Model categories and pro-p Iwahori-Hecke modules
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Abstract. Let G denote a possibly discrete topological group admitting
an open subgroup I which is pro-p. If H denotes the corresponding Hecke
algebra over a field k£ of characteristic p then we study the adjunction be-
tween H-modules and k-linear smooth G-representations in terms of various
model structures. If H is a Gorenstein ring we single out a full subcategory
of smooth G-representations which is equivalent to the category of all Goren-
stein projective H-modules via the functor of I-invariants. This applies to
groups of rational points of split connected reductive groups over finite and
over non-archimedean local fields, thus generalizing a theorem of Cabanes.
Moreover, we show that the Gorenstein projective model structure on the
category of H-modules admits a right transfer. On the homotopy level the
right derived functor of I-invariants then admits a right inverse and becomes
an equivalence when restricted to a suitable subcategory.
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0 Introduction

Let p denote a prime number and let G denote a topological group admitting
an open subgroup I which is pro-p. If k is a field of characteristic p we let
X= indIG(k) denote the G-representation compactly induced from the trivial
I-representation k. The opposite endomorphism ring H = Endg(X)°P can
also be realized as the double coset algebra H = k[I\G/I] with respect to
the usual convolution product.

We let Rep;’(G) denote the category of k-linear G-representations which
are smooth in the sense that the stabilizer of any vector is open in G. If G
is discrete then Rep;’ (G) is the category of all k-linear G-representations.
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Let Mod(H ) denote the category of left H-modules. There is an adjunction
(1) F:Mod(H) 2 Repy (G):U

given by FM = X®y M and UV = V! 2 Homg(X,V). The study of G-
representations in terms of this adjunction plays a prominent role in various
situations. If G is the group of rational points of a split connected reductive
group over a finite field of characteristic p, for example, and if I denotes a
p-Sylow subgroup of G then this strategy has a long history.

Our motivating example, however, concerns the case that G is the group of
rational points of a split connected reductive group over a non-archimedean
local field of residue characteristic p. If I denotes a pro-p Iwahori subgroup
of G in the sense of Bruhat-Tits theory then the algebra H is known as the
corresponding pro-p Iwahori-Hecke algebra. In this situation the category
Rep;’(G) plays a central role in the mod-p local Langlands program. Al-
though the category of H-modules is rather well-understood the properties
of the category Rep;’ (G) remain obscure. In fact, the behavior of the ad-
junction is not sufficiently clear beyond G = GL2(Q)) and a few related
cases (cf. the results of Ollivier in [27]).

Since k is of characteristic p the functor U is generally not exact. It is
therefore natural to study the situation from a homological point of view.
For reductive groups over non-archimedean local fields important work in
this direction has been done by Ollivier, Schneider and Koziol (cf. [28], [29]
and [23], for example). Moreover, Schneider showed that the adjunction
induces an equivalence on a derived level if H is replaced by a suitable
dg-variant H, (cf. [34], Theorem 9). Unfortunately, the structure of this
algebra seems very hard to understand although some recent progress has
been made by Ollivier and Schneider (cf. [30] and [31]).

In this article we take a different approach. Our aim is to shed some light on
the nature of the adjunction using the language and methods of model
categories. We stay in the very general situation described at the beginning.
For the finer results in §4 and §5 we will assume, however, that the ring H is
Gorenstein. In Example we give a list of important situations to which
this assumption applies. Due to results of Tinberg, Ollivier and Schneider
this includes groups of rational points of split connected reductive groups
over finite and non-archimedean local fields.

In §1| we give a brief exposition of the general theory of model categories.
Any model category C has an associated homotopy category Ho(C) that may
be thought of as a generalized derived category. The model structures re-
levant for our purposes will either be constructed using cotorsion pairs in



the sense of Hovey (cf. Theorem or via the left/right transfer along
an adjunction. We emphasize that cotorsion pairs differ from the torsion
theories advertised in [29]. In rather special situations, however, there is a
correspondence between localizing cotorsion pairs and torsion theories in the
homotopy category (cf. [33], Proposition 3.3). In Proposition we give a
criterion for the existence of the right transfer based on path objects.

Let Ch(H) and Ch(G) denote the categories of unbounded chain complexes
over Mod(H) and Rep;’(G), respectively. By working termwise there is
an induced adjunction F': Ch(H) 2 Ch(G) : U. In Proposition and
Proposition we show that the projective model structure on Ch(H) ad-
mits a right transfer to Ch(G) yielding a Quillen equivalence. In particular,
the derived adjunction

LF:D(H) 2 Ho(Ch(G)) : RU

is an equivalence of categories. Here D(H) denotes the usual unbounded
derived category of the ring H. Although this result is somewhat formal
the necessary input from relative homological algebra plays a major role in
the sequel. In particular, this concerns the notion of an I-exact sequence
of G-representations. This is an object X € Ch(G) such that the complex
UX € Ch(H) of I-invariants is exact (cf. Lemma [2.4). Moreover, pulling
back the notion of a projective H-module yields the relative notion of an
I-projective G-representation. These are characterized in Lemma 2.8 It lies
at the heart of many of our arguments that the adjunction restricts to
an equivalence between the full subcategories of projective H-modules and
I-projective G-representations, respectively (cf. Corollary .

We point out that the category Rep;’(G) does not have any non-zero pro-
jective objects unless the group G is discrete (cf. Remark . However,
we show that the injective model structure on Ch(G) admits a left transfer
to Ch(H) (cf. Proposition . A detailed analysis of the corresponding

Quillen adjunction will be given elsewhere.

In §3| we collect known results about model structures over Gorenstein rings.
We start with the notion of a Gorenstein projective object in an abelian
category with enough projectives. If S is a Gorenstein ring then Hovey
constructed a model structure on Mod(.S) for which the cofibrant objects
are the Gorenstein projective S-modules and the trivial objects are the S-
modules of finite projective dimension (cf. Theorem . This is called the
Gorenstein projective model structure. If S = H comes from a split con-
nected reductive group over a non-archimedean local field as in Example
u (iv) then the corresponding homotopy category seems particularly well-
suited to study the supersingular H-modules (cf. Remark . Returning



to the general case there is a Quillen equivalent model structure on Ch(.S)
constructed by Becker. This is called the singular projective model struc-
ture (cf. Theorem . Its homotopy category is related to the singularity
category of S studied by Krause (cf. [24]). We emphasize that there is an
extensive literature on homological algebra over Gorenstein rings starting
with the seminal article [5] of Buchweitz.

In §4] we specialize to the case S = H assuming that the ring H is Gorenstein.
In Proposition [4.5| we show that the singular projective model structure on
Ch(H) admits a right transfer along the adjunction F': Ch(H) 2 Ch(G) : U
and yields a Quillen equivalence. On both sides the loop and suspension
functors are induced by the usual shift functors (cf. Lemma and Corollary
. Moreover, the derived adjunction is an equivalence of categories

LF : Kpo(Proj(H)) 2 Ho(Ch(G)) : RU

where the left hand side denotes the category of acyclic complexes of pro-
jective H-modules up to chain homotopy. The cofibrant objects of Ch(G)
are the I-exact complexes of I-projective G-representations (cf. Lemma [4.7))
and the cofibrations are made explicit in Corollary

In Proposition we construct suitable path objects to show that the
Gorenstein projective model structure on Mod(H) admits a right transfer
along the adjunction . The analysis of the derived adjunction

(2) LF :Ho(Mod(H)) 2 Ho(Repy, (G)) : RU

is much less formal than in the previous situations because the cofibrant
H-modules are only Gorenstein projective. Our main observation is that
for a Gorenstein projective module the unit of the adjunction is a split
monomorphism with an explicit cokernel (cf. Proposition. Moreover, we
can make explicit the homotopy relation on morphisms between cofibrant
objects (cf. Lemma . As a consequence, the left derived functor LF' is
faithful and the right derived functor RU is essentially surjective (cf. Theo-
rem . We also give a detailed analysis of the cofibrations in Repy (G).
Although this model category is not constructed from a cotorsion pair di-
rectly the cofibrant and the trivial objects satisfy a suitable orthogonality
relation (cf. Lemma. Finally, in Propositionwe give several equiv-
alent obstructions to the derived adjunction being an equivalence. The
most interesting of these is related to the fact that the right transfer need
no longer be stable. The necessary computation of the loop and suspension
functors is described in Lemma

However, the situation can be improved significantly. As a major result we
show in §5|that the functor U : Repy’ (G) - Mod(H) restricts to an equiva-
lence between suitable full subcategories. On the one hand, we let GProj(H)



denote the full subcategory of Mod(H) consisting of all Gorenstein projec-
tive H-modules. On the other hand, we define the relative notion of an
I-Gorenstein projective G-representation (cf. Definition . This yields a
full subcategory C(G) of Rep;’(G) such that the functor U restricts to an
equivalence C(G) = GProj(H) (cf. Theorem[5.4). There is an explicit inverse
functor F whose relation to the functor F is spelled out in Lemma[5.8 If the
ring H is selfinjective then GProj(H) = Mod(H) and C(G) is the category of
representations which are both a quotient and a subobject of an I-projective
G-representation. In this case we recover a result of Cabanes concerning the
case of finite groups with a split B N-pair of characteristic p (cf. Remark.

Endowed with the class of short I-exact sequences the category C(G) turns
out to be a weakly idempotent complete Frobenius category (cf. Corollary
[.9). Thus, C(G) has a canonical exact model structure and an associated
homotopy category (cf. Proposition [5.1). If Rep;’(G) is endowed with the
right transfer studied in §4)and if i : C(G) - Rep;’ (G) denotes the inclusion
functor then the composition

Ho(C(G)) 2% Ho(Rep: (@) 2% Ho(Mod(H))

is an equivalence of categories (cf. Theorem . In particular, RU admits
a right inverse and Ho(7) allows us to view Ho(C(G)) as a (not necessarily
full) subcategory of Ho(Repy (G)) on which RU becomes an equivalence.
We hope this result amply demonstrates the strength of our approach.

At the end of our article we specialize to the case that H is the pro-p
Iwahori-Hecke algebra of a split connected reductive group G over a non-
archimedean local field of residue characteristic p. If G is semisimple we
consider the canonical Gorenstein projective resolution GPo(M) - M — 0
of an H-module M constructed by Ollivier and Schneider (cf. [28], §6.4).
On the other hand, we consider the complex Co"(&X(,), F(M)) of oriented
chains of the G-equivariant coefficient system F(M) on the Bruhat-Tits
building X of G associated with M by the second author (cf. [22], §3.2).
In Proposition [5.13| we show that there is a functorial isomorphism of com-
plexes CJ"(X(q), F(M)) = FGP(M).. In particular, the chain complex of
F (M) consists of objects of C(G). For the chain complex of a fixed point
system as studied in [28], §3.1, this is generally not true (cf. Example .
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Notation and conventions. A class of objects of a category C will usu-
ally be identified with the corresponding full subcategory. If we denote an
adjunction by F': C 2 D : U then F is always assumed to be left adjoint
to U. The unit (resp. the counit) of an adjunction will always be denoted
by n (resp. €). We say that a functor F': C — D preserves (resp. reflects) a
property (P) if F'x (resp. *) has property (P) whenever % (resp. F'x) does.
For any unital ring S we denote by Mod(S) the category of left S-modules.
Given M, N € Mod(S) we write Homg (M, N) for the set of S-linear maps
from M to N.

1 Preliminaries on model categories

We largely follow the conventions of Hovey’s book [19]. A model category is
a locally small and bicomplete category C endowed with a model structure
consisting of three subcategories — whose morphisms are called the weak
equivalences, cofibrations and fibrations, respectively — and two functorial
factorizations as in [19], Definition 1.1.3. As usual, a cofibration (resp. a
fibration) is called trivial if it is also a weak equivalence.

An object X €C is called cofibrant (resp. fibrant) if the map from the initial
object to X (resp. from X to the terminal object) is a cofibration (resp. a
fibration). We denote by C. (resp. Cy, resp. C¢) the full subcategory of C
consisting of all objects which are cofibrant (resp. fibrant, resp. cofibrant
and fibrant). By

Q.:C—C. and Qf:C—Cs

we denote the cofibrant replacement functor and the fibrant replacement
functor, respectively (cf. [19], page 5). The cofibrant replacement functor
will often be abbreviated to Q. = Q.

A path object for an object B € C is an object P € C such that the diagonal

morphism A : B - B x B admits a factorization B —» P -2 Bx B where i
is a weak equivalence and p is a fibration. We note that while path objects
can be constructed via the functorial factorizations of A the above definition
allows any factorization with the required properties.

If f:A—- Bandg:A— B are morphisms in C then a right homotopy from f
to g is a morphism H : A - P from A into a path object B P2 BxB
for B such that pipH = f and popH = g. Here p1,p2: B x B - B denote the
two projections. The morphisms f and g are called right homotopic if there
is a right homotopy from f to g.



There are also dual notions of cylinder objects and left homotopies as in [19],
Definition 1.2.4. Morphisms which are both right and left homotopic are
called homotopic. If X € C. and Y € Cy then two morphisms f,g: X — Y are
right homotopic if and only if they are left homotopic (cf. [19], Proposition
1.2.5 (v)). Moreover, on the morphisms of C.s the homotopy relation ~ is an
equivalence relation compatible with composition (cf. [19], Corollary 1.2.7).
Dividing out the homotopy relation on the level of morphisms leads to a
category denoted Cgp/~.

The homotopy category Ho(C) of a model category C is the localization of C
with respect to the class of weak equivalences (cf. [19], Definition 1.2.1). We
will usually just write C - Ho(C) for the canonical functor of C into its ho-
motopy category. Any subcategory of C has an induced class of weak equiv-
alences and the corresponding homotopy category is defined analogously. It
is a fundamental result that the inclusion C,; — C induces equivalences of
categories

(3) Cef/~ — Ho(Cer) —> Ho(C)

(cf. [19], Theorem 1.2.10 (i)). Given two objects X,Y € C the set of mor-
phisms from X to Y in Ho(C) is usually denoted by [X,Y].

Recall that a functor F': C — D (resp. U : D — C) between model categories
is called left Quillen (resp. right Quillen) if it admits a right (resp. left) ad-
joint and preserves cofibrations and trivial cofibrations (resp. fibrations and
trivial fibrations). If F': C 2 D : U is an adjunction between model cate-
gories then F' is left Quillen if and only if U is right Quillen (cf. [19], Lemma
1.3.4). In this case we speak of a Quillen adjunction. A Quillen adjunction
is called a Quillen equivalence if for all cofibrant X € C and all fibrant Y € D
a morphism F'X — Y is a weak equivalence in D if and only if the adjoint
morphism X — UY is a weak equivalence in C (cf. [19], Definition 1.3.12).

We refer to [19], Proposition 1.3.13 and Corollary 1.3.16, for various char-
acterizations of when a Quillen adjunction is a Quillen equivalence. At this
point we just recall how this can be seen on the level of homotopy categories.
Note that the functors

c 2 C. — Ho(C.) and Ce Sp—s Ho(D)

send weak equivalences to isomorphisms. Indeed, for the left functor this
follows from the 2-out-of-3 property for weak equivalences. For the right
functor this follows from [19], Lemma 1.1.12. By the universal property
of localizations there are induced functors Ho(Q.) : Ho(C) - Ho(C.) and
Ho(F) : Ho(C.) » Ho(D). The left derived functor LF : Ho(C) - Ho(D) of



F is then defined to be the composite

(4) Ho(C) "9 Ho(c,) 22 Ho(D)
(cf. [19], Definition 1.3.6). Similarly, one defines the right derived functor
RU :Ho(D) - Ho(C) of U as the composite
H Ho(U
(5) Ho(D) % Ho(p;) 2™ Ho(0),
In this situation LF is left adjoint to RU (cf. [19], Lemma 1.3.10). Moreover,

F and U form a Quillen equivalence if and only if LF and RU are inverse
equivalences of categories (cf. [19], Proposition 1.3.13).

A powerful tool to construct model structures on an abelian category A
was developed by Hovey in [21I]. It is based on a fixed proper class P of
short exact sequences in A leading to relative extension groups Ext%(X,Y)
as in [26], Chapter XII.4. An epimorphism f : X - Y in A is called a
P-epimorphism if the short exact sequence

O—>ker(f)—>Xi>Y—>O

belongs to P. The notion of a P-monomorphism is defined dually. Given
classes C and F of objects of A consider the classes of objects

LF={X e A|Exth(X,Y)=0for all Y € F}

and
Ct={Y e A|Extp(X,Y) =0 for all X eC}.

A cotorsion pair with respect to P is a pair (C,F) of classes of objects of
A satisfying C = *F and C* = F (cf. [2]], Definition 2.3). It is said to have
enough functorial projectives if for any X € A there is a P-epimorphism
f:Y - X which is functorial in X and satisfies Y € C and ker(f) € F. The
existence of enough functorial injectives is defined dually. A cotorsion pair
which has both enough functorial projectives and enough functorial injec-
tives is called functorially complete.

For the definition of a model structure on A which is compatible with P
we refer to [21], Definition 2.1. A subcategory of A is called P-thick if it
is closed under retracts and satisfies the 2-out-of-3 property with respect
to short exact sequences in P. If A is an abelian category endowed with
the structure of a model category then an object X € A is called trivial
if the morphism 0 - X (or equivalently the morphism X — 0) is a weak
equivalence. We denote by A; the full subcategory of A consisting of all
trivial objects. The following fundamental theorem is due to Hovey (cf.
[21], Theorem 2.2).



Theorem 1.1 (Hovey). Let A be a bicomplete abelian category with a fixed
proper class P of short exact sequences.

(i) If A carries a model structure which is compatible with P then A; is
P-thick and (A, AynAyr) and (A.nAs, Af) are functorially complete
cotorsion pairs.

(i) If C, F and T are full subcategories of A such that T is P-thick and
such that (Cn'T,F) and (C,TnF) are functorially complete cotorsion
pairs then there is a unique model structure on A which is compatible

with P and which satisfies C = Ac, F = Ay and T = A;. O

In the situation of Theorem (ii) the definition of the corresponding cofi-
brations, fibrations and weak equivalences is given explicitly in [2I], Defini-
tion 5.1. If P is the class of all short exact sequences then a model structure
(resp. a model category) as in Theorem is called abelian. An abelian
model structure is called hereditary if the class of cofibrant objects is closed
under taking kernels of epimorphisms and if the class of fibrant objects is
closed under taking cokernels of monomorphisms.

For simplicity we will often assume that all objects of our categories are
small (cf. [20], Definition A.1). For example, this holds in any Grothendieck
category (cf. [20], Proposition A.2) which is the main case of interest for us.
We refer to [21], Corollary 6.8, for a manageable criterion to check whether
a given cotorsion pair on a Grothendieck category is functorially complete.

Let Z be a class of morphisms in a category C. Recall that a morphism in
C is called Z-injective if it satisfies the right lifting property with respect to
all morphisms in Z in the sense of [19], Definition 1.1.2. The class of these
morphisms is denoted by Z-inj. A morphism in C is called an Z-cofibration
if it satisfies the left lifting property with respect to all morphisms in Z-inj.
The class of these morphisms is denoted by Z-cof.

For the definition of a model category C which is cofibrantly generated we
refer to [19], Definition 2.1.17. If every object of C is small then this means
that there are sets Z and J of morphisms of C such that the class of fibra-
tions is equal to J-inj and the class of trivial fibrations is equal to Z-inj.
The elements of the sets Z and J are called the generating cofibrations and
the generating trivial cofibrations of C, respectively.

Assume that we have an adjunction F':C 2 D : U. If C is a model category
and if D is bicomplete then there is a natural candidate for an associated
model structure on D. Namely, define a fibration (resp. a weak equivalence,
resp. a trivial fibration) in D to be a morphism f in D such that Uf is a
fibration (resp. a weak equivalence, resp. a trivial fibration) in C. Moreover,



define a cofibration in D to be a morphism which satisfies the left lifting
property with respect to all trivial fibrations. If these three classes of mor-
phisms form part of a model structure on D then this is called the right
transfer and we say that the right transfer exists. We note that the term
right induction is common, as well.

In order to discuss the existence of the right transfer we call a morphism in D
anodyne if it satisfies the left lifting property with respect to all fibrations. If
the right transfer exists then an anodyne morphism is automatically a weak
equivalence (cf. [19], Lemma 1.1.10). In certain situations this condition is
also sufficient. Indeed, we have the following result which is a variant of
[18], Theorem 11.3.2.

Theorem 1.2. Let F:C =2 D :U be an adjunction where C is a cofibrantly
generated model category with generating cofibrations T and generating triv-
tal cofibrations J. Moreover, assume that D is bicomplete and that all ob-
jects of D are small. If every anodyne morphism in D is a weak equivalence
then the right transfer exists. It is cofibrantly generated with generating
cofibrations FZ and generating trivial cofibrations F.J .

Proof. If f is a morphism in D then Uf € Z-inj (resp. U f € J-inj) if and
only if f € FZ-inj (resp. f € FJ-inj) by the adjunction. Therefore, the
class of fibrations in D is F'J-inj, the class of trivial fibrations is F'Z-inj, the
class of cofibrations is F'Z-cof and the class of anodyne morphisms is F . 7-cof.

It now suffices to check that the conditions in [I8], Theorem 11.3.1, are
satisfied for F'Z, F'J and the class of weak equivalences. Note first that the
latter has the 2-out-of-3 property and is closed under retracts because U is a
functor. Conditions (1)—(3) and (4)(b) in [18], Theorem 11.3.1, follow from
the fact that every object in D is small, that every anodyne morphism is a
weak equivalence and that the morphisms in FZ-inj are exactly the trivial
fibrations. O

Remark 1.3. The idea of the right transfer goes back to the original work of
Quillen (cf. [32], section II.4). There are more general versions of the above
theorem replacing the smallness assumptions on D by suitable properties of
the functor F. See [I§], Theorem 11.3.2, for instance.

It might still be non-trivial to check that anodyne morphisms are weak
equivalences. However, there is a simple condition under which this is true.
Indeed, assume that C is a model category and that we have an adjunction
F :C 2 D :U where D is bicomplete. Since we have notions of fibrations
and weak equivalences in D we can make sense of path objects and right
homotopies in D, as well. Moreover, since U preserves products, fibrations
and weak equivalences it also preserves path objects and right homotopies.
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Due to a lack of reference we include a proof of the following variant of [16],
Theorem 3.8.

Proposition 1.4. Assume that C is a model category and that we have an
adjunction F : C 2 D : U where D is bicomplete. If every object in C is
fibrant and if every object of D admits a path object then every anodyne
morphism in D is a weak equivalence.

Proof. First note that every object in D is fibrant because U preserves the
terminal object *. Let j : A - B be an anodyne morphism in D. By
applying the left lifting property to the square

A Ay g

b

B ——

we get a morphism u : B — A such that uj =id4. Consider f =ju: B - B
and let P be a path object for B with factorization A = pi into a fibration
p and a weak equivalence i. Since uj =1ids we have fj = j. Therefore, the
outer square in the diagram

A—" P
lj T e
b

mBXB

commutes. The left lifting property implies the existence of H : B - P
making the two triangles commute. By construction, H is a right homotopy
from idp to f. Since U preserves right homotopies idy p is right homotopic
to Uf = UjUu in C. Since right homotopic morphisms are identified in
Ho(C) (cf. [19], Theorem 1.2.10 (iii)) Uw is right inverse to Uj in Ho(C). Of
course, it is also left inverse because this already holds in C. Consequently,
Uj becomes an isomorphism in Ho(C), hence is a weak equivalence in C by
[19], Theorem 1.2.10 (iv). Thus, j is a weak equivalence in D. O

Remark 1.5. The result in Proposition [1.4] is again implicit in the work
of Quillen [32] who works in the simplicial setting. The condition that
every object is fibrant can be replaced by the more general condition that
D admits a functorial fibrant replacement and functorial path objects (cf.
[16], Theorem 3.8). The above proof is a rewording of its simplicial version
n [15], Lemma I1.6.1.

Lemma 1.6. Suppose that we have an adjunction F :C 2 D : U where D
is bicomplete and C is a model category whose right transfer exvists. Then F
and U form a Quillen adjunction. This is a Quillen equivalence if and only
if the unit nx : X - UFX is a weak equivalence for all cofibrant X in C.

11



Proof. 1t follows immediately from the definition of the right transfer that
the functor U is right Quillen. Now assume that nx is a weak equivalence
for all cofibrant X in C. Consider a morphism f: FX - Y where X €C is
cofibrant and Y € D is fibrant. By definition of the right transfer f : FX - Y
is a weak equivalence if and only if so is U f. By the 2-out-of-3 property this
is true if and only if U fnx is a weak equivalence. However, the latter is the
adjoint of f. Thus, we have a Quillen equivalence.

Conversely, if we have a Quillen equivalence and if X is cofibrant in C con-
sider the fibrant replacement f: FX — Q;FX of FX in D. Since this is a
weak equivalence so are U f and the adjoint morphism U fnx. The 2-out-of-3
property implies that also nx is a weak equivalence. O

A bicomplete category is called pointed if the morphism from the initial
to the terminal object is an isomorphism. The homotopy category of any
pointed model category C admits two endofunctors ¥ and €2 called the sus-
pension functor and the loop functor, respectively. Given X € C fibrant and
P a path object for X, the loop 2X of X is defined to be the pullback of
the diagram

P LN X xX «—

where * denotes the initial/terminal object of C. Given X € C cofibrant, its
suspension X is defined dually using a cylinder object (cf. [1], Definition
3.1.2). The suspension functor ¥ is left adjoint to the loop functor € (cf.
[1], Proposition 3.1.7). If they are equivalences of categories then the model
category C is called stable. If F': C =2 D : U is a Quillen adjunction then
LF commutes with ¥ and RU commutes with Q (cf. [I], Corollary 3.1.4).
If both model categories are stable then also RU commutes with 3 and LF
commutes with Q (cf. [I], Corollary 3.2.10).

To compute the suspension of an object X in an abelian model category A
choose a trivial fibration Y - X with Y cofibrant. 0 —->Y - Y’ > Y" -0
is an exact sequence with Y trivially fibrant and Y’ cofibrant then XX = Y
in Ho(\A). For the loop functor one chooses a trivial cofibration X — Y with
Y fibrant. If 0 - Y” - Y’ - Y — 0 is an exact sequence in C with Y triv-
ially cofibrant and Y fibrant then QX ~Y" in Ho(\A). If an abelian model
structure is hereditary then it is also stable (cf. [3], Corollary 1.1.15).

Finally, we give two standard examples of a model category that will play a
role in the following. Given an abelian category A we denote by Ch(.A) the
category of unbounded chain complexes
d d d d_
X=Xe=Xa,d)=(... A 54> A4, ..)
over A. Let 1y : A - Ch(A) denote the functor obtained by viewing an
object of A as a complex concentrated in degree zero. We will often use it
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to view A as a full subcategory of Ch(.A) and suppress it from the notation.
Recall that ¢g admits both a left adjoint @y and a right adjoint Zy given by

(6) QoX =coker(d;) and ZyX =ker(dp).

For any integer n we denote by X — B, X = im(d,+1) the n-th boundary
functor, by X — Z, X = ker(d,,) the n-th cycle functor and by X —» H, X =
ZnX|BpX the n-th homology functor Ch(.A) - A. Let [1] denote the shift
functor on Ch(A) defined by (Xe,de)[1] = (Ye,€e) with ¥,, = X,,41 and
en = —dp41 for all n € Z. We denote by [-1] the two-sided inverse of [1].

Note that together with A also the category Ch(A) is abelian. Moreover,
we have the following standard facts.

Lemma 1.7. Let A be an abelian category.
(i) If A is a Grothendieck category then so is Ch(A).
(ii) If A has enough projectives then so does Ch(A).

Proof. The abelian category Ch(.A) is cocomplete by defining colimits term-
wise. Filtered colimits are exact because kernels and cokernels are de-
fined termwise, as well. If U is a generator of A consider the complex
DU =[0-U L AN 0] in Ch(A) with U in degrees n and n— 1. Then
@,z DU is a generator of Ch(A). This shows (i).

As for (ii) let A% denote the category of Z-graded objects of A and consider
the functor T : Ch(A) - A% given by X, = @,z X, It has the left adjoint
D sending @,,c7 Xy, t0 Bpez D" X, In degree n the map of complexes

DX, - DTX, =5 X,

is the identity on X,. This implies that the counit ex, : DT X, - X, is
an epimorphism. Therefore, given X, € Ch(A) it suffices to construct an
epimorphism f : Qs > DT X, where Qs € Ch(A) is projective. For any n
we choose an epimorphism Y,, - X,, in A where Y}, is projective. Consider
the epimorphism g : @pez Yn = ®nez Xn in A% and note that @,z Y, is a
projective object in A%. We claim that the induced map

f=Dg:Q.=D(@PY,) — D(P X,)=DTX,

nez nez

in Ch(A) is as required. Indeed, f is an epimorphism because D is a left
adjoint and so preserves epimorphisms. Moreover, (), is projective because
the right adjoint T is exact and hence D preserves projectives. O
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Recall that any Grothendieck category is automatically complete and there-
fore bicomplete. If A is a Grothendieck category there is a cofibrantly gener-
ated model structure on Ch(.A) for which the cofibrations are the monomor-
phisms and the weak equivalences are the quasi-isomorphisms (cf. [4], Propo-
sition 3.13). This is called the injective model structure on Ch(.A). We write
Ch(A)™ for the corresponding model category. Its homotopy category is
equivalent to the unbounded derived category D(A) = Ho(Ch(A)™) of A.

If A is the category of modules over a ring then the injective model structure
on Ch(A) is also constructed in [19], §2.3. It follows as in [19], Proposition
2.3.20, that the fibrations are precisely the termwise split surjections with
fibrant kernels. Looking at the long exact homology sequence we see that
the trivial fibrations are precisely the termwise split surjections with triv-
ially fibrant kernels. Consequently, the injective model structure on Ch(.A)
is compatible with the class P of all short exact sequences.

By Theorem the injective model structure is related to two functorially
complete cotorsion pairs on Ch(.A) given as follows. Note that every object
of Ch(A)™ is cofibrant, i.e. we have C = Ch(A)™ = Ch(A). Moreover, the
class T = Ch(.A)inJ of trivial objects is precisely that of the acyclic com-
plexes. If we denote by F = Ch(.A)Eﬂnj the class of fibrant objects then we
know from Theorem that 7 = 7*. In other words, a complex Y is fi-
brant if and only if Extéh( A)(X ,Y) =0 for any acyclic complex X. As in
[11], Proposition 3.4, one shows that this condition is satisfied if and only
if Y is a dg-injective complex, i.e. Y is termwise injective and the internal
hom complex Hom(X,Y) is acyclic for any acyclic complex X.

Apart from the cotorsion pair (CnT,F) = (T,T*) there is also the cotorsion
pair (C, T nF) = (Ch(A),T nT*). As in [11], Proposition 3.7, the class
T nT*t is that of the injective complexes, i.e. of the injective objects of
Ch(A). Recall that these are precisely the split acyclic complexes which are
termwise injective.

Remark 1.8. There is also the notion of a K -injective complex in the sense
of Spaltenstein (cf. [35], page 124). Recall that a complex Y € Ch(A) is
K-injective if and only if the complex Hom(X,Y") is acyclic for any acyclic
complex X. As mentioned above, a complex is dg-injective if and only if it
is K-injective and termwise injective. Consequently, many of Spaltenstein’s
results in [35] can be reproved using the injective model structure on Ch(.A).
For example, the fibrant replacement ¥ — QY of Y € Ch(\A) is an injective
quasi-isomorphism such that QY is dg-injective.

Under suitable assumptions on A there is a projective version of the above
results. For our purposes it will be sufficient to stick to the classical case
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that A = Mod(S) is the category of left modules over a ring S. In this case
we write Ch(S) = Ch(Mod(S)). According to [19], Theorem 2.3.11, there is
a cofibrantly generated model structure on Ch(S) for which the fibrations
are the surjections and the weak equivalences are the quasi-isomorphisms.
This is called the projective model structure on Ch(S). We write Ch(S)FrJ
for the corresponding model category. Its homotopy category is again equiv-
alent to the unbounded derived category D(S) = Ho(Ch(S)F™)) of Mod(S).

By [19], Proposition 2.3.9, the cofibrations are precisely the termwise split
monomorphisms with cofibrant cokernel. It follows that the projective model
structure on Ch(S) is compatible with the class P of all short exact se-
quences. By Theorem it is related to two functorially complete cotorsion
pairs on Ch(S). Note that every object of Ch(S)F*°J is fibrant, i.e. we have

F= Ch(S)]P:roj = Ch(S). Moreover, the class 7 = Ch(S); ™ of trivial objects

is precisely that of the acyclic complexes. If we denote by C = Ch(S)
the class of cofibrant objects then we know from Theorem that C=+T.
In other words, a complex X is cofibrant if and only if Extéh( S)(X ,Y)=0

Proj
c

for any acyclic complex Y. As in [I1], Proposition 3.5, one shows that this
condition is satisfied if and only if X is a dg-projective complex, i.e. X is
termwise projective and the complex Hom(X,Y") is acyclic for any acyclic
complex Y.

Apart from the cotorsion pair (C,7 nF) = (*T,T) there is also the cotor-
sion pair (CnT,F) = (*T nT,Ch(S)). As in [II], Proposition 3.7, the
class *7 n T is that of the projective complexes, i.e. of the projective ob-
jects of Ch(S). Recall that these are precisely the split acyclic complexes
which are termwise projective. In Spaltenstein’s terminology a complex is
dg-projective if and only if it is K-projective and termwise projective.

Finally, it is clear from the above that id : Ch(S)™ = Ch(S)™ : id is
a Quillen adjunction. Of course, it is even a Quillen equivalence because
the classes of weak equivalences coincide. For both the projective and the
injective model structure on Ch(.S) the suspension ¥ = L[-1] is the left
derived functor of the shift functor [-1]. Likewise, the loop functor 2 = R[1]
is the right derived functor of the shift [1]. In a different setting an anologous
result will be proven in Lemma below.

2 Derived categories and relative homological algebra

Recall the following notions from relative homological algebra (cf. [§], §1).
We continue to denote by A an abelian category and fix a class P of objects
of A. Given any object P of A we say that a morphism f: A - Bin A is

15



P-epic or a P-epimorphism if the induced map
Hom 4 (P, A) - Hom4(P, B)

is surjective. Furthermore, we say that f is P-epic if it is P-epic for all
P eP. A sequence A R B L C is called P-ezact if gf =0 and if the
induced sequence Hom 4(P, A) —» Homy(P, B) -» Hom4(P,C) of abelian
groups is exact. The sequence A - B — (' is called P-exact if it is P-exact
for all P eP.

Definition 2.1. A projective class on A is a pair (P,E) where P is a class
of objects of A and £ is a class of morphisms in A such that the following
three conditions are satisfied.

(i) & is the class of all P-epimorphisms.

(ii) P is the class of all objects P of A such that every morphism in & is
P-epic.

(iii) For each object B in A there is a morphism f: P - B in A with P e P
and fef.

Example 2.2. For any ring S let P be the class of all projective S-modules
and let &€ be the class of all surjective S-linear maps. Then the pair (P, &)
is a projective class on A = Mod(S) called the standard projective class.

A P-resolution of an object B € A is a P-exact sequence P, > B - 0 in A
such that P, € P for all n > 0. Given another object C € A the group of
relative extensions of C' and B are defined by

(7) Ext(B,C) = H"Hom4(P,,C) for all n > 0.

Up to isomorphism they are independent of the chosen P-resolution of B
and any short P-exact sequence 0 -~ B' - B - B" — 0 gives rise to a long
exact sequence between relative extension groups, as usual.

Remark 2.3. In spite of the notational similarities the relative extension
groups in are not to be confused with those defining cotorsion pairs.
In fact, we shall see in examples below that short P-exact sequences are
generally not exact in the usual sense and hence do not belong to any proper
class of short exact sequences in A.

Suppose now that we have an adjunction F' : B 2 A : U between abelian
categories. Moreover, assume that (P’,E") is a projective class on B. Recall
that a retract of an object B € A is an object A € A admitting a right
invertible morphism B — A. Since A is abelian this is equivalent to A being
isomorphic to a direct summand of B. We define the pullback of the pair
(P’,&") along U to be the pair (P,E) where
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e P = {retracts of FP|P e P’} and
e E={f:B->C|Ufe&'}.
The proof of the following result is straightforward and left to the reader.

Lemma 2.4. With the above notation, the pullback (P,E) is a projective
class on A. Moreover, a sequence A - B — C in A is P-exact if and only
if it is a complex and the sequence UA - UB — UC in B is P'-exact. O

For the rest of this article we fix a field k of positive characteristic p and
denote by G a topological group admitting an open subgroup I which is
pro-p. Let Rep;’(G) denote the category of smooth k-linear representations
of G, i.e. of k-vector spaces endowed with a k-linear action of G such that
the stabilizer of any vector is open in . Its morphisms are the k-linear and
G-equivariant maps. Given V,W € Repy’ (G) we will write Homg (V, W) for
the set of morphisms from V' to W in Rep;’ (G). We explicitly allow G to
be discrete. In this case the category Repy (G) = Mod(k[G]) is that of all
k-linear representations of G.

Given V € Rep®(I) we denote by ind¥ (V') € Repi®(G) the compact induc-
tion of V from I to G, i.e. the k-vector space of all compactly supported
maps f : G — V satisfying f(gi) = i 1f(g) for all i € I and g € G. The
G-action on ind¥ (V) is given by (¢f)(g") = f(g™'¢’) for all g,¢' € G. We
endow k with the trivial action of I and set X = ind¥ (k) € Rep{®(G).

Setting H = Endg(X)°P Frobenius reciprocity shows that we have adjoint
functors

(8) F:Mod(H) 2 Repy (G): U

given by FM = Xy M and UV = V! 2 Homg (X, V). Since k has character-
istic p the functor U has the property that UV # 0 for all 0 # V € Repy’ (G)
(cf. [34], Lemma 1 (v)). Since U is also left exact it reflects monomorphisms.
For V' e Repy’ (G) the counit of the adjunction is the G-equivariant map
(9) ev: FUV =Xeg VI -V, 1,8vw gu,

where 1,7 denotes the characteristic function of the coset gI. Moreover,
given M € Mod(H) the unit n, is the H-linear map

(10) ma M~ UFM=(Xey M), mo1,8m.
Lemma 2.5. For any projective H-module P the unit np is an isomorphism.

Proof. Tt is immediate that ny is an isomorphism. Since U and F' are
additive functors and preserve arbitrary direct sums, np is an isomorphism
for any projective H-module P. O
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As seen in Example we have the standard projective class (P’,&’) on
Mod(H) where P’ is the class of all projective H-modules and £’ is the class
of all surjective H-linear maps.

Definition 2.6. We define the I-projective class on Rep; (G) to be the
pullback (P, &) of the standard projective class (P, E") along U. Explicitly,

(i) V e P if and only if there is a split surjection FFP — V for some
projective H-module P and

(ii) f:V->Wisin & if and only if Uf : UV — UW is surjective.

We say that V' € Repy (G) is I-projective if V € P and that a G-equivariant
map f:V - W is an I-epimorphism if f € £. Furthermore, we say that
V e Rep; (G) is I-free if V = FY for some free H-module Y. These are
precisely the G-representations isomorphic to direct sums of copies of X.
A sequence Vi — V5 — V3 in Rep; (G) is called I-ezact if it is P-exact,
i.e. if it is a complex and UV; — UV, — UV3 is an exact sequence of H-
modules (cf. Lemma . In this context P-resolutions will also be called
I-resolutions. Finally, we say that V e Rep; (G) is generated by its I-
invariants if V = k[G]- V! = k[G]- UV inside V. Since k[G]-UV = im(ey)
this is true if and only if the counit ey : FUV — V is surjective.

Lemma 2.7. Let V; EA Vo % Vs be an I-ezact sequence in Rep;y’(G). Then
im(U f) = Uim(f) = Uker(g) = ker(Ug).

Proof. Since im( f) ¢ ker(g) and the right adjoint U commutes with kernels
the I-exactness gives ker(Ug) =im(U f) ¢ Uim(f) € U ker(g) =ker(Ug). O

We use the unit 7y to identify H — UFH = X! as (H, H)-bimodules.
Explicitly, this map is given by h — 1;-h. The terminology in Definition [2.6
is justified by the following result.

Lemma 2.8. For V e Rep;’ (G) the following are equivalent.

(i) V is I-projective.

(i1) V is a direct summand of an I-free G-representation.
(i) UV is a projective H-module and V' is generated by its I-invariants.
Under these conditions the counit ey : FUV =V is an isomorphism.

Proof. If V is I-projective then by definition V' is a direct summand of F'P
for some projective H-module P. Since P is a direct summand of a free
H-module it follows that F'P and hence V is a direct summand of an I-free
representation. That (ii) implies (iii) follows from Lemma and because
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the property of being generated by [-invariants is stable under quotients.

Finally, if UV is projective then FUV is I-projective by definition. By
Lemma the unit 7nyy is an isomorphism. It always has the splitting
Uey. Thus, we see that the counit FUV — V induces an isomorphism on
I-invariants. Since the functor U reflects monomorphisms it follows that
FUV -V is injective with image equal to the subrepresentation of V' gen-
erated by UV. This shows that (iii) implies (i) and that in this case the
counit is an isomorphism. ]

Corollary 2.9. The functors F and U induce inverse equivalences of cat-
egories between the full subcategories of projective H-modules and of I-
projective G-representations, respectively.

Proof. Let V' € Rep;’ (G) be I-projective and let P € Mod(H) be projec-
tive. By definition FP is I-projective. Moreover, UV = V! is projective
by Lemma [2.8] Thus, the two functors give a well-defined adjunction be-
tween the two full subcategories. Since the unit np and the counit ey are
isomorphisms by Lemma [2.5] and Lemma [2.8] the statement follows. O

Given V e Rep;’(G), Lemma guarantees the existence of an I-epi-
morphism W — V where W is I-projective. This can be constructed in
a both explicit and functorial way by considering the H-linear surjection
H @, UV - UV. Applying the functor F' = X ®p (-) and composing with
the counit ey gives the functorial G-equivariant map X ® UV — V. Here
the left hand side is even I-free. Moreover, on I-invariants we get back the
surjection H ®, UV — UV we started with. Thus, the map X®, UV - V
is an [-epimorphism. Its image is the G-subrepresentation of V' generated
by UV = V. Tterating this process with the kernel of X ®, UV — V we see
that any representation admits a functorial I-resolution.

Let (P,€) be a projective class on an abelian category A. As in [§], Def-
inition 2.1, there is a candidate for an associated model structure on the
category Ch(.A) of unbounded chain complexes over A. If this model struc-
ture is well-defined we will call it the P-projective model structure. For the
I-projective class on Repy’ (G) the definition is as follows. For ease of nota-
tion we set Ch(G) = Ch(Rep;’(G)) and write Homg(Va, W,) for the set of
morphisms in this category.

Definition 2.10. A map f : Vo - W, in Ch(G) is an I-equivalence if
the induced map Homg(P,V,) - Homg (P, W,) is a quasi-isomorphism of
complexes of abelian groups for any I-projective P. Similarly, f is an I-
fibration if Homg (P, Vs) - Homg (P, W,) is an epimorphism of complexes
of abelian groups for any I-projective P. Finally, f is an I-cofibration if f
has the left lifting property with respect to all I-trivial fibrations, i.e. with
respect to all maps that are both I-fibrations and I-equivalences.
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Note that the adjunction F': Mod(H) 2 Repy’ (G) : U extends to an adjunc-
tion F': Ch(H) 2 Ch(G) : U between the respective categories of complexes
by working termwise.

Lemma 2.11. A map f: Vs - W, in Ch(G) is an I-equivalence (resp. an
I-fibration) if and only if Uf : UVe — UW, is a quasi-isomorphism (resp.
an epimorphism).

Proof. Since U 2 Homg(X, ) and since X is I-projective it follows that U f is
a quasi-isomorphism for every I-equivalence f. Conversely, for any indexing
set J we have an isomorphism of functors Homg (X®7 ) = [T 7 Homg (X, )
and taking homology of complexes commutes with direct products. It follows
that if Uf = Homg(X, f) is a quasi-isomorphism (resp. an epimorphism)
then so is Homg(V, f) for any I-free representation V. By taking direct
summands the same holds for any I-projective V' (cf. Lemma [2.§] (ii)). O

Our first aim is to show that Definition [2.10]indeed gives a model structure
on Ch(G) whose weak equivalences (resp. cofibrations, resp. fibrations) are
the I-equivalences (resp. I-cofibrations, resp. I-fibrations). To this end we
apply the following result of Christensen and Hovey (cf. [§], Theorem 5.1).

Theorem 2.12 (Christensen-Hovey). Let A be a bicomplete abelian category
all of whose objects are small and let (P,E) be a projective class on A.
Suppose that P is determined by a set, i.e. that there is a set S of objects of P
such that £ is precisely the class of S-epimorphisms. Then the P-projective
model structure on Ch(A) is well-defined and cofibrantly generated. O

As an application we obtain the following result.

Proposition 2.13. There is a cofibrantly generated model structure on
Ch(G) where the fibrations are the chain maps with surjective I-invariants
and the weak equivalences are the chain maps whose I-invariants are quasi-
isomorphisms.

Proof. In view of Lemma we just need to check that the hypotheses in
Theorem are satisfied. Note that Rep;’(G) is a Grothendieck category
by [34], Lemma 1, and so all of its objects are small by [20], Proposition
A.2. Since £ is precisely the class of morphisms which are X-epimorphisms
the projective class (P, &) is determined by the singleton {X}. O

We will call the above model structure on Ch(G) the I-projective model
structure. Its existence can also be deduced from the general results in the
previous section. From Lemma we see that the I-projective model
structure on Ch(G) is the right transfer of the projective model structure
on Ch(H). Instead of Theorem [2.12) we could thus have referred to Theorem
and Proposition by constructing suitable path objects in Ch(G).
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Proposition 2.14. The adjoint functors F : Ch(H) 2 Ch(G) : U given by
FM, =X®yg M, and UV, = V! form a Quillen equivalence with respect to the
I-projective model structure on Ch(G) and the projective model structure on
Ch(H). In particular, the derived adjunction

LF: D(H) 2 Ho(Ch(G)) : RU

is an equivalence between the unbounded derived category of Mod(H) and
the homotopy category of the I-projective model structure on Ch(QG).

Proof. As we observed above, the I-projective model structure on Ch(G) is
the right transfer of the projective model structure on Ch(H). By Lemma
[1.6] it suffices to see that the unit 7y, is a weak equivalence at all cofibrant
(i.e. dg-projective) X, € Ch(H). Since X, is cofibrant it is termwise pro-
jective (cf. [19], Lemma 2.3.6). Thus, it follows from Lemma that nx,
is an isomorphism and hence a weak equivalence as required. For the final
statement see [19], Proposition 1.3.13. O

In order to compute the left derived functor LF in Proposition let
M, € Ch(H) and let Q. be any dg-projective complex of H-modules which
is quasi-isomorphic to M,. Then LFM, 2 X ®y Q. in Ho(Ch(G)) for the
I-projective model structure on Ch(G). To compute the right derived func-
tor RU let V, € Ch(G). Since every object of Ch(G) is fibrant for the
I-projective model structure we have RUV, 2 UV, in D(H).

The results in Proposition admit important improvements. To see
this we start with the following characterization of the I-cofibrant objects
in Ch(G). Using [8], Proposition 2.5, this gives a description of the I-
cofibrations in general. Note that even if a Quillen adjunction F:C=2D:U
is a Quillen equivalence the right adjoint U will generally not preserve cofi-
brant objects. The adjunction id : Ch(S)** = Ch(S)™ : id gives an easy
example. However, our situation is much more special.

Lemma 2.15. For an object Vo of Ch(G) the following are equivalent.
(i) Vs is I-cofibrant.

(ii) Ve is termwise generated by its I-invariants and the complex UV, in
Ch(H) is cofibrant in the projective model structure, i.e. dg-projective.

If these conditions are satisfied then the counit ey, : FUV, — V, is an iso-
morphism in Ch(G).

Proof. Let us put Y = V, and denote by quy : QUY — UY the cofibrant
replacement of UY = V. The adjoint morphism ey Fqpy : FQUY - Y is
an I-equivalence by Proposition We claim it is a trivial I-fibration.

21



To see this we need to check that we get a trivial fibration in Ch(H) if we
apply the functor U. Consider the commutative diagram

Fquy Uey

UFQUY XYY yruy Uy.
vy T TW%
QUY ————>UY

As seen in the proof of Proposition the left vertical arrow is an isomor-
phism because QUY is cofibrant. Since qyy is a trivial fibration, the claim
follows.

Assuming that Y is I-cofibrant it follows that the map FQUY — Y splits.
Thus, Y is a direct summand of FQUY and UY is a direct summand of
UFQUY = QUY. This implies that UY is a cofibrant object of Ch(H),
i.e. is dg-projective. Moreover, Lemma [2.§ shows that FQUY is termwise
I-projective. The same is then true of its direct summand Y. In particular,
Y is termwise generated by its [-invariants.

Conversely, assume that Y satisfies the conditions in (ii). Then UY is dg-
projective and hence is termwise projective. It follows from Lemma [2.8
that Y is termwise I-projective and that the counit ¢y : FUY — Y is an
isomorphism. Since FUY is I-cofibrant by definition of a left Quillen functor
it follows that Y @ FUY is I-cofibrant. O

We obtain the following significant strengthening of Proposition[2.14] It says
that the functors F' and U restrict to equivalences between the cofibrant-
fibrant objects even before dividing out the homotopy relation. Note that in
the situation of Proposition all objects are fibrant. We may therefore
work with the respective classes of cofibrant objects.

Corollary 2.16. Endow Ch(H) with the projective module structure and
Ch(G) with the I-projective model structure of Proposition . The func-
tors U = (-)! and F = X®p (-) restrict to inverse equivalences of categories

Ch(G). 2 Ch(H),.

Proof. If Y € Ch(QG) is I-cofibrant then UY is cofibrant in Ch(H ) by Lemma
2.15, If Z € Ch(H) is cofibrant then F'Z is I-cofibrant by definition of a
left Quillen functor. The counit ey : FUY — Y is an isomorphism by
Lemma and the unit 1z : Z - UFZ is an isomorphism by the proof of
Proposition ]

For complexes concentrated in degree zero this reflects the fact that ' and
U restrict to inverse equivalences between the category of projective H-
modules and the category of I-projective G-representations, respectively (cf.
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Corollary . Given V, W € Repy’ (G) we denote by Extg, ;(V, W) the rela-
tive extension groups defined in @ formed with respect to the I-projective
class in Definition[2.6l The following result is a formal consequence of Propo-
sition [2.14]

Corollary 2.17. If V,W € Rep;’(G) then there are functorial bijections
Extg ((V,W) 2 Exty (UV,UW) for all n>0.

Proof. Denote by D = Ho(Ch(G)) the homotopy category of Ch(G) en-
dowed with the I-projective model structure. By Proposition and [§],
Corollary 2.14, we have

Exté; ((V, W)

112

Homp (V, W[-n]) = Homp g (UV,UW[-n])
~ Ext?, (UV,UW)

12

functorially in V and W for all n > 0. O

The existence of the I-cofibrant replacement shows that if V4 € Ch(G) then
there is a trivial I-fibration f: Qe — Vi where Q, is I-cofibrant. By Lemma
and Lemma [2.15] this means that U f : UQ. - UV, is a surjective quasi-
isomorphism where UQ, € Ch(H) is dg-projective. It will be useful to have
the following slight variant of this fact generalizing the existence of enough
I-projectives in Rep;’ (G) discussed earlier.

Lemma 2.18. For any Vs € Ch(G) there is an I-fibration f: Qe — Vs such
that UQ. € Ch(H) is a projective complez.

Proof. By Lemma (ii) there is a surjection g : P, — UV, in Ch(H)
where P, € Ch(H) is projective. Setting Qo = FP, € Ch(G) the unit of
the adjunction np, : P - UQe. = UF P, is an isomorphism by Lemma
Therefore, UQ, € Ch(H) is projective. Moreover, the map

f:Q.=FP, 2% FUv, 22,

is an I-fibration by Lemma because U fnp, = Uey,UFgnp, = g is surjec-
tive. O

Remark 2.19. The above result can also be deduced from the axioms of
a model category directly. Indeed, for any V, € Ch(G) we can factorize
the map 0 — V, into a trivial I-cofibration followed by an I-fibration, i.e.
there is an I-fibration f: Qe — Ve where Qo € Ch(G) is trivially cofibrant.
By Lemma this implies that UQ. € Ch(H) is both cofibrant (i.e. dg-
projective) and trivial (i.e. exact) hence is projective.

For the sake of completeness we note that it is also possible to start with
a model structure on Ch(G) and apply a left transfer construction to get a
model structure on Ch(H). However, it does not make sense to talk about
a projective model structure on Ch(G) unless G is discrete.
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Remark 2.20. Let G be a non-discrete topological group admitting an
open subgroup which is pro-p. If & is a field of characteristic p then the only
projective object of Rep;’(G) is the zero object.

Proof. Let U" ¢ U’ be open pro-p subgroups of G such that U" is normal
in U’. Note first that the space of U'-invariants of ind¥. (k) = k[U’/U"] is
spanned by /g u. This maps to zero in 1ndU"(k)Uf because p divides
(U" : U") and k has characteristic p. It follows that the canonical map
indg;,(W)U’ - indg:,(W)Ur is zero for any trivial U"-representation W.

Now assume that P € Repy (G) is a projective object and that U’ is an
open pro-p subgroup of G. The restriction functor Rep;’(G) — Rep;’(U')
preserves projective objects because it admits the exact right adjoint Indg,.
Since G is non-discrete there is an open normal subgroup U” & U’. Con-
sider the surjection mdU,,(PUr) — Pyr. Since P is projective the canoni-
cal map P — Py lifts to a map P — 1ndU,,(PU/) Therefore, the canoni-
cal map PV — Py factors through 1ndU,,(PUI)U - 1ndU,,(PU/)Uf - Py,
hence is zero as seen above. This also applies to U ¢ U’ so that the map
PY" & Pyn — Py is zero. Letting U” € U’ vary, we obtain that the canoni-

"

cal map P = Uy» PY" - Py is zero.

Now fix an open pro-p subgroup U of G. Letting U” run through the
open normal subgroups of U the canonical surjection V' = @y PV > P
splits. For any open normal subgroup U’ ¢ U and any W € Repy’(U)
we let W(U') = ker(W — Wy»). Since U’ acts trivially on PY" we have
(PUY(U') = 0. Thus, V(U") = @y (PY")(U') € @yrer PU". As seen
above we have P = P(U’) for any open normal subgroup U’ of U and hence
PEﬂUIV(U,)ZO. ]

Instead we consider the injective model structure on Ch(G) introduced in
and show that it admits a left transfer to Ch(H) in the following sense.

Proposition 2.21. There is a model structure on Ch(H) where the cofi-
brations are the maps g such that Fg is a monomorphism and the weak
equivalences are the maps g such that Fg is a quasi-isomorphism. The fi-
brations are the maps satisfying the right lifting property with respect to all
trivial cofibrations.

In analogy to the right transfer the left transfer has an apparent ambiguity
concerning the notion of a trivial fibration. This could either be a morphism
satisfying the right lifting property with respect to all cofibrations or it could
be a fibration which is also a weak equivalence. We need to see that these
two classes of morphisms coincide. To distinguish them we call a map f in
Ch(H) coanodyne if it satisfies the right lifting property with respect to all
cofibrations in the sense of Proposition [2.21
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Remark 2.22. Note that any coanodyne map f: X - Y in Ch(H) is a split
epimorphism. Indeed, the map 0 — Y is a cofibration for the left transfer.
By applying the right lifting property to

—

<o

K(TN

id
we obtain the desired splitting.

If the left transfer is a model structure then the coanodyne morphisms are
precisely the fibrations which are also weak equivalences. Moreover, one
needs to show that functorial factorizations exist. In general this involves
serious set-theoretic issues. However the following result shows that under
certain assumptions on the categories these problems are easy to solve (cf.
[2], Theorem 2.23).

Theorem 2.23. Suppose we have an adjunction F : C 2 D : U between
locally presentable categories where D carries a cofibrantly generated model
structure. Then the left transfer to C exists if and only if F f is a weak
equivalence in D for every coanodyne morphism f in C. O

We note that together with Mod(H) and Rep; (G) also the categories
Ch(H) and Ch(G) are Grothendieck categories (cf. Lemma and hence
are locally presentable (cf. [4], Proposition 3.10).

Proposition 2.24. If fo: Ps - Q. is a coanodyne map in Ch(H) then the
complezes K, =ker(f,) and FK, =X®py K, are contractible.

Proof. Let T, be the mapping cone of idg, defined by T;, = K, ® K,,-1 with
differential d(z,y) = (dz + y,—dy). Consider the canonical map te : K¢ = T,
given by «(x) = (x,0). Since this is a termwise split injection so is Fte. In
particular, Fie is a cofibration and so is te by definition of the left transfer.
Since f, is coanodyne we may apply the right lifting property to the square

Ky —— P,

Pt
L.l g: z i l/f.

T.TQ.

and obtain a map ge : Te - P, making the two triangles commute. This
implies foge = 0 whence g, has image in K,. We may therefore view g, as a
map T, - K, with the property that gete =idg,. For any n € Z this allows
us to write g, (x,y) = z + s,y for some H-linear map s, : K,-1 - K,,. Let
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x € K1 and y € K,,. Since g, is a chain map we have

dpi1T + Y = $pdpy = gn(dp1x +y, —dny)
= gndn+1(7,y)
= dngn+1(7,y)
=dp1x + dpSp1y

and hence y = s,d,y + dpSp11y. Thus, s, defines a chain homotopy between
the zero map and the identity map on K,. By functoriality F's, is then a
chain homotopy between the zero map and the identity on F K,. ]

Remark 2.25. We note that the proof of Proposition implies that
coanodyne maps in Ch(H) are quasi-isomorphisms.

Proof of Proposition[2.21 By Theorem we just need to check that if
fo : Po = Qo is a coanodyne map in Ch(H) then F'f, is a quasi-isomorphism
in Ch(G). To see this let K, = ker(f.,). By Remark the map f, is a
split epimorphism. Therefore, also F'f, is a split epimorphism and we have
ker(F f,) = Fker(f,) = FK,. Since FK, is acyclic (cf. Proposition [2.24) the
long exact homology sequence shows that F'f, is a quasi-isomorphism. [J

The model structure on Ch(H) constructed in Proposition will be called
the G-injective model structure. It makes F': Ch(H) =2 Ch(G) : U a Quillen
adjunction. We hope to give an in-depth study of this adjunction elsewhere.

3 Gorenstein projective model structures

Let A be an abelian category with enough projectives. An object A € A is
called Gorenstein projective if there is an acyclic complex

Yoy Ay oy

of projective objects of A for which A = ZyY = ByY and which remains
exact upon applying Hom4(-, P) for any projective object P of A.

A ring S is called Gorenstein if it is both left and right noetherian and if
it has finite injective dimension both as a left and as a right S-module. In
this case the left and right selfinjective dimensions of S coincide (cf. [9],
Proposition 9.1.8). If n denotes their common value then S is called an
n-Gorenstein ring.

If S is an n-Gorenstein ring then an S-module M has finite projective di-
mension if and only if it has finite injective dimension. In this case both
dimensions are bounded above by n (cf. [9], Theorem 9.1.10). Moreover, M
is Gorenstein projective as an object of Mod(.S) if and only if Ext4 (M, P) =0
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for all i > 1 and all projective S-modules P (cf. [9], Corollary 11.5.3). This
is true if and only if Ext (M, P) =0 for all 4 > 1 and all modules P of finite
projective dimension.

Remark 3.1. If S is an n-Gorenstein ring then an S-module M is Goren-
stein projective if and only if M = ZyY for an acyclic complex Y € Ch(S) of
projective S-modules. Indeed, for any projective S-module P we then have
Ext4(M, P) = Exty(ZoY, P) = Ext§™(Z_,Y,P) = 0 for any i > 0 because
P has injective dimension at most n. The same argument shows that all
cycles of Y are Gorenstein projective. That the complex Y remains acyclic
upon applying Homg(-, P) is then automatic. To see this one simply applies
Homg(:, P) to the short exact sequences 0 - Z;Y - Y; - Z; 1Y - 0 for
any j € Z.

The following fundamental theorem is due to Hovey (cf. [21], Theorem 8.6).

Theorem 3.2 (Hovey). Let S be a Gorenstein ring. On Mod(S) there is a
cofibrantly generated model structure for which

e the cofibrations are the monomorphisms with Gorenstein projective
cokernel,

e the fibrations are the epimorphisms,
e the trivial objects are the modules of finite projective dimension. O

We call this the Gorenstein projective model structure on Mod(.S). The class
C (resp. F, resp. T) of cofibrant (resp. fibrant, resp. trivial) objects is that
of Gorenstein projective modules (resp. all modules, resp. modules of finite
projective dimension). By [2I], Corollary 8.5, the class CnT is that of projec-
tive S-modules. The subcategory 7 of Mod(.S) is thick and both (CnT,F)
and (C,F nT) are functorially complete cotorsion pairs. Letting P denote
the class of all short exact sequences in Mod(S) the Gorenstein projective
model structure on Mod(S) is obtained from these data as in Theorem
(ii). Since all objects are fibrant and since the class of Gorenstein projective
modules is closed under kernels of epimorphisms the Gorenstein projective
model structure on Mod(S) is abelian and hereditary. In particular, it is
stable which is also proven directly in [2I], Theorem 9.3.

Assume that S is Gorenstein. Given an S-module M the cofibrant replace-
ment functor @ for the Gorenstein projective model structure on Mod(.S)
gives a functorial exact sequence

0— KM —>QM — M —0

in which QM is Gorenstein projective and K M has finite projective dimen-
sion. Let us recall from [9], Theorem 11.5.1, or [39], Theorem 3.5, how to
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construct such an exact sequence at least non-functorially.

Denote by n the selfinjective dimension of S. One first chooses a projective
resolution Q¢ - M — 0 of M and sets G = coker(Qn+1 — Q). Then G is
Gorenstein projective by [9], Theorem 10.2.14. By definition, G admits a
complete projective resolution P, as above. By shifting we see that also IV =
im(P-, - P_,-1) = ker(P_,,-1 > P_,_2) is Gorenstein projective. Moreover,
the exact sequence 0 > G - P_; - -+ > P_, > N — 0 is Homg(+, Q)-acyclic
for any projective S-module Q). Therefore, we can inductively choose S-
linear maps P; —» Q4+ to obtain a commutative diagram

0 CH; P P, ][7 0
0——=G——=Qn Qo M 0.

The mapping cone of the vertical homomorphism yields an exact sequence
0->P1->PodQp1—->>P,,0Q1>N&Qy—> M —0. Here N Q) is
Gorenstein projective and the kernel of the epimorphism to M has projective
dimension at most n — 1.

Remark 3.3. Denote by Proj(S) and GProj(S) the full subcategory of
Mod(S) consisting of all projective and all Gorenstein projective S-modules,
respectively. The results of [21], Proposition 9.1 and Proposition 9.2, show
that the homotopy category Ho(Mod(.S)) can be viewed as the full subcat-
egory GProj(S)/Proj(S) of the stable module category Mod(S)/Proj(S) of
S consisting of all Gorenstein projective modules.

We point out that Theorem [3.2] admits a variant which is based on the dual
notion of a Gorenstein injective module (cf. [2I], Theorem 8.4). The corre-
sponding homotopy category is equivalent to the quotient GInj(S)/Inj(S)
of the category GInj(S) of Gorenstein injective modules by the category
Inj(S) of injective S-modules (cf. [21], Proposition 9.1 and Proposition 9.2).
It was shown by Krause in [24], Proposition 7.13, that the latter is equivalent
to the singularity category K,.(Inj(S)) of S, i.e. to the category of acyclic
complexes of injective S-modules up to chain homotopy. From the model
categorical point of view this was taken up by Becker in [3] who again treats
the projective and the injective situation simultaneously. We point out that
results of this form have their origin in the seminal but unpublished work
[5] of Buchweitz. We refer to the end of [24], §7, for a more comprehensive
list of historical remarks.

Theorem 3.4 (Becker). (i) For any ring S there is a cofibrantly generated
model structure on Ch(S) for which

e the cofibrations are the monomorphisms with acyclic and termwise pro-
jective cokernel,
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e the fibrations are the epimorphisms,

e the trivial objects are the compleres Y satisfying Extéh(s)(X,Y) =0
for all termwise projective acyclic complexes X .

Its homotopy category is equivalent to the category Ka.(Proj(S)) of acyclic
complexes of projective S-modules up to chain homotopy.

(ii) If S is a Gorenstein ring then the adjoint functors
Qo : Ch(S) = MOd(S) )

defined in @ form a Quillen equivalence for the model structure on Ch(S)
as in (i) and the Gorenstein projective model structure on Mod(S).

Proof. Part (i) is [3], Proposition 2.2.1 (1), which is applied as in [3], §3.
The description of the corresponding homotopy category follows from [3],
Proposition 2.2.1 (1) and Example 1.4.7. The main point is that the right
homotopy relation between cofibrant objects is the usual chain homotopy
of complexes. To see this note that the trivially cofibrant objects are the
projective complexes as is shown in the proof of [3], Proposition 2.2.1 (1).
Therefore, one can argue as in [21], Proposition 9.1. Finally, part (ii) is [3],
Proposition 3.1.3. O

We call this the singular projective model structure on Ch(S). Its existence
can also be deduced from the general result [10], Theorem 7.2.15, of Enochs
and Jenda. The class C (resp. F) of cofibrant (resp. fibrant) objects consists
of the acyclic and termwise projective (resp. all) complexes. The class T
of trivial objects is given by the condition 7 = C* as in Theorem (i).
The singular projective model structure is obtained from C, F and 7 as in
Theorem [1.1] (ii) where we let P denote the class of all short exact sequences
in Ch(S). Again, this is an abelian hereditary model structure and the
associated model category is stable (cf. [3], Corollary 1.1.15). The loop and
suspension functors can be made explicit as follows.

Lemma 3.5. The adjunction [-1] : Ch(S) 2 Ch(S) : [1] is a Quillen
equivalence for the singular projective model structure on Ch(S). The left
derived functor of [-1] coincides with the suspension functor ¥ and the right
derived functor of [1] coincides with the loop functor ).

Proof. There are isomorphisms Extéh(s)(X[—l],Y) > Extéh(s)(X,Y[l])
and Extlch(s)(X[l],Y) > Extéh(s)(X,Y[—l]) for all X,Y e Ch(S). This
implies that both functors preserve the class of trivial objects. By exactness
they preserve all weak equivalences. Since they are inverse to each other
this implies that they form a Quillen equivalence in both directions.
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In order to compute the suspension functor let X € Ch(.S) be cofibrant and
factorize X — 0 into a cofibration followed by a trivial fibration. This gives
an exact sequence 0 > X - Y - Z —» 0 where Y is trivial and Z is cofibrant.
Then Z is the suspension of X in Ho(Ch(S)). Since Z is termwise projective
the above sequence is termwise split. As usual, we obtain a map of complexes
Z — X[-1] which is unique up to chain homotopy. However, together with
X also Y is cofibrant since X — Y is a cofibration. As remarked in the
proof of Theorem this implies that Y is a projective complex, hence is
contractible. It follows that the map Z — X[-1] is a homotopy equivalence
in the usual sense of chain complexes. As remarked earlier this implies that
Z — X[-1] is a weak equivalence because Z and X[-1] are cofibrant. This
implies L[-1] 2 3. That R[1] = © follows formally from the uniqueness of
adjoints. O

Note that if S is a Gorenstein ring then the Gorenstein projective model
structure on Mod(\S) is Quillen equivalent to its Gorenstein injective coun-
terpart (cf. [21], page 583). It follows from the results of Becker that the cor-
responding homotopy category is also equivalent to the category K,.(Inj(.S))
of complexes of injective S-modules up to chain homotopy (cf. [3], Proposi-
tion 2.2.1 (2) and Proposition 3.1.5).

By aresult of Krause, the full subcategory of compact objects of K,.(Inj(5))
is equivalent to the quotient of the bounded derived category D°(noeth(S))
of noetherian S-modules by the subcategory of perfect complexes (cf. [24],
Corollary 5.4 and [36], 07LT). Quotients of this form are usually called
singularity categories in algebraic geometry. This is where the name for
the above model structure derives from. We would also like to emphasize
that the results of [3] and [24] are much more precise in the sense that they
are derived from the existence of various recollements between triangulated
categories.

4 The right transfer to smooth G-representations

We continue to denote by k a field of characteristic p and by G a topological
group admitting an open subgroup I which is pro-p. We wish to apply
the results of §3| to the ring S = H = Endg(X)°P. In the following we will
therefore often make the assumption that the ring H is Gorenstein.

Example 4.1. The ring H is Gorenstein in the following situations.

(i) Let G be a finite group with a split BN-pair of characteristic p. Recall
that then B admits a normal p-Sylow subgroup U such that B = U x T
with T'= Bn N. Setting I = U and endowing GG with the discrete topology
the Hecke algebra H is a Frobenius algebra by a result of Tinberg (cf. [3§],
Proposition 3.7). In this case H is even selfinjective. As an example one may
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take the group G = G(K') of rational points of a split connected reductive
group G over a finite field K of characteristic p and I = U the group of
rational points of the unipotent radical of a Borel subgroup of G.

(ii) Let G(K') denote the group of rational points of a split connected reduc-
tive group G over a nonarchimedean local field K of residue characteristic
p. The group G(K) carries a natural locally profinite topology. Denote by
X the semisimple Bruhat-Tits building of G(K'), by C' a chamber of X and
by o a facet of X contained in the closure of C. Denote by P, the parahoric
subgroup of ¢ and by I the pro-p radical of Po. Both of them are compact
open subgroups of G(K) and we have Io € P,. If G = P, and if I = I then
the ring H is isomorphic to the Hecke algebra of a finite group with a split
BN-pair of characteristic p as in (i). Therefore, H is a Frobenius algebra
and hence is selfinjective.

(iii) We keep the notation of (ii). If P denotes the stabilizer of & in X then
Plis an open subgroup of G(K) containing P,. If G = Pland if I = Ic
then H is a Gorenstein ring by a result of Ollivier and Schneider (cf. [2§],

Proposition 5.5). Its selfinjective dimension is equal to the rank of the center
of G.

(iv) We keep the notation of (ii). If G = G(K) and if I = I then H is a
Gorenstein ring by a result of Ollivier and Schneider (cf. [28], Theorem 0.1).
Its selfinjective dimension is bounded above by the rank of G.

In all of the above examples the characteristic of £ may in fact be arbitrary.
However, we will continue to assume that k is of characteristic p. In the
situation of Example (iv) the group I = I¢ is a called a pro-p Iwahori
subgroup of G = G(K) and H is called the corresponding pro-p Iwahori-
Hecke algebra over k. Since this is the motivating example for our work we
decided to stick to this terminology in general.

Remark 4.2. If the Gorenstein ring H has finite global dimension then all
H-modules have finite projective dimension and Ho(Mod(H)) = 0. In the
above examples this happens only in exceptional cases. In the situation of
Example (iv) for instance the global dimension of H was studied in [2§],
§7. If the semisimple rank of G is positive and if the residue class field of
K is not Fy then the global dimension of H is infinite (cf. [28], Corollary
7.2 and Lemma 7.3). Moreover, the supersingular H-modules tend to have
infinite projective dimension (cf. [23], §1, for a more precise result).

For the following result recall that we denote by By the 0-th boundary
functor introduced in

Proposition 4.3. Let Y = (Y,,ds) be an acyclic complex of H-modules.
(i) There is a functorial exact sequence 0 - H1F'Y — FByY - BoFY — 0.
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(ii) If Y is termwise projective then the canonical map ByY — UByFY
is an H-linear bijection and the sequence in (i) is I-exact. Moreover,
the unit np,y : BoY - UFByY is a split monomorphism with cokernel
isomorphic to UH{FY .

Proof. Factorize d; into Y7 - ByY < Yj and apply the functor F. This
gives a factorization FY; % FByY X FYy of Fdy with im(h) = im(hg) =
im(Fdy) = BoFY. Since g is surjective we have ker(h) = g(ker(hg)) =
g(ker(Fdy)) = g(Z1FY'). However, the exact sequence Yo - Y] - ByY — 0

gives the exact sequence F'Ys F—d>2 FY, SF ByY — 0. This shows that
ker(g) = im(Fdy) = B1FY . Therefore, g induces an isomorphism H;FY =
Z\FY|B1FY = Z1FY | ker(g) 2 g(Z1FY') = ker(h) and we get the required
exact sequence

0> HFY - FByY - ByFY - 0.

If Y is termwise projective then the sequence F'Y; - FYy - FY_; is [-exact.
In fact, the unit ny : Y - UFY of the adjunction is an isomorphism of
complexes (cf. Lemma [2.5)). Therefore, Lemma [2.7|shows that the canonical
map ByY = BUFY — UBgFY is bijective. Consider the composed map
FY, » FByY - BoFY. If we apply the functor U then the resulting
map V) 2 UFY, - UFByY — UByFY = ByY = im(d;) is given by d;
and hence is surjective. This implies that the map FByY — ByFY is an
I-epimorphism. Now apply U to the exact sequence in (i) to get a map
UFByY - UByFY = ByY with kernel UH1FY . One checks directly that it
is a left inverse of the unit np,y. O

Corollary 4.4. If M € GProj(H) and if N € Mod(H) then the map
Hompy (N, M) - Homg(F N, FM) induced by F is injective. If H is Goren-
stein and if Mod(H) is endowed with the Gorenstein projective model struc-

ture then the composed functor Repy (G) LN Mod(H) — Ho(Mod(H)) is
essentially surjective.

Proof. As for the first statement it suffices to show the injectivity of the
map Hompy (N, M) — Homy(N,UFM) obtained by composing with the
adjunction isomorphism Homg(F N, FM) = Homy(N,UFM). Explicitly,
this composition is given by sending g : N - M to UFgony =naog. If
we realize M = ByY for some acyclic complex Y of projective H-modules
then 77 is a monomorphism by Proposition (ii). This proves the first
statement.

In the homotopy category Ho(Mod(H)) any H-module becomes isomorphic
to its cofibrant replacement. For the second statement it therefore suffices to
show that any Gorenstein projective H-module is contained in the essential
image of the functor U. This follows from Proposition (ii) because M =
BoY 2UByFY. O
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The previous results can be interpreted in terms of Quillen adjunctions for
suitable model structures on Rep;’(G) and Ch(G). For the rest of this
section we endow Ch(H) with the singular projective model structure from
Theorem (i). If H is Gorenstein we will always endow Mod(H) with
the Gorenstein projective model structure from Theorem [3.2] As before let
F : Mod(H) 2 Rep; (G) : U be the adjunction given by FM = X @y M
and UV = V! 2 Homg(X, V). By the same symbols we denote its termwise
extension to an adjunction F': Ch(H) 2 Ch(G) : U.

Proposition 4.5. The right transfer of the singular projective model struc-
ture exists along the adjunction F : Ch(H) 2 Ch(G) : U and makes it a
Quillen equivalence. Endowing Ch(G) with the right transfer there is an
equivalence of categories

K,.(Proj(H)) 2 Ho(Ch(Q)).

Proof. Together with Repy’ (G) also Ch(G) is a Grothendieck category (cf.
Lemma [1.7] (i)). In particular, all objects of Ch(G) are small. Since Ch(H)
is cofibrantly generated the first result will follow from Theorem and
Proposition if we can show that path objects exist in Ch(G). To con-
struct them let V € Ch(G). We need a factorisation

AV:ViPi»VxV

of the diagonal morphism such that U« is a weak equivalence and U is a
fibration, i.e an epimorphism.

Let C = coker(Ay ) and let 7: V x V — C denote the canonical projection.
Since the abelian category Ch(H) has enough projectives (cf. Lemma
(ii)) there is a surjection f: @ — UC where @ is a projective complex. In
terms of the singular projective model structure this is a fibration in which
Q@ is trivially cofibrant (cf. the proof of Theorem . Since @ is termwise
projective the unit of the adjunction 7g : @ - UF(Q is an isomorphism (cf.
Lemma . Let g: F'Q — C be the adjoint of f. Then f = Ugong whence
Ug is surjective.

We now define P = {(v,q) € (VxV)® FQ | n(v) = g(¢q)} so that the
projections p: P -V xV and h: P - F'QQ make the square

P#)FQ

pl Is

VXVT>C

cartesian. Let i : V — P be given by i(v) = (A(v),0). This gives a factor-
ization Ay = pi and we claim that it has the desired properties. As a right
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adjoint the functor U preserves fibre products. Therefore, the square

uvp —Y s UFQ

Upl lUg

is cartesian. Since the class of epimorphisms in an abelian category is stable
under pullbacks and since Ug is an epimorphism it follows that so is Up.

Note that Ay is a split monomorphism with splitting the first projection.
A
Therefore, the image of the sequence 0 — V =% V x V - C' —> 0 under

U remains exact. In particular, Un is surjective and so is its pullback Uh.
Since fiber products in abelian categories preserve kernels the sequence

0—uv L urPUurg —o

is exact. Thus, coker(Ui) 2 UFQ = @ is trivially cofibrant. This shows that
Ui is a trivial cofibration and hence a weak equivalence, as required.

We have now shown that the right transfer exists. To get that the adjunction
is a Quillen equivalence we simply apply Lemmal[l.6and Lemma[2.5 Recall
that the cofibrant objects in Ch(H) are the acyclic complexes which are
termwise projective (cf. Theorem [3.4] (i)). The final statement follows from
Theorem [3.4] (i) and [19], Proposition 1.3.13. O

The model structure on Ch(G) constructed in Proposition will be re-
ferred to as the I-singular projective model structure.

Corollary 4.6. The I-singular projective model structure on Ch(G) is sta-
ble. More precisely, the adjunction [-1]: Ch(G) 2 Ch(G) :[1] is a Quillen
equivalence whose derived adjunction is given by the loop and suspension
functors.

Proof. The statement about the Quillen equivalence follows formally from
Proposition 1.5 and Lemma [3.5] because U and F' commute with the shift
functors. Note that RU commutes with the loop functor by [I], Corollary

3.1.4. Therefore, Lemma (3.5 and the right derived version of [19], Theorem
1.3.7, imply

RUQ = QRU = R[1]RU = R([1]U) = R(U[1]) = RUR[1].

Composing with LF gives the isomorphism Q = R[1] on Ch(G). The unique-
ness of adjoints then also gives L[-1] 2 X. O

As in Lemma we are in a situation where the right adjoint U preserves
cofibrant objects.
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Lemma 4.7. Endow Ch(G) with the I-singular projective model structure.
For an object Vo € Ch(QG) the following are equivalent.

(i) Vs is cofibrant

(ii) Ve is an I-ezact sequence of I-projectives, i.e. UV, = VI is an acyclic
complex of projective H-modules.

If these conditions are satisfied then the counit ey, : FUVe — Vi is an iso-
morphism in Ch(G).

Proof. Any cofibrant object Z € Ch(H) is termwise projective. By Lemma
the unit nz : Z - UFZ is an isomorphism. With these observations and
using the characterization of I-projectives in Lemma (iii) the proof of
Lemma 2.15] carries over almost verbatim. O

As a formal consequence we get the following analog of Corollary

Corollary 4.8. Endow Ch(H) and Ch(G) with the singular projective model
structure and the I-singular projective model structure, respectively. Then
U and F restrict to inverse equivalences of categories Ch(G). 2 Ch(H),..O

Moreover, we obtain the following description of the cofibrations in Ch(G).

Corollary 4.9. A morphism i : Vo - W, in Ch(G) is a cofibration for
the I-singular projective model structure if and only if it is a termwise split
monomorphism whose cokernel is an I-exact sequence of I-projectives.

Proof. Assume that i is a cofibration. For any n € Z consider the complex

DV, = [0 - V, 9 V., = 0] concentrated in degrees n + 1 and n. Then
D™V, - 0 is an I-epimorphism and hence is a fibration. In fact, this is
a trivial fibration because applying U gives the bounded acyclic complex
[0 - UV, Su V., — 0] which is trivial in the singular projective model
structure by [3], Proposition 3.1.1. Consider the map Vs — D"*'V;, given by
the differential of V, in degree n + 1 and the identity of V,, in degree n. By
the left lifting property of 7 applied to the diagram

V. Dn+1 Vn
W, 0

there is a map j : W, - D"V, such that j, is a splitting of 4,. Since
the cokernel of a cofibration is cofibrant (cf. [19], Corollary 1.1.11) it follows
together with Lemma [£.7] that ¢ is a termwise split monomorphism whose
cokernel is an I-exact sequence of I-projectives.

For the converse the arguments given in [19], Proposition 2.3.9, carry over
mutatis mutandis. O
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We now pass back from complexes to the categories Mod(H) and Repy (G).
For the rest of this section we will therefore assume that H is a Gorenstein
ring and that Mod(H) carries the Gorenstein projective model structure
from Theorem [3.2]

Proposition 4.10. The right transfer of the Gorenstein projective model
structure exists along the adjunction F': Mod(H) =2 Repy’ (G) : U.

Proof. Since Mod(H) is cofibrantly generated this will follow from Theorem
and Proposition if we can show that path objects exist in Repy (G).
To construct them we follow the argument in the proof of [21], Proposition
9.1. Given W € Repy’(G) we choose an I-epimorphism ¢:Y — W where Y
is I-projective. Then the maps

W—i>W><Yi>W><W

given by i(w) = (w,0) and p(w,y) = (w,w+q(y)) give a factorization Ay =
pi of the diagonal Ay : W — W xW. Moreover, Ui is an injection such that
coker(Ui) 2 UY is a projective H-module. Thus, Ui is a trivial cofibration
in Mod(H). This implies that i is a weak equivalence. Moreover, the map
Up is surjective because the map Ugq is. Thus, Up is a fibration in Mod(H).
This implies that p is a fibration. O

Using Lemma [2.18| one can follow the above arguments to give a second
proof of the existence of path objects in the situation of Proposition 4.5

The model structure on Repy (G) constructed in Proposition will be
called the I-Gorenstein projective model structure. This is the model struc-
ture on Rep;’(G) we will consider for the rest of this section. To de-
scribe it more concretely call an object V' € Repy’ (G) I-trivial if the object
UV € Mod(H) is trivial, i.e. has finite projective dimension. With this ter-
minology the fibrations in Repy (G) are the I-epimorphisms and the trivial
fibrations are the I-epimorphisms with I-trivial kernel.

We now give a different characterization of the I-trivial objects. Recall from
the discussion following Corollary that every V e Rep;’(G) admits an
I-resolution X, -V — 0. By Lemma and Lemma this is a complex
X, of I-projective G-representations such that UX, - UV — 0 is exact.

Definition 4.11. We say that a representation V' € Rep;’ (G) has finite I-
projective dimension if it admits an I-resolution of finite length, i.e. if there
exists an [-exact sequence 0 - X,, > X,,_1 » - > X9 - V - 0 where X is
I-projective for any 1.

Lemma 4.12. A representation V € Rep;” (G) is I-trivial if and only if it
has finite I-projective dimension.
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Proof. Assume that V has finite I-projective dimension. Applying U to a
finite I-resolution of V' we obtain a finite projective resolution of UV. Thus,
V is I-trivial. Conversely, suppose that V is I-trivial and choose any I-
resolution X, = (X,,ds) of V. Let n denote the projective dimension of
UV. Since UX, is a projective resolution of UV the H-module ker(Ud,,-1)
is projective by [36], 0005. By Lemma [2.7| we have ker(Ud,-1) = Uim(d,,).
Moreover, im(d,,) is generated by its [-invariants because it is a quotient of
the I-projective object X,, (cf. Lemma . Applying Lemma again we
see that im(d,,) is I-projective and that

0—im(dy) > Xp-1>...>Xg>V -0
is a finite /-resolution of V. O
In a next step we characterize the trivial cofibrations in Rep;” (G).

Lemma 4.13. A morphism i:V — W in Rep;y (G) is a trivial cofibration
if and only if it is a split injection with an I-projective cokernel.

Proof. If © is a split injection with an I-projective cokernel we may assume
W =V & C where C is I-projective. If we have a commutative diagram

v —L v

Ll

W=vVelC ——W

where p is an I-epimorphism then the map C - W' lifts toamap g: C - V'
because C is I-projective. The map (f,g): V@C =W — V' is then a lift of 7.

Conversely, suppose that ¢ : V — W is a trivial cofibration. Its cokernel C'
is trivially cofibrant by [19], Corollary 1.1.11. This means that the functor
Homg (C,-) sends I-epimorphisms to surjections which is equivalent to C
being I-projective. It remains to show that i is a split injection. Factorize
ias V3 VeW 3 W where a(v) = (v,i(v)) and p is the projection onto
the second summand. Since ps is an I-epimorphism and since ¢ is a trivial
cofibration we obtain a lift A in the commutative diagram

V—%VeW

l h .7 J
v P2

We——W.

The first projection p1 : V& W — V then gives the splitting p1h of i. O

The same argument shows that if V' € Repy (G) is I-trivial then any cofi-
bration i : V' — W is a split injection with a cofibrant cokernel. In general,
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however, cofibrations will not be monomorphisms. Indeed, the adjunction
in Proposition is Quillen by Lemma [1.6] Therefore, the functor F pre-
serves cofibrations, i.e. the image under F' of any monomorphism with a
Gorenstein projective cokernel is a cofibration in Rep;’(G). By the lack of
exactness of F' this will not be a monomorphism in general. However, we
have the following result.

Lemma 4.14. Ifi:V - W is a cofibration then so is the inclusion im(i) —
W and we have W =im(i) + k[G]-UW. In particular, any cofibrant object
s generated by its I-invariants.

Proof. For the first part note that

V —L im(i)
i
W=—=—=W
is a pushout square and that the class of cofibrations is closed under pushouts
(cf. [19], Corollary 1.1.11). For the second part let W' =im(i) + k[G]- UW.

The inclusion W’ < W is an isomorphism on I-invariants, hence is a trivial
fibration. Thus, we may apply the lifting property of ¢ to the diagram

VW

We——W
and get W = W'. The last statement follows from taking V = 0. 0

In order to characterize the cofibrant objects we first need to define a certain
class of short exact sequences in Repy (G).

Definition 4.15. Let P be the class of sequences 0 > V - W - X - 0 in
Rep;’ (G) which are both exact and I-exact.

A morphism p : W - X in Rep; (G) is called a P-epimorphism if the
sequence 0 — ker(p) - W EX -0 belongs to P. Note that the P-epimor-
phisms are precisely the epimorphisms which are also I-epimorphisms. The
notion of a P-monomorphism is defined dually. In fact, the class P is proper
in the sense of [26], Chapter XII 4.

Lemma 4.16. The class P is proper.

Proof. Clearly P is closed under isomorphisms of short exact sequences and
contains all split exact sequences. Now let f:V - V' and g: V' - V" be a
composable pair of morphisms. Assume first that f and g are epimorphisms.
We must show that if gf is an I-epimorphism then so is g and that if f
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and g are I-epimorphisms then so is gf. Both cases follow immediately by
applying U to ¢gf. Now assume that f and g are monomorphisms. We may
use them to identify V and V' with subrepresentations of V. Consider the
commutative diagram

0—— (V! (V") —— (VY (V") —=0

} : !

00— (V’/V)Iﬁ- (V///V)I (VH/V/)I

with exact rows. If f and g are P-monomorphisms then the outer vertical
maps are surjective. The snake lemma implies that the vertical map in
the middle is surjective, too. This means that ¢f is a P-monomorphism.
Finally, if g f is a P-monomorphism then the vertical map in the middle is
surjective. Since the right vertical map is always a monomorphism the snake
lemma implies that the left vertical map is surjective, too. This means f is
a P-monomorphism. O

Using the proper class P we can characterize the cofibrant objects of Rep;” (G)
by applying the arguments from [21], Proposition 4.1.

Lemma 4.17. For an object V € Repy’ (G) the following are equivalent.
(i) V is cofibrant in the I-Gorenstein projective model structure;

(i) V is generated by its I-invariants and Ext%;(V, W) =0 for all objects
W e Repy (G) of finite I-projective dimension.

Proof. Assuming (i) V is generated by its I-invariants (cf. Lemma [4.14)).
Let W e Rep; (G) have finite I-projective dimension. Any element of

Exth(V,W) is the class of a short exact sequence 0 -~ W — E LZvso
in P. Then Up is a surjection whose kernel UW has finite projective dimen-
sion (cf. Lemma . Thus, p is a trivial fibration. Since V is cofibrant it
follows that p admits a section. This implies Exty(V, W) = 0.

Assuming (ii) let p : V' — V" be a trivial fibration. To show that V is
cofibrant we must prove that any morphism f : V — V” lifts to a mor-
phism V' — V' along p. Note that k[G]-UV" ¢ im(p) because p is an
I-epimorphism. Since V is assumed to be generated by its [-invariant we
get im(f) ¢ im(p). Thus, we may assume that V" = im(p) and that p
is a P-epimorphism. If we set W = ker(p) then the short exact sequence
0> W > V' 2 V" 5 0 belongs to P. Since p is a trivial fibration W has
finite I-projective dimension by Lemma By the long exact sequence
on Extp we get that Homg(V, V') - Homg (V, V") » Extp(V, W) is exact.
Our vanishing assumption therefore implies that f lifts to a map V — V' as
required. O
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Remark 4.18. As in Remark the group Ext71>(V, W) is not to be con-
fused with the relative extension group ExtIG’ 1(V,W) defined in . Since
we have a functorial isomorphism Exta (VW) 2 Extl (VI W) (cf. Corol-
lary there is however a canonical group homomorphism Ext%;.(V, W) -
Exta](V, W) sending an equivalence class [0 > W - E - V — 0] to the
class [0 - UW - UE - UV - 0].

We are now able to describe the following class of cofibrations by arguing
as in the proof of [21], Proposition 4.2.

Proposition 4.19. Any P-monomorphism i:V — W with a cofibrant cok-
ernel is a cofibration.

Proof. Let p: V' - V" be a trivial fibration in a commutative square

vy

| ]

"

Note that W =1im(i) +k[G]-UW because W — coker(i) is an I-epimorphism
and coker(i) is generated by its I-invariants (cf. Lemma . Since p is
an [-epimorphism we get im(g) € im(p). As in the previous proof we may
therefore assume that V" = im(p) and that p is a P-epimorphism. Write
K =ker(p) and C = coker(7). Since i is a P-monomorphism we can consider
long exact sequences to obtain the following commutative diagram whose
rows and columns are exact.

Homg(W, K) —— Homg(W, V') —— Homg (W, V")

| | 3

Homg(V, K) —— Homg(V, V') —2— Home(V, V")

| s s

Exth(C, K) — Exth(C, V') —2— BExth(C,V")

Since C' is cofibrant and K has finite I-projective dimension (cf. Lemma
we have Ext%;(C’,K) = 0 by Lemma Now the maps f and g
satisfy p.f = i*g and therefore p,df = dp.f = di*g = 0. This implies §f =0
whence there exists h: W — V' with f = hi.

By construction g — ph : W — V" is zero on im(7) and therefore factors
through a map a: C' - V", Since C' is cofibrant and p is a trivial fibration
a lifts to a map 8 : C — V' such that p8 = a. Precomposing 8 with the
quotient map W — C we obtain a map j: W — V' satisfying pj = g — ph.
Therefore, the sum h+j: W — V' gives our desired lift of i. O
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Remark 4.20. By definition of the Gorenstein projective model structure
(cf. Theorem the cofibrations in Mod(H) are precisely the inclusions
ker(q) — M where M is arbitrary and ¢ : M — N is a fibration onto a
cofibrant object N. Using the above result we see that the analogous maps
in Rep;’(G) are also cofibrations. Indeed, if X € Rep;’ (G) is cofibrant and
if p: W - X is an I-epimorphism then p is a P-epimorphism because X
is generated by its [-invariants (cf. Lemma . Therefore, the inclusion
ker(p) - W is a P-monomorphism with cokernel X and so is a cofibration.

Recall that the adjunction in Proposition[4.10]is Quillen. We now investigate
how far it is from being a Quillen equivalence. In a first step we make explicit
the homotopy relation in Rep;’ (G) following [2I], Proposition 9.1.

Lemma 4.21. Let V,W € Repy (G) with V cofibrant. If f,g € Homg(V, W)
then f and g are homotopic if and only if g—f factors through an I-projective.

Proof. Since W is fibrant it follows from [19], Proposition 1.2.5 (v), that f
and g are homotopic if and only if they are right homotopic. So assume that
f and g are right homotopic. By [19], Corollary 1.2.6, there is a homotopy
from f to g through any path object of W. In particular, we may take the

path object W SWxY 5 WxW of W constructed in the proof of Proposi-
tion Recall that this involves an I-epimorphism ¢:Y — W where Y is
I-projective. There is then a map H = (r,s) : V - W x Y with pH = (f, g).
By construction of p this means f =7 and g = r+¢s. Thus, g— f = ¢gs factors
through the I-projective Y.

Conversely, assume that g— f admits a factorization V - Z 4 W where Z is
I-projective. Then j factors as Z - Y % W because q is an I-epimorphism.
Consequently, g — f = gh where h denotes the composition V - Z — Y.
Since g = f + gh we see that f and g are right homotopic by means of
H=(f,h):V->WxY. O

As a consequence we obtain that the statements in Corollary pass to
the homotopy level. We continue to endow Mod(H) with the Gorenstein
projective model structure and Repp’ (G) with the I-Gorenstein projective
model structure.

Theorem 4.22. In the derived adjunction
LF :Ho(Mod(H)) 2 Ho(Rep; (G)) : RU
the functor LF is faithful and the functor RU is essentially surjective.

Proof. That RU is essentially surjective follows directly from Corollary
In order to show that LF' is faithful let . denote the cofibrant replace-
ment functor of Mod(H). Recall from that LF = Ho(F)Ho(Q.). By
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the proof of [19], Proposition 1.2.3, the functor Ho(Q.) is always an equiv-
alence. Therefore, it suffices to show that Ho(F') is faithful. Note that F
preserves cofibrant objects because it is left Quillen. Since all objects of
Mod(H) and Rep;’ (G) are fibrant it suffices to see that if M, N e Mod(H)
are Gorenstein projective then the map Hompy (M, N) - Homg(FM,FN)
induced by F reflects the respective homotopy relations (cf. [19], Theorem
1.2.10 (ii)).

Let f,g € Modgy (M, N) and assume that F'f is homotopic to Fig. By Lemma
there is an I-projective object Y € Rep;’(G) such that F'f - Fg =
F(f-g) admits a factorization FM — Y — FN. Applying U we obtain the
commutative diagram

UFM —=UY — > UFN
UAIT TUN
M 19 N.

Since 7y admits a left inverse (cf. Proposition it follows that f —g¢g
factors through UY. However, UY is a projective H-module (cf. Lemma
2.8)). Therefore, f and g are homotopic by [21], Proposition 9.1. O

In Theorem the previous results will be strengthened significantly. In
fact, RU admits a right inverse and becomes an equivalence when restricted
to a suitable subcategory of Ho(Repy (G)).

In order to compute the loop and suspension functors on Ho(Rep;’ (G)) we
need to compute both cylinder and path objects.

Lemma 4.23. Let V,W e Repy (G) and suppose that W is I-projective.

(i) Given a cofibration q:V — W the factorization VeV >V e W Ly
given by i(v,0") = (v+v',q(v")) and p(v,w) = v exhibits V& W as
a cylinder object for V. In particular, if V is cofibrant then we have
YV = coker(7) = coker(q) in Ho(Rep;’ (G)).

(ii) Given a fibration q : W — V' the factorization V SVxWE Vv
given by i(v) = (v,0) and p(v,w) = (v,v + q(w)) exhibits V x W as
a path object for V. In particular, we have QV = ker(p) = ker(q) in
Ho(Repg®(G)).

Proof. As for (i) we note that p is a split epimorphism with an I-trivial
kernel, hence is a trivial fibration. In order to see that the above factorization
gives a cylinder object for V' we need to show that ¢ is a cofibration. Observe
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that the diagram
Vs VveVv

| |

WT>V®W

given by 6(v) = (-v,v) and j(w) = (0, w) is a pushout square. Thus, together
with ¢ also 7 is a cofibration (cf. [19], Corollary 1.1.11). If V' is cofibrant then
YV = coker(i) in Ho(Rep; (G)) by definition of the suspension. However,
the map coker(q) — coker(i) induced by j is an isomorphism in Rep;’ (G)
by [36], 0SN3.

The construction of the path object in (ii) is taken from the proof of Propo-
sition Since V is fibrant we have QV = ker(p) in Ho(Rep;’ (G)) by def-
inition of the loop. However, the map ker(q) — ker(p) given by w ~ (0, w)
is an isomorphism in Rep;’ (G). O

Because of condition (iii) in the following result we do not expect that the
adjunction F': Mod(H) 2 Repy (G) : U is a Quillen equivalence in general.

Proposition 4.24. The following statements are equivalent.
(i) The adjunction F: Mod(H) 2 Repy (G) : U is a Quillen equivalence.
(it) The left derived functor LF : Ho(Mod(H)) - Ho(Repy (G)) is full.

(i1i) For any acyclic complexr Y € Ch(H) of projective H-modules the G-
representation H1FY is I-trivial, i.e. the H-module UHFY has finite pro-
jective dimension.

(tv) The model category Repy (G) is stable.

Proof. That (i) implies (ii) follows from [19], Proposition 1.3.13. Assuming
(ii) the functor LF is fully faithful by Theorem This implies that the
unit of the derived adjunction is an isomorphism. Let X € Mod(H) be cofi-
brant and denote by f : F X — Z the fibrant replacement of F'X in Repy’ (G).

By the proof of [19], Proposition 1.3.13, the map X B UFx Y UZ is a weak
equivalence. However, since f is a weak equivalence so is U f by definition
of the right transfer. By the 2-out-of-3 property nx is a weak equivalence
for any cofibrant object X. By Lemma (1.6 this implies (i).

If a cofibrant object X is realized as X = ByY for some acyclic complex Y of
projective H-modules then nx is a monomorphism with cokernel UH; FY
(cf. Proposition. By [21], Lemma 5.8, the map nx is a weak equivalence
if and only if the H-module U H1 F'Y has finite projective dimension. There-
fore, the above arguments show that (ii) is equivalent to (iii). Assuming (i)
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the functors LF and RU are equivalences of categories commuting with X
and Q, respectively (cf. [I], Corollary 3.1.4). Since Mod(H) is stable (cf.
[21], Theorem 9.3) it follows formally that so is Repy (G).

Note that the unit id — QX of the adjunction in Ho(Rep;’(G)) gives rise
to a natural transformation LFQ — QX LFQ =2 QLFY.Q = QLF using the
stability of Mod(H). To describe this more explicitly let Y = (Ys,ds) be
an acyclic complex of projective H-modules and set M = B_1Y. Then
QM = ByY in Ho(Mod(H)) by the construction of the loop and suspen-
sion functors on abelian model categories. Since ByY is cofibrant this gives
LFQM =~ FByY. Similarly, LFM =z FM and therefore QLFM ~ QFM.
Note that the canonical map ¢ : FFByY — FY| is a cofibration and FByY
is cofibrant since F' is left Quillen. Therefore, Lemma [4.23] (i) shows that
FByY & FYj is a cylinder object for FByY and XFByY = coker(q) = F'M.
The corresponding adjoint morphism ¢ : FFByY — QFM can then be iden-
tified with the aforementioned natural transformation LFQM — QLFM.
Assuming (iv) the map ¢ is an isomorphism. We will show this implies (iii).

By the proof of Lemma (i) the isomorphism Y FByY = FM is induced
by the surjection g : FByY & FYy - FM sending (v,w) to Fdy(w). In
order to compute the loop of F'M choose an I-epimorphism ¢’ : Z - FM
where Z is I-projective. By Lemma [4.23] (ii) we have QF M = ker(p) where
p: FM x Z - FM x FM is given by p(v,w) = (v,v + ¢’(w)). Consider the
commutative square

FByY — Y s FMxZ

L\L lp
FByY & FYj W FM x FM

where ¢ is the canonical map. Since ¢ is a trivial cofibration (cf. Lemma
and since p is a fibration there is a map H : FByY @ 'Yy — F'M x Z such that
H:=0 and (0,9) = pH. Consider the map ' : FB)Y — FByY @ FY} given
by /(v) = (0,q(v)). Since FY is a complex the map H.' factors through a
map f: FByY — ker(p). By the proof of [I], Proposition 3.1.7, its homotopy
class is the adjoint morphism ¢. Note that together with /" also f factors
through the canonical map FByY — BoFY.

Since ¢ is an isomorphism in Ho(Rep;’(G)) it follows from [19], Theorem
1.2.10 (iv), that f is a weak equivalence. By definition of the right transfer
Uf is a weak equivalence in Mod(H). As seen above it factors through
the natural map UF ByY — UByFY. However, the proof of Proposition
shows that the latter is a split surjection with kernel UH 1 F'Y. Setting
My = UBoFY and My = UH1FY we identify it with the first projection
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MixMsy — My. Write U f = rj where j is a trivial cofibration and r is a trivial
fibration. Then j is a monomorphism with a projective cokernel and may
be identified with a canonical inclusion of the form Mj x Mg < P x M7 x My
where P is projective. Since My < Mj x Ms is contained in the kernel of
U f it follows that Ms is a direct summand of ker(r). Since ker(r) has finite
projective dimension so does My =UH FY. ]

The condition in Propositionm (iv) suggests to pass to some stable version
of Rep;”(G). The most direct approach is to define the stable homotopy
category Ho(Rep;” (G)) of Rep;’ (G) to have the same objects as Repy (G)
and to define the set of morphisms between X and Y by

[X,Y] = lim[Q"X, Q"Y].

n>0

The transition maps in this direct limit are induced by Q and [Q"X,Q"Y]
denotes the set of morphisms in the usual homotopy category. The loop
functor induces a fully faithful functor Q on Ho(Rep;’(G)). Moreover, since
RU commutes with Q and since Mod(H ) is stable there is an induced functor

RU : Ho(Repy”(G)) - Ho(Mod(H))

given by RU on objects and sending the class of f € [Q"X,Q"Y ] to X"RU f.
However, we currently do not know if this improves the properties of RU
further.

5 Frobenius categories

Recall that a sequence X — Y £ Z in an additive category A is called
exact if i is a kernel of p and if p is a cokernel of i. An exact category is an
additive category A endowed with a class of exact sequences satisfying the
axioms in [6], Definition 2.1. For the sake of clarity these exact sequences are
sometimes called admissible and the morphism ¢ (resp. p) in an admissible

exact sequence X 5 Y & Z s called an admissible monomorphism (resp. an
admissible epimorphism).

An object Y of an exact category A is called projective (resp. injective) if
the functor Hom 4(Y,-) (resp. Hom4(-,Y")) is ezact, i.e. if it transforms ad-
missible exact sequences into exact sequences of abelian groups. An exact
category A is said to have enough projectives (resp. injectives) if for any
object X there is an admissible epimorphism Y — X (resp. an admissible
monomorphism X — Y') where Y is projective (resp. injective). An exact
category A with enough projectives and enough injectives is called a Frobe-
nius category if the classes of projective and injective objects of A coincide.
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In the following we will often assume that the exact category A is weakly
idempotent complete in the sense of [6], Definition 7.2. By [12], Proposition
2.4, this is equivalent to the classes of admissible monomorphisms and ad-
missible epimorphisms being closed under retracts. Hovey’s correspondence
in Theorem was generalized to weakly idempotent complete exact cate-
gories by Gillespie in [12], Corollary 3.4. The corresponding model structures
are called ezact (cf. [12], Definition 3.1). We note that the completeness of
the cotorsion pairs in [I2], Definition 2.1, is not required to be functorial
and that the bicompleteness assumption on A is relaxed significantly (cf.
the beginning of [12], §4).

Recall the following standard result (cf. [25], Theorem 1.1 and Remark 2.6).

Proposition 5.1. Let A be a weakly idempotent complete Frobenius cate-
gory. There is a unique exact model structure on A for which

e all objects are fibrant and cofibrant,
e the trivial objects are the projective (equivalently, the injective) objects.

This model structure is stable and its associated homotopy category Ho(A)
is the stable category A = A/Proj(A) of A.

Proof. Set T = Proj(A) = Inj(A). By definition of a Frobenius category
(A, T) and (T,.A) are complete cotorsion pairs on A in the sense of [12],
§2.1. Since T is a thick subcategory of A in the sense of [12], Definition
3.2, the existence of the model structure follows from [12], Corollary 3.4.
The description of the corresponding homotopy category is given in [12],
Proposition 4.3 (5). That the suspension functor on A is an equivalence of
categories is proved in [I7], Proposition 2.2. O

If Ais a (weakly idempotent complete) exact category then so is Ch(A)
with respect to those sequences of complexes which are admissible in every
degree (cf. [13], Lemma 2.5). The acyclicity of complexes in Ch(A) is de-
fined as in [0], Definition 10.1. Moreover, if A is a Frobenius category then
so is Ch(A) (cf. [13], Corollary 2.7).

Our main case of interest concerns the category A = GProj(S) where S is a
Gorenstein ring. Viewed as a full subcategory of Mod(S) with the induced
exact structure this is a Frobenius category by [12], Proposition 5.2 (4).
It is weakly idempotent complete because the class of Gorenstein projective
modules is closed under retracts. In this situation we also have the following
variant of Theorem [3.41

Proposition 5.2. If S is a Gorenstein ring and if A = GProj(S) then there
is an ezxact model structure on Ch(A) for which
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e the cofibrant objects are the acyclic complezes of projective S-modules,
e all objects are fibrant,

e the trivial objects are the compleres Y € Ch(A) such that we have
Extéh(A)(X, Y) =0 for any acyclic complex of projectives X .

The adjunction Qq: Ch(A) s A: o is a Quillen equivalence.

Proof. Let B denote the class of S-modules of finite projective dimension.
By [21], Theorem 8.3, (A, B) is a functorially complete cotorsion pair on
Mod(S) which is generated by a set. Moreover, A generates the category
Mod(S) because it contains the projective generator S. It follows from
[3], Proposition 1.2.5, that the class A is deconstructible in the sense of
[37], Definition 3.9. By [37], Lemma 7.9, the class of acyclic complexes in
Ch(A) is deconstructible in Ch(.A). We now apply [37], Lemma 7.10, to the
complete cotorsion pair (Proj(S),A) of A (cf. Proposition [5.1]). Letting C
denote the class of acyclic complexes of projective S-modules and

C* = {Y € Ch(A) | Extiy 4 (X,Y) =0 for all X ¢ C}

we obtain that (C,C*) is a complete cotorsion pair in Ch(A). Note that
Extéh(A) = Extéh(s) as a bifunctor on Ch(A) because the exact subcate-
gory Ch(A) of Ch(S) is closed under extensions. Therefore, it follows from
Theorem [3.4] (i) that C n C* is the class of projective objects of Ch(S).
Note that this is contained in Ch(.A). Applying [12], Corollary 3.4, to the
triple (C,C*,Ch(A)) yields the required exact model structure. As a conse-
quence of Theorem [3.4] (i) and Theorem [1.1] (i) the corresponding cotorsion
pairs are functorially complete. The final assertion follows from Theorem
(ii) because Ch(A) and Ch(S) have the same class of cofibrant-fibrant
objects. O

We now return to the situation where S = H = Endg(X)°P. For the rest
of this section we assume that H is Gorenstein and endow the categories
Mod(H) and Ch(H) with the Gorenstein projective and the singular pro-
jective model structure, respectively (cf. Theorem [3.2] and Theorem [3.4] (i)).
Moreover, we endow the categories Repy’ (G) and Ch(G) with the model
structures obtained via the right transfer along the adjoint pair (F,U) (cf.

Proposition and Proposition [4.10]).

Definition 5.3. A representation V e Rep; (G) is called I-Gorenstein
projective if V' is isomorphic to BpX = im(dy) for some [-exact sequence
X = (X.,d.) of I-projective G-representations. We denote by C(G) the
full subcategory of Rep;’(G) consisting of all I-Gorenstein projective G-
representations.

47



It follows from Lemma [4.7 and Corollary that a representation V is I-
Gorenstein projective if and only if there is an acyclic complex Y = (Y, d,)
of projective H-modules such that V = BoFY =im(Fd;).

Using the functorial factorizations in the model category Mod(H) one can
construct functorial complete resolutions as in [14], §1. The outcome is a
functor Y ) = (M — YM = (YM dM)): Mod(H) - Ch(H) such that

e the complex Y™ ¢ Ch(H) is acyclic with BoYM = ZsY'M = M
e for any ¢ > 1 the H-module YZ-M is projective,
e for any ¢ <0 the H-module YiM has finite projective dimension.

Note that our numbering of the complex Y™ differs from that in [14] by
a shift. An H-module M is Gorenstein projective if and only if Y;M is a
projective H-module for all i € Z (cf. [14], Lemma 4.3 (4)). We now define
the functor F: Mod(H) — Rep;’ (G) as the composition

Mod(H) Y53 Ch(H) L Ch(G) 25 Rep (@),
sending M € Mod(H) to FM = BoFYM € Rep®(G).
Theorem 5.4. The functors
U :Rep; (G) > Mod(H) and F:Mod(H) — Rep; (G)
restrict to inverse equivalences of categories C(G) = GProj(H).

Proof. If M is Gorenstein projective then FM is an object of C(G) because
YM is an acyclic complex of projective H-modules (cf. [T4], Lemma 4.3 (4)).
Conversely, if V € C(G) then V = ByFY for some acyclic complex Y of pro-
jective H-modules by Corollary It then follows from Proposition
(ii) and Remark that UV 2 UBoFY = ByY is a Gorenstein projective
H-module and that UF is isomorphic to the identity functor on GProj(H).
In particular, the functor U : C(G) - GProj(H) is essentially surjective and
the functor F : GProj(H) — C(G) is faithful. However, U on C(G) is faith-
ful, too. This follows from the fact that the objects of C(G) are quotients
of I-projective G-representations, hence are generated by their [-invariants

(cf. Lemma [2.8).

It then follows from UTF =z id that U is fully faithful on the essential image
of F : GProj(H) - C(G). However, this functor is essentially surjective.
Indeed, if V € C(G) we may assume V = ByFY for some acyclic complex Y
of projective H-modules. Set M = ByY. By Remark and [I4], Theorem
4.1, there is amap f:Y — Y™ of complexes such that Byf is the identity
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on M. We claim that the map BoFf : V = ByFY — ByFYM = FM is
an isomorphism in Rep; (G). Since U reflects monomorphisms and since
FM is generated by its [-invariants it suffices to see that UByF'f is an
isomorphism in Mod(H). This follows from Proposition (ii) because
under the isomorphisms UBoFY 2 ByY = M 2 UFM the map UBoF'f is
the identity on M. O

We have the following alternative characterization of the objects of C(G).
Proposition 5.5. For any object V € Repy, (G) the following are equivalent.
(i) We have V € C(G).

(ii) The representation V is generated by its I-invariants and there is a
map i:V - W in Rep;’ (G) such that W is I-projective and Ui is a
cofibration in Mod(H).

In particular, any object V' of C(G) is both a quotient and a subobject of an
I-projective G-representation and UV is a Gorenstein projective H-module.

Proof. That any object V € C(G) is both a quotient and a subobject of
an [-projective G-representation is true by definition. Moreover, UV is
Gorenstein projective by the proof of Theorem Therefore, we only need
to show that (i) and (ii) are equivalent. Assume that V satisfies (i). By
definition V' 2 ByFY for some acyclic complex of projectives Y € Ch(H).
This gives an embedding ¢ : V — F'Yy where F'Yy is I-projective. Moreover,
V is generated by its [-invariants as seen in the proof of Theorem
Under the isomorphism UV = UByFY = ByY in Proposition (ii) the H-
module coker(U7) gets identified with B1Y. Thus, coker(Ui) is Gorenstein
projective and U1 is a cofibration. This shows (ii). Conversely, assume that
V satisfies (ii). Since Ui is a cofibration we have coker(Ui) € GProj(H).
By the functorial factorisations in Mod(H ) we can embed coker(U+i) into a
projective H-module via a cofibration. This way we inductively construct
an acyclic complex

00—V ow=v, %y, Sy, 3

where Y; is a projective H-module for all ¢ < 0. If we set X; = F'Y; then
Lemma [2.5] and Lemma allow us to identify this complex with the I-
invariants of the complex

0—V-wzFUw=-x,28x ™3 x, ™2

which is therefore I-exact. Composing it with an I-resolution of V' gives an

I-exact complex X of I-projective G-representations with V' = BgX. This
shows V € C(G). O
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Remark 5.6. Assume that H comes from a finite group G with a split BN-
pair of characteristic p as in Example (i). Then H is selfinjective and
GProj(H) = Mod(H). Moreover, any monomorphism in Mod(H) is a cofi-
bration. It follows from Proposition |5.5 that C(G) is the full subcategory of
representations which are both a quotient and a subobject of an I-projective
G-representation. In this case the finite dimensional objects of C(G) were
first studied by Cabanes (cf. [7], §1). Moreover, Theorem recovers [7],
Theorem 2. Our arguments differ only gradually. Everything relies on the
fact that the adjunction (F,U) induces an equivalence between projective
H-modules and I-projective G-representations (cf. Corollary .

Proposition [5.5| yields the following class of cofibrations in Rep; (G).

Lemma 5.7. If V € Rep;” (G) is generated by its I-invariants then any map
i:V - W as in Proposition[5.5 (ii) is a cofibration.

Proof. By assumption the map Ui: UV — UW is a cofibration in Mod(H).
Since F' is left Quillen the map FU: : FUV — FUW is a cofibration in
Rep;’ (G). We have a commutative square

Fuv Y puw

svl lsw

V—7F">W

where ey is surjective since V' is generated by its I-invariants. Moreover, ey
is an isomorphism by Lemma Therefore, the composition eﬁ}i induces
an isomorphism f:V — im(FU47). Since the inclusion g : im(FUi) - FUW
is a cofibration by Lemma [4.14]so is i = ey g f. O

The difference between the functors F' and F can be made explicit as follows.
Lemma 5.8. There is a pointwise exact sequence
0— HiFYY — F —F—0

of functors from Mod(H) to Repy (G). The functor F: Mod(H) — Rep;’ (G)
preserves surjections and its restriction F : GProj(H) — C(G) preserves
monomorphisms.

Proof. The first statement follows from Proposition (i). Since F pre-
serves surjections it follows that so does F. The final statement follows from
Theorem [5.4] O

For a suitable exact structure on C(G) the functor F actually becomes exact.

Corollary 5.9. With respect to the short I-exact sequences the category
C(G) s a weakly idempotent complete Frobenius category and the functors
F:GProj(H) 2 C(G) : U are exact inverse equivalences.
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Proof. Recall from Lemma that a sequence in Rep;’(G) is [-exact if
and only if it is a complex such that the sequence obtained by applying U
is exact in Mod(H ). Therefore, everything follows from Theorem O

Remark 5.10. As recalled earlier, in an exact category A an admissible
exact sequence X Sy iz really is exact in the categorical sense, i.e. we

have i = ker(p) and p = coker(i). If 0 > X > Y £ Z 50 is a short I-exact
sequence in C(G) then the relations i = ker(p) and p = coker(¢) hold in C(G)
but not necessarily in the larger category Rep; (G). In fact, in Rep;’ (G)
the sequence is a complex, ¢ is injective and p is surjective. However, in
Rep;’(G) the inclusion im(é) € ker(p) might not be an isomorphism. In
fact, im(7) is the subrepresentation of ker(p) generated by U ker(p).

Endowing C(G) with the structure of a Frobenius category as in Corollary
[.9]the functors F and U can be viewed as inverse equivalences of exact model
categories GProj(H) = C(G) and Ch(GProj(H)) = Ch(C(G)). Therefore,
a morphism f : V - W in C(G) is a weak equivalence if and only if U f
is a weak equivalence in GProj(H) and hence in Mod(H). Consequently,
the inclusion functor i : C(G) — Rep;” (G) preserves weak equivalences and i
admits a well-defined homotopy functor Ho(7) : Ho(C(G)) - Ho(Repy (G)).
Denote by @ : Mod(H) - GProj(H) the cofibrant replacement functor.

Theorem 5.11. The composed functor
Ho(C(@)) "2 Ho(Rept(G)) 24 Ho(Mod(H))

induced by the fully faithful functor C(QG) L Repy’ (G) g Mod(H) is an
equivalence of categories with inverse Ho(F)Ho(Q).

Proof. Write U() for the functor U : Rep*(G) - Mod(H) and U®) for
the induced functor C(G) — GProj(H). Since all objects of Rep;’ (G) are
fibrant the proof of [19], Proposition 1.2.3, shows that the homotopy functor
of the fibrant replacement functor of Rep;’ (G) is isomorphic to the identity
functor. Therefore, RU™M = Ho(UM).

If j : GProj(H) - Mod(H) denotes the inclusion then we have U1 = jU(?)
and hence Ho(U™M)Ho(i) = Ho(j)Ho(U®)). However, the proof of [19],
Proposition 1.2.3, shows that Ho(j) is an equivalence of categories with

inverse Ho(Q). Moreover, Ho(U?) is an equivalence of categories with
inverse Ho(F) by Corollary O

In particular, Theorem[5.11|implies that the functor RU (resp. Ho(4)) admits
a right (resp. left) inverse and that Ho(7) allows us to view Ho(C(G)) as a
(not necessarily full) subcategory of Ho(Rep; (G)). The restriction of RU
to this subcategory is an equivalence of categories

Ho(C(G)) 2 Ho(Mod(H)).
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Remark 5.12. Due to the generality of our setup there are situations in
which our results are not particularly helpful. If G is discrete, for example,
and if 7 = 1 then Mod(H) = Repy (G) and we simply study the identity
functor F = U =1id. If G is a pro-p group and if [ = G then H = k is self-
injective and C(G) is the category of trivial G-representations. In this case
the equivalence U : C(G) - GProj(H) = Mod(k) is given by the forgetful
functor. In the situations of Example however, the category Mod(H)
is comparatively easy to understand and yet strongly linked to Repy (G).
Passing to Ho(Mod(H)) = GProj(H)/Proj(H) simplifies the situation fur-
ther by getting rid of the objects of finite projective dimension.

Finally, we explain in which way the objects of C(G) appear in the theory
of equivariant coefficient systems on Bruhat-Tits buildings as studied in [22]
and [28]. To this aim we assume that H is associated to G = G(K) and
I = I¢ as in Example (iv). Given M € Mod(H) Ollivier and Schneider
construct in [28], §6.4, a functorial exact sequence of H-modules

0-GP(M)qg—...-GP(M)o—>M—-0

where d is the semisimple rank of G. If G is semisimple then all GP(M); are
Gorenstein projective by [28], Lemma 6.4. On the other hand, the second
author functorially associates with M € Mod(H) a G-equivariant coefficient
system F (M) on the semisimple Bruhat-Tits building X of G (cf. [22], §3.2).
The corresponding complex CZ' (X4, F(M)) of oriented chains is I-exact
(cf. [22], Proposition 2.9). In fact, it is concentrated in degrees 0 <i < d and
admits a functorial isomorphism

(11) Co(Xy, F(M))" 2 GP(M).,

in Ch(H) (cf. [22], Remark 3.24). In particular, there is a functorial isomor-
phism HO(Cgf(X(.),f(M))I) = M of H-modules (cf. [22], Theorem 3.21).

Proposition 5.13. Assume that G is semisimple. For any M € Mod(H)
there is an isomorphism of complexes of smooth k-linear G-representations

CO"(X(ay, F(M)) 2 FGP(M)..

Proof. This will follow from Theorem and if we can show that the
complex C" (X(a), F(M)) consists of objects of C(G). To see this let o be a

facet of X contained in the closure of C' and denote by P! the stabilizer of o
t
in G. Setting X, = indf" (k) we have the Gorenstein ring Hj, = End ¢ (X, )P

associated to P} and I = I¢ as in Example (iii). Note that we may view
Hj- as a subalgebra of H. Denote by U,, F, and F, our usual functors
corresponding to PUJr and HCT,
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In [22], Theorem 3.12, the second author constructs a fully faithful func-
tor t, : Mod(H}) — RepZ"(P;L) which is right inverse to U,. Given N €
Mod(H];) the canonical complete resolution YN provides an embedding
N < Y where YV is an Hl-module of finite projective dimension. By
our semisimplicity assumption the ring H is selfinjective (cf. [28], Propo-
sition 5.5). It follows that YON is a projective H;—module. The arguments
given in the proof of [22], Theorem 3.12, then show that there is a functorial
H];—linear isomorphism t,N 2 F,N. Thus, t, 2 F, as functors.

Consider the automorphism j, of the k-algebra H] introduced in [28], §3.3.1.
Via scalar restriction it induces an automorphism of the category Mod(Hy)
denoted by N — N(e,). For M € Mod(H) denote by M, € Mod(H,) the
scalar restriction of M along the inclusion H); — H. By construction and
[28], Lemma 3.7, any term in the oriented chain complex of F(M) is a finite
direct sum of representations of the form V, = indgT (F,M,(€es)). By exact-

ness of compact induction the embedding j : F, M, (€,) — FUYOM"(&”)
an embedding 7 = indgT (J): Vo — indIGDT(FngM"(EU)) of G-representations.
The latter is I—projecti(;/e because COHI};ELCt induction commutes with arbi-
trary direct sums and satisfies indIGDT (X,) = X. Moreover, the Pj—represen—
tation F, M, (€e,) is generated by itg I-invariants (cf. Proposition and
the G-representation V is generated by its Pg—subrepresentation FyMy(ey).
It follows that the G-representation V, is generated by its I-invariants. By
Proposition (ii) we are left to show that Ui is a cofibration.

induces

Since F, M, (¢,) embeds into an I-free P(,T—representation the pro-p radical I,
of the parahoric subgroup P, acts trivially on F,M,(¢,). By [22], Proposi-
tion 4.17, there is a natural H-linear isomorphism H® UsFeMy(e5) 2 UV,
inducing an isomorphism coker(Ui) ¥ H ® ;1 coker(U,j). Since H} is self-
injective the H;r——module coker(U,j) is Gorenstein projective. As in [28],
Lemma 6.4, it follows that coker(U4) is Gorenstein projective over H. [

Remark 5.14. Assume that G is semisimple and take up the notation
from the proof of Proposition Let N be any H;—module and let M =
H®,i N. Then N is Gorenstein projective over H; and M is Gorenstein

projective over H. We have seen that indgf(F(,—N ) is an object of C(G).

Moreover, FM is an object of C(G) by Theorem [5.4 By Theorem and
the proof of Proposition there are canonical H-linear isomorphisms

UF(H ® 1yt N)=z H®,i N2H®,i UF,N = UindPT(IFgN).
It follows from Theorem [5.4]that this is induced by an isomorphism of func-
tors Fo (H @, (-)) 2 ind%; o F, from Mod(H}) to C(G).
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On the other hand, any representation V' e Rep;’(G) gives rise to a G-
equivariant coefficient system V as in [28], §3.1. The corresponding oriented
chain complex CZ'(X(s),V) will generally not consist of objects of C(G) as
the following example shows.

Example 5.15. Let o be a facet of X contained in the closure of C'. More-
over, denote by I, the pro-p radical of the parahoric subgroup P,. Then
W = indIGDT(VI") is a direct summand of one of the terms of the oriented

chain complex of V. However, if the Pj—representation Ve is not gener-
ated by its I-invariants then neither is the G-representation W. Indeed, if
W' = ind% (k[P(,T] V1) then W' is a proper subrepresentation of . On the
other hand, the inclusion W’ < W induces an isomorphism on I-invariants
as follows from [22], Proposition 4.17. Therefore,

k[G]-W!=k[G]- (W) =W'gW

and W does not lie in C(G) by Proposition For a concrete example
consider the GL2(Q))-representation V' described in [28], Remark 3.2 (3).
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