The quadratic linking degree

Clémentine Lemarié--Rieusset (Université de Bourgogne)

March 23, 2023

Knot theory in a nutshell 1

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3 -sphere \mathbb{S}^{3} which is homeomorphic to the circle \mathbb{S}^{1}.
- An oriented knot is a knot with a "continuous"local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.

Figure: The unknot

Figure: The trefoil knot

Knot theory in a nutshell 2

- A link is a finite union of disjoint knots. A link is oriented if all its components (i.e. its knots) are oriented.
- The linking number of an (oriented) link with two components is the number of times one of the components turns around the other component.

Figure: The Hopf link

Figure: The Solomon link

Defining the linking number: Seifert surfaces

Defining the linking number: intersection of S. surfaces

Defining the linking number: boundary of int. of S. surf.

The formal definition of the linking number

Let $L=K_{1} \sqcup K_{2}$ be an oriented link with two components.

The formal definition of the linking number

Let $L=K_{1} \sqcup K_{2}$ be an oriented link with two components.

Oriented fundamental class and Seifert class

Let $i \in\{1,2\}$. The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{\mathrm{BM}}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

The formal definition of the linking number

Let $L=K_{1} \sqcup K_{2}$ be an oriented link with two components.

Oriented fundamental class and Seifert class

Let $i \in\{1,2\}$. The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{B M}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

Linking class and linking number

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$. The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to $\left(n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]\right)$ (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

Homotopies in a nutshell

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times[0,1] \rightarrow Y$ such that for all $x \in X, H(x, 0)=f(x)$ and $H(x, 1)=g(x)$.

Homotopies in a nutshell

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times[0,1] \rightarrow Y$ such that for all $x \in X, H(x, 0)=f(x)$ and $H(x, 1)=g(x)$.

Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple $(i: X \rightarrow Y, j: Y \rightarrow X)$ of continuous maps such that $j \circ i$ is homotopic to the identity of X and $i \circ j$ is homotopic to the identity of Y.

Homotopies in a nutshell

Homotopic maps

Two continuous maps $f, g: X \rightarrow Y$ are homotopic if there exists a homotopy from f to g, i.e. a continuous map $H: X \times[0,1] \rightarrow Y$ such that for all $x \in X, H(x, 0)=f(x)$ and $H(x, 1)=g(x)$.

Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there exists a homotopy equivalence from X to Y, i.e. a couple $(i: X \rightarrow Y, j: Y \rightarrow X)$ of continuous maps such that $j \circ i$ is homotopic to the identity of X and $i \circ j$ is homotopic to the identity of Y.

Important example

For all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

Oriented links in algebraic geometry 1

Link with two components

A link with two components is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

Oriented links in algebraic geometry 1

Link with two components

A link with two components is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

An orientation o_{i} of Z_{i} is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}$ of Z_{i} in $\mathbb{A}_{F}^{4} \backslash\{0\}$ to the tensor product of an invertible $\mathcal{O}_{z_{i}}$-module \mathcal{L}_{i} with itself:

$$
o_{i}: \nu_{Z_{i}}:=\operatorname{det}\left(\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}\right) \simeq \mathcal{L}_{i} \otimes \mathcal{L}_{i}
$$

Oriented links in algebraic geometry 1

Link with two components

A link with two components is a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

An orientation o_{i} of Z_{i} is an isomorphism from the determinant (i.e. the maximal exterior power) of the normal sheaf $\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}$ of Z_{i} in $\mathbb{A}_{F}^{4} \backslash\{0\}$ to the tensor product of an invertible $\mathcal{O}_{z_{i}}$-module \mathcal{L}_{i} with itself:

$$
o_{i}: \nu_{Z_{i}}:=\operatorname{det}\left(\mathcal{N}_{Z_{i} / \mathbb{A}_{F}^{4} \backslash\{0\}}\right) \simeq \mathcal{L}_{i} \otimes \mathcal{L}_{i}
$$

Orientation classes

Two orientations $o_{i}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i} \otimes \mathcal{L}_{i}$ and $o_{i}^{\prime}: \nu_{Z_{i}} \rightarrow \mathcal{L}_{i}^{\prime} \otimes \mathcal{L}_{i}^{\prime}$ of Z_{i} represent the same orientation class of Z_{i} if there exists an isomorphism $\psi: \mathcal{L}_{i} \simeq \mathcal{L}_{i}^{\prime}$ such that $(\psi \otimes \psi) \circ o_{i}=o_{i}^{\prime}$.

Oriented links in algebraic geometry 2

Oriented link with two components

An oriented link with two components is a link with two components $\left(\varphi_{1}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{2}\right)$ together with an orientation class $\overline{o_{1}}$ of Z_{1} and an orientation class $\overline{O_{2}}$ of Z_{2}.

Oriented links in algebraic geometry 2

Oriented link with two components

An oriented link with two components is a link with two components $\left(\varphi_{1}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{2}\right)$ together with an orientation class $\overline{o_{1}}$ of Z_{1} and an orientation class $\overline{O_{2}}$ of Z_{2}.

Proposition

The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}\left(\right.$ where $\left.\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}\right)$.

Oriented links in algebraic geometry 2

Oriented link with two components

An oriented link with two components is a link with two components $\left(\varphi_{1}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{2}\right)$ together with an orientation class $\overline{o_{1}}$ of Z_{1} and an orientation class $\overline{O_{2}}$ of Z_{2}.

Proposition

The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}\left(\right.$ where $\left.\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}\right)$.

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.

Oriented links in algebraic geometry 2

Oriented link with two components

An oriented link with two components is a link with two components $\left(\varphi_{1}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{2}\right)$ together with an orientation class $\overline{o_{1}}$ of Z_{1} and an orientation class $\overline{O_{2}}$ of Z_{2}.

Proposition

The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}\left(\right.$ where $\left.\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}\right)$.

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.

Oriented links in algebraic geometry 2

Oriented link with two components

An oriented link with two components is a link with two components $\left(\varphi_{1}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow Z_{2}\right)$ together with an orientation class $\overline{o_{1}}$ of Z_{1} and an orientation class $\overline{O_{2}}$ of Z_{2}.

Proposition

The orientation classes of Z_{i} are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}\left(\right.$ where $\left.\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}\right)$.

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.
If $F=\mathbb{Q}$ then $F^{*} /\left(F^{*}\right)^{2}$ has infinitely many elements (the classes of the integers without square factors).

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1 \otimes 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1 \otimes 1
$$

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, \text { at }=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1 \otimes 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1 \otimes 1
$$

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article Chow groups with coefficients (1996); Rost redefines Chow groups as some homology groups $A_{p}(X, q)$ of complexes $C(X, q)$, namely $C H_{p}(X)=A_{p}(X,-p)$

Chow groups and intersection theory

- First idea: replace the singular cohomology ring with the Chow ring.
- Two problems: what will play the role of the boundary map and how will we take orientations into account?
- Solution to the first problem: Rost's article Chow groups with coefficients (1996); Rost redefines Chow groups as some homology groups $A_{p}(X, q)$ of complexes $C(X, q)$, namely $C H_{p}(X)=A_{p}(X,-p)$
- You may know the following exact sequence where $Y \subset X$ is closed:

$$
\mathrm{CH}_{p}(Y) \longrightarrow \mathrm{CH}_{p}(X) \longrightarrow \mathrm{CH}_{p}(X \backslash Y) \longrightarrow 0
$$

It can be extended into the following long exact sequence:
$\cdots \rightarrow A_{p+1}(X \backslash Y,-p) \rightarrow C_{p}(Y) \rightarrow C H_{p}(X) \rightarrow C H_{p}(X \backslash Y) \rightarrow 0$

Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)

Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)
- To a smooth F-scheme Y, an integer $j \in \mathbb{Z}$ and an invertible \mathcal{O}_{Y}-module \mathcal{L} we associate the corresponding Rost-Schmid complex $\bigoplus \quad \bigoplus \quad K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes_{\mathbb{Z}\left[\kappa(p)^{*}\right]} \mathbb{Z}\left[\left(\nu_{p} \otimes \mathcal{L}_{\mid p}\right) \backslash\{0\}\right]$. $i \geq 0 p$ point of codim i in Y

Chow-Witt groups and quadratic intersection theory

- Solution to the second problem (orientations): replace (generalised) Chow groups, a.k.a. Rost groups, with (generalised) Chow-Witt groups, a.k.a. Rost-Schmid groups; see for instance the chapter Lectures on Chow-Witt groups by Jean Fasel in the book Motivic homotopy theory and refined enumerative geometry (2020)
- To a smooth F-scheme Y, an integer $j \in \mathbb{Z}$ and an invertible \mathcal{O}_{Y}-module \mathcal{L} we associate the corresponding Rost-Schmid complex

$$
K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes_{\mathbb{Z}\left[\kappa(p)^{*}\right]} \mathbb{Z}\left[\left(\nu_{p} \otimes \mathcal{L}_{\mid p}\right) \backslash\{0\}\right] .
$$

$i \geq 0 p$ point of codim i in Y

- The i-th cohomology group, called Rost-Schmid group, is denoted $H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$. If $j=i$ then we call $H^{i}\left(Y, \underline{K}_{i}^{\mathrm{MW}}\{\mathcal{L}\}\right)$ the i-th Chow-Witt group of Y twisted by \mathcal{L} and denote it $\widetilde{C H}^{i}(Y, \mathcal{L})$. We have a canonical morphism $\widetilde{C H}^{i}(Y, \mathcal{L}) \rightarrow C H^{i}(Y)$.

Intersection product

We have an intersection product

$$
\cdot: H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\right) \times H^{i^{\prime}}\left(Y, \underline{K}_{j^{\prime}}^{\mathrm{MW}}\right) \rightarrow H^{i+i^{\prime}}\left(Y, \underline{K}_{j+j^{\prime}}^{\mathrm{MW}}\right)
$$

which makes $\bigoplus H^{i}\left(Y, K_{j}^{\mathrm{MW}}\right)$ into a graded $K_{0}^{\mathrm{MW}}(F)$-algebra.

$$
i \in \mathbb{N}_{0}, j \in \mathbb{Z}
$$

In particular, we have $\cdot: \widetilde{C H}^{i}(Y) \times \widetilde{C H}^{i^{\prime}}(Y) \rightarrow \widetilde{C H}^{i+i^{\prime}}(Y)$ which makes $\bigoplus_{i \in \mathbb{N}_{0}} \widetilde{C H}^{i}(Y)$ into a graded $K_{0}^{\mathrm{MW}}(F)$-algebra (the Chow-Witt ring).

Boundary maps and the localization long exact sequence

If $i: Z \rightarrow X$ is a closed subscheme and $j: U \rightarrow X$ is the complementary open subscheme, Z, U, X being smooth F-schemes (with F a perfect field) of pure dimensions d_{Z}, d and d, then for each n, m there is a boundary map $\partial: H^{n+d_{x}-d_{Z}}\left(U, \underline{K}_{m+d_{x}-d_{Z}}^{\mathrm{MW}}\right) \rightarrow H^{n+1}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$ such that the following is a long exact sequence:

$$
\begin{aligned}
& \cdots H^{n}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \xrightarrow{i_{*}} H^{n+d_{x}-d_{Z}}\left(X, \underline{K}_{m+d_{x}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{j^{*}} \\
& \xrightarrow{j^{*}} H^{n+d_{x}-d_{Z}}\left(U, \underline{K}_{m+d_{x}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{\partial} H^{n+1}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \longrightarrow
\end{aligned}
$$

Milnor-Witt K-theory and quadratic forms

The generators of the Milnor-Witt K-theory ring of a field F are denoted $[a] \in K_{1}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$ and $\eta \in K_{-1}^{\mathrm{MW}}(F)$. We denote $\langle a\rangle=\eta[a]+1 \in K_{0}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$.

Milnor-Witt K-theory and quadratic forms

The generators of the Milnor-Witt K-theory ring of a field F are denoted $[a] \in K_{1}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$ and $\eta \in K_{-1}^{\mathrm{MW}}(F)$. We denote $\langle a\rangle=\eta[a]+1 \in K_{0}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$.

The (commutative) ring with unit $K_{0}^{\mathrm{MW}}(F)$ is isomorphic to the Grothendieck-Witt ring GW (F) of F via $\langle a\rangle \in K_{0}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{GW}(F)$. For all $n<0$, the abelian group $K_{n}^{\mathrm{MW}}(F)$ is isomorphic to the Witt group $\mathrm{W}(F)$ of F via $\langle a\rangle \eta^{-n} \in K_{n}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{W}(F)$.

For all $a \in F^{*},\langle a\rangle$ is the equivalence class of the symmetric bilinear form $\left\{\begin{aligned} & F \times F \rightarrow \\ &(x, y) \mapsto \\ & \text { axy }\end{aligned}\right.$ or, if F is of characteristic $\neq 2$, of the quadratic form $\left\{\begin{array}{llc}F & \rightarrow & F \\ x & \mapsto & a x^{2}\end{array} . \mathrm{GW}(F)\right.$ is made up of \mathbb{Z}-linear combinations of $\langle a\rangle$ and $\mathrm{W}(F)=\mathrm{GW}(F) /(\langle 1\rangle+\langle-1\rangle)$ is made up of sums of $\langle a\rangle$.

Let $n \geq 2$ be an integer, $i \in \mathbb{N}_{0}, j \in \mathbb{Z}$. The Rost-Schmid group
$H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, K_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

Let $n \geq 2$ be an integer, $i \in \mathbb{N}_{0}, j \in \mathbb{Z}$. The Rost-Schmid group
$H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, K_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

This is similar to the fact in classical homotopy theory that $H^{i}\left(\mathbb{S}^{n-1}\right)$ is
isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

Let $n \geq 2$ be an integer, $i \in \mathbb{N}_{0}, j \in \mathbb{Z}$. The Rost-Schmid group
$H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, K_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$

This is similar to the fact in classical homotopy theory that $H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$
In particular, $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \simeq K_{-2}^{\mathrm{MW}}(F)$. We can fix such an isomorphism, but it is not canonical.

The linking number and the quadratic linking degree

Let $L=K_{1} \sqcup K_{2}$ be an oriented link (in knot theory) and \mathscr{L} be an oriented link with two components (in motivic knot theory), i.e. a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} and orientation classes $\overline{o_{i}}$. We denote $Z:=Z_{1} \sqcup Z_{2}$.

Step 1 in a picture: Seifert surfaces

Step 1

Knot theory

The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{\mathrm{BM}}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H_{1}\left(K_{i}\right) \simeq H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

Step 1

Knot theory

The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{B M}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H_{1}\left(K_{i}\right) \simeq H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

Motivic knot theory

We define an analogue $\left[o_{i}\right] \in H^{0}\left(Z_{i}, \underline{K}_{-1}^{\mathrm{MW}}\left\{\nu_{Z_{i}}\right\}\right)$ of the oriented fundamental class of each oriented component of \mathscr{L} then we define the Seifert class \mathcal{S}_{i} as the unique class in $H^{1}\left(X \backslash Z, \underline{K}_{1}^{\mathrm{MW}}\right)$ that is sent by the boundary map to the oriented fundamental class $\left[o_{i}\right] \in H^{0}\left(Z, \underline{K}_{-1}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

Step 2 in two pictures: intersection of Seifert surfaces

Step 2 in two pictures: boundary of int. of S. surfaces

Step 2

Knot theory

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$.

Step 2

Knot theory

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{1}(L)$.

Motivic knot theory

We define the quadratic linking class of \mathscr{L} as the image of the intersection product $\mathcal{S}_{1} \cdot \mathcal{S}_{2} \in H^{2}\left(X \backslash Z, K_{2}^{\mathrm{MW}}\right)$ by the boundary map $\partial: H^{2}\left(X \backslash Z, \underline{K}_{2}^{\mathrm{MW}}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

Step 3

Knot theory

The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to ($n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]$) (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

Step 3

Knot theory

The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to ($n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]$) (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

Motivic knot theory

We define the quadratic linking degree of \mathscr{L} as the image of the quadratic linking class of \mathscr{L} by the isomorphism
$H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow$
$H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \oplus H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow \mathrm{W}(F) \oplus \mathrm{W}(F)$.
We fixed an isomorphism $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\},{K_{0}^{\mathrm{MW}}}_{0}\right) \rightarrow K_{-2}^{\mathrm{MW}}(F)$ once and for all and there is a canonical isomorphism $K_{-2}^{\mathrm{MW}}(F) \rightarrow \mathrm{W}(F)$.

The Hopf link

Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1
$$

The quadratic linking degree of the Hopf link

Or. fund. classes	$\eta \otimes\left(\bar{x}^{*} \wedge \bar{y}^{*}\right)$	$\eta \otimes\left(\bar{z}^{*} \wedge \bar{t}^{*}\right)$
Seifert classes	$\langle x\rangle \otimes \bar{y}^{*}$	\mid
Apply int. prod.		$\langle x z\rangle \otimes\left(\bar{t}^{*} \wedge \bar{y}^{*}\right)$
Quad. link. class	$-\langle z\rangle \eta \otimes\left(\bar{t}^{*} \wedge \bar{x}^{*} \wedge \bar{y}^{*}\right)$	\oplus
Apply $\widetilde{o_{1}} \oplus \widetilde{o_{2}}$	$-\langle z\rangle \eta \otimes \bar{t}^{*}$	\oplus
Apply $\varphi_{1}^{*} \oplus \varphi_{2}^{*}$	$\left.-\langle u\rangle \eta \otimes \bar{y}^{*} \wedge \bar{z}^{*} \wedge \bar{t}^{*}\right)$	
Apply $\partial \oplus \partial$	$-\eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus
Quad. link. degree	-1	\oplus

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a \times t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1
$$

The quadratic linking degree of a variant of the Hopf link

$\left[o_{1}^{\text {var }}\right]=\eta \otimes \overline{x-y^{*}} \wedge \bar{y}^{*}=\left[o_{1}^{\text {Hopf }}\right] \quad\left[o_{2}^{\text {var }}\right]=\eta \otimes \bar{z}^{*} \wedge \overline{a t^{*}}=\langle a\rangle\left[o_{2}^{\text {Hopf }}\right]$
since $\binom{x-y}{y}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\binom{x}{y} \quad$ since $\binom{z}{a t}=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)\binom{z}{t}$
$\mathcal{S}_{1}^{\text {var }}=\mathcal{S}_{1}^{\text {Hopf }}$
$\mathcal{S}_{2}^{\text {var }}=\langle\mathrm{a}\rangle \mathcal{S}_{2}^{\text {Hopf }}$

$$
\begin{aligned}
& \mathcal{S}_{1}^{\text {var } \cdot \mathcal{S}_{2}^{\text {var }}=\langle a\rangle \mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }}} \\
& \partial\left(\mathcal{S}_{1}^{\text {var }} \cdot \mathcal{S}_{2}^{\text {Lar }_{2}}\right)=\langle a\rangle \partial\left(\mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }}\right)
\end{aligned}
$$

The quadratic linking degree is $(-\langle a\rangle, 1)$.

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$. Let $a=\left(a_{1}, a_{2}\right)$ be a couple of elements of F^{*} and \mathscr{L}_{a} be the link obtained from \mathscr{L} by changing the orientation o_{1} into $o_{1} \circ\left(\times a_{1}\right)$ and the orientation o_{2} into $o_{2} \circ\left(\times a_{2}\right)$. Then Qlc $_{\mathscr{L}_{a}}=\left\langle a_{1} a_{2}\right\rangle$ Qlc $_{\mathscr{L}}$ and $\operatorname{Qld} \mathscr{L}_{a}=\left(\left\langle a_{2}\right\rangle d_{1},\left\langle a_{1}\right\rangle d_{2}\right)$.

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$. Let $a=\left(a_{1}, a_{2}\right)$ be a couple of elements of F^{*} and \mathscr{L}_{a} be the link obtained from \mathscr{L} by changing the orientation o_{1} into $o_{1} \circ\left(\times a_{1}\right)$ and the orientation o_{2} into $o_{2} \circ\left(\times a_{2}\right)$. Then Qlc $_{\mathscr{L}_{a}}=\left\langle a_{1} a_{2}\right\rangle$ Qlc \mathscr{L} and Qld $\mathscr{L}_{a}=\left(\left\langle a_{2}\right\rangle d_{1},\left\langle a_{1}\right\rangle d_{2}\right)$.

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form $\langle a\rangle$ with $a \in F^{*}$ (and do not change the quadratic linking class).

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$. Let $a=\left(a_{1}, a_{2}\right)$ be a couple of elements of F^{*} and \mathscr{L}_{a} be the link obtained from \mathscr{L} by changing the orientation o_{1} into $o_{1} \circ\left(\times a_{1}\right)$ and the orientation o_{2} into $o_{2} \circ\left(\times a_{2}\right)$. Then Qlc $_{\mathscr{L}_{a}}=\left\langle a_{1} a_{2}\right\rangle$ Qlc $_{\mathscr{L}}$ and Qld $_{\mathscr{L}_{a}}=\left(\left\langle a_{2}\right\rangle d_{1},\left\langle a_{1}\right\rangle d_{2}\right)$.

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form $\langle a\rangle$ with $a \in F^{*}$ (and do not change the quadratic linking class).

We want invariants of the quadratic linking degree. (Similarly to the absolute value of the linking number in knot theory.)

Invariants by multiplication by $\langle a\rangle$ for all $a \in F^{*}$

Case $F=\mathbb{R}$

If $F=\mathbb{R}$, the absolute value of an element of $\mathrm{W}(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

Invariants by multiplication by $\langle a\rangle$ for all $a \in F^{*}$

Case $F=\mathbb{R}$

If $F=\mathbb{R}$, the absolute value of an element of $\mathrm{W}(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

General case

The rank modulo 2 is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

Definition

Let $d \in \mathrm{~W}(F)$. There exists a unique sequence of abelian groups $Q_{d, k}$ and of elements $\Sigma_{k}(d) \in Q_{d, k}$, where k ranges over the nonnegative even integers, such that:

- $Q_{d, 0}=W(F)$ and $\Sigma_{0}(d)=1 \in Q_{d, 0}$;
- for each positive even integer $k, Q_{d, k}$ is the quotient group $Q_{d, k-2} /\left(\Sigma_{k-2}(d)\right)$;
- for each positive even integer k,

$$
\begin{aligned}
& \Sigma_{k}(d)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left\langle\prod_{1 \leq j \leq k} a_{i_{j}}\right\rangle \in Q_{d, k} \text { whenever } \\
& d=\sum_{i=1}^{n}\left\langle a_{i}\right\rangle \in W(F)
\end{aligned}
$$

General case

The Σ_{k} are invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\left(\right.\right.$ if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $\mathrm{W}(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $\mathrm{W}(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$.
$-\Sigma_{4}:\left\{\begin{array}{l}\mathrm{W}(F) \rightarrow \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ n\end{array}\right.$
$\sum_{1 \leq i<j<k<l \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle$
- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $\mathrm{W}(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{4}:\left\{\begin{array}{l}\mathrm{W}(F) \rightarrow \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ n\end{array}\right.$ $\sum_{1 \leq i<j<k<1 \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle$
- We only want to compare $\Sigma_{4}(d)$ and $\Sigma_{4}\left(d^{\prime}\right)$ if $\Sigma_{2}(d)=\Sigma_{2}\left(d^{\prime}\right)$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)$.
- The orientation is the following:

$$
o_{1}: \overline{z-x}^{*} \wedge \overline{t-y}^{*} \mapsto 1, o_{2}: \overline{z+x}^{*} \wedge \overline{t+y}{ }^{*} \mapsto 1
$$

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 1 .
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 1 .
- The rank modulo 2 of each component is 1 .
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 1 .
- The rank modulo 2 of each component is 1 .
- For every positive even integer k, the image by Σ_{k} of each component is 0 .

The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow\left(u, v, u^{2}-v^{2}, 2 u v\right)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow\left(u, v,-u^{2}+v^{2},-2 u v\right)$.
- The orientation is the following:

$$
o_{1}:{\overline{z-x^{2}+y^{2}}}^{*} \wedge \overline{t-2 x y}^{*} \mapsto 1, o_{2}:{\overline{z+x^{2}-y^{2}}}^{*} \wedge \overline{t+2 x y}^{*} \mapsto 1
$$

- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- The rank modulo 2 of each component is 0 .
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- The rank modulo 2 of each component is 0 .
- For every positive even integer k, the image by Σ_{k} of each component is 0 .
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- The rank modulo 2 of each component is 0 .
- For every positive even integer k, the image by Σ_{k} of each component is 0 .
- More generally, we have analogues of the torus links $T(2,2 n)$ (of linking number n); the quadratic linking degree of $T(2,2 n)$ is $(n,-n) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$, which gives n as absolute value if $F=\mathbb{R}, n$ modulo 2 as rank modulo 2 , and 0 for the Σ_{k}.

Binary links

- The image of the binary link B_{a} with $a \in F^{*} \backslash\{-1\}$:

$$
\left\{f_{1}=0, g_{1}=0\right\} \sqcup\left\{f_{2}=0, g_{2}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

with $f_{1}=t-((1+a) x-y) y, g_{1}=z-x(x-y)$,

$$
f_{2}=t+((1+a) x-y) y, g_{2}=z+x(x-y)
$$

- The parametrization of the binary link B_{a} :

$$
\begin{aligned}
& \varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, \quad((1+a) u-v) v, \quad u(u-v)) \\
& \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-((1+a) u-v) v,-u(u-v))
\end{aligned}
$$

- The orientation of the binary link B_{a} :

$$
o_{1}:{\bar{f}_{1}}^{*} \wedge{\overline{g_{1}}}^{*} \mapsto 1, o_{2}:{\bar{f}_{2}}^{*} \wedge{\overline{g_{2}}}^{*} \mapsto 1
$$

Or. fund. cyc.	$\eta \otimes\left({\overline{f_{1}}}^{*} \wedge{\overline{g_{1}}}^{*}\right)$	$\eta \otimes\left({\overline{f_{2}}}^{*} \wedge{\overline{g_{2}}}^{*}\right)$	
Seifert divisors	$\left\langle f_{1}\right\rangle \otimes{\overline{g_{1}}}^{*}$	$\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{\bar{g}_{1}}}^{*}\right) \cdot(z, x-y)$	
Apply inter.	$+\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x)$		
prod.	\ldots		
\ldots	\ldots		
Apply $\partial \oplus \partial$	$(1+\langle a\rangle) \eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus	

Or. fund. cyc.	$\eta \otimes\left({\overline{f_{1}}}^{*} \wedge{\overline{g_{1}}}^{*}\right)$	$\eta \otimes\left({\overline{f_{2}}}^{*} \wedge{\overline{g_{2}}}^{*}\right)$
Seifert divisors	$\left\langle f_{1}\right\rangle \otimes{\overline{g_{1}}}^{*}$	$\left\langle f_{2}\right\rangle \otimes{\overline{g_{2}}}^{*}$
Apply inter.	$\left\langle f_{1}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x-y)$	
prod.	$+\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x)$	
\ldots	\ldots	
Apply $\partial \oplus \partial$	$(1+\langle a\rangle) \eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle b\rangle,\langle c a\rangle+\langle c b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b, c \in F^{*}$ such that $a+b \neq 0$. The rank modulo 2 of each component is 0 .

Or. fund. cyc.	$\eta \otimes\left({\overline{f_{1}}}^{*} \wedge{\overline{g_{1}}}^{*}\right)$	$\eta \otimes\left({\overline{f_{2}}}^{*} \wedge{\overline{g_{2}}}^{*}\right)$
Seifert divisors	$\left\langle f_{1}\right\rangle \otimes{\overline{g_{1}}}^{*}$	$\left\langle f_{2}\right\rangle \otimes{\overline{g_{2}}}^{*}$
Apply inter. prod.	$+\left\langle f_{1}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x-y)$	
\ldots	$) \cdot(z, x)$	

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle b\rangle,\langle c a\rangle+\langle c b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b, c \in F^{*}$ such that $a+b \neq 0$. The rank modulo 2 of each component is 0 .
- If $F=\mathbb{R}$, the absolute value of each component is $\left\{\begin{array}{l}2 \text { if } a>0 \\ 0 \text { if } a<0\end{array}\right.$

Or. fund. cyc.	$\eta \otimes\left({\overline{f_{1}}}^{*} \wedge{\overline{g_{1}}}^{*}\right)$	$\eta \otimes\left({\overline{f_{2}}}^{*} \wedge{\overline{g_{2}}}^{*}\right)$
Seifert divisors	$\left\langle f_{1}\right\rangle \otimes{\overline{g_{1}}}^{*}$	$\left\langle f_{2}\right\rangle \otimes{\overline{g_{2}}}^{*}$
Apply inter.	$\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x-y)$	
prod.	$+\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x)$	
\ldots	\ldots	
Apply $\partial \oplus \partial$	$(1+\langle a\rangle) \eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle b\rangle,\langle c a\rangle+\langle c b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b, c \in F^{*}$ such that $a+b \neq 0$. The rank modulo 2 of each component is 0 .
- If $F=\mathbb{R}$, the absolute value of each component is $\left\{\begin{array}{l}2 \text { if } a>0 \\ 0 \text { if } a<0\end{array}\right.$
- Σ_{2} of each component is $\langle a\rangle \in W(F) /(1)$. For instance, if $F=\mathbb{Q}, \Sigma_{2}$ distinguishes between all the B_{p} with p prime numbers. $\Sigma_{4}=0$ etc.

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. 〈hal-03821736〉
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG]

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. 〈hal-03821736〉
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG]

Thanks for your attention!

