Motivic knot theory

Clémentine Lemarié--Rieusset (Université de Bourgogne)

October 26, 2022

Algebraic geometry in a nutshell

Let F be a (perfect) field. Geometrical objects of interest are subsets of F^{n} which are zeroes of polynomials or complements of such subsets, for instance:

- F^{n} (no polynomial);
- the unit circle $\left\{(x, y) \in F^{2}, x^{2}+y^{2}-1=0\right\}(1$ p.);
- the diagonal line $\left\{(x, y) \in F^{2}, x-y=0\right\}$ (1p.);
- their intersection $\left\{(x, y) \in F^{2}, x^{2}+y^{2}-1=0, x-y=0\right\}(2$ p.);
- the origin $\{0\} \subset F^{2}:\left\{(x, y) \in F^{2}, x=0, y=0\right\}(2$ p.);
- $F^{2} \backslash\{0\} \ldots$

In practice, we replace these with schemes, for instance F^{n} is replaced with the affine n-space \mathbb{A}_{F}^{n} and $F^{n} \backslash\{0\}$ is replaced with the scheme $\mathbb{A}_{F}^{n} \backslash\{0\}$.

Knot theory in a nutshell

Topological objects of interest are knots and links.

- A knot is a (closed) topological subspace of the 3 -sphere \mathbb{S}^{3} which is homeomorphic to the circle \mathbb{S}^{1}.
- An oriented knot is a knot with a "continuous"local trivialization of its tangent bundle, or equivalently of its normal bundle (the ambient space being oriented). There are two orientation classes.
- A link is a finite union of disjoint knots. A link is oriented if all its components (i.e. its knots) are oriented.
- The linking number of an (oriented) link with two components is the number of times one of the components turns around the other component.

Oriented knots and links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

Oriented knots and links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

Knot

A knot is a closed immersion $\varphi: \mathbb{A}_{\digamma}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{\digamma}^{4} \backslash\{0\}$.

Oriented knots and links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

Knot

A knot is a closed immersion $\varphi: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$.

Link with two components

A link with two components is a couple of knots $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

Oriented knots and links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

Knot

A knot is a closed immersion $\varphi: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$.

Link with two components

A link with two components is a couple of knots $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

An orientation o_{i} of Z_{i} is a "trivialization" of the normal sheaf of Z_{i} in $\mathbb{A}_{F}^{4} \backslash\{0\}$ (actually of its determinant (i.e. its maximal exterior power)).

Oriented knots and links in algebraic geometry

Recall that for all $n \geq 1, \mathbb{S}^{n}$ has the same homotopy type as $\mathbb{R}^{n+1} \backslash\{0\}$.

Knot

A knot is a closed immersion $\varphi: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$.

Link with two components

A link with two components is a couple of knots $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} (where $i \in\{1,2\}$).

An orientation o_{i} of Z_{i} is a "trivialization" of the normal sheaf of Z_{i} in $\mathbb{A}_{F}^{4} \backslash\{0\}$ (actually of its determinant (i.e. its maximal exterior power)).

Intuition

Think of the normal sheaf of Z_{i} in $\mathbb{A}_{F}^{4} \backslash\{0\}$ as a two-dimensional vector space and think of a trivialization of it as a basis of this vector space.

Orientation classes

Fact

The orientation classes are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

Orientation classes

Fact

The orientation classes are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.

Orientation classes

Fact

The orientation classes are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.

Orientation classes

Fact

The orientation classes are parametrized by the elements of $F^{*} /\left(F^{*}\right)^{2}$ (where $\left(F^{*}\right)^{2}=\left\{a \in F^{*}, \exists b \in F^{*}, a=b^{2}\right\}$).

If $F=\mathbb{R}$ then $F^{*} /\left(F^{*}\right)^{2}$ has two elements.
If $F=\mathbb{C}$ then $F^{*} /\left(F^{*}\right)^{2}$ has one element.
If $F=\mathbb{Q}$ then $F^{*} /\left(F^{*}\right)^{2}$ has infinitely many elements (the classes of the integers without square factors).

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

The Hopf link

We fix coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2} once and for all.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1
$$

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a \times t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a \times t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a \times t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1
$$

Motivic homotopy theory

Overview

Motivic homotopy theory (a.k.a. \mathbb{A}^{1}-homotopy theory) is a homotopy theory on smooth schemes of finite type over a "nice" base scheme (in our case the perfect field F).

The idea is to replace the unit interval $[0,1]$ with the affine line \mathbb{A}_{F}^{1}.

References on motivic homotopy theory

- The foundations were laid out in Morel and Voevodsky's article \mathbb{A}^{1}-homotopy theory of schemes (1999)
- Its specificities when the base scheme is a perfect field were laid out in Morel's book \mathbb{A}^{1}-algebraic topology over a field (2012)
- The nLab page Motivic homotopy theory is nicely done and has plenty of references

Motivic spheres

There are two analogues of the circle $[0,1] /\{0,1\}$ in motivic homotopy theory: $S^{1}:=\mathbb{A}_{F}^{1} /\{0,1\}$ and the multiplicative group $\mathbb{G}_{m}:=\mathbb{G}_{m, F}$.

Motivic spheres

For all $i, j \in \mathbb{Z}$, we denote by S^{i} the i-th smash-product of S^{1} and we call the smash-product $S^{i} \wedge \mathbb{G}_{m}^{\wedge j}$ (in the stable homotopy category) a motivic sphere.

Note that the projective line $\mathbb{P}^{1}:=\mathbb{P}_{F}^{1}$ is equal to $S^{1} \wedge \mathbb{G}_{m}$ in the stable homotopy category.

Intuition

Think of \mathbb{P}^{1} as the set of lines in F^{2}, i.e. $\left\{[x: y],(x, y) \in F^{2} \backslash\{0\}\right\}$ with $[\lambda x: \lambda y]=[x: y]$ for all $\lambda \in F^{*}$.

Morel's Theorem

Objects of interest

The groups of morphisms $\left[S^{i} \wedge \mathbb{G}_{m}^{\wedge j}, S^{k} \wedge \mathbb{G}_{m}^{\wedge /}\right]=\left[S^{i-k}, \mathbb{G}_{m}^{\wedge(I-j)}\right]$ in the stable homotopy category.

Similarly to the fact that the stable homotopy group $\pi_{i}^{s}\left(S_{0}\right)=0$ if $i<0$, the group $\left[S^{i}, \mathbb{G}_{m}^{\wedge j}\right]$ is equal to 0 if $i<0$ (with $j \in \mathbb{Z}$).

Morel's theorem

Morel gave a presentation by generators and relations of the graded ring with unit $\bigoplus\left[S^{0}, \mathbb{G}_{m}^{\wedge n}\right]$ (where the product is given by the smash-product). $n \in \mathbb{Z}$

The generators are denoted $[a] \in\left[S^{0}, \mathbb{G}_{m}\right]$ for every $a \in F^{*}$ and $\eta \in\left[S^{0}, \mathbb{G}_{m}^{\wedge(-1)}\right]=\left[\mathbb{A}^{2} \backslash\{0\}, \mathbb{P}^{1}\right]$ which sends (x, y) to $[x: y]$.

Milnor-Witt K-theory

Definition

The graded ring with unit $K_{*}^{\mathrm{MW}}(F):=\bigoplus\left[S^{0}, \mathbb{G}_{m}^{\wedge n}\right]$ is called the $n \in \mathbb{Z}$
Milnor-Witt K-theory ring of F. We denote $K_{n}^{\mathrm{MW}}(F):=\left[S^{0}, \mathbb{G}_{m}^{\wedge n}\right]$.
We denote $\langle a\rangle=\eta[a]+1 \in K_{0}^{\mathrm{MW}}(F)$ for every $a \in F^{*}$.

Fact

If $n \leq 0$ then every element of $K_{n}^{\mathrm{MW}}(F)$ is a \mathbb{Z}-linear combination of $\langle a\rangle \eta^{-n}$ with $a \in F^{*}$.

The Rost-Schmid ring:
 An analogue of the singular cohomology ring

To a smooth F-scheme Y, an integer $j \in \mathbb{Z}$ and an invertible \mathcal{O}_{Y}-module \mathcal{L} we associate the corresponding Rost-Schmid complex
 $K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes$ a twist which depends on p and \mathcal{L}. $i \geq 0 p$ point of codim i in Y

The Rost-Schmid ring:
 An analogue of the singular cohomology ring

To a smooth F-scheme Y, an integer $j \in \mathbb{Z}$ and an invertible \mathcal{O}_{Y}-module \mathcal{L} we associate the corresponding Rost-Schmid complex

$K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes$ a twist which depends on p and \mathcal{L}.
$i \geq 0 p$ point of codim i in Y
For every $i \in \mathbb{N}_{0}$, we denote the i-th cohomological group of this complex (called a Rost-Schmid group) by $H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$. We denote $H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\right):=H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\left\{\mathcal{O}_{Y}\right\}\right)$.

The Rost-Schmid ring:

An analogue of the singular cohomology ring

To a smooth F-scheme Y, an integer $j \in \mathbb{Z}$ and an invertible \mathcal{O}_{Y}-module \mathcal{L} we associate the corresponding Rost-Schmid complex

$K_{j-i}^{\mathrm{MW}}(\kappa(p)) \otimes$ a twist which depends on p and \mathcal{L}.
$i \geq 0 p$ point of codim i in Y
For every $i \in \mathbb{N}_{0}$, we denote the i-th cohomological group of this complex (called a Rost-Schmid group) by $H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\{\mathcal{L}\}\right)$. We denote $H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\right):=H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\left\{\mathcal{O}_{Y}\right\}\right)$.
We have an intersection product

$$
\cdot: H^{i}\left(Y, K_{j}^{\mathrm{MW}}\right) \times H^{i^{\prime}}\left(Y, \underline{K}_{j^{\prime}}^{\mathrm{MW}}\right) \rightarrow H^{i+i^{\prime}}\left(Y, \underline{K}_{j+j^{\prime}}^{\mathrm{MW}}\right)
$$

which makes $\bigoplus_{i \in \mathbb{N}_{0}, j \in \mathbb{Z}} H^{i}\left(Y, \underline{K}_{j}^{\mathrm{MW}}\right)$ into a graded $K_{0}^{\mathrm{MW}}(F)$-algebra.

Boundary maps

Definition

A boundary triple is a 5-tuple (Z, i, X, j, U), or abusively a triple (Z, X, U), with $i: Z \rightarrow X$ a closed immersion and $j: U \rightarrow X$ an open immersion such that the image of U by j is the complement in X of the image of Z by i, where Z, X, U are smooth F-schemes of pure dimensions. The boundary map associated to this boundary triple is the morphism

$$
\partial: \mathcal{C}^{\bullet}\left(U, \underline{K}_{*}^{\mathrm{MW}}\right) \rightarrow \mathcal{C}^{\bullet+1+d_{Z}-d_{X}}\left(Z, \underline{K}_{*+d_{Z}-d_{X}}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)
$$

induced by the differential d of the Rost-Schmid complex $\mathcal{C}\left(X, \underline{K}_{*}^{\mathrm{MW}}\right)$, i.e.:

$$
\partial=i^{*} \circ d \circ j_{*}
$$

The localization long exact sequence:

An analogue of the cohomology long exact sequ. of a pair

Theorem

Let (Z, i, X, j, U) be a boundary triple. The boundary map induces a morphism $\partial: H^{n+d_{x}-d_{Z}}\left(U, K_{m+d_{X}-d_{Z}}^{\mathrm{MW}}\right) \rightarrow H^{n+1}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$ and we have the following long exact sequence, called the localization long exact sequence:

$$
\begin{aligned}
& \cdots \longrightarrow H^{n}\left(Z, K_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \xrightarrow{i_{*}} H^{n+d_{X}-d_{Z}}\left(X, \underline{K}_{m+d_{X}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{j^{*}} \\
& \xrightarrow{j^{*}} H^{n+d_{X}-d_{Z}}\left(U, K_{m+d_{x}-d_{Z}}^{\mathrm{MW}}\right) \xrightarrow{\partial} H^{n+1}\left(Z, \underline{K}_{m}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \longrightarrow
\end{aligned}
$$

Punctured affine spaces are analogues of spheres

Let $n \geq 2$ be an integer, $i \in \mathbb{N}_{0}, j \in \mathbb{Z}$. The Rost-Schmid group
$H^{i}\left(\mathbb{A}_{F}^{n} \backslash\{0\}, \underline{K}_{j}^{\mathrm{MW}}\right)$ is isomorphic to $\begin{cases}K_{j}^{\mathrm{MW}}(F) & \text { if } i=0 \\ K_{j-n}^{\mathrm{MW}}(F) & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{cases}$
This is similar to the fact in classical homotopy theory that $H^{i}\left(\mathbb{S}^{n-1}\right)$ is isomorphic to $\left\{\begin{array}{ll}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z} & \text { if } i=n-1 . \\ 0 & \text { otherwise }\end{array}\right.$.
Note that $\mathbb{A}_{F}^{n} \backslash\{0\}=S^{n-1} \wedge \mathbb{G}_{m}^{\wedge n}$ in the stable homotopy category.

The linking number and its analogue

Let $L=K_{1} \sqcup K_{2}$ be an oriented link (in knot theory) and \mathscr{L} be an oriented link with two components (in motivic knot theory), i.e. a couple of closed immersions $\varphi_{i}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$ with disjoint images Z_{i} and orientation classes $\overline{o_{i}}$. We denote $Z:=Z_{1} \sqcup Z_{2}$.

The linking number and its analogue: step 1

Knot theory

The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{\mathrm{BM}}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

The linking number and its analogue: step 1

Knot theory

The class S_{i} in $H^{1}\left(\mathbb{S}^{3} \backslash L\right) \simeq H_{2}^{\mathrm{BM}}\left(\mathbb{S}^{3}, L\right)$ of Seifert surfaces of the oriented knot K_{i} is the unique class that is sent by the boundary map to the (oriented) fundamental class of K_{i} in $H^{0}\left(K_{i}\right) \subset H^{0}(L)$.

Motivic knot theory

We define an analogue $\left[o_{i}\right] \in H^{0}\left(Z_{i}, K_{-1}^{\mathrm{MW}}\left\{\nu_{Z_{i}}\right\}\right)$ of the oriented fundamental class of each oriented component of \mathscr{L} then we define the Seifert class \mathcal{S}_{i} as the unique class in $H^{1}\left(X \backslash Z, \underline{K}_{1}^{\mathrm{MW}}\right)$ that is sent by the boundary map to the oriented fundamental class $\left[o_{i}\right] \in H^{0}\left(Z, \underline{K}_{-1}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

The linking number and its analogue: step 2

Knot theory

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{3}\left(\mathbb{S}^{3}, \mathbb{S}^{3} \backslash L\right) \simeq H^{1}(L)$.

The linking number and its analogue: step 2

Knot theory

The linking class of L is the image of the cup-product $S_{1} \cup S_{2} \in H^{2}\left(\mathbb{S}^{3} \backslash L\right)$ by the boundary map $\partial: H^{2}\left(\mathbb{S}^{3} \backslash L\right) \rightarrow H^{3}\left(\mathbb{S}^{3}, \mathbb{S}^{3} \backslash L\right) \simeq H^{1}(L)$.

Motivic knot theory
We define the quadratic linking class of \mathscr{L} as the image of the intersection product $\mathcal{S}_{1} \cdot \mathcal{S}_{2} \in H^{2}\left(X \backslash Z, K_{2}^{\text {MW }}\right)$ by the boundary map $\partial: H^{2}\left(X \backslash Z, \underline{K}_{2}^{\mathrm{MW}}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right)$.

The linking number and its analogue: step 3

Knot theory

The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to ($n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]$) (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

The linking number and its analogue: step 3

Knot theory

The linking number of $L=K_{1} \sqcup K_{2}$ is the integer $n \in \mathbb{Z}$ such that the linking class in $H^{1}(L)=\mathbb{Z}\left[\omega_{K_{1}}\right] \oplus \mathbb{Z}\left[\omega_{K_{2}}\right]$ is equal to ($n\left[\omega_{K_{1}}\right],-n\left[\omega_{K_{2}}\right]$) (where $\omega_{K_{i}}$ is the volume form of the oriented knot K_{i}).

Motivic knot theory

We define the quadratic linking degree of \mathscr{L} as the image of the quadratic linking class of \mathscr{L} by the isomorphism
$H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \rightarrow H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow$ $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \oplus H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow K_{-2}^{\mathrm{MW}}(F) \oplus K_{-2}^{\mathrm{MW}}(F)$.

We fixed an isomorphism $H^{1}\left(\mathbb{A}_{F}^{2} \backslash\{0\}, \underline{K}_{0}^{\mathrm{MW}}\right) \rightarrow K_{-2}^{\mathrm{MW}}(F)$ once and for all. Recall that $K_{-2}^{\mathrm{MW}}(F)$ is generated by the $\langle a\rangle \eta^{2}$ with $a \in F^{*}$.

The Hopf link

Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image of the Hopf link:

$$
\{x=0, y=0\} \sqcup\{z=0, t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization of the Hopf link:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation of the Hopf link:

$$
o_{1}: \bar{x}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \bar{t}^{*} \mapsto 1
$$

The quadratic linking degree of the Hopf link

Or. fund. classes	$\eta \otimes\left(\bar{x}^{*} \wedge \bar{y}^{*}\right)$	$\eta \otimes\left(\bar{z}^{*} \wedge \bar{t}^{*}\right)$	
Seifert classes	$\langle x\rangle \otimes \bar{y}^{*}$		
Apply int. prod.	$\langle x z\rangle \otimes\left(\bar{t}^{*} \wedge \bar{y}^{*}\right)$		
Quad. link. class	$-\langle z\rangle \eta \otimes\left(\bar{t}^{*} \wedge \bar{x}^{*} \wedge \bar{y}^{*}\right)$	\oplus	
Apply $\widetilde{o_{1}} \oplus \widetilde{o_{2}}$	$-\langle z\rangle \eta \otimes \bar{t}^{*}$	\oplus	
Apply $\varphi_{1}^{*} \oplus \varphi_{2}^{*}$	$\left.-\langle u\rangle \eta \otimes \bar{v}^{*} \wedge \bar{z}^{*} \wedge \bar{t}^{*}\right)$		
Apply $\partial \oplus \partial$	$\oplus x\rangle \eta \otimes \bar{y}^{*}$		
Quad. link. degree	$-\eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus	

A variant of the Hopf link

- The image is the same as the Hopf link's image:

$$
\{x=y, y=0\} \sqcup\{z=0, a \times t=0\} \subset \mathbb{A}_{F}^{4} \backslash\{0\} \text { with } a \in F^{*}
$$

- The parametrization is the same:

$$
\varphi_{1}:(x, y, z, t) \leftrightarrow(0,0, u, v), \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v, 0,0)
$$

- The orientation is different:

$$
o_{1}: \overline{x-y}^{*} \wedge \bar{y}^{*} \mapsto 1, o_{2}: \bar{z}^{*} \wedge \overline{a t}^{*} \mapsto 1
$$

The quadratic linking degree of a variant of the Hopf link

$\left[o_{1}^{\text {var }}\right]=\eta \otimes \overline{x-y^{*}} \wedge \bar{y}^{*}=\left[o_{1}^{\text {Hopf }}\right] \quad\left[o_{2}^{\text {var }}\right]=\eta \otimes \bar{z}^{*} \wedge \overline{a t^{*}}=\langle a\rangle\left[o_{2}^{\text {Hopf }}\right]$
since $\binom{x-y}{y}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\binom{x}{y} \quad$ since $\binom{z}{a t}=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)\binom{z}{t}$
$\mathcal{S}_{1}^{\text {var }}=\mathcal{S}_{1}^{\text {Hopf }}$
$\mathcal{S}_{2}^{\text {var }}=\langle a\rangle \mathcal{S}_{2}^{\text {Hopf }}$

$$
\begin{aligned}
& \mathcal{S}_{1}^{\text {var } \cdot \mathcal{S}_{2}^{\text {var }}=\langle a\rangle \mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }}} \\
& \partial\left(\mathcal{S}_{1}^{\text {var }} \cdot \mathcal{S}_{2}^{\text {var }}\right)=\langle a\rangle \partial\left(\mathcal{S}_{1}^{\text {Hopf }} \cdot \mathcal{S}_{2}^{\text {Hopf }}\right)
\end{aligned}
$$

The quadratic linking degree is $\left(-\langle a\rangle \eta^{2}, \eta^{2}\right)$.

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in K_{-2}^{\mathrm{MW}}(F) \oplus K_{-2}^{\mathrm{MW}}(F)$. Let $a=\left(a_{1}, a_{2}\right)$ be a couple of elements of F^{*} and \mathscr{L}_{a} be the link obtained from \mathscr{L} by changing the orientation o_{1} into $o_{1} \circ\left(\times a_{1}\right)$ and the orientation o_{2} into $o_{2} \circ\left(\times a_{2}\right)$. Then $\operatorname{Qlc}_{\mathscr{L}_{a}}=\left\langle a_{1} a_{2}\right\rangle$ Qlc $_{\mathscr{L}}$ and $\operatorname{Qld} \mathscr{L}_{a}=\left(\left\langle a_{2}\right\rangle d_{1},\left\langle a_{1}\right\rangle d_{2}\right)$.

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in K_{-2}^{\mathrm{MW}}(F) \oplus K_{-2}^{\mathrm{MW}}(F)$. Let $a=\left(a_{1}, a_{2}\right)$ be a couple of elements of F^{*} and \mathscr{L}_{a} be the link obtained from \mathscr{L} by changing the orientation o_{1} into $o_{1} \circ\left(\times a_{1}\right)$ and the orientation o_{2} into $o_{2} \circ\left(\times a_{2}\right)$. Then $\mathrm{Qlc}_{\mathscr{L}_{a}}=\left\langle a_{1} a_{2}\right\rangle$ Q|c \mathscr{L} and $\operatorname{Qld} \mathscr{L}_{a}=\left(\left\langle a_{2}\right\rangle d_{1},\left\langle a_{1}\right\rangle d_{2}\right)$.

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form $\langle a\rangle$ with $a \in F^{*}$ (and do not change the quadratic linking class).

Fact

Let \mathscr{L} be an oriented link with two components of quadratic linking degree $\left(d_{1}, d_{2}\right) \in K_{-2}^{\mathrm{MW}}(F) \oplus K_{-2}^{\mathrm{MW}}(F)$. Let $a=\left(a_{1}, a_{2}\right)$ be a couple of elements of F^{*} and \mathscr{L}_{a} be the link obtained from \mathscr{L} by changing the orientation o_{1} into $o_{1} \circ\left(\times a_{1}\right)$ and the orientation o_{2} into $o_{2} \circ\left(\times a_{2}\right)$. Then $\operatorname{Qlc}_{\mathscr{L}_{a}}=\left\langle a_{1} a_{2}\right\rangle$ Qlc $_{\mathscr{L}}$ and $\operatorname{Qld} \mathscr{L}_{a}=\left(\left\langle a_{2}\right\rangle d_{1},\left\langle a_{1}\right\rangle d_{2}\right)$.

Similarly, changes of parametrizations of the link can only multiply each component of the quadratic linking degree by elements of the form $\langle a\rangle$ with $a \in F^{*}$ (and do not change the quadratic linking class).

We want invariants of the quadratic linking degree. (Similarly to the absolute value of the linking number in knot theory)

Why a "quadratic" linking degree?

- The (commutative) ring with unit $K_{0}^{\mathrm{MW}}(F)$ is isomorphic to the Grothendieck-Witt ring $\mathrm{GW}(F)$ of F via $\langle a\rangle \in K_{0}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{GW}(F)$.
- For all $n<0$, the abelian group $K_{n}^{\mathrm{MW}}(F)$ is isomorphic to the Witt group $\mathrm{W}(F)$ of F via $\langle a\rangle \eta^{-n} \in K_{n}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{W}(F)$.

The real definition of the quadratic linking degree
We define the quadratic linking degree of \mathscr{L} as the image of the quadratic linking class of \mathscr{L} by the isomorphism $H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \rightarrow K_{-2}^{\mathrm{MW}}(F) \oplus K_{-2}^{\mathrm{MW}}(F) \rightarrow \mathrm{W}(F) \oplus \mathrm{W}(F)$.

Why a "quadratic" linking degree?

- The (commutative) ring with unit $K_{0}^{\mathrm{MW}}(F)$ is isomorphic to the Grothendieck-Witt ring $\mathrm{GW}(F)$ of F via $\langle a\rangle \in K_{0}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{GW}(F)$.
- For all $n<0$, the abelian group $K_{n}^{\mathrm{MW}}(F)$ is isomorphic to the Witt group $\mathrm{W}(F)$ of F via $\langle a\rangle \eta^{-n} \in K_{n}^{\mathrm{MW}}(F) \leftrightarrow\langle a\rangle \in \mathrm{W}(F)$.

The real definition of the quadratic linking degree

We define the quadratic linking degree of \mathscr{L} as the image of the quadratic linking class of \mathscr{L} by the isomorphism
$H^{1}\left(Z, \underline{K}_{0}^{\mathrm{MW}}\left\{\nu_{Z}\right\}\right) \rightarrow K_{-2}^{\mathrm{MW}}(F) \oplus K_{-2}^{\mathrm{MW}}(F) \rightarrow \mathrm{W}(F) \oplus \mathrm{W}(F)$.
The Grothendieck-Witt ring of F and the Witt ring of F (and underlying Witt group of F) are constructed from symmetric bilinear forms on F. If F is of characteristic different from 2 (i.e. $2 \neq 0$ in F) then they are also constructed from quadratic forms.

Interlude: symmetric bilinear forms and quadratic forms

Definition

- A bilinear form on an F-vector space V of finite dimension is a bilinear map $b: V \times V \rightarrow F$. It is symmetric if for all $v, w \in V$, $b(v, w)=b(w, v)$.
- If F is of characterisitic different from 2, a quadratic form on V is a map $q: V \rightarrow F$ such that the map
$b:\left\{\begin{array}{ccc}V \times V & \rightarrow & F \\ (x, y) & \mapsto & \frac{1}{2}(q(x+y)-q(x)-q(y))\end{array}\right.$ is a symmetric bilinear form such that for all $x \in V, b(x, x)=q(x)$. We call b the polar form of q.

Note that if $b: V \times V \rightarrow F$ is a symmetric bilinear form and F is of characterisitic different from 2 then $q:\left\{\begin{array}{rlc}V & \rightarrow & F \\ x & \mapsto & b(x, x)\end{array}\right.$ is a quadratic form (of polar form b).

Definition

Let $b: V \times V \rightarrow F$ and $b^{\prime}: V^{\prime} \times V^{\prime} \rightarrow F$ be symmetric bilinear forms.

- The (orthogonal) sum of b and b^{\prime} is the symmetric bilinear form $b \perp b^{\prime}:\left(V \oplus V^{\prime}\right) \times\left(V \oplus V^{\prime}\right) \rightarrow F$ which sends $\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right)$ to $b(x, y)+b^{\prime}\left(x^{\prime}, y^{\prime}\right)$.
- The (tensor) product of b and b^{\prime} is the symmetric bilinear form $b \otimes b^{\prime}:\left(V \otimes V^{\prime}\right) \times\left(V \otimes V^{\prime}\right) \rightarrow F$ which sends $\left(\sum_{i \in I} x_{i} \otimes x_{i}^{\prime}, \sum_{j \in J} y_{j} \otimes y_{j}^{\prime}\right)$ to $\sum_{(i, j) \in I \times J} b\left(x_{i}, y_{j}\right) \times b^{\prime}\left(x_{i}^{\prime}, y_{j}^{\prime}\right)$.

Definition

- The symmetric bilinear form $b: V \times V \rightarrow F$ is non-degenerate if 0 is the only element x of V which verifies that for all $y \in V, b(x, y)=0$.
- Two non-degenerate symmetric bilinear forms $b: V \times V \rightarrow F$ and $b^{\prime}: V^{\prime} \times V^{\prime} \rightarrow F$ are isometric if there exists a linear isomorphism $u: V \rightarrow V^{\prime}$ such that for all $x, y \in V, b(x, y)=b^{\prime}(u(x), u(y))$.

This gives a structure of commutative semiring (commutative monoid + commutative product) on the isometry classes. Grothendieck's construction gives a commutative ring: the Grothendieck-Witt ring of F. Its elements are \mathbb{Z}-linear combinations of the classes
$\langle a\rangle:\left\{\begin{array}{rll}F \times F & \rightarrow & F \\ (x, y) & \mapsto & a x y\end{array}\right.$ of symmetric bilinear forms (with $a \in F^{*}$).
If F is of characteristic $\neq 2$, as a quadratic form $\langle a\rangle:\left\{\begin{array}{clc}F & \rightarrow & F \\ x & \mapsto & a x^{2} .\end{array}\right.$

Definition

- The hyperbolic plane $b_{h}: F^{2} \times F^{2} \rightarrow F$ is the symmetric bilinear form which sends $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$ to $x_{1} y_{2}+x_{2} y_{1}$.
- Two non-degenerate symmetric bilinear forms $b: V \times V \rightarrow F$ and $b^{\prime}: V^{\prime} \times V^{\prime} \rightarrow F$ are Witt-equivalent if there exist $m, n \geq 0$ integers such that $b \perp m b_{h}$ is isometric to $b^{\prime} \perp n b_{h}$.

This gives a structure of commutative ring on the Witt-equivalence classes: the Witt ring of F. Its elements are sums of classes
$\langle a\rangle:\left\{\begin{array}{rlc}F \times F & \rightarrow & F \\ (x, y) & \mapsto & a x y\end{array}\right.$ of symmetric bilinear forms (with $a \in F^{*}$).
If F is of characteristic $\neq 2$, as a quadratic form $\langle a\rangle:\left\{\begin{array}{ccc}F & \rightarrow & F \\ x & \mapsto & a x^{2}\end{array}\right.$.

Presentations of GW (F) and $\mathrm{W}(F)$

- As a commutative ring (resp. abelian group), the Grothendieck-Witt ring (resp. group) $\mathrm{GW}(F)$ is generated by the $\langle a\rangle$ for $a \in F^{*}$ subject to the relations :
- $\left\langle a b^{2}\right\rangle=\langle a\rangle$ for all $a, b \in F^{*}$;
- $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$ for all $a, b \in F^{*}$ such that $a+b \in F^{*}$.

Presentations of GW (F) and $W(F)$

- As a commutative ring (resp. abelian group), the Grothendieck-Witt ring (resp. group) GW (F) is generated by the $\langle a\rangle$ for $a \in F^{*}$ subject to the relations :
- $\left\langle a b^{2}\right\rangle=\langle a\rangle$ for all $a, b \in F^{*}$;
- $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$ for all $a, b \in F^{*}$ such that $a+b \in F^{*}$.
- As a commutative ring (resp. abelian group), the Witt ring (resp. group) $W(F)$ is generated by the $\langle a\rangle$ for $a \in F^{*}$ subject to the relations:
- $\left\langle a b^{2}\right\rangle=\langle a\rangle$ for all $a, b \in F^{*} ;$
- $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$ for all $a, b \in F^{*}$ such that $a+b \in F^{*}$;
- $\langle 1\rangle+\langle-1\rangle=0$.

Presentations of GW (F) and $W(F)$

- As a commutative ring (resp. abelian group), the Grothendieck-Witt ring (resp. group) $\mathrm{GW}(F)$ is generated by the $\langle a\rangle$ for $a \in F^{*}$ subject to the relations :
- $\left\langle a b^{2}\right\rangle=\langle a\rangle$ for all $a, b \in F^{*}$;
- $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$ for all $a, b \in F^{*}$ such that $a+b \in F^{*}$.
- As a commutative ring (resp. abelian group), the Witt ring (resp. group) $W(F)$ is generated by the $\langle a\rangle$ for $a \in F^{*}$ subject to the relations:
- $\left\langle a b^{2}\right\rangle=\langle a\rangle$ for all $a, b \in F^{*} ;$
- $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$ for all $a, b \in F^{*}$ such that $a+b \in F^{*}$;
- $\langle 1\rangle+\langle-1\rangle=0$.
- This last relation corresponds to the vanishing of the hyperbolic plane.

Examples of Witt rings

- $\mathrm{W}(\mathbb{C}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2 (where the rank of $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ is n)

Examples of Witt rings

- $W(\mathbb{C}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2 (where the rank of $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ is n)
- $W(\mathbb{R}) \simeq \mathbb{Z}$ via the signature (where the signature of

$$
\left.\sum_{i=1}^{p}\langle 1\rangle+\sum_{j=1}^{q}\langle-1\rangle \text { is } p-q\right)
$$

Examples of Witt rings

- $W(\mathbb{C}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2 (where the rank of $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ is n)
- $W(\mathbb{R}) \simeq \mathbb{Z}$ via the signature (where the signature of
$\sum_{i=1}^{p}\langle 1\rangle+\sum_{j=1}^{q}\langle-1\rangle$ is $\left.p-q\right)$
- $\mathrm{W}(\mathbb{Q}) \simeq \mathrm{W}(\mathbb{R}) \oplus \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$ via $\langle a\rangle \mapsto\langle a\rangle+\sum_{p \text { prime divisor of } a\left\langle\frac{\bar{a}}{p}\right\rangle}$

Examples of Witt rings

- $W(\mathbb{C}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2 (where the rank of $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ is n)
- $W(\mathbb{R}) \simeq \mathbb{Z}$ via the signature (where the signature of

$$
\left.\sum_{i=1}^{p}\langle 1\rangle+\sum_{j=1}^{q}\langle-1\rangle \text { is } p-q\right)
$$

- $\mathrm{W}(\mathbb{Q}) \simeq \mathrm{W}(\mathbb{R}) \oplus \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$ via $\langle a\rangle \mapsto\langle a\rangle+\sum_{p \text { prime divisor of } a\left\langle\frac{\bar{a}}{p}\right\rangle}$
- $W(\mathbb{Z} / 2 \mathbb{Z}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2

Examples of Witt rings

- $W(\mathbb{C}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2 (where the rank of $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ is n)
- $W(\mathbb{R}) \simeq \mathbb{Z}$ via the signature (where the signature of

$$
\left.\sum_{i=1}^{p}\langle 1\rangle+\sum_{j=1}^{q}\langle-1\rangle \text { is } p-q\right)
$$

- $\mathrm{W}(\mathbb{Q}) \simeq W(\mathbb{R}) \oplus \oplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$ via $\langle a\rangle \mapsto\langle a\rangle+\sum_{p \text { prime divisor of } a\left\langle\frac{\overline{\bar{c}}}{p}\right\rangle}$
- $W(\mathbb{Z} / 2 \mathbb{Z}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2
- For all $p \equiv 3 \bmod 4, \mathrm{~W}(\mathbb{Z} / p \mathbb{Z}) \simeq \mathbb{Z} / 4 \mathbb{Z}$ via the signature modulo 4

Examples of Witt rings

- $\mathrm{W}(\mathbb{C}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2 (where the rank of $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ is n)
- $W(\mathbb{R}) \simeq \mathbb{Z}$ via the signature (where the signature of

$$
\left.\sum_{i=1}^{p}\langle 1\rangle+\sum_{j=1}^{q}\langle-1\rangle \text { is } p-q\right)
$$

- $W(\mathbb{Q}) \simeq W(\mathbb{R}) \oplus \oplus_{p \text { prime }} W(\mathbb{Z} / p \mathbb{Z})$ via $\langle a\rangle \mapsto\langle a\rangle+\sum_{p \text { prime divisor of } a\left\langle\frac{\bar{\partial}}{p}\right\rangle}$
- $W(\mathbb{Z} / 2 \mathbb{Z}) \simeq \mathbb{Z} / 2 \mathbb{Z}$ via the rank modulo 2
- For all $p \equiv 3 \bmod 4, \mathrm{~W}(\mathbb{Z} / p \mathbb{Z}) \simeq \mathbb{Z} / 4 \mathbb{Z}$ via the signature modulo 4
- For all $p \equiv 1 \bmod 4, \mathrm{~W}(\mathbb{Z} / p \mathbb{Z}) \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ via the "signature couple" modulo 2 (if $a \in \mathbb{Z} / p \mathbb{Z}$ is not a square, $\sum_{i=1}^{p}\langle 1\rangle+\sum_{j=1}^{q}\langle a\rangle$ is sent to $(p \bmod 2, q \bmod 2))$

It is difficult in general to know if two elements of the Witt group $\mathrm{W}(F)$ are equal. For instance, let $a, b, c, d \in F^{*}$ such that d is not a square in F^{*} and such that (1) and (2) below are well-defined. Can you tell which of the two following elements of $W(F)$ is equal to $\langle a\rangle+\langle b\rangle$? (There is exactly one which is equal to $\langle a\rangle+\langle b\rangle$)
(1) $\left\langle(a+b) c^{2}+(a+b) a b d\right\rangle+\left\langle(a+b)\left(c^{2}+a b d\right) a b d\right\rangle$
(2) $\left\langle(a+b) c^{2}+(a+b) a b d^{2}\right\rangle+\left\langle(a+b)\left(c^{2}+a b d^{2}\right) a b\right\rangle$

Recall that the relations in $W(F)$ are:

- $\left\langle a b^{2}\right\rangle=\langle a\rangle$ for all $a, b \in F^{*}$;
- $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$ for all $a, b \in F^{*}$ such that $a+b \in F^{*}$;
- $\langle 1\rangle+\langle-1\rangle=0$.

Solution

The second one is equal to $\langle a\rangle+\langle b\rangle$. Indeed:

$$
\begin{aligned}
& \langle a\rangle+\langle b\rangle=\left\langle(a+b) c^{2}\right\rangle+\left\langle(a+b) a b d^{2}\right\rangle \\
& =\left\langle(a+b) c^{2}+(a+b) a b d^{2}\right\rangle+\left\langle(a+b)\left(c^{2}+a b d^{2}\right) a b(a+b)^{2} c^{2} d^{2}\right\rangle \\
& =\left\langle(a+b) c^{2}+(a+b) a b d^{2}\right\rangle+\left\langle(a+b)\left(c^{2}+a b d^{2}\right) a b\right\rangle
\end{aligned}
$$

To see that the first one is different from $\langle a\rangle+\langle b\rangle$, we will use one of the invariants presented later in this talk.

Invariants by multiplication by $\langle a\rangle$ for all $a \in F^{*}$

Case $F=\mathbb{R}$

If $F=\mathbb{R}$, the absolute value of an element of $\mathrm{W}(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

Invariants by multiplication by $\langle a\rangle$ for all $a \in F^{*}$

Case $F=\mathbb{R}$

If $F=\mathbb{R}$, the absolute value of an element of $\mathrm{W}(\mathbb{R}) \simeq \mathbb{Z}$ is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

General case

The rank modulo 2 is invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

Definition

Let $d=\sum_{i=1}^{n}\left\langle a_{i}\right\rangle \in \mathrm{W}(F)$. There exists a unique sequence of abelian groups $Q_{d, k}$ and of elements $\Sigma_{k}(d) \in Q_{d, k}$, where k ranges over the nonnegative even integers, such that:

- $Q_{d, 0}=W(F)$ and $\Sigma_{0}(d)=1 \in Q_{d, 0}$;
- for each positive even integer $k, Q_{d, k}$ is the quotient group

$$
Q_{d, k-2} /\left(\Sigma_{k-2}(d)\right)
$$

- for each positive even integer k,

$$
\Sigma_{k}(d)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left\langle\prod_{1 \leq j \leq k} a_{i_{j}}\right\rangle \in Q_{d, k} .
$$

General case

The Σ_{k} are invariant by multiplication by $\langle a\rangle$ for all $a \in F^{*}$.

- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\left(\right.\right.$ if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- $\Sigma_{2}:\left\{\begin{array}{lll}W(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $\mathrm{W}(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $\mathrm{W}(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$.
$\Sigma_{4}:\left\{\begin{array}{l}\mathrm{W}(F) \rightarrow \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ n\end{array}\right.$
$\sum_{1 \leq i<j<k<l \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle$
- $\Sigma_{2}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \mathrm{W}(F) /(1) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j \leq n}\left\langle a_{i} a_{j}\right\rangle\end{array}\right.$ (if $n<2$, it sends $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle$ to 0$)$
- This is not interesting if $\mathrm{W}(F) /(1)=0$ (for instance if $F=\mathbb{R}$).
- It is interesting for $F=\mathbb{Q}$ for instance: $\mathrm{W}(\mathbb{Q}) /(1) \simeq \bigoplus_{p \text { prime }} \mathrm{W}(\mathbb{Z} / p \mathbb{Z})$.
- $\Sigma_{4}:\left\{\begin{array}{lll}\mathrm{W}(F) & \rightarrow & \bigcup_{d \in \mathrm{~W}(F)}(\mathrm{W}(F) /(1)) /\left(\Sigma_{2}(d)\right) \\ \sum_{i=1}^{n}\left\langle a_{i}\right\rangle & \mapsto & \sum_{1 \leq i<j<k<1 \leq n}\left\langle a_{i} a_{j} a_{k} a_{l}\right\rangle\end{array}\right.$
- We only want to compare $\Sigma_{4}(d)$ and $\Sigma_{4}\left(d^{\prime}\right)$ if $\Sigma_{2}(d)=\Sigma_{2}\left(d^{\prime}\right)$.

$$
\begin{aligned}
& \Sigma_{2}\left(\left\langle(a+b) c^{2}+(a+b) a b d\right\rangle+\left\langle(a+b)\left(c^{2}+a b d\right) a b d\right\rangle\right)= \\
& \left\langle\left((a+b) c^{2}+(a+b) a b d\right)(a+b)\left(c^{2}+a b d\right) a b d\right\rangle=\langle a b d\rangle \neq\langle a b\rangle \in \mathrm{W}(F) /(1) \\
& \text { since } d \text { is not a square in } F^{*} \text {. Since } \Sigma_{2}(\langle a\rangle+\langle b\rangle)=\langle a b\rangle,
\end{aligned}
$$

$$
\langle a\rangle+\langle b\rangle \neq\left\langle(a+b) c^{2}+(a+b) a b d\right\rangle+\left\langle(a+b)\left(c^{2}+a b d\right) a b d\right\rangle \in \mathrm{W}(F)
$$

Application: invariants of the quadratic linking degree

Let \mathscr{L} be an oriented link with two components (in motivic knot theory). We denote by $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ its quadratic linking degree.

- If $F=\mathbb{R}$ then the absolute value of d_{1} and the absolute value of d_{2} are invariant under changes of orientations o_{1}, o_{2} and of parametrizations of $\varphi_{1}, \varphi_{2}: \mathbb{A}_{\mathbb{R}}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{\mathbb{R}}^{4} \backslash\{0\}$.

Application: invariants of the quadratic linking degree

Let \mathscr{L} be an oriented link with two components (in motivic knot theory). We denote by $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ its quadratic linking degree.

- If $F=\mathbb{R}$ then the absolute value of d_{1} and the absolute value of d_{2} are invariant under changes of orientations o_{1}, o_{2} and of parametrizations of $\varphi_{1}, \varphi_{2}: \mathbb{A}_{\mathbb{R}}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{\mathbb{R}}^{4} \backslash\{0\}$.
- The rank modulo 2 of d_{1} and the rank modulo 2 of d_{2} are invariant under changes of orientations o_{1}, o_{2} and of parametrizations of $\varphi_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$.

Application: invariants of the quadratic linking degree

Let \mathscr{L} be an oriented link with two components (in motivic knot theory). We denote by $\left(d_{1}, d_{2}\right) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ its quadratic linking degree.

- If $F=\mathbb{R}$ then the absolute value of d_{1} and the absolute value of d_{2} are invariant under changes of orientations o_{1}, o_{2} and of parametrizations of $\varphi_{1}, \varphi_{2}: \mathbb{A}_{\mathbb{R}}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{\mathbb{R}}^{4} \backslash\{0\}$.
- The rank modulo 2 of d_{1} and the rank modulo 2 of d_{2} are invariant under changes of orientations o_{1}, o_{2} and of parametrizations of $\varphi_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$.
- For every positive even integer $k, \Sigma_{k}\left(d_{1}\right)$ and $\Sigma_{k}\left(d_{2}\right)$ are invariant under changes of orientations o_{1}, o_{2} and of parametrizations of $\varphi_{1}, \varphi_{2}: \mathbb{A}_{F}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{F}^{4} \backslash\{0\}$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)$.

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall that we fixed coordinates x, y, z, t for \mathbb{A}_{F}^{4} and u, v for \mathbb{A}_{F}^{2}.

- The image is different from the Hopf link we saw before:

$$
\{z=x, t=y\} \sqcup\{z=-x, t=-y\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

But the change of coordinates $x^{\prime}=z-x, y^{\prime}=t-y, z^{\prime}=z+x$, $t^{\prime}=t+y$ would give $\left\{x^{\prime}=0, y^{\prime}=0\right\} \sqcup\left\{z^{\prime}=0, t^{\prime}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}$.

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, u, v)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-u,-v)$.
- The orientation is the following:

$$
o_{1}: \overline{z-x}^{*} \wedge \overline{t-y}^{*} \mapsto 1, o_{2}: \overline{z+x}^{*} \wedge \overline{t+y}{ }^{*} \mapsto 1
$$

- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 1 .
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 1 .
- The rank modulo 2 of each component is 1 .
- This Hopf link is an analogue of the Hopf link in knot theory! In knot theory, the Hopf link is given by $\{z=x, t=y\} \sqcup\{z=-x, t=-y\}$ in $\mathbb{S}_{\varepsilon}^{3}=\left\{(x, y, z, t) \in \mathbb{R}^{4}, x^{2}+y^{2}+z^{2}+t^{2}=\varepsilon^{2}\right\}$ for ε small enough and has linking number 1 .
- Its quadratic linking degree is $(\langle 1\rangle,\langle-1\rangle)=(1,-1) \in \mathrm{W}(F) \oplus \mathbf{W}(F)$.
- If we change its orientations and its parametrizations then we get $(\langle a\rangle,\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 1 .
- The rank modulo 2 of each component is 1 .
- For every positive even integer k, the image by Σ_{k} of each component is 0 .

The Solomon link

- In knot theory, the Solomon link is given by $\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup$ $\left\{z=-x^{2}+y^{2}, t=-2 x y\right\}$ in $\mathbb{S}_{\varepsilon}^{3}$ for ε small enough and has linking number 2.
- In motivic knot theory, the image of the Solomon link is:

$$
\left\{z=x^{2}-y^{2}, t=2 x y\right\} \sqcup\left\{z=-x^{2}+y^{2}, t=-2 x y\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

- The parametrization is $\varphi_{1}:(x, y, z, t) \leftrightarrow\left(u, v, u^{2}-v^{2}, 2 u v\right)$ and $\varphi_{2}:(x, y, z, t) \leftrightarrow\left(u, v,-u^{2}+v^{2},-2 u v\right)$.
- The orientation is the following:

$$
o_{1}:{\overline{z-x^{2}+y^{2}}}^{*} \wedge \overline{t-2 x y}^{*} \mapsto 1, o_{2}:{\overline{z+x^{2}-y^{2}}}^{*} \wedge \overline{t+2 x y}^{*} \mapsto 1
$$

- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- The rank modulo 2 of each component is 0 .
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- The rank modulo 2 of each component is 0 .
- For every positive even integer k, the image by Σ_{k} of each component is 0 .
- Its quadratic linking degree is

$$
(\langle 1\rangle+\langle 1\rangle,\langle-1\rangle+\langle-1\rangle)=(2,-2) \in \mathrm{W}(F) \oplus \mathrm{W}(F) .
$$

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle a\rangle,\langle b\rangle+\langle b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b \in F^{*}$.
- If $F=\mathbb{R}$, the absolute value of each component is 2 .
- The rank modulo 2 of each component is 0 .
- For every positive even integer k, the image by Σ_{k} of each component is 0 .
- More generally, we have analogues of the torus links $T(2,2 n)$ (of linking number n); the quadratic linking degree of $T(2,2 n)$ is $(n,-n) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$, which gives n as absolute value if $F=\mathbb{R}, n$ modulo 2 as rank modulo 2 , and 0 for the Σ_{k}.

Binary links

- The image of the binary link B_{a} with $a \in F^{*} \backslash\{-1\}$:

$$
\left\{f_{1}=0, g_{1}=0\right\} \sqcup\left\{f_{2}=0, g_{2}=0\right\} \subset \mathbb{A}_{F}^{4} \backslash\{0\}
$$

with $f_{1}=t-((1+a) x-y) y, g_{1}=z-x(x-y)$,

$$
f_{2}=t+((1+a) x-y) y, g_{2}=z+x(x-y)
$$

- The parametrization of the binary link B_{a} :

$$
\begin{aligned}
& \varphi_{1}:(x, y, z, t) \leftrightarrow(u, v, \quad((1+a) u-v) v, \quad u(u-v)) \\
& \varphi_{2}:(x, y, z, t) \leftrightarrow(u, v,-((1+a) u-v) v,-u(u-v))
\end{aligned}
$$

- The orientation of the binary link B_{a} :

$$
o_{1}:{\bar{f}_{1}}^{*} \wedge{\overline{g_{1}}}^{*} \mapsto 1, o_{2}:{\bar{f}_{2}}^{*} \wedge{\overline{g_{2}}}^{*} \mapsto 1
$$

Or. fund. cyc.	$\eta \otimes\left({\overline{f_{1}}}^{*} \wedge{\overline{g_{1}}}^{*}\right)$	$\eta \otimes\left({\overline{f_{2}}}^{*} \wedge{\overline{g_{2}}}^{*}\right)$	
Seifert divisors	$\left\langle f_{1}\right\rangle \otimes{\overline{g_{1}}}^{*}$	$\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{\bar{g}_{1}}}^{*}\right) \cdot(z, x-y)$	
Apply inter.	$+\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x)$		
prod.	\ldots		
\ldots	\ldots		
Apply $\partial \oplus \partial$	$(1+\langle a\rangle) \eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus	

Or. fund. cyc.	$\eta \otimes\left({\overline{f_{1}}}^{*} \wedge{\overline{g_{1}}}^{*}\right)$	$\eta \otimes\left({\overline{f_{2}}}^{*} \wedge{\overline{g_{2}}}^{*}\right)$
Seifert divisors	$\left\langle f_{1}\right\rangle \otimes{\overline{g_{1}}}^{*}$	$\left\langle f_{2}\right\rangle \otimes{\overline{g_{2}}}^{*}$
Apply inter.	$\left\langle f_{1}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x-y)$	
prod.	$+\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x)$	
\ldots	\ldots	
Apply $\partial \oplus \partial$	$(1+\langle a\rangle) \eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle b\rangle,\langle c a\rangle+\langle c b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b, c \in F^{*}$ such that $a+b \neq 0$. The rank modulo 2 of each component is 0 .

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle b\rangle,\langle c a\rangle+\langle c b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b, c \in F^{*}$ such that $a+b \neq 0$. The rank modulo 2 of each component is 0 .
- If $F=\mathbb{R}$, the absolute value of each component is $\left\{\begin{array}{l}2 \text { if } a>0 \\ 0 \text { if } a<0\end{array}\right.$

Or. fund. cyc.	$\eta \otimes\left({\overline{f_{1}}}^{*} \wedge{\overline{g_{1}}}^{*}\right)$	$\eta \otimes\left({\overline{f_{2}}}^{*} \wedge{\overline{g_{2}}}^{*}\right)$
Seifert divisors	$\left\langle f_{1}\right\rangle \otimes{\overline{g_{1}}}^{*}$	$\left\langle f_{2}\right\rangle \otimes{\overline{g_{2}}}^{*}$
Apply inter.	$\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x-y)$	
prod.	$+\left\langle f_{1} f_{2}\right\rangle \otimes\left({\overline{g_{2}}}^{*} \wedge{\overline{g_{1}}}^{*}\right) \cdot(z, x)$	
\ldots	\ldots	
Apply $\partial \oplus \partial$	$(1+\langle a\rangle) \eta^{2} \otimes\left(\bar{u}^{*} \wedge \bar{v}^{*}\right)$	\oplus

- If we change its orientations and its parametrizations then we get $(\langle a\rangle+\langle b\rangle,\langle c a\rangle+\langle c b\rangle) \in \mathrm{W}(F) \oplus \mathrm{W}(F)$ with $a, b, c \in F^{*}$ such that $a+b \neq 0$. The rank modulo 2 of each component is 0 .
- If $F=\mathbb{R}$, the absolute value of each component is $\left\{\begin{array}{l}2 \text { if } a>0 \\ 0 \text { if } a<0\end{array}\right.$
- Σ_{2} of each component is $\langle a\rangle \in \mathrm{W}(F) /(1)$. For instance, if $F=\mathbb{Q}, \Sigma_{2}$ distinguishes between all the B_{p} with p prime numbers. $\Sigma_{4}=0$ etc.

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. 〈hal-03821736〉
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG]

Everything new I presented can be found in my preprint "The quadratic linking degree":

- HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING DEGREE. 2022. 〈hal-03821736〉
- arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree. arXiv:2210.11048 [math.AG]

Thanks for your attention!

