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Classical knot theory (classical linking theory) Knots and links

Figure: The unknot Figure: The trefoil knot
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Classical knot theory (classical linking theory) Knots and links

Knot theory in a nutshell

Topological objects of interest are knots and links.

A knot is a (closed) topological subspace of the 3-sphere S3 which is
homeomorphic to the circle S1.

An oriented knot is a knot with a “continuous”local trivialization of
its tangent bundle, or equivalently of its normal bundle (the ambient
space being oriented). There are two orientation classes.

A link is a finite union of disjoint knots. A link is oriented if all its
components (i.e. its knots) are oriented.
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Classical knot theory (classical linking theory) Knots and links

Figure: The Hopf link Figure: The Solomon link

The linking number of an oriented link with two components is the
number of times one of the components turns around the other
component.
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Classical knot theory (classical linking theory) The linking number

Defining the linking number: Seifert surfaces

The class S1 in H1(S3 \ L) ' HBM
2 (S3, L) of Seifert surfaces of the oriented

knot K1 is the unique class that is sent by the boundary map to the
(oriented) fundamental class of K1 in H0(K1) ⊂ H0(L).
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Classical knot theory (classical linking theory) The linking number

Defining the linking number: intersection of S. surfaces

This corresponds to the cup-product S1 ∪ S2 ∈ H2(S3 \ L).
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Classical knot theory (classical linking theory) The linking number

Defining the linking number: boundary of int. of S. surf.

This corresponds to ∂(S1 ∪ S2) ∈ H1(L) ' H1(Z1)⊕ H1(Z2).
By comparing orientations, we get a number!
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Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 8 / 38



Classical knot theory (classical linking theory) The linking number

Defining the linking number: boundary of int. of S. surf.

This corresponds to ∂(S1 ∪ S2) ∈ H1(L) ' H1(Z1)⊕ H1(Z2).
By comparing orientations, we get a number!
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Classical knot theory (classical linking theory) The linking number

The formal definition of the linking number

Let L = K1 t K2 be an oriented link with two components.

Oriented fundamental class and Seifert class

Let i ∈ {1, 2}. The class Si in H1(S3 \ L) ' HBM
2 (S3, L) of Seifert surfaces

of the oriented knot Ki is the unique class that is sent by the boundary
map to the (oriented) fundamental class of Ki in H0(Ki ) ⊂ H0(L).

Linking class and linking number

The linking class of L is the image of the cup-product
S1 ∪ S2 ∈ H2(S3 \ L) by the boundary map ∂ : H2(S3 \ L)→ H1(L). The
linking number of L = K1 t K2 is the integer n ∈ Z such that the linking
class in H1(L) = Z[ωK1 ]⊕ Z[ωK2 ] is equal to (n[ωK1 ],−n[ωK2 ]) (where ωKi

is the volume form of the oriented knot Ki ).
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Classical knot theory (classical linking theory) The linking number

When are two spaces “the same” homotopically?

Homotopic maps

Two continuous maps f , g : X → Y are homotopic if there exists a
homotopy from f to g , i.e. a continuous map H : X × [0, 1]→ Y such
that for all x ∈ X , H(x , 0) = f (x) and H(x , 1) = g(x).

Homotopy types of topological spaces

Two topological spaces X and Y have the same homotopy type if there
exists a homotopy equivalence from X to Y , i.e. a couple
(i : X → Y , j : Y → X ) of continuous maps such that j ◦ i is homotopic
to the identity of X and i ◦ j is homotopic to the identity of Y .

Important example

For all n ≥ 1, Sn has the same homotopy type as Rn+1 \ {0}.
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Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 11 / 38



Motivic knot theory (motivic linking theory) Oriented links in algebraic geometry

Links in algebraic geometry

Let F be a perfect field.

Link with two components

A link with two components is a couple of closed immersions
ϕi : A2

F \ {0} → A4
F \ {0} with disjoint images Zi (where i ∈ {1, 2}).

An orientation oi of Zi is an isomorphism from the determinant (i.e. the
maximal exterior power) of the normal sheaf NZi/A4

F \{0}
of Zi in A4

F \ {0}
to the tensor product of an invertible OZi

-module Li with itself:

oi : νZi
:= det(NZi/A4

F \{0}
) ' Li ⊗ Li

More concretely

In our examples, an orientation of a knot will be given by the choice of a
first polynomial equation f and a second polynomial equation g such that
the knot corresponds to {f = 0, g = 0}.
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Motivic knot theory (motivic linking theory) Oriented links in algebraic geometry

Oriented links in algebraic geometry

Orientation classes

Two orientations oi : νZi
→ Li ⊗Li and o ′i : νZi

→ L′i ⊗L′i of Zi represent
the same orientation class of Zi if there exists an isomorphism ψ : Li ' L′i
such that (ψ ⊗ ψ) ◦ oi = o ′i .

Oriented link with two components

An oriented link with two components is a link with two components
(ϕ1 : A2

F \ {0} → Z1, ϕ2 : A2
F \ {0} → Z2) together with an orientation

class o1 of Z1 and an orientation class o2 of Z2.
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Motivic knot theory (motivic linking theory) Oriented links in algebraic geometry

Orientation classes in algebraic geometry

Proposition

Let i ∈ {1, 2}. The orientation classes of Zi are parametrized by the
elements of F ∗/(F ∗)2 (where (F ∗)2 = {a ∈ F ∗, ∃b ∈ F ∗, a = b2}).

If F = R then F ∗/(F ∗)2 has two elements.

If F = C then F ∗/(F ∗)2 has one element.

If F = Q then F ∗/(F ∗)2 has infinitely many elements (the classes of the
integers without square factors).
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Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 14 / 38



Motivic knot theory (motivic linking theory) Oriented links in algebraic geometry

Orientation classes in algebraic geometry

Proposition

Let i ∈ {1, 2}. The orientation classes of Zi are parametrized by the
elements of F ∗/(F ∗)2 (where (F ∗)2 = {a ∈ F ∗, ∃b ∈ F ∗, a = b2}).

If F = R then F ∗/(F ∗)2 has two elements.

If F = C then F ∗/(F ∗)2 has one element.

If F = Q then F ∗/(F ∗)2 has infinitely many elements (the classes of the
integers without square factors).
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Motivic knot theory (motivic linking theory) Oriented links in algebraic geometry

The Hopf link in algebraic geometry

We fix coordinates x , y , z , t for A4
F and u, v for A2

F once and for all.

The image of the Hopf link:

{x = 0, y = 0} t {z = 0, t = 0} ⊂ A4
F \ {0}

The parametrization of the Hopf link:

ϕ1 : (x , y , z , t)↔ (0, 0, u, v), ϕ2 : (x , y , z , t)↔ (u, v , 0, 0)

The orientation of the Hopf link:

o1 : x∗ ∧ y∗ 7→ 1⊗ 1, o2 : z∗ ∧ t∗ 7→ 1⊗ 1
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Motivic knot theory (motivic linking theory) Oriented links in algebraic geometry

A variant of the Hopf link

The image is the same as the image of the Hopf link:

{x = y , y = 0} t {z = 0, at = 0} ⊂ A4
F \ {0} with a ∈ F ∗

The parametrization is the same:

ϕ1 : (x , y , z , t)↔ (0, 0, u, v), ϕ2 : (x , y , z , t)↔ (u, v , 0, 0)

The orientation is different:

o1 : x − y∗ ∧ y∗ 7→ 1⊗ 1, o2 : z∗ ∧ at∗ 7→ 1⊗ 1
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Motivic knot theory (motivic linking theory) Tools for motivic knot theory

Notations

The generators of the Milnor-Witt K -theory ring of a field F are
denoted [a] ∈ KMW

1 (F ) for every a ∈ F ∗ and η ∈ KMW
−1 (F ).

We denote 〈a〉 := η[a] + 1 ∈ KMW
0 (F ) for every a ∈ F ∗.

We also denote by 〈a〉 the class of the symmetric bilinear form{
F × F → F
(x , y) 7→ axy

in GW(F ) and in W(F ). If F is of char. 6= 2 then

〈a〉 is the class of the quadratic form

{
F → F
x 7→ ax2 .

GW(F ) is made up of Z-linear combinations of 〈a〉 and
W(F ) = GW(F )/(〈1〉+ 〈−1〉) is made up of sums of 〈a〉.
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Motivic knot theory (motivic linking theory) Tools for motivic knot theory

Milnor-Witt K -theory and quadratic forms

Theorem

The ring KMW
0 (F ) is isomorphic to the Grothendieck-Witt ring GW(F ) of

the field F via 〈a〉 ∈ KMW
0 (F )↔ 〈a〉 ∈ GW(F ).

Theorem

For all n < 0, the abelian group KMW
n (F ) is isomorphic to the Witt group

W(F ) of the field F via 〈a〉η−n ∈ KMW
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Motivic knot theory (motivic linking theory) Tools for motivic knot theory

The singular complex and the Rost-Schmid complex

Classical algebraic topology

Each topological space X has a singular cochain complex:

. . . // C i (X ) // C i+1(X ) // . . .

Motivic algebraic topology

Each smooth F -scheme X has a Rost-Schmid complex for each integer
j ∈ Z and invertible OX -module L:

. . . //
⊕

p∈X (i) KMW
j−i (κ(p))⊗Z[κ(p)∗] Z[(νp ⊗ L|p) \ {0}]

��⊕
q∈X (i+1) KMW

j−i−1(κ(q))⊗Z[κ(q)∗] Z[(νq ⊗ L|q) \ {0}] // . . .

Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 19 / 38



Motivic knot theory (motivic linking theory) Tools for motivic knot theory

The singular complex and the Rost-Schmid complex

Classical algebraic topology

Each topological space X has a singular cochain complex:

. . . // C i (X ) // C i+1(X ) // . . .

Motivic algebraic topology

Each smooth F -scheme X has a Rost-Schmid complex for each integer
j ∈ Z and invertible OX -module L:

. . . //
⊕

p∈X (i) KMW
j−i (κ(p))⊗Z[κ(p)∗] Z[(νp ⊗ L|p) \ {0}]

��⊕
q∈X (i+1) KMW

j−i−1(κ(q))⊗Z[κ(q)∗] Z[(νq ⊗ L|q) \ {0}] // . . .
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Motivic knot theory (motivic linking theory) Tools for motivic knot theory

The singular cohomology ring and the Rost-Schmid ring

Classical algebraic topology

The i-th cohomology group H i (X ) of X is the i-th cohomology group of
the singular cochain complex of X .

The cup-product
H i (X )× H i ′(X )→ H i+i ′(X ) makes

⊕
i∈N0

H i (X ) into a graded ring.

Motivic algebraic topology

The i-th Rost-Schmid group H i (X ,KMW
j {L}) of X with respect to j and

L is the i-th cohomology group of the Rost-Schmid complex of X w.r.t. j
and L. We denote H i (X ,KMW

j ) := H i (X ,KMW
j {OX}). The intersection

product H i (X ,KMW
j {L})×H i ′(X ,KMW

j ′ {L′})→ H i+i ′(X ,KMW
j+j ′{L⊗L′})

makes
⊕

i ,j ,LH
i (X ,KMW

j {L}) into a graded KMW
0 (F )-algebra.
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Motivic knot theory (motivic linking theory) Tools for motivic knot theory

Classical algebraic topology

Let (Z , i ,X , j ,U) be a boundary triple. We have the following long exact
sequence (where ∂ is the boundary map):

. . . // Hn(Z )
i∗ // Hn+dX−dZ (X )

j∗ // Hn+dX−dZ (U)
∂ // Hn+1(Z ) // . . .

Motivic algebraic topology

Let (Z , i ,X , j ,U) be a boundary triple. We have the localization long
exact sequence (where ∂ is the boundary map):

. . . // Hn(Z ,KMW
m {νZ})

i∗ // Hn+dX−dZ (X ,KMW
m+dX−dZ )

j∗ //

j∗ // Hn+dX−dZ (U,KMW
m+dX−dZ )

∂ // Hn+1(Z ,KMW
m {νZ}) // . . .

Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 21 / 38



Motivic knot theory (motivic linking theory) Tools for motivic knot theory

Classical algebraic topology

Let (Z , i ,X , j ,U) be a boundary triple. We have the following long exact
sequence (where ∂ is the boundary map):

. . . // Hn(Z )
i∗ // Hn+dX−dZ (X )

j∗ // Hn+dX−dZ (U)
∂ // Hn+1(Z ) // . . .

Motivic algebraic topology

Let (Z , i ,X , j ,U) be a boundary triple. We have the localization long
exact sequence (where ∂ is the boundary map):

. . . // Hn(Z ,KMW
m {νZ})

i∗ // Hn+dX−dZ (X ,KMW
m+dX−dZ )

j∗ //

j∗ // Hn+dX−dZ (U,KMW
m+dX−dZ )

∂ // Hn+1(Z ,KMW
m {νZ}) // . . .
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Motivic knot theory (motivic linking theory) Tools for motivic knot theory

Classical algebraic topology

Let n ≥ 2 and i ≥ 0 be integers. The singular cohomology group

H i (Sn−1) is isomorphic to


Z if i = 0

Z if i = n − 1

0 otherwise

.

Motivic algebraic topology

Let n ≥ 2, i ≥ 0, j ∈ Z be integers. The Rost-Schmid group

H i (An
F \ {0},K

MW
j ) is isomorphic to


KMW
j (F ) if i = 0

KMW
j−n (F ) if i = n − 1

0 otherwise

.

In particular, H1(A2
F \ {0},K

MW
0 ) ' KMW

−2 (F ) 'W(F ). We can fix such
an isomorphism, but it is not canonical.
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Motivic knot theory (motivic linking theory) The quadratic linking degree

The linking number and the quadratic linking degree

Let L = K1 t K2 be an oriented link (in knot theory).

Let L be an oriented link with two components (in motivic knot
theory), i.e. a couple of closed immersions ϕi : A2

F \ {0} → A4
F \ {0}

with disjoint images Zi and orientation classes oi (with i ∈ {1, 2}).

We denote Z := Z1 t Z2 and νZ := det(NZ/A4
F \{0}

).
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Motivic knot theory (motivic linking theory) The quadratic linking degree

Step 1: oriented fundamental classes and Seifert classes

Let i ∈ {1, 2}.

Knot theory

The class Si in H1(S3 \ L) of Seifert surfaces of the oriented knot Ki is the
unique class that is sent by the boundary map to the (oriented)
fundamental class of Ki in H0(Ki ) ⊂ H0(L).

Motivic knot theory

We define the oriented fundamental class [oi ] as the unique class in
H0(Zi ,K

MW
−1 {νZi

}) that is sent by õi to the class of η in H0(Zi ,K
MW
−1 ),

then we define the Seifert class Si as the unique class in H1(X \ Z ,KMW
1 )

that is sent by the boundary map ∂ to the oriented fundamental class
[oi ] ∈ H0(Z ,KMW

−1 {νZ}).

Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 24 / 38



Motivic knot theory (motivic linking theory) The quadratic linking degree

Step 1: oriented fundamental classes and Seifert classes

Let i ∈ {1, 2}.

Knot theory

The class Si in H1(S3 \ L) of Seifert surfaces of the oriented knot Ki is the
unique class that is sent by the boundary map to the (oriented)
fundamental class of Ki in H0(Ki ) ⊂ H0(L).

Motivic knot theory

We define the oriented fundamental class [oi ] as the unique class in
H0(Zi ,K

MW
−1 {νZi
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Motivic knot theory (motivic linking theory) The quadratic linking degree

Step 2: the quadratic linking class

Knot theory

The linking class of L is the image of the cup-product
S1 ∪ S2 ∈ H2(S3 \ L) by the boundary map ∂ : H2(S3 \ L)→ H1(L).

Motivic knot theory

We define the quadratic linking class of L as the image of the intersection
product S1 · S2 ∈ H2(X \ Z ,KMW

2 ) by the boundary map
∂ : H2(X \ Z ,KMW

2 )→ H1(Z ,KMW
0 {νZ}).
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Motivic knot theory (motivic linking theory) The quadratic linking degree

Step 3: the quadratic linking degree

Knot theory

The linking number of L = K1 t K2 is the integer n ∈ Z such that the
linking class in H1(L) = Z[ωK1 ]⊕ Z[ωK2 ] is equal to (n[ωK1 ],−n[ωK2 ])
(where ωKi

is the volume form of the oriented knot Ki ).

Motivic knot theory

We define the quadratic linking degree of L as the image of the quadratic
linking class of L by the isomorphism
H1(Z ,KMW

0 {νZ})→ H1(Z ,KMW
0 )→

H1(A2
F \ {0},K

MW
0 )⊕ H1(A2

F \ {0},K
MW
0 )→W(F )⊕W(F ).

We fixed an isomorphism H1(A2
F \ {0},K

MW
0 )→ KMW

−2 (F ) once and for all
and there is a canonical isomorphism KMW

−2 (F )→W(F ).
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Motivic knot theory (motivic linking theory) The quadratic linking degree

The Hopf link

Recall that we fixed coordinates x , y , z , t for A4
F and u, v for A2

F .

The image of the Hopf link:

{x = 0, y = 0} t {z = 0, t = 0} ⊂ A4
F \ {0}

The parametrization of the Hopf link:

ϕ1 : (x , y , z , t)↔ (0, 0, u, v), ϕ2 : (x , y , z , t)↔ (u, v , 0, 0)

The orientation of the Hopf link:

o1 : x∗ ∧ y∗ 7→ 1, o2 : z∗ ∧ t∗ 7→ 1
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Motivic knot theory (motivic linking theory) The quadratic linking degree

The quadratic linking degree of the Hopf link

Or. fund. classes η ⊗ (x∗ ∧ y∗) | η ⊗ (z∗ ∧ t∗)

Seifert classes 〈x〉 ⊗ y∗ | 〈z〉 ⊗ t∗

Apply int. prod. 〈xz〉 ⊗ (t∗ ∧ y∗)

Quad. link. class −〈z〉η ⊗ (t∗ ∧ x∗ ∧ y∗) ⊕ 〈x〉η ⊗ (y∗ ∧ z∗ ∧ t∗)

Apply õ1 ⊕ õ2 −〈z〉η ⊗ t∗ ⊕ 〈x〉η ⊗ y∗

Apply ϕ∗1 ⊕ ϕ∗2 −〈u〉η ⊗ v∗ ⊕ 〈u〉η ⊗ v∗

Apply ∂ ⊕ ∂ −η2 ⊗ (u∗ ∧ v∗) ⊕ η2 ⊗ (u∗ ∧ v∗)

Quad. link. degree −1 ⊕ 1
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Motivic knot theory (motivic linking theory) The quadratic linking degree

A variant of the Hopf link

The image is the same as the Hopf link’s image:

{x = y , y = 0} t {z = 0, a× t = 0} ⊂ A4
F \ {0} with a ∈ F ∗

The parametrization is the same:

ϕ1 : (x , y , z , t)↔ (0, 0, u, v), ϕ2 : (x , y , z , t)↔ (u, v , 0, 0)

The orientation is different:

o1 : x − y∗ ∧ y∗ 7→ 1, o2 : z∗ ∧ at∗ 7→ 1
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Motivic knot theory (motivic linking theory) The quadratic linking degree

The quadratic linking degree of a variant of the Hopf link

[ovar1 ] = η ⊗ x − y∗ ∧ y∗ = [oHopf1 ]

since

(
x − y
y

)
=

(
1 −1
0 1

)(
x
y

)
Svar1 = SHopf1

[ovar2 ] = η ⊗ z∗ ∧ at∗ = 〈a〉[oHopf2 ]

since

(
z
at

)
=

(
1 0
0 a

)(
z
t

)
Svar2 = 〈a〉SHopf2

Svar1 · Svar2 = 〈a〉SHopf1 · SHopf2

∂(Svar1 · Svar2 ) = 〈a〉∂(SHopf1 · SHopf2 )

The quadratic linking degree of the variant is (−〈a〉, 1).
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Motivic knot theory (motivic linking theory) The quadratic linking degree

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall
that we fixed coordinates x , y , z , t for A4

F and u, v for A2
F .

The image is different from the Hopf link we saw before:

{z = x , t = y} t {z = −x , t = −y} ⊂ A4
F \ {0}

But the change of coordinates x ′ = z − x , y ′ = t − y , z ′ = z + x ,
t ′ = t + y would give {x ′ = 0, y ′ = 0} t {z ′ = 0, t ′ = 0} ⊂ A4

F \ {0}.

The parametrization is ϕ1 : (x , y , z , t)↔ (u, v , u, v) and
ϕ2 : (x , y , z , t)↔ (u, v ,−u,−v).

The orientation is the following:

o1 : z − x∗ ∧ t − y∗ 7→ 1, o2 : z + x∗ ∧ t + y∗ 7→ 1
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Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 31 / 38



Motivic knot theory (motivic linking theory) The quadratic linking degree

Another Hopf link

From now on, F is a perfect field of characteristic different from 2. Recall
that we fixed coordinates x , y , z , t for A4

F and u, v for A2
F .

The image is different from the Hopf link we saw before:

{z = x , t = y} t {z = −x , t = −y} ⊂ A4
F \ {0}

But the change of coordinates x ′ = z − x , y ′ = t − y , z ′ = z + x ,
t ′ = t + y would give {x ′ = 0, y ′ = 0} t {z ′ = 0, t ′ = 0} ⊂ A4

F \ {0}.
The parametrization is ϕ1 : (x , y , z , t)↔ (u, v , u, v) and
ϕ2 : (x , y , z , t)↔ (u, v ,−u,−v).

The orientation is the following:

o1 : z − x∗ ∧ t − y∗ 7→ 1, o2 : z + x∗ ∧ t + y∗ 7→ 1
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Motivic knot theory (motivic linking theory) The quadratic linking degree

This Hopf link is an analogue of the Hopf link in knot theory! In knot
theory, the Hopf link is given by {z = x , t = y} t {z = −x , t = −y}
in S3

ε = {(x , y , z , t) ∈ R4, x2 + y2 + z2 + t2 = ε2} for ε small enough
and has linking number 1 (i.e. linking class (1,−1)).

Its quadratic linking degree is (〈1〉, 〈−1〉) = (1,−1) ∈W(F )⊕W(F ).

Had we used the change of coordinates above and our first Hopf link
to define the parametrizations and the orientations of this Hopf link,
we would have had the same quadratic linking degree as for our first
Hopf link (i.e. (−1, 1) ∈W(F )⊕W(F )).

If we change its orientations and its parametrizations then we get
(〈a〉, 〈b〉) ∈W(F )⊕W(F ) with a, b ∈ F ∗.
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Its quadratic linking degree is (〈1〉, 〈−1〉) = (1,−1) ∈W(F )⊕W(F ).

Had we used the change of coordinates above and our first Hopf link
to define the parametrizations and the orientations of this Hopf link,
we would have had the same quadratic linking degree as for our first
Hopf link (i.e. (−1, 1) ∈W(F )⊕W(F )).

If we change its orientations and its parametrizations then we get
(〈a〉, 〈b〉) ∈W(F )⊕W(F ) with a, b ∈ F ∗.
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Motivic knot theory (motivic linking theory) The quadratic linking degree

The Solomon link

In knot theory, the Solomon link is given by {z = x2 − y2, t = 2xy}t
{z = −x2 + y2, t = −2xy} in S3

ε for ε small enough and has linking
number 2.

In motivic knot theory, the image of the Solomon link is:

{z = x2 − y2, t = 2xy} t {z = −x2 + y2, t = −2xy} ⊂ A4
F \ {0}

The parametrization is ϕ1 : (x , y , z , t)↔ (u, v , u2 − v2, 2uv) and
ϕ2 : (x , y , z , t)↔ (u, v ,−u2 + v2,−2uv).

The orientation is the following:

o1 : z − x2 + y2
∗ ∧ t − 2xy

∗ 7→ 1, o2 : z + x2 − y2
∗ ∧ t + 2xy

∗ 7→ 1
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Clémentine Lemarié--Rieusset (Université de Bourgogne, France)Motivic knot theory April 26, 2023 33 / 38



Motivic knot theory (motivic linking theory) The quadratic linking degree

Its quadratic linking degree is
(〈1〉+ 〈1〉, 〈−1〉+ 〈−1〉) = (2,−2) ∈W(F )⊕W(F ).

If we change its orientations and its parametrizations then we get
(〈a〉+ 〈a〉, 〈b〉+ 〈b〉) ∈W(F )⊕W(F ) with a, b ∈ F ∗.

We want a means of saying that (〈a〉+ 〈a〉, 〈b〉+ 〈b〉) is
“fundamentally different” from (〈c〉, 〈d〉) for all a, b, c , d ∈ F ∗ (the
Solomon link is “more” different from the Hopf link than the variants
of the Hopf link are different from the Hopf link).

More generally, we want to compute quantities from the quadratic
linking degree which are invariant by changes of orientations and
changes of parametrizations of the oriented link.
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Motivic knot theory (motivic linking theory) Invariants of the quadratic linking degree

Proposition

Let L be an oriented link with two components of quadratic linking
degree (d1, d2) ∈W(F )⊕W(F ). If L ′ is obtained from L by changing
orientations and parametrisations (isomorphisms with A2

F \ {0}) then the
quadratic linking degree of L ′ is equal to (〈a〉d1, 〈b〉d2) for some
a, b ∈ F ∗.

Case F = R
If F = R, the absolute value of an element of W(R) ' Z is invariant by
multiplication by 〈a〉 for all a ∈ F ∗, thus (|d1|, |d2|) is invariant.

General case

The rank modulo 2 is invariant by multiplication by 〈a〉 for all a ∈ F ∗.
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Motivic knot theory (motivic linking theory) Invariants of the quadratic linking degree

Σ2 :


W(F ) → W(F )/(1)
n∑

i=1

〈ai 〉 7→
∑

1≤i<j≤n
〈aiaj〉 (if n < 2, it sends

n∑
i=1

〈ai 〉 to 0)

Σ2(〈a〉
∑n

i=1〈ai 〉) =
∑

1≤i<j≤n〈a2aiaj〉 = Σ2(
∑n

i=1〈ai 〉)
This is not interesting if W(F )/(1) = 0 (for instance if F = R).

It is interesting for F = Q for instance: W(Q)/(1) '
⊕

p prime

W(Z/pZ).

Σ4 :


W(F ) →

⋃
d∈W(F )

(W(F )/(1))/(Σ2(d))

n∑
i=1

〈ai 〉 7→
∑

1≤i<j<k<l≤n
〈aiajakal〉

Σ4(〈a〉
∑n

i=1〈ai 〉) =
∑

1≤i<j<k<l≤n〈a4aiajakal〉 = Σ4(
∑n

i=1〈ai 〉)
Etc. for Σ2m with m ∈ N
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Motivic knot theory (motivic linking theory) Invariants of the quadratic linking degree

Everything new I presented up until now can be found in my preprint “The
quadratic linking degree”:

HAL: Clémentine Lemarié--Rieusset. THE QUADRATIC LINKING
DEGREE. 2022. <hal-03821736>

arXiv: Clémentine Lemarié--Rieusset. The quadratic linking degree.
arXiv:2210.11048 [math.AG]
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Motivic knot theory (motivic linking theory) Invariants of the quadratic linking degree

The constructions above (oriented links with two components, Seifert
classes, the quadratic linking class, and sometimes the quadratic
linking degree) can be done in a more general context: Z1 t Z2 ⊂ X

X is an irreducible finite type smooth F -scheme of dimension dX ;

Z1 and Z2 are disjoint irreducible finite type smooth closed
F -subschemes of X of same dimension d ; we denote by c := dX − d
their codimension in X ;

Hc−1(X ,KMW
j1+c) = 0, Hc−1(X ,KMW

j2+c) = 0, Hc(X ,KMW
j1+c) = 0 and

Hc(X ,KMW
j2+c) = 0 for some j1, j2 ≤ 0.

One family of examples is: An+1
F \ {0} t An+1

F \ {0} ⊂ A2n+2
F \ {0}

with n ≥ 1 and j1, j2 ≤ 0.

Another family of examples is: Pn
F t Pn

F ⊂ P2n+1
F with n ≥ 1 odd and

j1, j2 ≤ −2.
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