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Chapter 1

Introduction

The goal of this project is to provide a proof for the equivalence be-
tween the categories of algebraic and analytic vector bundles on the
Fargues-Fontaine curve X where X will be viewed as a scheme. The
vector bundles on its analytic counterpart will only show up in the
guise of ϕ-modules over some ring B which figures prominently in the
construction of X. Towards that goal we have to introduce a small
overview of the necessary auxiliary constructions (i.e. ramified Witt
vectors, the algebra B, etc.) with their most important properties that
we are going to need for the later proofs. This first chapter is just an
overview and we mainly refer to the work of Schneider, Fargues and
Fontaine [Sch17], [FF18], [FF14].

In the next chapter we introduce the two functors. The first is alge-
braization which effectively is passing to a graded submodule and then
to the associated OX module. The second one is analytization which
is composition of the compatible functors pullback, global sections and
inverse limit. Our main goal is to prove that they are inverse of each
other. This is done in the final chapter where we also show that the
functors commute with natural operations such as tensor product and
internal hom’s.

The main technical challenge is to work out the necessary result
from [KL15] (which are used as a blackbox in [FF18]). They imply that
both functors are exact and that algebraization takes values in vector
bundles (and not just quasi-coherent modules as defined originally).
Having those results we can finally proceed to the last part, the proof
of the equivalence.
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Chapter 2

Reminder on the Fargues-Fontaine
curve

In this chapter of the thesis we give a brief summary of the construc-
tion of the Fargues-Fontaine curve. For this, the notion of ramified
Witt vectors is of central importance.

So let us from now on, unless otherwise specified, fix the following
data:

(i) E|Qp a finite extension of the p-adic numbers.

(ii) O := OE its ring of integers and k its residue field with |k| = q
elements, q = pf a power of p.

(iii) A uniformizer π of O.

2.1 Ramified Witt Vectors

For this section on the construction of ramified Witt vector, we mostly
follow the book [Sch17] as our main source.

For any integer n ≥ 0 we call

Φn(X0,. . . ,Xn) := Xqn

0 + πXqn−1

1 + . . . + πnXn

the n-th Witt polynomial.

Let B be an O-algebra and

BN0 := {(b0, b1, . . . ) : bn ∈ B}

be the countably infinite direct product of the algebra B with itself (so
that addition and multiplication are componentwise). We introduce
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Chapter 2

the following maps:

fB : BN0 → BN0

(b0, b1, . . . ) 7→ (b1, b2, . . . )

which is an endomorphism of O-algebras

vB : BN0 → BN0

(b0, b1, . . . ) 7→ (0, πb0, πb1, . . . ),

which respects the O-module structure but generally neither multipli-
cation nor the unit element,

Φn : BN0 → B

(b0, b1, . . . ) 7→ Φn(b0,. . . ,bn),

for n ≥ 0, and

ΦB : BN0 → BN0

b 7→ (Φ0(b),Φ1(b),Φ2(b), . . . ).

Lemma 2.1.1. (i) If π1B is not a zero divisor in B then ΦB is in-
jective.

(ii) If π1B ∈ B× then ΦB is bijective.

Proof. See reference [Sch17] Lemma 1.1.3.

We will also need that there is a unique the map Ω : O → ON0 such
that

ΦO(Ω(λ)) = (λ, λ, . . . ).

In fact the uniqueness follows from Lemma 2.1.1(i) because ΦO is
injective (note that π is not a zero divisor in O). The existence of Ω
follows from [Sch17], Proposition 1.1.5.

Then for any O-algebra B we use the canonical homomorphism
O → B to view Ω(λ) also as an element in BN0 . Next we consider
the polynomial O-algebra

A := O[X0, X1,. . . ,Y0, Y1, . . . ]

in two sets of countably many variables. Then π1A is not a zero divisor
in A.
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Let X := (X0, X1, . . . ) and Y := (Y0, Y1, . . . ) in AN0. As is shown in
[Sch17] page 11, there exist uniquely determined elements S = (Sn)n,
P = (Pn)n, I = (In)n and F = (Fn)n in AN0 such that:

ΦA(S) = ΦA(X) + ΦA(Y),

ΦA(P ) = ΦA(X)ΦA(Y),

ΦA(I) = −ΦA(X),

ΦA(F ) = fA(ΦA(X)),

or expressed coordinate-wise:

Φn(S0,. . . ,Sn) = Φn(X0,. . . ,Xn) + Φn(Y0,. . . ,Yn),

Φn(P0,. . . ,Pn) = ΦA(X0,. . . ,Xn)ΦA(Y0,. . . ,Yn),

Φn(I0,. . . ,In) = −Φn(X0,. . . ,Xn),

Φn(F0,. . . ,Fn) = Φn+1(X0,. . . ,Xn+1),

for any n ≥ 0. And it is proven that Sn, Pn, Fn, In are actually poly-
nomials only in the given variables X0,. . . ,Xn.

Now returning to the general case let B again be an arbitrary O-
algebra. On the one hand we have the O- algebra (BN0,+, · ) defined
as a direct product. On the other hand we define on the set WE(B) :=
BN0 a new ‘addition’

(an)n + (bn)n := (Sn(a0,. . . ,an, b0,. . . ,bn))n

and a new ‘multiplication’

(an)n · (bn)n := (Pn(a0,. . . ,an, b0,. . . ,bn))n.

Moreover, we define candidates for the neutral element of the new
operations

0 := (0, 0, . . . ) and 1 := (1, 0, 0, . . . ).

Proposition 2.1.2. (i) (WE(B),+, ·) is a (commutative) ring with
zero element 0 and unit element 1; the additive inverse of (bn)n
is (In(b0,. . . ,bn))n.

(ii) The map Ω : O → (WE(B),+, ·) is a ring homomorphism, mak-
ing (WE(B),+, ·) into an O-algebra.

(iii) The map ΦB : WE(B)→ BN0 is a homomorphism of O-algebras;
in particular, for any m ≥ 0,

Φm : WE(B)→ B

(bn)n 7→ Φm(b0,. . . ,bm)
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is a homomorphism of O-algebras.

(iv) For any O-algebra homomorphism ρ : B1 → B2 the map

WE(ρ) : WE(B1)→ WE(B2)

is an O-algebra homomorphism as well.

Proof. See reference [Sch17] Proposition 1.1.8.

Definition 2.1.3. (WE(B),+, ·) is called the ring of ramified Witt
vectors with coefficients in B.

Thus we can view WE(·) as a functor from the category of O-
algebras to the category of O-algebras where the construction is B 7→
BN0 with ”new” operations defined with the help of the polynomials
Sn, Pn, Fn, In and we are going to see that if we restrict our focus to
”good” algebras we get ”good” algebras and an explicit description
of the elements in WE(B). Towards that goal we first introduce the
necessary language and some important intermediate results.

On WE(B) we have the maps

F : WE(B)→ WE(B)

(bn)n 7→ (Fn(b0,. . . ,bn+1))n

and

V : WE(B)→ WE(B)

(bn)n 7→ (0, b0, b1,. . . )

which make the diagrams

WE(B) BN0

WE(B) BN0

ΦB

F fB

ΦB

and

WE(B) BN0

WE(B) BN0

ΦB

V vB

ΦB

commute
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Proposition 2.1.4. The following hold true:

(i) F is an endomorphism of the O-algebra WE(B) .

(ii) V is an endomorphism of the O-module WE(B) .

(iii) F (V (b)) = πb for any b ∈ WE(B).

(iv) V (a · F (b)) = V (a) · b for any a, b ∈ WE(B).

(v) F (b) ≡ bq mod πWE(B) for any b ∈ WE(B).

Proof. See reference [Sch17] Proposition 1.1.10.

Definition 2.1.5. We call F and V the Frobenius and the Verschiebung
on WE(B), respectively.

For any m ≥ 0 define

Vm(B) := im(V m) = {(bn)n ∈ WE(B) : b0 = . . . = bm−1 = 0}.

We then have

WE(B) = V0(B) ⊇ V1(B) ⊇ . . . and

∞⋂
m=0

Vm(B) = 0.

By Proposition 2.1.4(ii) and (iv) every Vm(B) is an ideal in WE(B).

Definition 2.1.6. WE,m(B) := WE(B)/Vm(B) is called the ring of
ramified Witt vectors of length m with coefficients in B.

Proposition 2.1.7. (i) the map

WE(B)
∼=−→ lim←−

m

WE,m(B)

b 7→ (b+ Vm(B))m

is an isomorphism of O-algebras.

(ii) The map Φ0 : WE,1(B)→ B is an isomorphism of O-algebras.

Proof. See reference [Sch17] Lemma 1.1.13 and Exercise 1.1.14.

Lemma 2.1.8. The map

τ : B → WE(B)

b 7→ (b, 0, . . . )

is multiplicative.
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Proof. See reference [Sch17] Lemma 1.1.15.

Definition 2.1.9. We call τ(b) ∈ WE(B) the Teichmüller representa-
tive of b ∈ B.

If B is a k-algebra then the q-Frobenius

B → B

b 7→ bq

is an endomorphism of O-algebras. If this map is bijective, we call B
perfect.

Proposition 2.1.10. For a k-algebra B we have:

(i) Any b = (bn)n ∈ WE(B) satisfies

F (b) = (bqn)n and πb = F (V (b)) = V (F (b)) = (0, bq0, b
q
1, . . . ).

(ii) Vm(B) · Vn(B) ⊆ Vm+n(B) for any m,n ≥ 0.

(iii) πmWE(B) ⊆ V1(B)m = πm−1V1(B) ⊆ πm−1WE(B) for any m ≥
1.

(iv) The homomorphisms of O-algebras

WE(B)
∼=−→ lim←−

m

WE(B)/πmWE(B)

b 7→ (b+ πmWE(B))m

and

WE(B)
∼=−→ lim←−

m

WE(B)/V1(B)m

b 7→ (b+ V1(B)m)m

are bijective.

Proof. See reference [Sch17] Proposition 1.1.18.

We get an even better picture for the case that B is a perfect k-
algebra.
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Proposition 2.1.11. If B is a perfect k-algebra then we have:

(i) π1WE(B) 6= 0 is not a zero divisor in WE(B).

(ii) For any b = (bn)n ∈ WE(B) and m ≥ 1,

b+ Vm(B) = τ(b0) + πτ(bq
−1

1 ) + . . . + πm−1τ(bq
−(m−1)

m−1 ) + Vm(B).

(iii) Vm(B) = πmWE(B) = V1(B)m. for any m ≥ 0.

Proof. See reference [Sch17] Proposition 1.1.19.

Proposition 2.1.12. Let B be a field extension of k; we then have:

(i) WE(B) is an integral domain with a unique maximal ideal, which
is equal to V1(B) , and WE(B)/V1(B) ∼= B.

(ii) If B is perfect then WE(B) is a complete discrete valuation ring
with maximal ideal πWE(B) and residue class field B, and any
b = (bn)n ∈ WE(B) has the convergent expansion

b =
∞∑
n=0

πnτ(bq
−n

n )

Proof. See reference [Sch17] Proposition 1.1.21.

Remark 2.1.13. If B is a field extension of k then the field of frac-
tions of WE(B) has characteristic zero.

Proof. See reference [Sch17] Remark 1.1.22.

2.2 Gauss norms and the construction of the curve

Having an overview of the general construction of ramified Witt vec-
tors we are now going to reduce to the case where the ring of coeffi-
cients F is a complete, perfect field containing k. And from there build
all the necessary auxiliary constructions to finally define X = XE,F

the Fargues-Fontaine curve associated with E,F . For this section we
rely mainly on the works of Fargues-Fontaine [FF18], [FF14]. So let’s
fix the following additional data and change of notation:
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(i) Let (F, |· |) be complete, non-trivially valued, non-archimedean,
perfect field containing k.

(ii) The Frobenius endomorphims on WE(F ) will be denoted by ϕ.

(iii) The Teichmüller lift will be denoted by [x] := τ(x).

Then by Prop.2.1.12 WE(F ) is a complete DVR with maximal ideal
πWE(F ), and WE(F )[ 1

π ] = Quot(WE(F )) is a complete discretely
valued field with uniformizer π, valuation ring WE(F ) and residue
class field F . In addition any x ∈ WE(F )[ 1

π ] can be written as x =∑
n∈Z

πn[xn], with uniquely determined xn ∈ F and xn = 0, for all but

finitely many n < 0.We indicate such an expansion by
∑

n�−∞
πn[xn].

Definition 2.2.1. Let

Bb := {x =
∑
n�−∞

πn[xn] ∈ WE(F )[
1

π
] | sup

n
{|xn|} <∞}

be the subalgebra of ”bounded” elements of WE(F )[ 1
π ].

Definition 2.2.2. For 0 < ρ ≤ 1 we define | · |ρ : Bb → R≥0 via

|
∑
n�−∞

πn[xn]|ρ := sup{ |xn| · ρn | n ∈ Z}

Remark 2.2.3. Bb is easily seen to be a localization of WE(OF ), hence
an E-subalgebra of WE(F )[ 1

π ]. The maps | · |ρ are absolute values on
Bb, i.e. multiplicative norms. They are usually called Gauss norms
(cf. [FF18], Proposition 1.4.3 and Proposition 1.4.9).

Definition 2.2.4. For x =
∑

n�−∞
πn[xn] ∈ WE(F )[ 1

π ] we set

|x|0 :=

{
0 , for x = 0

q−min{n∈Z|xn 6=0} , for x 6= 0

Definition 2.2.5. For any non-empty interval I ⊆ [0, 1] we define the
map |· |I : Bb → R≥0 ∪ {∞} by |x|I := sup{|x|ρ | ρ ∈ I}.
Lemma 2.2.6. (i) If I = [σ, ρ] is compact interval with σ 6= 0 then

|x|I = max{|x|σ, |x|ρ} <∞ for all x ∈ Bb. |· |I is a norm on the
ring Bb, in general only submultiplicative.

(ii) If J ⊆ J ′ then |· |J ≤ |· |J ′.
Proof. See reference [FF14] page 2.

Definition 2.2.7. For any non-empty compact interval I ⊆ (0, 1] we
denote by BI the completion of Bb with respect to |· |I.
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Remark 2.2.8. (i) For any pair of compact intervals J ⊆ I ⊆ (0, 1]
the map idBb : (Bb, |· |I) 7→ (Bb, |· |J) is continuous. By the uni-
versal property of completions it extends to a continuous homo-
morphism ιJ,I : BI → BJ which makes the following diagram
commutative

BJ

Bb BIcan

can ιJ,I

In particular, it is E-linear and uniqueness implies

ιK,I = ιK,J ◦ ιJ,I for K ⊆ J ⊆ I.

(ii) From Lemma 2.2.6 the map idBb : (Bb, |· |I) 7→ (Bb, |· |J) is norm
decreasing. This continues to be so after completion,
i.e. ιJ,I : BI → BJ is also norm decreasing.

Having established that |· |I is a norm on the ring Bb and the rela-
tions between the completions BI , BJ for compact intervals J ⊆ I ⊆
(0, 1). It can be proven that ιJ,I is injective and thus the construction
of the projective limit lim←−

∅6=I⊆(0,1)

BI can be viewed as corresponding to

a system ordered by inclusion, satisfying

J ⊆ I ⇒ BI ⊆ BJ

Definition 2.2.9. Letting I run through the compact intervals in (0, 1),
we set

B := lim←−
∅6=I⊆(0,1)

BI = {(bI)I ∈
∏
I

BI | ∀J ⊆ I : bJ = bI}.

Lemma 2.2.10. For any J the projection B → BJ , b 7→ bJ is injec-
tive with image

⋂
J⊆J ′

BJ ′ as a subring of BJ . In particular B contains

Bb.

Proof. This is a direct consequence of the injectivity of ιJ,I .

Remark 2.2.11. We thus can view B as a subring of BJ contain-
ing Bb, for any ∅ 6= J ⊆ (0, 1) compact interval. This includes the
degenerate case J = {ρ} with ρ ∈ (0, 1).
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Returning to the Witt vector construction WE(F )[ 1
π ] we are inter-

ested in the behaviour of the Frobenius homomorphism ϕ. First of all
we fix the following notation. For I ⊆ [0, 1]

ϕ(I) := {rq | r ∈ I}.

For example if I = [σ, ρ] is a compact interval then ϕ(I) = [σq, ρq].
Recall from section 2.1 that Frobenius on WE(F )[ 1

π ] is given explicitly
by

ϕ(
∑
n�−∞

πn[xn]) =
∑
n�−∞

πn[xqn]

It restricts to an E-linear automorphism of Bb satisfying

|ϕ(
∑
n�−∞

πn[xn])|ρ = |
∑
n�−∞

πn[xqn]|ρ = sup
n
{ρn· |xn|q}

= sup
n
{(ρ1/q)n· |xn|}q = |

∑
n�−∞

πn[xn]|qρ1/q

for any 0 < ρ ≤ 1. Consequently for any non-empty compact
interval I ⊆ (0.1)

ϕ : (Bb, |· |qI)→ (Bb, |· |ϕ(I))

is an isometry. By the universal property of completion it extends to
an isometry

ϕ : (BI , |· |qI)→ (Bϕ(I), |· |ϕ(I)).

Note that BI is also the completion with respect to |· |qI because it is
a power of |· |I and hence defines the same topology.

These automorphisms fit together to an E-linear automorphism of
B := lim←−

I

BI given by

(bI)I 7→ (ϕ(bI))I

Definition 2.2.12. For n ≥ 0 the we set

Bϕ=πn := {b ∈ B | ϕ(b) = πnb}.

Note that ϕ is E-linear and hence Bϕ=πn is an E-subspace of B.
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Lemma 2.2.13. The map

⊕
n≥0

Bϕ=πn → B

(bn)n 7→
∑
n

bn

is injective and
⊕
n≥0

Bϕ=πn is a gradded E-subalgebra of B

Proof. This is basic linear algebra. See also reference [FF18] Définition
6.1.1, Proposition 4.1.3.

Having introduced all the necessary auxiliary constructions we are
ready to give a definition of the Fargues-Fontaine curve.

Definition 2.2.14. The E-scheme

X := XE,F := Proj(
⊕
n≥0

Bϕ=πn)

is called the Fargues-Fontaine curve associated with E,F .

We now present the main properties of the curve and the rings
B,BI .

Theorem 2.2.15. (i) We have

B× = (Bb)×

= {
∞∑
n=N

πn[xn] | N ∈ Z , xN 6= 0 , ∀n ≥ N : |xn| ≤ |xN |}.

(ii) We have
Bϕ=1 = E.

(iii) For all n < 0 we have
Bϕ=πn = 0.

Proof. See reference [FF18] Corollaire 1.9.5 , Proposition 4.1.1 , Propo-
sition 4.1.2.

Theorem 2.2.16. Let I ⊆ (0, 1) be a compact interval.

(i) If F is algebraically closed and f ∈ BI \ {0} then there are

a1, . . . , ad ∈ F and u ∈ B×I such that f = u ·
d∏
i=1

(π − [ai]).
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(ii) BI is a PID. If F is algebraically closed with

logqI ∩ |F | = ∅ then BI is even a field.

Proof. See reference [FF18] Théorème 2.4.10, 2.5.1 and 3.5.1.

Theorem 2.2.17. Assume that F is algebraically closed. Then for all
n ≥ 1 and f ∈ Bϕ=πn \ {0} there are

t1, . . . , tn ∈ Bϕ=π \ {0} such that f = t1 · . . . · tn.

Such a factorization is unique up to multiplication with a unit u ∈ E×
or permutation of the terms ti. Thus,

P :=
⊕
n≥0

Bϕ=πn

a gradded factorial ring.

Proof. See reference [FF18] Théorème 6.2.1

Theorem 2.2.18. For P as defined above and t ∈ Bϕ=π \ {0}. We
have

(i) If F is algebraically closed then

V+(t) = Proj(P/tP ) ⊆ X = Proj(P )

consists of a single point, namely the homogeneous prime ideal
tP ∈ Proj(P ).

(ii) Let us denote the homogeneous localization of P at {tn | n ≥ 0}
by P(t). Then

OX(D+(t)) = P(t)

is a Dedekind ring which is not a field. If F is algebraically closed
then it is a PID.

Proof. See reference [FF18] Théorème 6.5.2(3) and (7), as well as
Proposition 7.2.1.

Theorem 2.2.19. (i) If F is algebraically closed, then X is the union
X = X1 ∪ X2 of two affine open subschemes with X1 ∩ X2 6= ∅
and such that for i ∈ {1, 2} the ring OX(Xi) is a PID that is not
a field. In fact, we can choose

X1 = D+(t) , X2 = D+(s) for any

t ∈ P1 \ {0} , s ∈ P1 \ tE

15
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(ii) The E-scheme X is :

(a) separated

(b) 1-dimensional

(c) quasi-compact

(d) noetherian

(e) irreducible

(f) regular and hence normal

(iii)
H0(X,OX) = E = P0

(iv) If F is algebraically closed and if |X| denotes the set of closed
points of X then there is a bijection

(Bϕ=π \ {0})/E× → |X|
tE× 7→ tP ∈Proj(P ) = X

Proof. See reference [FF18] Théorème 6.5.2 and 7.3.3.

And since we are going to need it later, we now provide a few,
somewhat technical, results.

Lemma 2.2.20. For a finite collection of compact intervals I, I1, I2, . . . , In ⊆
(0, 1) with I =

⋃n
k=1 Ik, the morphism

n∐
k=1

Spec(BIk)→ Spec(BI)

is an fpqc covering, i.e. the homomorphism

BI →
n∏
k=1

BIk

of E-algebras is faithfully flat.

Proof. See reference [FF14] lemma 7.15

We let |Y | ⊆ Max(B) be the set of ideals generated by a single
primitive irreducible element as in [FF14], Def. 2.1 and 2.2. Recall
from [FF14] page 11 that there is a norm function ‖·‖ : |Y | → (0, 1).
The space |Y | lies at the heart of the theory of divisors for X. Later
on we shall need the following two results where we set

|Y |I = {y ∈ |Y | | ‖y‖ ∈ I}

for any interval I ⊆ (0, 1).

16
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Theorem 2.2.21. For a compact non-empty interval I ⊆ (0, 1), if
I = {ρ} with ρ /∈ |F×| then BI is a field, if not then the ring BI is a
principal ideal domain with maximal ideals

{BIm | m ∈ |Y |I}.

Proof. See reference [FF14] Theorem 3.9

Theorem 2.2.22. For the scheme X there is a bijection

|Y |/ϕZ ∼−→ |X|

where |X| is the set of closed points of the curve.

Proof. See reference [FF14] Theorem 5.5
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ϕ-Modules and construction of the
functors

In this chapter of the thesis we introduce the two relevant categories
and state the theorem that they are equivalent. We also construct
the two functors that give the equivalence. The actual proof of the
theorem is going to be presented in the next chapter.

3.1 ϕ-Modules

Definition 3.1.1. A pair (M,ϕM) is called a ϕ-module over B, if M
is a finitely generated projective module over B and ϕM : M → M is
a bijective map which is ϕ-semilinear, meaning that it satisfies:

(i) for all m,n ∈M

ϕM(m+ n) = ϕM(m) + ϕM(n)

(ii) for all m ∈M, b ∈ B

ϕM(bm) = ϕ(b) · ϕM(m)

Definition 3.1.2. A homomorphism F : (M,ϕM) → (N,ϕN) of ϕ-
modules over B is a B-linear map F : M,→ N which commutes with
ϕM and ϕN . i.e. the following diagram is commutative

M N

M N

F

ϕM ϕN

F

We denote by ϕ-ModB the category of ϕ-modules over B and
ϕ- HomB(M,N) the set of ϕ-module homomorphisms from M to N .

18
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Example 3.1.3. Let λ ∈ Q , λ = d
h with h, d ∈ Z, h ≥ 1,

gcd(h, d) = 1 and set M := Bh. Let ϕM be the unique ϕ-semilinear
map which on the standard basis satisfies

ϕM(ei) :=

{
ei+1, if 1 ≤ i < h

πd · e1, if i = h

We denote the corresponding object of ϕ-ModB by B(λ).

3.2 Algebraization

We now define the first of the two functors. It is a functor from the
category of ϕ-modules to the category of quasi-coherent OX-modules
given by the composition of two functors:

ϕ-ModB 3 (M,ϕM) 7→ Malg :=
⊕
n≥0

MϕM=πn a graded P -module

7→ FM := M̃ alg a quasi-coherent OX-module

Recall that P =
⊕

n≥0B
ϕ=πn and X = Proj(P ). Note that for F :

M → N a ϕ-module morphism and for any homogeneous element
e ∈MϕM=πn we have

ϕN(F (e)) = F (ϕM(f)) = F (πne) = πnF (e).

Thus, for any n ≥ 0, F restricts to MϕM=πn → NϕN=πn and induces a
morphism of graded P -modules⊕

n≥0

MϕM=πn →
⊕
n≥0

NϕN=πn

By (̃·) we denote the usual functor from algebraic geometry.
It will later be proven that actually FM is a vector bundle (See Cor.

4.2.4).

Remark 3.2.1. There is an analytic version of the Fargues-Fontaine
curve which is an adic space in the sense of [FAR18] chapter 1. It
is obtained from an open subspace of Spa(WE(OF ),WE(OF )) by mod-
ding out the action of the Frobenius. One can show that the category
of of the vector bundles on the adic curve is equivalent to ϕ-ModB
(c.f. [KL15] Theorem 8.2.22). We work with this algebraic descrip-
tion directly in order to avoid the language of adic spaces.
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3.3 Analytization

For the inverse direction we first need some intermediate steps. As
usual we set P+ :=

⊕
n>0B

ϕ=πn

Lemma 3.3.1. For any compact interval I = [σ, ρ] ⊆ (0, 1) with σ 6= ρ
we have Bϕ=π ∩ B×I 6= ∅. In particular P+ generates the unit ideal in
BI.

Proof. Otherwise P+ generates a proper non-empty ideal J of BI ,
which in turn must be contained in a maximal ideal J ⊆ m.

By Thm. 2.2.21 there is an element f ∈ BI such that m = (f) and
hence div(f) is a single point of |Y |I .

Choose an element g ∈ BI such that the support of div(g) ∈ |Y |I
does not meet the ϕ-orbit of div(f). This is possible because I is
not a singleton. Then from Thm.2.2.22 and Thm.2.219 (iv) there is
homogeneous element t ∈ P+ ⊆ J ⊆ m such that div(t) = div(g). But
t = fh for some h ∈ BI . Implies that after restricting to |Y |I the
ϕ-orbit of div(g) = div(t) = div(f) + div(h) meets div(f), giving us a
contradiction.

Thus taking a homogeneous element of positive degree f ∈ P+, we
have the following chain of inclusions P(f) ⊆ Pf ⊆ Bf ⊆ BI,f , which
give rise to a morphism of schemes

Spec(BI) ⊇ D(f)→ D+(f) ⊆ X

Using the last lemma we can glue these together to a morphism of
E-schemes

gI : Spec(BI) =
⋃
f

D(f)→
⋃
f

D+(f) = X.

Moreover if J ⊆ I then BI ⊆ BJ gives us a commutative diagram

Spec(BJ) X

Spec(BI)

gJ

gI,J gI

Now let F ∈ FibX be a vector bundle on X and denote

MI := Γ(Spec(BI), g
∗
IF)
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the global sections of the pullback of F to Spec(BI). Since Spec(BI)
is an affine scheme MI is a projective finitely generated module such
that M̃I = g∗IF

Remark 3.3.2. By Theorem 2.2.16 the ring BI is a PID. Thus MI

is actually free and finitely generated module over BI

For J ⊆ I the commutativity of the above diagram gives

g∗JF = g∗I,Jg
∗
IF ⇒MJ

∼= BJ ⊗BI MI

and thus we can define a BI-linear map

MI →MJ
∼= BJ ⊗BI MI : m 7→ 1⊗m. (∗)

This gives us a projective system of E-vector spaces indexed by the set
of non-empty, compact subintervals of (0, 1). We denote its projective
limit by

MF := lim←−
I

MI

This construction defines a functor FibX → ModB. In order to get
the desired functor we also need a semilinear bijection ϕMF . Towards
that goal we turn to the Frobenius map ϕ : Bb → Bb and recall that
it extends to an isomorphism ϕI : BI → Bϕ(I)

Lemma 3.3.3. The following diagram is commutative

Spec(Bϕ(I)) X

Spec(BI)

gϕ(I)

Spec(ϕI) gI

with Spec(ϕI) an isomorphism.

Proof. We are going to prove the commutativity by viewing it locally.
So let n > 0 and f ∈ Bϕ=πn. Then the isomorphism ϕI : BI → Bϕ(I)

induces an isomomorphism of localizations

ϕI,f : BI,f → Bϕ(I),ϕ(f) = Bϕ(I),πnf = Bϕ(I),f

restricting to

P(f) → P(ϕ(f)) = P(πnf) = P(f)

b

fm
7→ ϕ(b)

ϕ(fm)
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for b a homogeneous element of degree nm, i.e. f ∈ Bϕ=πn, b ∈ Bϕ=πnm.
Calculating explicitly we find

ϕ(b)

ϕ(fm)
=

πnmb

πnmfm
=

b

fm

and thus
ϕI,f

∣∣
P(f)

= idP(f)

Thus for any I we get an isomorphism of quasi-coherent modules

g∗ϕ(I)F ∼= Spec(ϕI)
∗g∗IF

on Spec(Bϕ(I)). On global sections we get a Bϕ(I)-linear isomorphism

Mϕ(I)
∼= Bϕ(I) ⊗BI MI

Remark 3.3.4. Here Bϕ(I) is seen as a right BI-module using the map
ϕI, i.e. for all b′ ∈ Bϕ(I), b ∈ BI : b′ · b = b′ϕ(b)

The above construction is compatible with the inclusion of intervals,
meaning that for J ⊆ I the following diagram is commutative

Mϕ(I) Bϕ(I) ⊗BI MI

Mϕ(J) Bϕ(J) ⊗BJ MJ

∼=

∼=

Here the vertical maps are the maps constructed before (see (∗) after
Remark 3.3.2.)

Putting everything together we now have a canonical candidate for
a ϕI-semilinear bijection ϕMI

ϕMI
: MI → Bϕ(I) ⊗BI MI

∼= Mϕ(I)

m 7→ 1⊗m

Lemma 3.3.5. ϕMI
is a ϕI-semilinear bijection.

Proof. • Bijectivity
In order to prove that ϕMI

is bijective we simply present its inverse

ϕ−1
MI

: Bϕ(I) ⊗BI MI → MI∑
i

bi ⊗mi 7→
∑
i

ϕ−1
I (bi)mi

22



Chapter 3

• ϕI-semilinearity
Additivity is inhereted from the bi-additivity of the tensor product.
Using Remark 3.3.4 we calculate

ϕMI
(bm) = 1⊗ bm = ϕI(b)⊗m = ϕI(b)ϕMI

(m)

for all b ∈ BI , m ∈MI .

Once again, this construction is compatible with the inclusion of
compact subintervals J ⊆ I. Thus taking projective limit one has

ϕMF := lim←−
I

ϕMI
: MF := lim←−

I

MI → lim←−
I

Mϕ(I) = MF

which is the sought after ϕ-semilinear bijection on MF .
It remains to be seen that (MF , ϕMF ) is indeed a ϕ-module (i.e. M

is finitely generated and projective over B), and that the described
procedure is functorial (i.e. given a morphism of vector bundles it
naturally gives a morphism of ϕ-modules). For the former we simply
quote [FF14] Proposition 7.14. And for the latter we observe that the
functor F 7→ MF is the composition of the 3 functors, pullback,
global section and inverse limit.

Theorem 3.3.6. The functors (M 7→ FM) : ϕ-ModB → FibX and
(F 7→ MF) : FibX → ϕ-ModB are well defined inverse equivalences
of categories.

Proof. See the calculations in the end of section 4.2

Since we will need it in the next chapter we present a useful prop-
erty of MF which relies on a topological variant of the Mittag-Leffler
condition.

Proposition 3.3.7. The canonical map

MF ⊗B BI →MF ,I

is a bijection.

Proof. See reference [ST03] Cor.3.1
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Proof of the equivalence of
categories

After presenting all necessary concepts and notations, we are finally
ready to begin the proof of the main result of the thesis, the equiva-
lence of categories between ϕ-modules over B and vector bundles on
X.

4.1 Exactness of the functors

One intermediate result that we need is the fact that algebraization
actually is a functor to the category of vector bundles. Towards that
goal we first need to prove that both functors are actually exact. We
start with a technical lemma

Lemma 4.1.1. Let [σ, ρ] ⊆ (0, 1) be a compact interval, 0 < c < 1
and x ∈ B[σ,ρ]. Then there are y ∈ B[σq,ρ], z ∈ B[σ,ρ1/q] with

(i) x = y + z

(ii) |x|[σ,ρ] = max{|y|[σ,ρ], |z|[σ,ρ]}

(iii) |ϕ−1(y)|[σ,ρ] ≤ c
1−q
q · |x|[σ,ρ]

(iv) |ϕ(z)|[σ,ρ] ≤ cq−1 · |x|[σ,ρ]

Here we see B[σq,ρ], B[σ,ρ1/q] ⊆ B[σ,ρ] as subrings. Thus the addi-
tion makes sense. Furthermore ϕ−1(B[σq,ρ]) = B[σ,ρ1/q] ⊆ B[σ,ρ] and
ϕ(B[σ,ρ1/q]) = B[σq,ρ] ⊆ B[σ,ρ], meaning that

ϕ−1(y), ϕ(z) ∈ B[σ,ρ]
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Proof. From the density of Bb ⊆ B[σ,ρ] we can find a sequence x(m) ∈
Bb with |x(m)|[σ,ρ] ≤ |x|[σ,ρ] and

∞∑
m=0

x(m) = x

in B[σ,ρ]. Then writing x(m) in its π-adic expansion

x(m) =
∑
n�−∞

πn[x(m)
n ]

we can define

x
(m)
+ :=

∑
n�−∞,|x(m)

n |≥c

πn[x(m)
n ] and x

(m)
− :=

∑
n�−∞,|x(m)

n |<c

πn[x(m)
n ]

where x
(m)
+ , x

(m)
− ∈ Bb for any m ≥ 0. We first show that

y :=
∞∑
m=0

x
(m)
+

converges in B[σq,ρ].

So let 0 < ε ≤ 1. Then there is M ≥ 0 such that

for any m ≥M : |x(m)|ρ ≤ ε

For m ≥M and |x(m)
n | ≥ c we calculate

ρn · c ≤ ρn · |x(m)
n | ≤ |x(m)|ρ ≤ ε ≤ 1.

This gives us a lower bound n ≥ n0 := d−log(c)/log(ρ)e for n. Thus,
we can write

x
(m)
+ =

∑
n≥n0,|x(m)

n |≥c

πn[x(m)
n ]

and calculate

|x(m)
+ |σq ≤ sup

n≥n0
{σqn|x(m)

n |} = sup
n≥n0

{(
σq

ρ

)n
ρn|x(m)

n |
}

≤
(
σq

ρ

)n0
· |x(m)|ρ ; since σq ≤ ρ

≤
(
σq

ρ

)n0
· ε.
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This means

|x(m)
+ |[σq,ρ] = max{|x(m)

+ |σq , |x
(m)
+ |ρ} ≤ max

{(
σq

ρ

)n0
, 1

}
· ε

This proves the claim that y converges in B[σq,ρ]. Analogously we are
going to prove that

z :=
∞∑
m=0

x
(m)
−

converges in B[σ,ρ1/q]. For ε > 0 then there is M ≥ 0 such that

for any m ≥M : |x(m)|[σ,ρ] ≤ ε

and for m ≥M we calculate

|x(m)
− |ρ1/q = sup

|x(m)
n |<c
{ρn/q |x(m)

n |} = sup
|x(m)
n |<c
{ρn |x(m)

n |q}1/q

< sup
|x(m)
n |<c
{ρn cq−1 |x(m)

n |}1/q ≤ c(q−1)/q · |x(m)
− |1/qρ ≤ c(q−1)/q · ε1/q

where the strict inequality is derived from

|x(m)
n |q = |x(m)

n |q−1 · |x(m)
n | < cq−1 · |x(m)

n |.

This means

|x(m)
− |[σ,ρ1/q] = max{|x(m)

− |σ, |x
(m)
− |ρ1/q} ≤ max{ε, c(q−1)/q · ε1/q},

proving the claim that z converges in B[σ,ρ1/q]. From the construction
we have x = y + z in B[σ,ρ] proving i).

For ii) we explicitly calculate

∀m ≥ 0 : |x(m)
± |[σ,ρ] ≤ |x(m)|[σ,ρ] ≤ |x|[σ,ρ]

⇒ |y|[σ,ρ] ≤ sup
m≥0
{|x(m)

+ |[σ,ρ]} ≤ |x|[σ,ρ] and

|z|[σ,ρ] ≤ sup
m≥0
{|x(m)
− |[σ,ρ]} ≤ |x|[σ,ρ] respectively

⇒ max{|y|[σ,ρ], |z|[σ,ρ]} ≤ |x|[σ,ρ]

and using
|x|[σ,ρ] = |y + z|[σ,ρ] ≤ max{|y|[σ,ρ], |z|[σ,ρ]}

we get the reverse inequality proving the equality and thus ii).
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For iii) and iv) we directly calculate for τ ∈ [σ, ρ]

|ϕ−1(x
(m)
+ )|τ = sup

|x(m)
n |≥c
{τn|x(m)

n |1/q}

= sup
|x(m)
n |≥c
{τn · |x(m)

n | · |x(m)
n |

1−q
q } ≤ c

1−q
q |x(m)

+ |τ

where the inequality is because q > 1 ⇐⇒ 1− q < 0⇒ 1−q
q < 0 this

implies that after taking supremum over c

|ϕ−1(x
(m)
+ )|[σ,ρ] ≤ c

1−q
q |x(m)

+ |[σ,ρ] ≤ c
1−q
q |x|[σ,ρ]

and thus

|ϕ−1(y)|[σ,ρ] ≤ sup
m≥0
|ϕ−1(x

(m)
+ )|[σ,ρ] ≤ c

1−q
q |x|[σ,ρ]

Analogously we calculate for τ ∈ [σ, ρ]

|ϕ(x
(m)
− )|τ = sup

|x(m)
n |<c
{τn|x(m)

n |q}

≤ sup
|x(m)
n |<c
{τn·|x(m)

n |}cq−1 = cq−1|x(m)
− |τ

where once again the inequality is derived from

|x(m)
n |q = |x(m)

n |q−1 · |x(m)
n | ≤ cq−1 · |x(m)

n |.

After taking supremum over τ we get

|ϕ(x
(m)
− )|[σ,ρ] ≤ cq−1|x(m)

− |[σ,ρ] ≤ cq−1|x|[σ,ρ]

and thus
|ϕ(z)|[σ,ρ] ≤ sup

m≥0
|ϕ(x

(m)
− )|[σ,ρ] ≤ cq−1|x|[σ,ρ]

Now let M ∈ ϕ-ModB. Then for any compact interval I ⊆ (0, 1)
we set

MI := M ⊗B BI

If J ⊆ I is a compact subinterval then BI ⊆ BJ and we get the
BI-linear map

idM ⊗ ι : MI = M ⊗B BI →M ⊗B BJ = MJ

where ι is the inclusion map. Note that idM ⊗ ι is again injective
because M is projective and thus flat. We just write MI ⊆MJ .
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Lemma 4.1.2. Let I, J ⊆ (0, 1) be compact intervals with I ∩ J 6= ∅,
then the sequence:

0→ BI∪J → BI ⊕BJ → BI∩J → 0

b 7→ (b,b)

(b1, b2) 7→ b1 − b2

of B-modules is exact. i.e. when seen as subrings of BI∩J we have
BI +BJ = BI∩J and BI ∩BJ = BI∪J .

Proof. See reference [FF18] Prop.11.2.7

Remark 4.1.3. Since any M ∈ ϕ-ModB is projective, hence flat over
B, Lemma 4.1.2 implies that we get an exact sequence of B-modules:

0→MI∪J →MI ⊕MJ →MI∩J → 0

i.e. under the natural inclusions into MI∩J we have

MI +MJ = MI∩J and MI ∩MJ = MI∪J

Furthermore, we have the bijective map

ϕ : MI = M ⊗B BI
ϕM⊗ϕ−−−→∼= M ⊗B Bϕ(I) = Mϕ(I).

After composing with the inclusion map Mϕ(I) ⊆ Mϕ(I)∩I , we obtain
for any n ∈ Z the map

π−n · ϕ− 1 : MI →Mϕ(I)∩I

x 7→π−nϕ(x)− x

Proposition 4.1.4. Let M ∈ ϕ-ModB and ρ ∈ (0, 1). Setting σ :=

ρq
1
2 there is N ∈ N such that for all n > N the map

π−n · ϕ− 1 : M[σ,ρ1/q] →M[σ,ρ1/q]∩ϕ([σ,ρ1/q]) = M[σ,ρ]

is surjective.

Proof. First we fix a set of generators v1, . . . , vm of M as a B-module.
It is also a set of generators of MI over BI for any I ⊆ (0, 1) by viewing
B ⊆ BI as a subring. Then we have the following pair of maps:

ϕ : M[σ,ρ1/q] →M[σq,ρ]

ϕ−1 : M[σq,ρ] →M[σ,ρ1/q]
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We choose Ai,j ∈ B[σ,ρ1/q],Bi,j ∈ B[σq,ρ] for all 1 ≤ i, j ≤ m such that
for all 1 ≤ j ≤ m

ϕ−1(vj) =
m∑
i=1

Ai,jvi

ϕ(vj) =
m∑
i=1

Bi,jvi

and set

c1 := max
i,j
|Ai,j|[σ,ρ1/q]

c2 := max
i,j
|Bi,j|[σq,ρ].

Afterwards we pick N ≥ 0 large enough such that for any n ≥ N :

ρnc1 < 1 and ρn(q−q1/2)−q · c2 · cq1 < 1

which is possible because ρ < 1, and thus ρn → 0. Given n > N we
set

c := (ρn−1c1)
q
q−1

and we explicitly calculate the following inequalities

(i) q > 1 ⇐⇒ q − 1 > 0⇒ q
q−1 > 0 and

0 < ρn−1c1 ≤ ρNc1 < 1⇒ 0 < c < 1

(ii) ρn · c1 · c
1−q
q = ρn · c1 · (ρn−1 · c1)

−1 = ρ < 1

(iii) σ−n · c2 · cq−1 = ρ−nq
1
2 · (ρn−1c1)

q · c2 = ρn(q−q
1
2 )−q · cq1 · c2

≤ ρN(q−q
1
2 )−q · cq1 · c2 because n > N and q − q 1

2 > 0
< 1 by definition of N

Now let w ∈ M[σ,ρ]. We inductively construct x
(l)
1 , . . . , x

(l)
m ∈ B[σ,ρ] for

l ∈ N0 as follows:
• l = 0: choose x

(0)
1 , . . . , x

(0)
m ∈M[σ,ρ] such that

w =
m∑
i=1

x
(0)
i vi

• l 7→ l + 1: write x
(l)
i = y

(l)
i + z

(l)
i as in lemma 4.1.1 with the con-

stant c constructed as above and set

x
(l+1)
i := πn

m∑
j=1

Ai,jϕ
−1(y

(l)
j ) + π−n

m∑
j=1

Bi,jϕ(z
(l)
j )
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Then we set

ε := max{ρn · c1 · c
1−q
q , σ−n · c2 · cq−1}

and by (ii) and (iii) we have ε < 1. For l ≥ 0 we explicitly calculate

|πn
m∑
j=1

Ai,jϕ
−1(y

(l)
j )|[σ,ρ] ≤ ρn · c1 · c

1−q
q ·max

j
|x(l)
j |[σ,ρ] ≤ ε ·max

j
|x(l)
j |[σ,ρ]

where the first inequality is derived from lemma 4.1.1. Likewise we
calculate

|π−n
m∑
j=1

Bi,jϕ(z
(l)
j )|[σ,ρ] ≤ σ−n · c2 · cq−1 ·max

j
|x(l)
j |[σ,ρ] ≤ ε ·max

j
|x(l)
j |[σ,ρ]

Putting both inequalities together we obtain

max{|y(l+1)
i |[σ,ρ], |z

(l+1)
i |[σ,ρ]} = |x(l+1)

i |[σ,ρ]

≤ max{|πn
m∑
j=1

Ai,jϕ
−1(y

(l)
j )|[σ,ρ],|π−n

m∑
j=1

Bi,jϕ(z
(l)
j )|[σ,ρ]}

≤ ε ·max
j
|x(l)
j |[σ,ρ]

Thus we inductively have

max{|y(l+1)
i |[σ,ρ], |z

(l+1)
i |[σ,ρ]} ≤ εl+1 ·max

j
|x(0)
j |[σ,ρ]

for any l ≥ 0 and 1 ≤ i ≤ m. This implies that for 1 ≤ i ≤ m

yi :=
∞∑
l=0

y
(l)
i and zi :=

∞∑
l=0

z
(l)
i

converge in B[σ,ρ]. Whence meaning ϕ−1(yi) =
∞∑
l=0

ϕ−1(y
(l)
i ) converges

in B[σ1/q,ρ1/q]. On the other hand we can use lemma 4.1.1 once again
to construct the following bounds:

|ϕ−1(y
(l)
i )|[σ,ρ] ≤ c

1−q
q · |x(l)

i |[σ,ρ] ≤ c
1−q
q ·max

j
{|x(l)

j |[σ,ρ]}

≤ c
1−q
q · εl ·max

j
{|x(0)

j |[σ,ρ]}

showing that
∞∑
l=0

ϕ−1(y
(l)
i ) converges in B[σ,ρ]. Since | · |σ ≤ | · |[σ,ρ] and

likewise | · |ρ1/q ≤ | · |[σ1/q,ρ1/q] we have that
∞∑
l=0

ϕ−1(y
(l)
i ) converges with

respect to the norms | · |σ and | · |ρ1/q . But using Lemma 2.2.6 we have

| · |[σ,ρ1/q] = max{| · |ρ1/q , | · |σ}
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implying that
∞∑
l=0

ϕ−1(y
(l)
i ) converges in B[σ,ρ1/q]

Analogously one calculates for ϕ(zi) =
∞∑
l=0

ϕ(z
(l)
i ) that it doesn’t

only converge in B[σq,ρq], but from 4.1.1 once again

|ϕ(z
(l)
i )|[σ,ρ] ≤ cq−1 · |x(l)

i |[σ,ρ] ≤ cq−1 ·max
j
{|x(l)

j |[σ,ρ]}

≤ cq−1 · εl ·max
j
{|x(0)

j |[σ,ρ]}

so that it also converges in B[σ,ρ]. Since |·|σq ≤ |·|[σq,ρq] and |·|ρ ≤ |·|[σ,ρ]

we see that ϕ(zi) =
∞∑
l=0

ϕ(z
(l)
i ) converges with respect to the norms |·|σq

and | · |ρ. But using Lemma 2.2.6 we have

| · |[σq,ρ] = max{| · |ρ, | · |σq}

implying that ϕ(zi) =
∞∑
l=0

ϕ(z
(l)
i ) converges in B[σq,ρ].

Thus
zi = ϕ−1(ϕ(zi)) ∈ B[σ,ρ1/q]

Set

v := −πn
m∑
j=1

ϕ−1(yj)ϕ
−1(vj) +

m∑
j=1

zjvj ∈M[σ,ρ1/q]

then

v = −πn
m∑
j=1

∞∑
l=0

m∑
i=1

ϕ−1(y
(l)
j ) · Ai,j · vi +

m∑
j=1

zjvj

= −
m∑
i=1

∞∑
l=0

(x
(l+1)
i − π−n

m∑
j=1

Bi,jϕ(z
(l)
j )) · vi +

m∑
j=1

∞∑
l=0

z
(l)
j vj =

−
m∑
i=1

∞∑
l=1

y
(l)
i vi −

m∑
i=1

∞∑
l=1

z
(l)
i vi + π−n

m∑
i=1

ϕ(zi) · ϕ(vi) +
m∑
i=1

∞∑
l=0

z
(l)
i vi

= −
m∑
i=1

∞∑
l=1

y
(l)
i vi +

m∑
i=1

z
(0)
i vi + π−n

m∑
i=1

ϕ(zi) · ϕ(vi)

= −
m∑
i=1

∞∑
l=0

y
(l)
i vi +

m∑
i=1

x
(0)
i vi + π−n

m∑
i=1

ϕ(zi) · ϕ(vi)

= π−nϕ(v) + w

⇒ w = v − π−nϕ(v)
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where the first equality is from the definition of yi (as a sum on the l

variable) and Ai,j, the second equality is from definition of x
(l+1)
i and

zi (as a sum on the l variable), the third is from using the x = y + z
equation from lemma 4.1.1, using the definition of Bi,j, contracting
the l-summation and renaming the last two counters j to i, the fifth

equation is derived by adding and subtracting
m∑
i=1

y
(0)
i vi

Theorem 4.1.5. Let

0→M1 →M2 →M3 → 0

be an exact sequence of ϕ-modules over B. Then there is N ≥ 0 such
that for any n > N the sequence

0→Mϕ=πn

1 →Mϕ=πn

2 →Mϕ=πn

3 → 0

of E-vector spaces is exact.

Proof. First we note that since the original sequence is a sequence of
ϕ-modules over B (i.e. morphisms commute with ϕ), the restriction
to any homogeneous component produces a sequence

Mϕ=πn

1 →Mϕ=πn

2 →Mϕ=πn

3

of E-subspaces. Since the maps are the restrictions of the original
maps we get left exactness for any n ≥ 0. Hence we only need to prove
the surjectivity statement, i.e. for any surjective map f : M2 → M3

of ϕ-modules over B we can find N ≥ 0 such that the restricted map

f : Mϕ=πn

2 →Mϕ=πn

3

is surjective for any n ≥ N .

Choose an arbitrary ρ ∈ (0, 1) and set σ := ρq
1
2 . By Proposition

4.1.4 applied to M1 we get N ≥ 0 such that the map

ϕ− πn : M1,[σ,ρ1/q] →M1,[σ,ρ]

is surjective for any n ≥ N . Now let m ∈ Mϕ=πn

3 and consider the
following diagram

0 M1,[σ,ρ1/q] M2,[σ,ρ1/q] M3,[σ,ρ1/q] 0

0 M1,[σ,ρ] M2,[σ,ρ] M3,[σ,ρ] 0

ϕ−πn ϕ−πn ϕ−πn
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with exact rows. Using the snake lemma we get the surjectivity of

Mϕ=πn

2,[σ,ρ1/q]
→Mϕ=πn

3,[σ,ρ1/q]

In particular there is m′ ∈Mϕ=πn

2,[σ,ρ1/q]
with

(f ⊗ idB
[σ,ρ1/q ]

)(m′) = m ∈Mϕ=πn

3 ⊆Mϕ=πn

3,[σ,ρ1/q]

and we more precisely calculate that since m′ ∈Mϕ=πn

2,[σ,ρ1/q]

ϕ(m′) = πnm′ ∈M2,[σ,ρ1/q] ∩M2,[σq,ρ] = M2,[σ,ρ1/q]∪[σq,ρ] = M2,[σq,ρ1/q]

and thus inductively

m′ ∈M2,[σqn ,ρ1/qn ]

for any n ∈ N. And using that⋂
n∈N

M2,[σqn ,ρ1/qn ] =
⋂

I⊆(0,1)comp.

M2,I = M2

thus

m′ ∈Mϕ=πn

2 with f(m′) = m

Corollary 4.1.6. The functor (M 7→ FM) : ϕ-ModB → QCohX is
exact.

Proof. We work locally. Let f ∈ Bϕ=π \ {0}. Then FM
∣∣
D+(f)

= M̃ alg
(f ) .

Since the principle open sets D+(f) cover X and (̃·) is exact on affine
schemes, we need to prove that the functor

M 7→ Malg
(f)

is exact. As explained earlier (see proof of thm.4.1.5) the functor (·)alg
is left exact and homogeneous localization is even exact. Therefore it
is only left to prove that (·)alg preserves surjections. So let g : M → N
be a surjective morphism of ϕ-modules, and x ∈ Nalg

(f) . Write x as

x =
y

fm
for suitable m ∈ N0, y ∈ Nϕ=πm.

Then for any r ∈ N0

f r · y ∈ Nϕ=πm+r
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and choosing r large enough, the restriction of g to the m+r homoge-
neous component is surjective by Theorem 4.1.5. In particular there
is z ∈Mϕ=πm+r

such that g(z) = f r · y. Computing in the localization
we get

g(f)

(
z

f r+m

)
=
f r · y
f r+m

=
y

fm
= x

Proposition 4.1.7. The functor (F → MF) : FibX → ϕ-ModB is
exact and the canonical BI-linear map BI ⊗B MF → MI is bijective
for any compact interval I ⊆ (0, 1).

Proof. By thm.2.2.18 for any f ∈ Bϕ=π \{0}, the localization P(f) is a
Dedekind domain. Using once again the inclusions of integral domains
introduced in the analytization we have:

P(f) ⊆ Pf ⊆ Bf ⊆ BI,f

In particular we can see BI,f as a torsion-free P(f)-module.

⇒ BI,f is flat because P(f) is Dedekind

⇒ the functor (·)⊗P(f)
BI,f is exact

⇒ the functor g∗I : QCohX → QCohSpec(BI) is exact

Global sections are an exact functor for quasi-coherent modules over
affine schemes. Thus it only remains to show that the projective
limit is exact as a functor which is true because our projective sys-
tem satisfies the generalized Mittag-Leffler condition of [ST03] chap.3
thm.A.

4.2 Proof of the equivalence of categories

Having proven that the two functors defined in chapter 2 (algebraiza-
tion, analytization) are exact, we proceed to prove that algebraization
is actually a functor to the category of vector bundles.

In particular both compositions are valid. In the last part of the
section we can explicitly calculate that the functors are inverse of each
other.

Proposition 4.2.1. If M ∈ ϕ-ModB is a ϕ-module, then there is
N ∈ N such that ∀n ≥ N there are finitely many elements of Mϕ=πn

which generate M as a B-module.
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Proof. Let ρ ∈ (0, 1). Using the notation of Proposition 4.1.4 we set

σ = ρq
1
2 and let N ∈ N be the natural number such that:

for all n > N : π−nϕ− 1 : M[σ,ρ1/q] →M[σ,ρ] is surjective

Recall that the quantities c1, c2, c, ε were defined by

c1 := max
i,j
|Ai,j|[σ,ρ1/q]

c2 := max
i,j
|Bi,j|[σq,ρ]

c := (ρn−1c1)
q
q−1

0 < ε := max{ρn · c1 · c
q−1
q , σ−n · c2 · cq−1} < 1

where n > N is fixed. Choosing z ∈ F with 0 < |z| < 1 sufficiently
close to c we have

0 < ε′ := max{ρnc1|z|
1−q
q , σ−nc2|z|q−1} < 1.

Recall that we have used a set of generators v1, v2, . . . , vm of M over B
which also generate M[σ,ρ] over B[σ,ρ]. Then we fix a k ∈ {1, 2, . . . ,m}
and set

x
(0)
1 = x

(0)
2 = . . . = x(0)

m = 0

whence
m∑
i=1

x
(0)
i vi = 0.

We define the following decompositions

x
(0)
i = y

(0)
i + z

(0)
i by y

(0)
i = −δi,k · [z], z

(0)
i = δi,k · [z]

as a base case. As in the proof of Proposition 4.1.4 we inductively
define

x
(l+1)
i := πn

m∑
j=1

Ai,jϕ
−1(y

(l)
j ) + π−n

m∑
j=1

Bi,jϕ(z
(l)
j ) for all l ≥ 0.

As in the proof of Proposition 4.1.4 the element

uk = −πn
m∑
j=1

∞∑
l=0

m∑
i=1

ϕ−1(y
(l)
j ) · Ai,j · vi +

m∑
j=1

∞∑
l=0

z
(l)
j vj

converges in M[σ,ρ1/q] and satisfies

(ϕ− πn)(uk) =
m∑
i=1

x
(0)
i vi = 0
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meaning that ϕ(uk) = πn · uk. Mimicking the proof of thm 4.1.5 we
get

uk ∈
⋂
n∈N

M[σqn ,ρ1/qn ] =
⋂

I⊆(0,1)comp.

MI = M

and thus uk ∈Mϕ=πn. We claim that u1, . . . , um is a generating system
for M[σ,ρ] over B[σ,ρ]. To see this we compute the following upper
bounds:
For any 1 ≤ i ≤ m we have

(i) |x(1)
i |[σ,ρ] = | − πnAikϕ

−1([z]) + π−nBikϕ([z])|[σ,ρ]

≤ max{ρnc1|z|1/q, σ−nc2|z|q} = ε′ · |z| < |z|.
Using the inequality (i) as well as the upper bounds in the proof
of prop 4.1.4 we have:

(ii) |z(l)
i |[σ,ρ] ≤ εl−1 ·maxj{|x(1)

j |} ≤ εl−1 · ε′ · |z| < |z|, for all l ≥ 1.

(iii) | − πn
m∑
j=1

m∑
i=1

ϕ−1(y
(0)
j )Ai,j|[σ,ρ] = | − πn

m∑
i=1

ϕ−1([z])Ai,k|[σ,ρ] < |z|.

(iv) | − πn
∑m

j=1

∑m
i=1 ϕ

−1(y
(l)
j ) · Ai,j|[σ,ρ] ≤ εl−1 ·maxj{|x(1)

j |}
≤ εl−1 · ε′ · |z| < |z|, for all l ≥ 1 .

By definition of uk we can thus write

uk = [z] · (yk · vk +
∑
i 6=k

Cik · vi)

with Cik ∈ B[σ,ρ] with |Cik|[σ,ρ] < 1 and |yk|[σ,ρ] = 1. In fact, yk is a
unit in B[σ,ρ] because we can write it as

yk = 1 + f

with

f =
∞∑
l=1

z
(l)
k · [z

−1]− πn
m∑
j=1

∞∑
l=0

ϕ−1(y
(l)
j ) · Ak,j · [z−1]

and thus |f | < 1. Then from the geometric series we find the inverse

y−1
k =

∞∑
i=0

(−1)if i

which converges in B[σ,ρ] and proves that yk is a unit. Now consider
the matrix C = (Cik) with diagonal elements Ckk = yk. From the
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definition of determinant we have

det(C) = y + x, where y :=
m∏
k=1

yk, x ∈ B[σ,ρ] with |x|[σ,ρ] < 1.

Note that y is still of the form 1 + e with |e|[σ,ρ] < 1 whence y is a unit
with |y| = |y−1| = 1. This implies det(C) = y · (1 + x

y ) with |xy | < 1 so
that also det(C) is a unit and the matrix C is invertible. Therefore
u1, u2, . . . , um are a generating set for M[σ,ρ] over B[σ,ρ].

Duplicating the previous process for ρ1 = σ, we get a second fam-
ily u′1, u

′
2, . . . , u

′
m ∈ Mϕ=πn that generates M[ρq,σ] over B[ρq,σ]. Then

consider the B-linear map

F : B2m →M

(b1, b2, . . . , bm, b
′
1, b
′
2, . . . , b

′
m) 7→

m∑
i=1

biui +
m∑
i=1

b′iu
′
i.

It remains to show that F is surjective. Since the inverse limit is exact
in our situation (see [ST03] chap.3 thm.A) it suffices to show that the
induced BI-linear map

FI := F ⊗ idBI : B2m
I →MI

is surjective for any compact interval I ⊆ (0, 1).
Choose l ∈ N large enough so that I ⊆ [ρq

l

, ρq
−l

] =: J . If FJ is
surjective, then so is FI = FJ ⊗ idBI . Thus we may assume

I = J = [ρq
l

, ρq
−l

].

Now let

I1 := [ρq, σ], I2 := [σ, ρ]

so that I =
l−1⋃
i=−l

ϕi([ρq, ρ]) =
l−1⋃
i=−l

ϕi(I1) ∪
l−1⋃
i=−l

ϕi(I2).

By Lemma 2.2.20 the ring homomorphism

BI →
l−1∏
i=−l

Bϕi(I1) ×
l−1∏
i=−l

Bϕi(I2)

is faithfully flat. Therefore it suffices to prove surjectivity after base
change to the product of rings. Looking at the components, it suffices
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to prove surjectivity after base change to Bϕi(Ij) for all possible i, j.
Then the claim is that {u1, u2, . . . , um, u

′
1, u
′
2, . . . , u

′
m} generate Mϕi(Ij)

over Bϕi(Ij).
For j = 1 and i arbitrary we already have

Mϕi(I1) = ϕi(MI1) = ϕi(
m∑
t=1

BI1u
′
t) =

m∑
t=1

ϕi(BI1)u
′
t =

m∑
t=1

Bϕi(I1)u
′
t

using ϕi(u′t) = πn·iu′t. Analogously for j = 2 and i arbitrary we have

Mϕi(I2) = ϕi(MI2) = ϕi(
m∑
t=1

BI2ut) =
m∑
t=1

ϕi(BI2)ut =
m∑
t=1

Bϕi(I2)ut

using ϕi(ut) = πn·iut

Lemma 4.2.2. Let f ∈ P \ {0} be homogeneous of degree 1 and let
I = [σ, ρ] ⊆ (0, 1) be a compact interval with σ ≤ ρq. Then the ring
homomorphism

P(f) ↪→ Pf ↪→ BI,f

is faithfully flat.

Proof. Firstly we show that the map is flat. For that we use the
injectivity of the homomorphism, which implies

BI,f is torsion free over P(f)

⇒ BI,f is flat over P(f), because P(f) is Dedekind

Let C := ˆ̄F be the completion of an algebraic closure, then by Kras-
ner’s lemma C is algebraically closed.

We indicate by a subscript F (resp. C) all rings and schemes defined
using F (resp. C) as an input.

Then the inclusion
F ↪→ C

of complete valued fields gives rise to ring homomorphims

BF,J → BC,J

BF → BC

PF → PC

and to a homomorphism of schemes

XC → XF
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fitting into a commutative diagram

Spec(BC,I) XC

Spec(BF,I) XF

For the complete construction we refer [FF18] §7.6-7.7.
Furthermore we need some more results from [FF18], namely that

the morphisms

XC → XF

Spec(BC,I)→ XC

are surjective (see [FF18], page 271 and Prop.6.7.1(2)). The commu-
tativity of the above diagram implies that

Spec(BF,I)→ XF

is surjective. Thus we can return to the case X = XF (i.e. drop the
subscripts). By construction we have

gI(D(f)) ⊆ D+(f)

and claim that it is actually an equality. So let

p ∈ Spec(BI) with gI(p) ∈ D+(f)

and choose g ∈ P \{0} homogeneous of degree 1 with p ∈ D(g). Then
by construction we have

gI(p) = pBI,g ∩ P(g) ∈ D+(g) = Spec(P(g)).

By means of contradiction assume p /∈ D(f) meaning that f ∈ p and
hence

f

g
∈ pBI,g ∩ P(g) = gI(p)

contradicting gI(p) ∈ D+(f). Thus p ∈ D(f) and gI(D(f)) = D+(f).
Altogether the surjection gI : Spec(BI)→ X restricts to a surjection

Spec(BI,f) = D(f) = g−1
I (D+(f))→ D+(f) = Spec(P(f))

implying that the flat ring homomorphism is P(f) → BI,f is in fact
faithfully flat.
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Now let M ∈ ϕ-ModB be a ϕ-Module, I ⊆ (0, 1) a compact interval
and

MI := M ⊗B BI .

For any of f ∈ Bϕ=π we define the BI,f -linear map

M
(alg)
(f) ⊗P(f)

BI,f →MI ⊗BI BI,f
∼= M ⊗B BI,f

m⊗ b 7→ m⊗ b

Theorem 4.2.3. Let M ∈ ϕ-ModB, I = [σ, ρ] ⊆ (0, 1) a compact
interval with ρq ≤ σ and f ∈ Bϕ=π \ {0}. The canonical map con-

structed above is a bijection and M
(alg)
(f) is a finitely generated projective

P(f)-module.

Proof. We first prove that the map is a bijection. For this we use
Proposition 4.2.1 and find a finite set of generators {w1, w2, . . . , wm}
of M over B with wi ∈ Mϕ=πn for n chosen suitably large. Then we
can just see f−nwi as an element of Malg

(f) , thus finding preimages, and
thus proving the surjectivity.

Using Example 3.1.3 we consider the ϕ-module B(n)m and the nat-
ural surjection of ϕ-modules

B(n)m �M

(b1, b2, . . . , bm) 7→
m∑
i=1

bi · wi

Denoting by M ′ the kernel of this map we get a short exact sequence

0→M ′ → B(n)m →M → 0

of ϕ-modules over B. By Theorem 4.1.5 and the exactness of homo-
geneous localization we get the exact sequence

0→ (M ′)
(alg)
(f) → (B(n)m)

(alg)
(f) →M

(alg)
(f) → 0

of P(f)-modules. Thus M
(alg)
(f) is a finitely generated P(f)-module be-

cause the underlying P(f)-module in the middle is simply Pm
(f). Fur-

thermore we have the following commutative diagram with exact rows

(M ′)
(alg)
(f) ⊗P(f)

BI,f (B(n)m)
(alg)
(f) ⊗P(f)

BI,f M
(alg)
(f) ⊗P(f)

BI,f 0

0 M ′
I ⊗BI

BI,f (B(n)m)I ⊗BI
BI,f MI ⊗BI

BI,f 0
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with the vertical arrows being the canonical homomorphisms defined
above. For the second row we use the formula

NI ⊗BI BI,f = N ⊗B BI,f

and the fact that M is a flat B-module. We point out that the left
vertical arrow is surjective by the first part of the proof applied ti M ′,
and the middle vertical arrow is bijective, too. In fact, the underlying
P(f)-module (resp. BI-module) of (B(n)m)

(alg)
(f) (resp. (B(n)m)I) is just

Pm
(f) (resp. Bm

I ), and the vertical map is the canonical isomorphism

Pm
(f) ⊗P(f)

BI,f
∼= Bm

I,f
∼= Bm

I ⊗BI BI,f .

It now follows from snake lemma that the right vertical map is injec-
tive, completing the proof that the canonical homomorphism defined
above is a bijection.

Thus it only remains to prove that M
(alg)
(f) is a projective module.

Since projectivity can be checked after a faithfully flat base change
this follows from Lemma 4.2.2 because

M
(alg)
(f) ⊗P(f)

BI,f
∼= M ⊗B BI,f

is a finitely generated projective BI,f -module (because M is a finitely
generated projective B-module).

Corollary 4.2.4. FM ∈ FibX

Proof. Letting f ∈ Bϕ=π \ {0} vary we have the open cover

X =
⋃
f

D+(f)

of X. For the restrictions to D+(f) we see from Theorem 4.2.3 that

FM
∣∣
D+(f)

∼= M̃
(alg)
(f)

is associated to a finitely generated projective module overOX(D+(f)) =
P(f). Thus FM

∣∣
D+(f)

is a vector bundle over D+(f) and FM is a vector

bundle over X.

For the next part we are going to need the following lemma from
commutative algebra
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Lemma 4.2.5. If M is a finitely generated projective B-module, then
M⊗B (−) commutes with limits. In particular if M is a ϕ-module,and
(NI)I is a compatible family of BI-modules where I ⊆ (0, 1) runs
through all compact intervals then

M ⊗B (lim←−
I

NI) ∼= lim←−
I

(M ⊗B NI).

Proof. Consider the comparison map

M ⊗B lim←−
I

NI → lim←−
I

(M ⊗B NI)

Any finitely generated projective module is a direct summand of a
finitely generated free module. Since the comparison map commutes
with finite direct sums we can reduce the problem to the case M = B.
In this case the statement is trivially true, because

lim←−
I

NI
∼= B ⊗B lim←−

I

NI → lim←−
I

(B ⊗B NI) ∼= lim←−
I

NI

is the identity map.

We now proceed to explicitly calculate the compositions of the two
functors

• M 7→ FM 7→MFM :

Let M ∈ ϕ-ModB, I ⊆ (0, 1) be a compact interval and f ∈ Bϕ=π \
{0}. Then Theorem 4.2.3 gives an isomorphism

FM(D+(f))⊗P(f)
BI,f

∼= M ⊗B BI,f

of P(f)-modules. Letting f vary (using Spec(BI) =
⋃
f D(f) by Lemma

3.3.1) gives us

(MFM )I ∼= M ⊗B BI

and therefore after taking inverse limits

MFM := lim←−
I

(MFM )I ∼= lim←−
I

(M ⊗B BI) ∼= M.

Here we used Lemma 4.2.5 in the last step.

• F 7→MF 7→ FMF : We fix f ∈ Bϕ=π \ {0} and F ∈ FibX a
vector bundle. Consider the P(f)-linear injection

Malg
F ,(f) ↪→Malg

F ,f ↪→MF ,f .
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Since ϕ(f) = πf and π is a unit in B, the automorphism ϕ : B → B
extends to an automorphism ϕf : Bf → Bf . Likewise ϕMF : MF →
MF extends to a ϕ-semilinear automorphism

ϕMF,f = ϕMF ⊗ ϕf : MF ,f = MF ⊗B Bf →MF ⊗B Bf = MF ,f .

We claim that
Malg
F ,(f) = M

ϕMF,f=1

F ,f

for the first inclusion let x ∈ Malg
F ,(f). There exist n ≥ 0 and m ∈

M
ϕMF=πn

F such that x = m
fn . This gives

ϕMF,f (x) =
ϕMF (m)

ϕ(f)n
=
πnm

πnfn
=
m

fn
= x,

i.e. x ∈M
ϕMF,f=1

F ,f . For the reverse inclusion let x ∈M
ϕMF,f=1

F ,f ⊆MF ,f .
There exist n ≥ 0 and m ∈MF such that x = m

fn . This gives

m

fn
= x = ϕMF,f (x) =

ϕMF (m)

ϕ(f)n
=
ϕMF (m)

πnfn
,

i.e. ϕMF (m) = πnm because MF is a torsion-free B-module. Thus

x =
m

fn
∈Malg

F ,(f),

proving the claim.
Using Theorem 4.2.3 we define the canonical P(f)-linear map

F(D+(f))→ F(D+(f))⊗P(f)
BI,f

∼= MF ⊗B BI,f
∼= MF ,f

x 7→ x⊗ 1

By construction of ϕMF the following diagram commutes

F(D+(f))⊗P(f)
BI,f MF ,f

F(D+(f))⊗P(f)
BI,f MF ,f

id⊗ϕ

∼=

ϕMF,f

∼=

Therefore the canonical map defined above takes values in M
ϕMF,f=1

F ,f =

Malg
F ,(f) meaning that we have a P(f)-linear map

F(D+(f))→Malg
F ,(f) = FMF (D+(f)).
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The associated homomorphisms of module sheaves

F
∣∣
D+(f)

= F(D+(f))
∼

→Malg
F ,(f)

∼
= FMF

∣∣
D+(f)

glue to a homomorphism
F → FMF

of OX-modules. In order to see that it is an isomorphism, it suffices to
see that the P(f)-linear map F(D+(f)) → Malg

F ,(f) is an isomorphism.

Using lemma 4.2.2 (for suitably chosen I) it is enough to see that the
map

F(D+(f))⊗P(f)
BI,f →Malg

F ,(f) ⊗P(f)
BI,f

obtained after base change is bijective. However, composing this map
with the isomorphism

Malg
F ,(f) ⊗P(f)

BI,f →MF ,I ⊗BI BI,f = F(D+(f))⊗P(f)
BI,f

of Theorem 4.2.3 gives the identity.

4.3 Commutativity of the functors with tensor

products and internal hom’s.

In this final section we will show that the two functors commute with
tensor products and internal hom’s.

Firstly we turn our attention to tensor products. And define the
tensor product of two ϕ-modules as follows.

Definition 4.3.1. Given two ϕ-modules (M,ϕM), (N,ϕN) over B we
define their tensor product in the category ϕ-ModB as (M⊗BN,ϕM⊗
ϕN).

Here M⊗BN is finitely generated projective as a tensor product of
finitely generated projective modules. On simple tensors the ϕM ⊗ϕN
is given by

(ϕM ⊗ ϕN)(m⊗B n) = ϕM(m)⊗B ϕN(n)

and has inverse (ϕ−1
M ⊗ ϕ

−1
N ). Finally we calculate

(ϕM ⊗ ϕN)(b(m⊗ n)) = (ϕM ⊗ ϕN)(b ·m⊗ n) = ϕM(b ·m)⊗ ϕN(n)

= (ϕ(b) · ϕM(m))⊗ ϕN(n) = ϕ(b) · (ϕM(m)⊗ ϕN(n))

= ϕ(b) · (ϕM⊗ϕN)(m⊗ n),

showing that ϕM ⊗ ϕN is semilinear.
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Proposition 4.3.2. Algebraization commutes with tensor products.

Proof. Let M,N ∈ ϕ-ModB. Then there is a natural homomorphism
of P -modules Malg ⊗P Nalg → (M ⊗B N)alg satisfying x⊗ y 7→ x⊗ y.
Applying (̃·) we get a homomorphism of OX-modules

Malg ⊗P Nalg
∼∼=

Malg
∼

⊗OX Nalg
∼

= FM ⊗OX FN → FM⊗BN = (M ⊗B N)alg
∼

.

In order to see that it is an isomorphism it suffices to see that for any
f ∈ Bϕ=π \ {0} the homomorphism of P(f)-modules

(FM ⊗OX FN)(D+(f)) =
Malg

(f) ⊗P(f)
Nalg

(f) → (M ⊗B N)alg(f) = FM⊗BN(D+(f))

is bijective. Using lemma 4.2.2 for a suitably chosen compact interval
I, it is enough to see this bijectivity after base change to BI,f . But
the map one obtains is the isomorphism

Malg
(f) ⊗P(f)

Nalg
(f) ⊗P(f)

BI,f
∼= (Malg

(f) ⊗P(f)
BI,f)⊗BI,f (Nalg

(f) ⊗P(f)
BI,f)

∼= (M ⊗B BI,f)⊗BI,f (N ⊗B BI,f) ∼= M ⊗B N ⊗B BI,f

∼= (M ⊗B N)alg(f) ⊗P(f)
BI,f

from Theorem 4.2.3 applied to M,N and M ⊗B N .

Proposition 4.3.3. Analytization commutes with tensor products.

Proof. Since pullback and the (̃·) construction on affine schemes com-
mute with tensor products, we have:

MF⊗OXG,I = MF ,I ⊗BI MG,I .

Therefore, Proposition 3.3.7 gives

MF⊗OXG,I = MF ,I ⊗BI MG,I ∼= MF ⊗B BI ⊗BI MG,I ∼= MF ⊗B MG,I .

45



Chapter 4

Because of Lemma 4.2.5 we obtain

MF⊗OXG = lim←−
I

(MF⊗OXG,I)
∼= lim←−

I

(MF ⊗B MG,I)

∼= MF ⊗B lim←−
I

MG,I = MF ⊗B MG

Next we turn our attention to internal hom’s.

Definition 4.3.4. Given two ϕ-modules (M,ϕM), (N,ϕN) we define
their internal hom in the category of ϕ-ModB as

Hom(M,N) := HomB(M,N)

as a B-module with the ϕ-linear automorphism

ϕHom(M,N) := (f 7→ ϕN ◦ f ◦ (ϕM)−1).

Here HomB(M,N) is again a finitely generated, projectiveB-module.
To see that one uses the characterization of finitely generated projec-
tive modules as direct summands of finitely generated free modules
and commutativity with finite direct sums of both arguments of in-
ternal hom’s. Moreover, HomB(B,B) ∼= B. For the map ϕHom(M,N),
the additivity of ϕHom(M,N)(f) is a direct consequence of the fact that
it is the composition of three additive maps. And for the scalars one
calculates

ϕHom(M,N)(f)(bm) = ϕN ◦ f ◦ ϕ−1
M (bm) = ϕN(f(ϕ−1

M (bm)))

= ϕN(f(ϕ−1(b) · ϕ−1
M (m))) = ϕN(ϕ−1(b) · f(ϕ−1

M (m)))

= ϕ(ϕ−1(b)) · ϕN(f(ϕ−1
M (m))) = b · ϕHom(M,N)(f)(m).

This shows that the map ϕHom(M,N)(f) is B-linear and therefore
ϕHom(M,N) is well defined. Furthermore it is additive since:

ϕHom(M,N)(f + g)(m) = ϕN ◦ (f + g) ◦ (ϕM)−1(m) = ϕN(f + g(ϕ−1
M (m)))

= ϕN(f(ϕ−1
M (m)) + g(ϕ−1

M (m))) = ϕN(f(ϕ−1
M (m))) + ϕN(g(ϕ−1

M (m)))

= ϕHom(M,N)(f)(m) + ϕHom(M,N)(g)(m).

For the semilinearity one calculates

ϕHom(M,N)(bf)(m) = ϕN ◦ (bf) ◦ (ϕM)−1(m) = ϕN(bf(ϕ−1
M (m)))

= ϕ(b) · ϕN(f(ϕ−1
M (m))) = (ϕ(b) · ϕHom(M,N)(f))(m).
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As for the surjectivity of ϕHom(M,N), given g ∈ HomB(M,N) one de-
fines f := (ϕN)−1 ◦ g ◦ ϕM and checks as above that f is B-linear.
Now

ϕHom(M,N)((ϕN)−1 ◦ g ◦ ϕM) = ϕN ◦ (ϕN)−1 ◦ g ◦ ϕM ◦ (ϕM)−1 = g.

As for the injectivity, given f ∈ ker(ϕHom(M,N)) we have

ϕN ◦ f ◦ ϕ−1
M = ϕHom(M,N)(f) = 0 ⇐⇒ f = (ϕN)−1 ◦ 0 ◦ ϕM = 0.

A special case of internal hom which warrants mentioning is the dual.

Definition 4.3.5. Given a ϕ-module (M,ϕM) we define its dual ϕ-
module as

M∨ := Hom(M,B) := HomB(M,B)

ϕM∨ : f 7→ ϕ ◦ f ◦ (ϕM)−1

We now prove the commutativity of the two functors with the in-
ternal hom’s. Towards that goal we use a formula relating internal
hom’s, duals and tensor products. In our particular case they have
the form

Hom(M,N) = HomB(M,N) ∼= M∨ ⊗B N
Hom(F ,G) = HomOX(F ,G) ∼= F∨ ⊗OX G.

Since commutativity with the tensor product is already proven, com-
mutativity with internal hom’s can be reduced to commutativity with
the dual. For algebraization we do not need this trick.

Proposition 4.3.6. Algebraization commutes with internal hom’s.

Proof. We need to show

(HomB(M,N))alg
∼∼= HomOX(FM ,FN).

Let f ∈ Bϕ=π \ {0} be arbitary, n ≥ 0 and g ∈ HomB(M,N)ϕ=πn, i.e.
ϕN ◦ g ◦ ϕ−1

M = πng.Then

g

fn
: Malg

(f) → Nalg
(f)

x

fm
7→ g(x)

fn+m
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is a well-defined P(f)-linear map. Thus we get a P(f)-linear map

T : HomB(M,N)alg(f) → HomP(f)
(Malg

(f) , N
alg
(f) )

where the left hand side is

HomB(M,N)alg(f) = HomB(M,N)alg
∼

(D+(f))

and the right hand side is

HomP(f)
(Malg

(f) , N
alg
(f) ) = HomOX(FM ,FN)(D+(f)).

Applying (̃·) to T and letting f vary we obtain a homomorphism of
OX-modules

HomB(M,N)alg
∼

→ HomOX(FM ,FN).

In order to see that it is bijective it suffices to see that T is bijective.
By Lemma 4.2.2 it is enough to show the bijectivity of T after base
change to BI,f for a suitably chosen compact interval I. But after the
base change T is the isomorphism

HomB(M,N)alg(f) ⊗P(f)
BI,f

∼= HomB(M,N)⊗B BI,f
∼=

HomBI,f (M ⊗B BI,f , N ⊗B BI,f) ∼=
HomBI,f (M

alg
(f) ⊗P(f)

BI,f , N
alg
(f) ⊗P(f)

BI,f) ∼=

HomP(f)
(Malg

(f) , N
alg
(f) )⊗P(f)

BI,f

obtained from Theorem 4.2.3 applied to M,N and HomB(M,N)

Proposition 4.3.7. Analytization commutes with internal hom’s.

Proof. Using the above formula relating internal hom’s, duals and ten-
sor products Proposition 4.3.3 gives

MHom(F ,G)
∼= MF∨⊗OXG

∼= MF∨ ⊗B MG.

We recall that analytization is the composition of inverse limit, global
sections and pullback. Pullback and the (̃·)-construction on affine
schemes commute with duals. i.e.

MF∨,I ∼= (MF ,I)
∨ = HomBI(MF ,I , BI)

(?)∼= HomBI(MF ⊗B BI , BI)
∼= HomB(MF , BI)
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where the (?) isomorphism is the one obtained from Proposition 3.3.7.
Now we calculate

MF∨ = lim←−
I

(MF∨,I) ∼= lim←−
I

((MF ,I)
∨) ∼= lim←−

I

HomB(MF , BI)

∼= HomB(MF , lim←−
I

BI) = HomB(MF , B) = (MF)∨

and thus

MHom(F ,G)
∼= (MF)∨ ⊗B MG ∼= Hom(MF ,MG)
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