The quadratic linking degree

Clémentine Lemarié--Rieusset (Université de Bourgogne)

March 23, 2023

Clémentine Lemarié--Rieusset (Université de

The quadratic linking degree

March 23, 2023 1 / 42

< □ > < 同 > < 回 > < Ξ > < Ξ

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3-sphere S³ which is homeomorphic to the circle S¹.
- An **oriented knot** is a knot with a "continuous" local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.

Figure: The trefoil knot

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Clémentine Lemarié--Rieusset (Université de

The quadratic linking degree

March 23, 2023 3 / 42

æ

- A **link** is a finite union of disjoint knots. A link is **oriented** if all its components (i.e. its knots) are oriented.
- The **linking number** of an (oriented) link with two components is the number of times one of the components turns around the other component.

(日) (四) (日) (日) (日)

Figure: The Hopf link

Figure: The Solomon link

メロト メポト メヨト メヨト

æ

Defining the linking number: Seifert surfaces

Clémentine Lemarié--Rieusset (Université de

э

A D N A B N A B N A B N

Defining the linking number: intersection of S. surfaces

Clémentine Lemarié--Rieusset (Université de

March 23, 2023 7 / 42

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Defining the linking number: boundary of int. of S. surf.

• • • • • • • • • • • •

The formal definition of the linking number

Let $L = K_1 \sqcup K_2$ be an oriented link with two components.

イロト 不得下 イヨト イヨト 二日

The formal definition of the linking number

Let $L = K_1 \sqcup K_2$ be an oriented link with two components.

Oriented fundamental class and Seifert class

Let $i \in \{1,2\}$. The class S_i in $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{\mathsf{BM}}(\mathbb{S}^3, L)$ of Seifert surfaces of the oriented knot K_i is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_i in $H^0(K_i) \subset H^0(L)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The formal definition of the linking number

Let $L = K_1 \sqcup K_2$ be an oriented link with two components.

Oriented fundamental class and Seifert class

Let $i \in \{1,2\}$. The class S_i in $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{\mathsf{BM}}(\mathbb{S}^3, L)$ of Seifert surfaces of the oriented knot K_i is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_i in $H^0(K_i) \subset H^0(L)$.

Linking class and linking number

The linking class of L is the image of the cup-product $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$ by the boundary map $\partial : H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$. The linking number of $L = K_1 \sqcup K_2$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^1(L) = \mathbb{Z}[\omega_{K_1}] \oplus \mathbb{Z}[\omega_{K_2}]$ is equal to $(n[\omega_{K_1}], -n[\omega_{K_2}])$ (where ω_{K_i} is the volume form of the oriented knot K_i).

イロト イヨト イヨト イヨト 二日

Homotopies in a nutshell

Homotopic maps

Two continuous maps $f, g : X \to Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H : X \times [0,1] \to Y$ such that for all $x \in X$, H(x,0) = f(x) and H(x,1) = g(x).

イロト 不得下 イヨト イヨト 二日

Homotopies in a nutshell

Homotopic maps

Two continuous maps $f, g: X \to Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times [0,1] \to Y$ such that for all $x \in X$, H(x,0) = f(x) and H(x,1) = g(x).

Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple $(i: X \to Y, j: Y \to X)$ of continuous maps such that $j \circ i$ is homotopic to the identity of X and $i \circ j$ is homotopic to the identity of Y.

イロト 不得 トイヨト イヨト 二日

Homotopies in a nutshell

Homotopic maps

Two continuous maps $f, g: X \to Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times [0,1] \to Y$ such that for all $x \in X$, H(x,0) = f(x) and H(x,1) = g(x).

Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple $(i: X \to Y, j: Y \to X)$ of continuous maps such that $j \circ i$ is homotopic to the identity of X and $i \circ j$ is homotopic to the identity of Y.

Important example

For all $n \ge 1$, \mathbb{S}^n has the same homotopy type as $\mathbb{R}^{n+1} \setminus \{0\}$.

イロト 不得下 イヨト イヨト 二日

Link with two components

A link with two components is a couple of closed immersions $\varphi_i : \mathbb{A}_F^2 \setminus \{0\} \to \mathbb{A}_F^4 \setminus \{0\}$ with disjoint images Z_i (where $i \in \{1, 2\}$).

イロト 不得下 イヨト イヨト 二日

Link with two components

A link with two components is a couple of closed immersions $\varphi_i : \mathbb{A}_F^2 \setminus \{0\} \to \mathbb{A}_F^4 \setminus \{0\}$ with disjoint images Z_i (where $i \in \{1, 2\}$).

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/\mathbb{A}_F^4}\setminus\{0\}$ of Z_i in $\mathbb{A}_F^4\setminus\{0\}$ to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \det(\mathcal{N}_{Z_i/\mathbb{A}_F^4 \setminus \{0\}}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Link with two components

A link with two components is a couple of closed immersions $\varphi_i : \mathbb{A}_F^2 \setminus \{0\} \to \mathbb{A}_F^4 \setminus \{0\}$ with disjoint images Z_i (where $i \in \{1, 2\}$).

An orientation o_i of Z_i is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_i/\mathbb{A}_F^4}\setminus\{0\}$ of Z_i in $\mathbb{A}_F^4\setminus\{0\}$ to the tensor product of an invertible \mathcal{O}_{Z_i} -module \mathcal{L}_i with itself:

$$o_i:
u_{Z_i}:= \det(\mathcal{N}_{Z_i/\mathbb{A}_F^4\setminus\{0\}}) \simeq \mathcal{L}_i \otimes \mathcal{L}_i$$

Orientation classes

Two orientations $o_i : \nu_{Z_i} \to \mathcal{L}_i \otimes \mathcal{L}_i$ and $o'_i : \nu_{Z_i} \to \mathcal{L}'_i \otimes \mathcal{L}'_i$ of Z_i represent the same orientation class of Z_i if there exists an isomorphism $\psi : \mathcal{L}_i \simeq \mathcal{L}'_i$ such that $(\psi \otimes \psi) \circ o_i = o'_i$.

Oriented link with two components

An oriented link with two components is a link with two components $(\varphi_1 : \mathbb{A}_F^2 \setminus \{0\} \to Z_1, \varphi_2 : \mathbb{A}_F^2 \setminus \{0\} \to Z_2)$ together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Oriented link with two components

An oriented link with two components is a link with two components $(\varphi_1 : \mathbb{A}_F^2 \setminus \{0\} \to Z_1, \varphi_2 : \mathbb{A}_F^2 \setminus \{0\} \to Z_2)$ together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 .

Proposition

The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

イロト 不得下 イヨト イヨト 二日

Oriented link with two components

An oriented link with two components is a link with two components $(\varphi_1 : \mathbb{A}_F^2 \setminus \{0\} \to Z_1, \varphi_2 : \mathbb{A}_F^2 \setminus \{0\} \to Z_2)$ together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 .

Proposition

The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

If $F = \mathbb{R}$ then $F^*/(F^*)^2$ has two elements.

イロト イポト イヨト イヨト 二日

Oriented link with two components

An oriented link with two components is a link with two components $(\varphi_1 : \mathbb{A}_F^2 \setminus \{0\} \to Z_1, \varphi_2 : \mathbb{A}_F^2 \setminus \{0\} \to Z_2)$ together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 .

Proposition

The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

If $F = \mathbb{R}$ then $F^*/(F^*)^2$ has two elements. If $F = \mathbb{C}$ then $F^*/(F^*)^2$ has one element.

イロト 不得 トイヨト イヨト 二日

Oriented link with two components

An oriented link with two components is a link with two components $(\varphi_1 : \mathbb{A}_F^2 \setminus \{0\} \to Z_1, \varphi_2 : \mathbb{A}_F^2 \setminus \{0\} \to Z_2)$ together with an orientation class $\overline{o_1}$ of Z_1 and an orientation class $\overline{o_2}$ of Z_2 .

Proposition

The orientation classes of Z_i are parametrized by the elements of $F^*/(F^*)^2$ (where $(F^*)^2 = \{a \in F^*, \exists b \in F^*, a = b^2\}$).

If $F = \mathbb{R}$ then $F^*/(F^*)^2$ has two elements.

If $F = \mathbb{C}$ then $F^*/(F^*)^2$ has one element.

If $F = \mathbb{Q}$ then $F^*/(F^*)^2$ has infinitely many elements (the classes of the integers without square factors).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 once and for all.

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

3

(日)

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 once and for all.

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

• The parametrization of the Hopf link:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$

< □ > < 同 > < 回 > < 回 > < 回 >

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 once and for all.

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

• The parametrization of the Hopf link:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$

• The orientation of the Hopf link:

$$o_1: \overline{x}^* \wedge \overline{y}^* \mapsto 1 \otimes 1, o_2: \overline{z}^* \wedge \overline{t}^* \mapsto 1 \otimes 1$$

< □ > < 同 > < 回 > < 回 > < 回 >

A variant of the Hopf link

• The image is the same as the Hopf link's image:

$$\{x = y, y = 0\} \sqcup \{z = 0, at = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

3

イロト 不得下 イヨト イヨト

A variant of the Hopf link

• The image is the same as the Hopf link's image:

$$\{x = y, y = 0\} \sqcup \{z = 0, at = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

• The parametrization is the same:

 $\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$

< □ > < 同 > < 回 > < 回 > < 回 >

A variant of the Hopf link

• The image is the same as the Hopf link's image:

$$\{x = y, y = 0\} \sqcup \{z = 0, at = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

• The parametrization is the same:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$

• The orientation is different:

$$o_1: \overline{x-y}^* \wedge \overline{y}^* \mapsto 1 \otimes 1, o_2: \overline{z}^* \wedge \overline{at}^* \mapsto 1 \otimes 1$$

Image: A match a ma

• First idea: replace the singular cohomology ring with the Chow ring.

イロト 不得下 イヨト イヨト

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?

< ロト < 同ト < ヨト < ヨト

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article Chow groups with coefficients (1996); Rost redefines Chow groups as some homology groups A_p(X, q) of complexes C(X, q), namely CH_p(X) = A_p(X, -p)

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article Chow groups with coefficients (1996); Rost redefines Chow groups as some homology groups A_p(X, q) of complexes C(X, q), namely CH_p(X) = A_p(X, -p)
- You may know the following exact sequence where $Y \subset X$ is closed:

$$CH_{\rho}(Y) \longrightarrow CH_{\rho}(X) \longrightarrow CH_{\rho}(X \setminus Y) \longrightarrow 0$$

It can be extended into the following long exact sequence:

$$\cdots \rightarrow A_{p+1}(X \setminus Y, -p) \rightarrow CH_p(Y) \rightarrow CH_p(X) \rightarrow CH_p(X \setminus Y) \rightarrow 0$$

Chow-Witt groups and quadratic intersection theory

• Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)

Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)
- To a smooth *F*-scheme *Y*, an integer $j \in \mathbb{Z}$ and an invertible \mathcal{O}_Y -module \mathcal{L} we associate the corresponding Rost-Schmid complex $\bigoplus_{i \geq 0} \bigoplus_{p \text{ point of codim } i \text{ in } Y} \mathcal{K}_{j-i}^{MW}(\kappa(p)) \otimes_{\mathbb{Z}[\kappa(p)^*]} \mathbb{Z}[(\nu_p \otimes \mathcal{L}_{|p}) \setminus \{0\}].$

Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)
- To a smooth *F*-scheme *Y*, an integer $j \in \mathbb{Z}$ and an invertible \mathcal{O}_Y -module \mathcal{L} we associate the corresponding Rost-Schmid complex $\bigoplus_{i \geq 0} \bigoplus_{p \text{ point of codim } i \text{ in } Y} \mathcal{K}_{j-i}^{MW}(\kappa(p)) \otimes_{\mathbb{Z}[\kappa(p)^*]} \mathbb{Z}[(\nu_p \otimes \mathcal{L}_{|p}) \setminus \{0\}].$

• The *i*-th cohomology group, called Rost-Schmid group, is denoted $H^i(Y, \underline{K}_j^{MW} \{ \mathcal{L} \})$. If j = i then we call $H^i(Y, \underline{K}_i^{MW} \{ \mathcal{L} \})$ the *i*-th Chow-Witt group of Y twisted by \mathcal{L} and denote it $\widetilde{CH}^i(Y, \mathcal{L})$. We have a canonical morphism $\widetilde{CH}^i(Y, \mathcal{L}) \to CH^i(Y)$.

< □ > < □ > < □ > < □ > < □ > < □ >

We have an intersection product

$$\cdot: H^{i}(Y, \underline{K}_{j}^{\mathsf{MW}}) imes H^{i'}(Y, \underline{K}_{j'}^{\mathsf{MW}}) o H^{i+i'}(Y, \underline{K}_{j+j'}^{\mathsf{MW}})$$

which makes $\bigoplus_{i \in \mathbb{N}_0, j \in \mathbb{Z}} H^i(Y, \underline{K}_j^{MW})$ into a graded $K_0^{MW}(F)$ -algebra. In particular, we have $\cdot : \widetilde{CH}^i(Y) \times \widetilde{CH}^{i'}(Y) \to \widetilde{CH}^{i+i'}(Y)$ which makes $\bigoplus_{i \in \mathbb{N}_0} \widetilde{CH}^i(Y)$ into a graded $K_0^{MW}(F)$ -algebra (the Chow-Witt ring).
If $i: Z \to X$ is a closed subscheme and $j: U \to X$ is the complementary open subscheme, Z, U, X being smooth F-schemes (with F a perfect field) of pure dimensions d_Z , d and d, then for each n, m there is a boundary map $\partial: H^{n+d_X-d_Z}(U, \underline{K}_{m+d_X-d_Z}^{MW}) \to H^{n+1}(Z, \underline{K}_m^{MW} \{\nu_Z\})$ such that the following is a long exact sequence:

$$\dots \longrightarrow H^n(Z, \underline{K}_m^{\mathsf{MW}}\{\nu_Z\}) \xrightarrow{i_*} H^{n+d_X-d_Z}(X, \underline{K}_{m+d_X-d_Z}^{\mathsf{MW}}) \xrightarrow{j^*}$$

$$\xrightarrow{j^*} H^{n+d_X-d_Z}(U,\underline{K}_{m+d_X-d_Z}^{\mathsf{MW}}) \xrightarrow{\partial} H^{n+1}(Z,\underline{K}_m^{\mathsf{MW}}\{\nu_Z\}) \longrightarrow \dots$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Milnor-Witt K-theory and quadratic forms

The generators of the Milnor-Witt *K*-theory ring of a field *F* are denoted $[a] \in K_1^{MW}(F)$ for every $a \in F^*$ and $\eta \in K_{-1}^{MW}(F)$. We denote $\langle a \rangle = \eta[a] + 1 \in K_0^{MW}(F)$ for every $a \in F^*$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Milnor-Witt K-theory and quadratic forms

The generators of the Milnor-Witt *K*-theory ring of a field *F* are denoted $[a] \in K_1^{MW}(F)$ for every $a \in F^*$ and $\eta \in K_{-1}^{MW}(F)$. We denote $\langle a \rangle = \eta[a] + 1 \in K_0^{MW}(F)$ for every $a \in F^*$.

The (commutative) ring with unit $\mathcal{K}_0^{MW}(F)$ is isomorphic to the Grothendieck-Witt ring GW(F) of F via $\langle a \rangle \in \mathcal{K}_0^{MW}(F) \leftrightarrow \langle a \rangle \in GW(F)$. For all n < 0, the abelian group $\mathcal{K}_n^{MW}(F)$ is isomorphic to the Witt group W(F) of F via $\langle a \rangle \eta^{-n} \in \mathcal{K}_n^{MW}(F) \leftrightarrow \langle a \rangle \in W(F)$.

For all $a \in F^*$, $\langle a \rangle$ is the equivalence class of the symmetric bilinear form $\begin{cases}
F \times F \rightarrow F \\
(x,y) \mapsto axy \\
F \rightarrow F \\
x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
F \rightarrow F \\
(x \mapsto ax^2. \\
GW(F) \\
F \rightarrow F \\
(x \mapsto ax^2. \\
F \rightarrow F \\
(x \mapsto$

Let
$$n \ge 2$$
 be an integer, $i \in \mathbb{N}_0, j \in \mathbb{Z}$. The Rost-Schmid group
 $H^i(\mathbb{A}_F^n \setminus \{0\}, \underline{K}_j^{MW})$ is isomorphic to $\begin{cases} K_j^{MW}(F) & \text{if } i = 0 \\ K_{j-n}^{MW}(F) & \text{if } i = n-1. \\ 0 & \text{otherwise} \end{cases}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Let $n \ge 2$ be an integer, $i \in \mathbb{N}_0, j \in \mathbb{Z}$. The Rost-Schmid group $H^i(\mathbb{A}_F^n \setminus \{0\}, \underline{K}_j^{MW})$ is isomorphic to $\begin{cases} K_j^{MW}(F) & \text{if } i = 0 \\ K_{j-n}^{MW}(F) & \text{if } i = n-1. \\ 0 & \text{otherwise} \end{cases}$ This is similar to the fact in classical homotopy theory that $H^i(\mathbb{S}^{n-1})$ is

isomorphic to
$$\begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z} & \text{if } i = n - 1. \\ 0 & \text{otherwise} \end{cases}$$

Let $n \ge 2$ be an integer, $i \in \mathbb{N}_0, j \in \mathbb{Z}$. The Rost-Schmid group $H^i(\mathbb{A}_F^n \setminus \{0\}, \underline{K}_j^{MW})$ is isomorphic to $\begin{cases} K_j^{MW}(F) & \text{if } i = 0 \\ K_{j-n}^{MW}(F) & \text{if } i = n-1. \\ 0 & \text{otherwise} \end{cases}$ This is similar to the fact in classical homotopy theory that $H^i(\mathbb{S}^{n-1})$ is

isomorphic to $\begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z} & \text{if } i = n - 1. \\ 0 & \text{otherwise} \end{cases}$ In particular, $H^1(\mathbb{A}_F^2 \setminus \{0\}, \underline{K}_0^{MW}) \simeq K_{-2}^{MW}(F)$. We can fix such an isomorphism, but it is not canonical.

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへの

Let $L = K_1 \sqcup K_2$ be an oriented link (in knot theory) and \mathscr{L} be an oriented link with two components (in motivic knot theory), i.e. a couple of closed immersions $\varphi_i : \mathbb{A}_F^2 \setminus \{0\} \to \mathbb{A}_F^4 \setminus \{0\}$ with disjoint images Z_i and orientation classes $\overline{o_i}$. We denote $Z := Z_1 \sqcup Z_2$.

Step 1 in a picture: Seifert surfaces

Clémentine Lemarié--Rieusset (Université de

March 23, 2023 22 / 42

3

*ロト *個ト *国ト *国ト

Knot theory

The class S_i in $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{BM}(\mathbb{S}^3, L)$ of Seifert surfaces of the oriented knot K_i is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_i in $H_1(K_i) \simeq H^0(K_i) \subset H^0(L)$.

イロト 不得 トイヨト イヨト 二日

Knot theory

The class S_i in $H^1(\mathbb{S}^3 \setminus L) \simeq H_2^{BM}(\mathbb{S}^3, L)$ of Seifert surfaces of the oriented knot K_i is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_i in $H_1(K_i) \simeq H^0(K_i) \subset H^0(L)$.

Motivic knot theory

We define an analogue $[o_i] \in H^0(Z_i, \underline{K}_{-1}^{MW} \{\nu_{Z_i}\})$ of the oriented fundamental class of each oriented component of \mathscr{L} then we define the Seifert class S_i as the unique class in $H^1(X \setminus Z, \underline{K}_1^{MW})$ that is sent by the boundary map to the oriented fundamental class $[o_i] \in H^0(Z, \underline{K}_{-1}^{MW} \{\nu_Z\})$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Step 2 in two pictures: intersection of Seifert surfaces

Clémentine Lemarié--Rieusset (Université de

March 23, 2023 24 / 42

• • • • • • • • • • • •

Step 2 in two pictures: boundary of int. of S. surfaces

Clémentine Lemarié--Rieusset (Université de

The quadratic linking degree

March 23, 2023 25 / 42

(日) (四) (日) (日) (日)

Knot theory

The linking class of L is the image of the cup-product $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$ by the boundary map $\partial : H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Knot theory

The linking class of L is the image of the cup-product $S_1 \cup S_2 \in H^2(\mathbb{S}^3 \setminus L)$ by the boundary map $\partial : H^2(\mathbb{S}^3 \setminus L) \to H^1(L)$.

Motivic knot theory

We define the quadratic linking class of \mathscr{L} as the image of the intersection product $S_1 \cdot S_2 \in H^2(X \setminus Z, \underline{K}_2^{\mathsf{MW}})$ by the boundary map $\partial : H^2(X \setminus Z, \underline{K}_2^{\mathsf{MW}}) \to H^1(Z, \underline{K}_0^{\mathsf{MW}}\{\nu_Z\}).$

Step 3

Knot theory

The linking number of $L = K_1 \sqcup K_2$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^1(L) = \mathbb{Z}[\omega_{K_1}] \oplus \mathbb{Z}[\omega_{K_2}]$ is equal to $(n[\omega_{K_1}], -n[\omega_{K_2}])$ (where ω_{K_i} is the volume form of the oriented knot K_i).

イロト 不得 トイヨト イヨト 二日

Step 3

Knot theory

The linking number of $L = K_1 \sqcup K_2$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^1(L) = \mathbb{Z}[\omega_{K_1}] \oplus \mathbb{Z}[\omega_{K_2}]$ is equal to $(n[\omega_{K_1}], -n[\omega_{K_2}])$ (where ω_{K_i} is the volume form of the oriented knot K_i).

Motivic knot theory

We define the quadratic linking degree of \mathscr{L} as the image of the quadratic linking class of \mathscr{L} by the isomorphism $H^{1}(Z, \underline{K}_{0}^{\mathsf{MW}}\{\nu_{Z}\}) \rightarrow H^{1}(Z, \underline{K}_{0}^{\mathsf{MW}}) \rightarrow H^{1}(\mathbb{A}_{F}^{2} \setminus \{0\}, \underline{K}_{0}^{\mathsf{MW}}) \rightarrow \mathsf{W}(F) \oplus \mathsf{W}(F).$

We fixed an isomorphism $H^1(\mathbb{A}_F^2 \setminus \{0\}, \underline{K}_0^{\mathsf{MW}}) \to K_{-2}^{\mathsf{MW}}(F)$ once and for all and there is a canonical isomorphism $K_{-2}^{\mathsf{MW}}(F) \to \mathsf{W}(F)$.

イロト 不得下 イヨト イヨト 二日

The Hopf link

Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image of the Hopf link:

$$\{x=0, y=0\} \sqcup \{z=0, t=0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

• The parametrization of the Hopf link:

 $\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$

• The orientation of the Hopf link:

$$o_1: \overline{x}^* \wedge \overline{y}^* \mapsto 1, o_2: \overline{z}^* \wedge \overline{t}^* \mapsto 1$$

イロト 不得 トイヨト イヨト 二日

The quadratic linking degree of the Hopf link

Or. fund. classes	$\eta \otimes (\overline{x}^* \wedge \overline{y}^*)$		$\eta\otimes(\overline{\pmb{z}}^*\wedge\overline{\pmb{t}}^*)$
Seifert classes	$\langle x angle \otimes \overline{y}^*$		$\langle z angle \otimes \overline{t}^*$
Apply int. prod.	$\langle xz angle \otimes (\overline{t}^* \wedge \overline{y}^*)$		
Quad. link. class	$ -\langle z angle\eta\otimes(\overline{t}^*\wedge\overline{x}^*\wedge\overline{y}^*) $	\oplus	$\langle x angle \eta \otimes (\overline{y}^* \wedge \overline{z}^* \wedge \overline{t}^*)$
Apply $\widetilde{o_1} \oplus \widetilde{o_2}$	$-\langle z angle \eta\otimes \overline{t}^{st}$	\oplus	$\langle {\sf x} angle \eta \otimes \overline{{\sf y}}^*$
Apply $arphi_1^*\oplusarphi_2^*$	$-\langle u angle\eta\otimes\overline{oldsymbol{ u}}^*$	\oplus	$\langle {\it u} angle \eta \otimes \overline{{\it v}}^*$
Apply $\partial \oplus \partial$	$-\eta^2\otimes (\overline{u}^*\wedge\overline{v}^*)$	\oplus	$\eta^2 \otimes (\overline{u}^* \wedge \overline{v}^*)$
Quad. link. degree	-1	\oplus	1

3

イロト イポト イヨト イヨト

• The image is the same as the Hopf link's image:

$$\{x = y, y = 0\} \sqcup \{z = 0, a \times t = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$
 with $a \in F^*$

• The parametrization is the same:

$$\varphi_1: (x, y, z, t) \leftrightarrow (0, 0, u, v), \varphi_2: (x, y, z, t) \leftrightarrow (u, v, 0, 0)$$

• The orientation is different:

$$o_1: \overline{x-y}^* \wedge \overline{y}^* \mapsto 1, o_2: \overline{z}^* \wedge \overline{at}^* \mapsto 1$$

Image: A match a ma

The quadratic linking degree of a variant of the Hopf link

$$\begin{split} [o_{1}^{var}] &= \eta \otimes \overline{x - y^{*}} \wedge \overline{y^{*}} = [o_{1}^{Hopf}] \quad [o_{2}^{var}] = \eta \otimes \overline{z^{*}} \wedge \overline{at^{*}} = \langle a \rangle [o_{2}^{Hopf}] \\ \text{since} \begin{pmatrix} x - y \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad \text{since} \begin{pmatrix} z \\ at \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} z \\ t \end{pmatrix} \\ S_{1}^{var} = S_{1}^{Hopf} \qquad S_{2}^{var} = \langle a \rangle S_{2}^{Hopf} \\ & \delta_{1}^{var} \cdot S_{2}^{var} = \langle a \rangle S_{1}^{Hopf} \cdot S_{2}^{Hopf} \\ & \partial (S_{1}^{var} \cdot S_{2}^{var}) = \langle a \rangle \partial (S_{1}^{Hopf} \cdot S_{2}^{Hopf}) \\ \end{split}$$

The quadratic linking degree is $(-\langle a \rangle, 1)$.

Clémentine Lemarié--Rieusset (Université de

The quadratic linking degree

March 23, 2023 31 / 42

イロト 不得 トイラト イラト 一日

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $(d_1, d_2) \in W(F) \oplus W(F)$. Let $a = (a_1, a_2)$ be a couple of elements of F^* and \mathscr{L}_a be the link obtained from \mathscr{L} by changing the orientation o_1 into $o_1 \circ (\times a_1)$ and the orientation o_2 into $o_2 \circ (\times a_2)$. Then $\operatorname{Qlc}_{\mathscr{L}_a} = \langle a_1 a_2 \rangle \operatorname{Qlc}_{\mathscr{L}}$ and $\operatorname{Qld}_{\mathscr{L}_a} = (\langle a_2 \rangle d_1, \langle a_1 \rangle d_2)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $(d_1, d_2) \in W(F) \oplus W(F)$. Let $a = (a_1, a_2)$ be a couple of elements of F^* and \mathscr{L}_a be the link obtained from \mathscr{L} by changing the orientation o_1 into $o_1 \circ (\times a_1)$ and the orientation o_2 into $o_2 \circ (\times a_2)$. Then $\operatorname{Qlc}_{\mathscr{L}_a} = \langle a_1 a_2 \rangle \operatorname{Qlc}_{\mathscr{L}}$ and $\operatorname{Qld}_{\mathscr{L}_a} = (\langle a_2 \rangle d_1, \langle a_1 \rangle d_2)$.

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form $\langle a \rangle$ with $a \in F^*$ (and do not change the quadratic linking class).

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $(d_1, d_2) \in W(F) \oplus W(F)$. Let $a = (a_1, a_2)$ be a couple of elements of F^* and \mathscr{L}_a be the link obtained from \mathscr{L} by changing the orientation o_1 into $o_1 \circ (\times a_1)$ and the orientation o_2 into $o_2 \circ (\times a_2)$. Then $\operatorname{Qlc}_{\mathscr{L}_a} = \langle a_1 a_2 \rangle \operatorname{Qlc}_{\mathscr{L}}$ and $\operatorname{Qld}_{\mathscr{L}_a} = (\langle a_2 \rangle d_1, \langle a_1 \rangle d_2)$.

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form $\langle a \rangle$ with $a \in F^*$ (and do not change the quadratic linking class).

We want invariants of the quadratic linking degree. (Similarly to the absolute value of the linking number in knot theory.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Invariants by multiplication by $\langle a \rangle$ for all $a \in F^*$

Case $F = \mathbb{R}$

If $F = \mathbb{R}$, the absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a \rangle$ for all $a \in F^*$.

(日)

Invariants by multiplication by $\langle a \rangle$ for all $a \in F^*$

Case $F = \mathbb{R}$

If $F = \mathbb{R}$, the absolute value of an element of $W(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a \rangle$ for all $a \in F^*$.

General case

The rank modulo 2 is invariant by multiplication by $\langle a \rangle$ for all $a \in F^*$.

イロト 不得 トイヨト イヨト

Definition

Let $d \in W(F)$. There exists a unique sequence of abelian groups $Q_{d,k}$ and of elements $\Sigma_k(d) \in Q_{d,k}$, where k ranges over the nonnegative even integers, such that:

•
$$Q_{d,0}=\mathsf{W}(\mathsf{F})$$
 and $\Sigma_0(d)=1\in Q_{d,0};$

- for each positive even integer k, $Q_{d,k}$ is the quotient group $Q_{d,k-2}/(\Sigma_{k-2}(d));$
- for each positive even integer k, $\Sigma_k(d) = \sum_{1 \le i_1 < \cdots < i_k \le n} \langle \prod_{1 \le j \le k} a_{i_j} \rangle \in Q_{d,k}$ whenever $d = \sum_{i=1}^n \langle a_i \rangle \in W(F).$

General case

The Σ_k are invariant by multiplication by $\langle a \rangle$ for all $a \in F^*$.

Clémentine Lemarié––Rieusset (Université de

A D F A B F A B F A

March 23, 2023

34 / 42

•
$$\Sigma_2 : \begin{cases} \mathsf{W}(F) \to \mathsf{W}(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle \text{ (if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

Clémentine Lemarié--Rieusset (Université de

The quadratic linking degree

March 23, 2023 35 / 42

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

•
$$\Sigma_2 : \begin{cases} W(F) \rightarrow W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \rightarrow \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$\Sigma_2 : \begin{cases} W(F) \rightarrow W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle & \text{to } 0 \end{cases}$$

• It is interesting for $F = \mathbb{Q}$ for instance: $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z}).$

イロト 不得 トイヨト イヨト 二日

•
$$\Sigma_2 : \begin{cases} W(F) \rightarrow W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

• It is interesting for $F = \mathbb{Q}$ for instance: $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z}).$

•
$$\Sigma_4 : \begin{cases} \mathsf{W}(F) & \to \bigcup_{d \in \mathsf{W}(F)} (\mathsf{W}(F)/(1))/(\Sigma_2(d)) \\ & & \\ \sum_{i=1}^n \langle a_i \rangle & \mapsto & \sum_{1 \le i < j < k < l \le n} \langle a_i a_j a_k a_l \rangle \end{cases}$$

3

イロト イポト イヨト イヨト

•
$$\Sigma_2 : \begin{cases} W(F) \rightarrow W(F)/(1) \\ \sum_{i=1}^n \langle a_i \rangle \mapsto \sum_{1 \le i < j \le n} \langle a_i a_j \rangle & \text{(if } n < 2, \text{ it sends } \sum_{i=1}^n \langle a_i \rangle \text{ to } 0) \end{cases}$$

• It is interesting for $F = \mathbb{Q}$ for instance: $W(\mathbb{Q})/(1) \simeq \bigoplus_{p \text{ prime}} W(\mathbb{Z}/p\mathbb{Z}).$

•
$$\Sigma_4 : \begin{cases} W(F) \rightarrow \bigcup_{d \in W(F)} (W(F)/(1))/(\Sigma_2(d)) \\ \sum_{i=1}^n \langle a_i \rangle \rightarrow \sum_{1 \le i < j < k < l \le n} \langle a_i a_j a_k a_l \rangle \end{cases}$$

• We only want to compare $\Sigma_4(d)$ and $\Sigma_4(d')$ if $\Sigma_2(d) = \Sigma_2(d')$.

イロト イポト イヨト イヨト 二日

Another Hopf link

From now on, *F* is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image is different from the Hopf link we saw before:

$$\{z = x, t = y\} \sqcup \{z = -x, t = -y\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

But the change of coordinates x' = z - x, y' = t - y, z' = z + x, t' = t + y would give $\{x' = 0, y' = 0\} \sqcup \{z' = 0, t' = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$.

< ロト < 同ト < ヨト < ヨト

From now on, *F* is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image is different from the Hopf link we saw before:

$$\{z = x, t = y\} \sqcup \{z = -x, t = -y\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

But the change of coordinates x' = z - x, y' = t - y, z' = z + x, t' = t + y would give $\{x' = 0, y' = 0\} \sqcup \{z' = 0, t' = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$.

• The parametrization is $\varphi_1 : (x, y, z, t) \leftrightarrow (u, v, u, v)$ and $\varphi_2 : (x, y, z, t) \leftrightarrow (u, v, -u, -v).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_F^4 and u, v for \mathbb{A}_F^2 .

• The image is different from the Hopf link we saw before:

$$\{z = x, t = y\} \sqcup \{z = -x, t = -y\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

But the change of coordinates x' = z - x, y' = t - y, z' = z + x, t' = t + y would give $\{x' = 0, y' = 0\} \sqcup \{z' = 0, t' = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$.

- The parametrization is $\varphi_1 : (x, y, z, t) \leftrightarrow (u, v, u, v)$ and $\varphi_2 : (x, y, z, t) \leftrightarrow (u, v, -u, -v).$
- The orientation is the following:

$$o_1: \overline{z-x}^* \wedge \overline{t-y}^* \mapsto 1, o_2: \overline{z+x}^* \wedge \overline{t+y}^* \mapsto 1$$

• This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.

イロト イヨト イヨト ・

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.
- Its quadratic linking degree is $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.
- Its quadratic linking degree is $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$.
- If we change its orientations and its parametrizations then we get
 (⟨a⟩, ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.
- Its quadratic linking degree is $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$.
- If we change its orientations and its parametrizations then we get
 (⟨a⟩, ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.
- If $F = \mathbb{R}$, the absolute value of each component is 1.

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.
- Its quadratic linking degree is $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$.
- If we change its orientations and its parametrizations then we get
 (⟨a⟩, ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.
- If $F = \mathbb{R}$, the absolute value of each component is 1.
- The rank modulo 2 of each component is 1.

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z = x, t = y\} \sqcup \{z = -x, t = -y\}$ in $\mathbb{S}^3_{\varepsilon} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 + z^2 + t^2 = \varepsilon^2\}$ for ε small enough and has linking number 1.
- Its quadratic linking degree is $(\langle 1 \rangle, \langle -1 \rangle) = (1, -1) \in W(F) \oplus W(F)$.
- If we change its orientations and its parametrizations then we get
 (⟨a⟩, ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.
- If $F = \mathbb{R}$, the absolute value of each component is 1.
- The rank modulo 2 of each component is 1.
- For every positive even integer k, the image by Σ_k of each component is 0.

The Solomon link

- In knot theory, the Solomon link is given by {z = x² y², t = 2xy}⊔ {z = -x² + y², t = -2xy} in S³_ε for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$\{z = x^2 - y^2, t = 2xy\} \sqcup \{z = -x^2 + y^2, t = -2xy\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

- The parametrization is $\varphi_1 : (x, y, z, t) \leftrightarrow (u, v, u^2 v^2, 2uv)$ and $\varphi_2 : (x, y, z, t) \leftrightarrow (u, v, -u^2 + v^2, -2uv).$
- The orientation is the following:

$$o_1: \overline{z-x^2+y^2}^* \land \overline{t-2xy}^* \mapsto 1, o_2: \overline{z+x^2-y^2}^* \land \overline{t+2xy}^* \mapsto 1$$

イロト 不得下 イヨト イヨト 二日

• Its quadratic linking degree is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$

イロト イポト イヨト イヨト 二日

- Its quadratic linking degree is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get
 (⟨a⟩ + ⟨a⟩, ⟨b⟩ + ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.

イロト イポト イヨト イヨト 二日

- Its quadratic linking degree is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get
 (⟨a⟩ + ⟨a⟩, ⟨b⟩ + ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.
- If $F = \mathbb{R}$, the absolute value of each component is 2.

- Its quadratic linking degree is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get
 (⟨a⟩ + ⟨a⟩, ⟨b⟩ + ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.
- If $F = \mathbb{R}$, the absolute value of each component is 2.
- The rank modulo 2 of each component is 0.

- Its quadratic linking degree is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get
 (⟨a⟩ + ⟨a⟩, ⟨b⟩ + ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.
- If $F = \mathbb{R}$, the absolute value of each component is 2.
- The rank modulo 2 of each component is 0.
- For every positive even integer k, the image by Σ_k of each component is 0.

- Its quadratic linking degree is $(\langle 1 \rangle + \langle 1 \rangle, \langle -1 \rangle + \langle -1 \rangle) = (2, -2) \in W(F) \oplus W(F).$
- If we change its orientations and its parametrizations then we get
 (⟨a⟩ + ⟨a⟩, ⟨b⟩ + ⟨b⟩) ∈ W(F) ⊕ W(F) with a, b ∈ F*.
- If $F = \mathbb{R}$, the absolute value of each component is 2.
- The rank modulo 2 of each component is 0.
- For every positive even integer k, the image by Σ_k of each component is 0.
- More generally, we have analogues of the torus links T(2, 2n) (of linking number n); the quadratic linking degree of T(2, 2n) is (n, -n) ∈ W(F) ⊕ W(F), which gives n as absolute value if F = ℝ, n modulo 2 as rank modulo 2, and 0 for the Σ_k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Binary links

• The image of the binary link B_a with $a \in F^* \setminus \{-1\}$:

$$\{f_1 = 0, g_1 = 0\} \sqcup \{f_2 = 0, g_2 = 0\} \subset \mathbb{A}_F^4 \setminus \{0\}$$

with
$$f_1 = t - ((1 + a)x - y)y$$
, $g_1 = z - x(x - y)$,
 $f_2 = t + ((1 + a)x - y)y$, $g_2 = z + x(x - y)$.

• The parametrization of the binary link B_a:

$$\varphi_1: (x, y, z, t) \leftrightarrow (u, v, ((1+a)u - v)v, u(u - v))$$
$$\varphi_2: (x, y, z, t) \leftrightarrow (u, v, -((1+a)u - v)v, -u(u - v))$$

• The orientation of the binary link B_a:

$$o_1:\overline{f_1}^*\wedge\overline{g_1}^*\mapsto 1, o_2:\overline{f_2}^*\wedge\overline{g_2}^*\mapsto 1$$

イロト 不得下 イヨト イヨト 二日

Or. fund. cyc.	$\eta\otimes (\overline{f_1}^*\wedge \overline{g_1}^*)$		$\eta \otimes (\overline{\textit{f}_2}^* \wedge \overline{\textit{g}_2}^*)$
Seifert divisors	$\langle f_1 angle \otimes \overline{g_1}^*$		$\langle f_2 angle \otimes \overline{g_2}^*$
Apply inter.	$\langle f_1 f_2 angle \otimes \left(\overline{g_2}^* \wedge \overline{g_1}^* ight) \cdot (z, x - y)$		
prod.	$+\langle f_1f_2 angle\otimes(\overline{g_2}^*\wedge\overline{g_1}^*)\cdot(z,x)$		
Apply $\partial \oplus \partial$	$(1+\langle a angle)\eta^2\otimes(\overline{u}^*\wedge\overline{v}^*)$	\oplus	$-(1+\langle a angle)\eta^2\otimes(\overline{u}^*\wedge\overline{v}^*)$
Quad. lk. deg.	$1+\langle a angle$	\oplus	$-(1+\langle a angle)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Or. fund. cyc.	$\eta\otimes (\overline{f_1}^*\wedge \overline{g_1}^*)$		$\eta \otimes (\overline{\textit{f}_2}^* \wedge \overline{\textit{g}_2}^*)$
Seifert divisors	$\langle f_1 angle \otimes \overline{g_1}^*$		$\langle f_2 angle \otimes \overline{g_2}^*$
Apply inter.	$\langle f_1 f_2 angle \otimes \left(\overline{g_2}^* \wedge \overline{g_1}^* ight) \cdot (z, x - y)$		
prod.	$+\langle f_1f_2 angle\otimes (\overline{g_2}^*\wedge\overline{g_1}^*)\cdot(z,x)$		
Apply $\partial \oplus \partial$	$(1+\langle a angle)\eta^2\otimes(\overline{u}^*\wedge\overline{v}^*)$) 🕀	$-(1+\langle a angle)\eta^2\otimes(\overline{u}^*\wedge\overline{v}^*)$
Quad. lk. deg.	$1+\langle a angle$	\oplus	$-(1+\langle a angle)$

• If we change its orientations and its parametrizations then we get $(\langle a \rangle + \langle b \rangle, \langle ca \rangle + \langle cb \rangle) \in W(F) \oplus W(F)$ with $a, b, c \in F^*$ such that $a + b \neq 0$. The rank modulo 2 of each component is 0.

Or. fund. cyc.	$\eta\otimes (\overline{f_1}^*\wedge \overline{g_1}^*)$		$\eta \otimes (\overline{\textit{f}_2}^* \wedge \overline{\textit{g}_2}^*)$
Seifert divisors	$\langle f_1 angle \otimes \overline{g_1}^*$		$\langle f_2 angle \otimes \overline{g_2}^*$
Apply inter.	$\langle f_1 f_2 angle \otimes \left(\overline{g_2}^* \wedge \overline{g_1}^* ight) \cdot (z, x - y)$		
prod.	$+\langle f_1f_2 angle\otimes (\overline{g_2}^*\wedge\overline{g_1}^*)\cdot(z,x)$		
Apply $\partial \oplus \partial$	$ig \ (1+\langle a angle)\eta^2\otimes (\overline{u}^*\wedge\overline{v}^*)$	\oplus	$-(1+\langle a angle)\eta^2\otimes(\overline{u}^*\wedge\overline{v}^*)$
Quad. lk. deg.	$1+\langle a angle$	\oplus	$-(1+\langle a angle)$

• If we change its orientations and its parametrizations then we get $(\langle a \rangle + \langle b \rangle, \langle ca \rangle + \langle cb \rangle) \in W(F) \oplus W(F)$ with $a, b, c \in F^*$ such that $a + b \neq 0$. The rank modulo 2 of each component is 0.

• If
$$F = \mathbb{R}$$
, the absolute value of each component is
$$\begin{cases} 2 \text{ if } a > 0 \\ 0 \text{ if } a < 0 \end{cases}$$

A D F A B F A B F A B

Or. fund. cyc.	$\eta\otimes (\overline{f_1}^*\wedge \overline{g_1}^*)$		$\eta \otimes (\overline{\textit{f}_2}^* \wedge \overline{\textit{g}_2}^*)$
Seifert divisors	$\langle f_1 angle \otimes \overline{g_1}^*$		$\langle f_2 angle \otimes \overline{g_2}^*$
Apply inter.	$\langle f_1 f_2 angle \otimes \left(\overline{g_2}^* \wedge \overline{g_1}^* ight) \cdot (z, x - y)$		
prod.	$+\langle f_1f_2 angle\otimes(\overline{g_2}^*\wedge\overline{g_1}^*)\cdot(z,x)$		
Apply $\partial \oplus \partial$	$(1+\langle a angle)\eta^2\otimes (\overline{u}^*\wedge\overline{v}^*)$	\oplus	$-(1+\langle a angle)\eta^2\otimes(\overline{u}^*\wedge\overline{v}^*)$
Quad. lk. deg.	$1+\langle a angle$	\oplus	$-(1+\langle a angle)$

If we change its orientations and its parametrizations then we get
 (⟨a⟩ + ⟨b⟩, ⟨ca⟩ + ⟨cb⟩) ∈ W(F) ⊕ W(F) with a, b, c ∈ F* such that
 a + b ≠ 0. The rank modulo 2 of each component is 0.

• If $F = \mathbb{R}$, the absolute value of each component is $\begin{cases} 2 \text{ if } a > 0 \\ 0 \text{ if } a < 0 \end{cases}$.

Σ₂ of each component is ⟨a⟩ ∈ W(F)/(1). For instance, if F = Q, Σ₂ distinguishes between all the B_p with p prime numbers. Σ₄ = 0 etc.

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. (hal-03821736)
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG]

《曰》 《問》 《글》 《글》 _ 글

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. (hal-03821736)
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG]

Thanks for your attention!