F) \oplus \mathrm{GW}(F), K_{1}^{\mathrm{MW}}(F) \oplus K_{1}^{\mathrm{MW}}(F)$ (or $\left.\mathrm{W}(F), \mathrm{GW}(F), K_{1}^{\mathrm{MW}}(F)\right)$.

To get the quadratic linking degree from the quadratic linking class, apply the isomorphism $H^{c-1}\left(Z, K_{j_{1}+j_{2}+c}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \rightarrow H^{c-1}\left(Z, \underline{K}_{j_{1}+j_{2}+c}^{\mathrm{MW}}\right)$ induced by the orientation classes, then the isomorphism induced by the parametrisation of Z, then (if you have one) the explicit isomorphism between the direct sum of the Rost-Schmid groups of the schemes you are considering and a well-known group $(\mathrm{W}(F) \oplus \mathrm{W}(F)$ etc.).

