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Introduction

Given a �nite extension K of the �eld ℚp of p-adic numbers, it is a fundamental goal in num-
ber theory to understand the absolute Galois group of K . One studies this group using certain
representations. Around 1990, Fontaine devised a strategy to compare these to objects of semi-
linear algebra, the so-called étale (', Γ)-modules. We will forget about the group Γ until the
last section and talk instead about '-modules. The goal of this thesis is to provide a mostly
complete proof of Kedlaya’s slope �ltration theorem and talk a bit about its applications and
the general importance of slope �ltrations. Put brie�y, the slope �ltration theorem is a classi�-
cation result for '-modules over the Robba ring similar to the Dieudonné-Manin classi�cation
of isocrystals (cf. [19, Satz 8.21]). The main reference is Kedlaya’s 2008 article [16] and we will
use the section titles from that article.

In the �rst two sections, we explain all the objects of interest, starting in Section 1 with
the Robba ring . It is the ring of in�nite Laurent series over some complete discretely valued
�eld which converge on suitable annuli of outer radius 1. We will be especially interested in
two subrings of , consisting of series with bounded and integral coe�cients, respectively.
All three rings have many good algebraic properties which are proven very thoroughly in [19,
§§9-10]. On the Robba ring, we will be interested in relative Frobenius lifts. These are special
endomorphisms of  which (almost) act as the q-power map on the series variable and act as
an arbitrary isometry on the coe�cients. Here q > 1 is some �xed integer.

We then look at more general '-rings, that is, rings R equipped with an endomorphism '.
A '-module over R is then a �nite free moduleM over R together with an R-linear isomorphism
'∗M → M . We can describe and study such objects in terms of representing matrices as in
linear algebra. Modelled after the theory of vector bundles on a curve, we de�ne a notion
of semistability for '-modules and prove general properties. A formal consequence of the
formalism of slopes will be the existence of a canonical semistable �ltration, the HN �ltration.
We conclude our preliminary study of '-modules by introducing the properties we are really
interested in, namely étale and pure '-modules.

In the third section, we state the slope �ltration theorem: Any semistable '-module over
the Robba ring is pure. This means that the HN �ltration has much more structure than one
might have expected from its de�nition and only because of the slope �ltration theorem does it
become a useful tool for studying '-modules over . The theorem has found various applica-
tions in p-adic Hodge theory and encouraged a lot of progress in the theory of (', Γ)-modules,
for example due to Berger. We will come back to this in the last section and only make a few
immediate observations here. To conclude this section, we outline how the proof of the slope
�ltration theorem will be carried out in Sections 4 and 5.

In Section 4, we construct a larger ring using Hahn series for which one can prove the slope
�ltration theorem by explicit calculations. This is where most of the work comes in. It then
remains to pass back to  which will make use of faithfully �at descent. We will need to adapt
the theory of Newton polygons to twisted polynomials to solve '-equations and construct a
suitable �eld of coe�cients for this "extended Robba ring".

In the �nal section, we switch to the side of Galois representations. We explain Fontaine’s
strategy to attach Galois representations to (', Γ)-modules and vice versa and outline some
work of Berger leading to a proof of a conjecture made by Fontaine. In the last subsection, we
talk a bit about 2-dimensional trianguline representations. Roughly speaking, these represen-
tations are connected to upper triangular matrices, explaining the terminology. We comment
on the appearance of trianguline representations in the p-adic Langlands program and outline
the strategy used in the proof of the p-adic local Langlands correspondence for GL2(ℚp). The
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whole section is more of a survey, but the impact the slope �ltration theorem has had should
become apparent.

Notations and conventions

We make use of the usual conventions regarding +∞ and −∞. Applying a ring homomorphism
to a vector or matrix means applying the morphism to each entry of that vector or matrix. If
(K, vK ) is a (discretely) valued �eld, we denote by oK its valuation subring with maximal ideal
mK and by �K its residue �eld. We drop K from the notation whenever it is clear from context.
All rings are assumed to be unital and (with the exception of twisted (Laurent) polynomial
rings) commutative.

4



1 The Robba ring

The Robba ring  will be the main object of interest for us. We collect here some properties of
it and refer to Schneider’s lecture notes [19] for proofs. Note that Schneider’s notation di�ers
slightly from that of [16].

1.1 Basic properties

We collect some basic properties of the Robba ring and two of its subrings. Let (K, vK ) be a
complete discretely valued �eld and let � ∈ K be some uniformizer. Fix some absolute value
| ⋅ | associated to vK and extend it to an absolute value | ⋅ | on a �xed algebraic closure K of K .
The normalization is not important. We start with some more notation.

Notation. We will need to talk about open or closed circles, discs and annuli in K or K . Given a
real number � > 0, the circle |t | = � is the set of elements of K (or K ; for our purposes it does not
matter) of absolute value � . Similarly, the annulus � ≤ |t | < 1 is the set of elements of absolute
value at least � and strictly less than 1. Open or closed discs and annuli where the outer circle is
included are de�ned the same way.

De�nition 1.1. We write K ((t, t−1)) for the K -vector space of all in�nite Laurent series f =
∑i∈ℤ ait i with coe�cients in K . If r > 0 is a real number, then we say that f converges on the
annulus e−r ≤ |t | < 1 if for all � ∈ [e−r , 1),

lim
i→+∞

|ai |�i = 0 and lim
i→−∞

|ai |�i = 0.

By convention, we also allow r = +∞. In this case, the condition on the right should be read as
ai = 0 for all i < 0 and we say that f converges on the entire open unit disc. The set of all in�nite
Laurent series converging on e−r ≤ |t | < 1 is denoted r and their union K = ⋃r>0r is called
the Robba ring (over K ). We omit K if it can be inferred from the context.

Remark 1.2.  is a K -vector space which becomes a K -algebra by the formula

(∑
i∈ℤ

ait i) ⋅ (∑
j∈ℤ

bj t j) = ∑
k∈ℤ

( ∑
i+j=k

aibj)tk .

One can show that is an integral domain (cf. [19, Lemma 9.2]).

Remark 1.3. An element f = ∑i∈ℤ ait i ∈ r can be thought of as a function from the annulus
e−r ≤ |t | < 1 inK toK . Namely, the convergence condition ensures that in this range the assignment
z ↦ f (z) = ∑i∈ℤ aizi gives a well-de�ned map (note that f (z) converges in K [z] ⊆ K which is
complete). Such a map is called a (rigid) analytic function.

Example 1.4. If K has characteristic 0, then the logarithm

log(1 + t) =
∞
∑
i=1

(−1)i−1

i
t i

is an element ofwhich converges on the entire open unit disc 0 ≤ |t | < 1 (cf. [17, Remark 16.2.1]).

Two subrings of  are of particular importance.

De�nition 1.5. We write b and int for the subrings of  consisting of series with bounded
and integral coe�cients, respectively. That is, a series ∑i∈ℤ ait i ∈  lies in b if and only if the
set {|ai |}i∈ℤ is bounded. It is an element ofint if and only if |ai | ≤ 1 for all i ∈ ℤ. b is sometimes
called the bounded Robba ring and its elements are correspondingly called bounded elements.
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Theorem 1.6. b is a �eld and × = (b)× = b ⧵ {0}.

Proof. See [19, Satz 10.2] and op. cit. [Bemerkung 10.3].

The valuationw(∑i∈ℤ ait i) = mini∈ℤ vK (ai)makesb a discretely valued �eld. Clearly, int

is the corresponding valuation subring and its maximal ideal is mKint. We have the following.

Theorem 1.7. int is a henselian DVR with residue �eld �((t)). It is not mK -adically complete.

Proof. See [19, Satz 10.6] and the discussion after op. cit. [Bemerkung 10.3].

De�nition 1.8. We denote by  int and  the (mK -adic) completions ofint andb, respectively.

One can describe explicitly what elements of  int and  look like.

Lemma 1.9.  is the �eld of all Laurent series∑i∈ℤ ait i such that the set {|ai |}i∈ℤ is bounded and
such that limi→−∞ vK (ai) = ∞. The discrete valuation w on  is given by the same formula as on
b and the corresponding valuation ring is  int.

Proof. See [19, Lemma 10.4].

Next, we de�ne the r-norms. These will be extremely important.

De�nition 1.10. For r > 0, let | ⋅ |r be the (multiplicative) supremum norm on the circle |t | = e−r
as applied to elements of r . By the maximum principle (cf. [19, Lemma 9.3]), we have

||||
∑
i∈ℤ

ait i
||||r
= sup

i∈ℤ
{|ai |e−ri}.

The norm | ⋅ |r is called the r-norm (or e−r -Gauss norm). r is complete with respect to | ⋅ |r (cf. [19,
Übungsaufgabe 9.15]). We generalize the de�nition to vectors and matrices overr by taking the
maximum over entries.

Remark 1.11. If f is represented by an ordinary power series (that is, no negative powers of t
appear), then |f |r ≤ |f |s for all 0 < s ≤ r . Hence the supremum of f over the entire disc |t | ≤ e−s
is achieved at the boundary circle |t | = e−s . Analogously, |f |r ≥ |f |s for all 0 < s ≤ r if no positive
powers of t appear. Both combined imply that if f converges on e−r ≤ |t | ≤ e−s , then the supremum
of f on this closed annulus is max{|f |r , |f |s}. That is, the supremum of f over a closed annulus is
achieved on the boundary circles. In particular, f is bounded on any closed annulus on which it
converges.

For r > 0, we have on r the s-norm | ⋅ |s for any s ∈ (0, r]. This de�nes what is called
a Fréchet topology on r . We equip  with the direct limit topology which is sometimes
called the LF topology. A sequence in  converges w.r.t. the LF topology if it is contained in
some r and converges there for the Fréchet topology (i.e. if it converges w.r.t. | ⋅ |s for any
s ∈ (0, r]). This does not depend on the choice of r > 0 since the inclusion r → r ′ for r ′ < r
is a homeomorphism onto its image equipped with the subspace topology (cf. [17, De�nition
16.2.3]). Given f ∈ r , we can detect whether f ∈ b by looking at the growth of the function
s ↦ |f |s .

Lemma 1.12. If f ∈ , then f ∈ int if and only if there existsm ∈ ℤ and r > 0 such that tmf is
bounded by 1 on the annulus e−r ≤ |t | < 1, that is, |tmf |s ≤ 1 for all s ∈ (0, r]. The same then holds
for any integer m′ ≥ m.
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Proof. Write f = ∑i∈ℤ ait i . We �rst assume that tmf is bounded by 1 on some annulus e−r ≤
|t | < 1. Clearly, f ∈ int if and only if tmf ∈ int so we may assume that m = 0. Now
supi∈ℤ{|ai |e−si} = |f |s ≤ 1 implies that |ai |e−si ≤ 1 for all i. In particular, |ai | ≤ 1 for all i ≤ 0. We
come to the same conclusion for i > 0 by letting s → 0 as then e−si tends to 1 from below. It
follows that |ai | ≤ 1 for all i so f ∈ int. Conversely, assume that f ∈ int ∩r . We then have
|ai |e−si ≤ 1 for all i ≥ 0 and all s ∈ (0, r] since e−si ≤ 1 in this range. By convergence, there can
only be �nitely many i < 0 with |ai |e−ri > 1. Choose m ≥ 0 large enough so that i + m ≥ 0 for
all those i. Then |ai |e−r(i+m) ≤ 1 for all i < 0. For i < 0, there are now two possibilities. Either
i +m < 0 in which case |ai |e−s(i+m) ≤ |ai |e−r(i+m) ≤ 1 for any s ∈ (0, r], or i +m ≥ 0 in which case
|ai |e−s(i+m) ≤ |ai | ≤ 1 for any s ∈ (0, r]. It follows that |ai |e−s(i+m) ≤ 1 for all i < 0 and all s ∈ (0, r]
and the same is true for all i ≥ 0. Hence |ai |e−s(i+m) ≤ 1 for all i ∈ ℤ and all s ∈ (0, r] so that tmf
is bounded by 1 on e−r ≤ |t | < 1, as desired. The last remark is clear.

Corollary 1.13. If f ∈ , then f ∈ b if and only if there is r > 0 such that f is bounded on the
annulus e−r ≤ |t | < 1.

Proof. This follows from the lemma since f ∈ b if and only if �mf ∈ int for some m ≥ 0.

Remark 1.14. Both results hold verbatim for vectors and matrices with entries inr .

We have seen that b and int have very good algebraic properties, being a �eld and a
DVR, respectively.  itself on the other hand is not even noetherian (cf. [17, Exercise (5)]), but
we do have the following.

Theorem 1.15.  is a Bézout domain, i.e. every �nitely generated ideal of is principal.

Proof. See [19, Satz 10.1].

1.2 Relative Frobenius lifts

Choose an arbitrary integer q > 1. It will be �xed until the very last section.

De�nition 1.16. A relative (q-power) Frobenius lift on the Robba ring is an endomorphism ' of
 of the form ∑i∈ℤ ait i ↦ ∑i∈ℤ 'K (ai)ui , where 'K ∶ K → K is some isometry and u ∈ int is
such that u − tq ∈ mKint. If � has characteristic p > 0 and q is a power of p, then we de�ne an
absolute (q-power) Frobenius lift to be a relative Frobenius lift in which 'K is a lift of the q-power
map on �.

Before verifying that a relative Frobenius lift actually gives a well-de�ned map  → ,
we look at a simple example. An important step in the proof of the slope �ltration theorem
will be to reduce to this situation.

Example 1.17. The substitution ' ∶ (t ↦ tq) is a relative Frobenius lift. Here 'K is the identity
on K and u = tq . Note that ' does not preserve r since it maps r into r/q , but it does de�ne
a map on the whole Robba ring. Note also that |'(f )|r/q = |f |r for any r > 0.

Lemma 1.18. Let ' be a relative Frobenius lift on . There exists r0 > 0 such that for any
r ∈ (0, r0] and all f ∈ r , we have '(f ) ∈ r/q . Moreover, |'(f )|r/q = |f |r for r in this range.

Proof. Write '(t) = u = ∑i∈ℤ cit i . Since u − tq ∈ �int, we have |ci | ≤ |� | for all i ≠ q and
|cq − 1| ≤ |� |. Note that the latter condition implies that cq ∈ o×K , i.e. |cq | = 1. We prove the
following claim.
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Claim. There is r0 > 0 such that |u|r/q = |t |r = e−r for any r ∈ (0, r0]. Moreover, |u − tq |r/q <
|tq |r/q = e−r for r in this range.

Proof of Claim. Write u − tq = ∑i∈ℤ bit i , that is, bi = ci for i ≠ q and bq = cq − 1. Then bq ∈ �oK
for all i ∈ ℤ and there is some s > 0 such that ∑i∈ℤ bit i ∈ s . This means that limi→±∞|bi |e−ri =
0 for all r ∈ (0, s]. In particular, |bi |e−si > |� | only for �nitely many i ∈ ℤ all of which have to
be negative since |bi |e−si ≤ |� |e−si ≤ |� | for i ≥ 0. Hence the set {i ∈ ℤ ∶ |bi |e−si > |� |} is �nite
and it becomes smaller if we make s smaller because |bi |e−s

′i ≤ |bi |e−si for all s′ ≤ s if i < 0. We
may thus choose r0 > 0 such that |bi |e−r0i ≤ |� | for all i < 0 and the same is of course true for all
i ≥ 0. Making r0 even smaller, we may also assume that e−r0 > |� |. It follows that for all i ≥ 0
and all r ∈ (0, r0],

|bi |e−ri/q ≤ |� | < e−r0 ≤ e−r .

For i < 0 and r ∈ (0, r0], we have

|bi |e−ri/q < |bi |e−ri ≤ |bi |e−r0i ≤ |� | < e−r0 ≤ e−r .

Altogether,
|u|r/q = sup

i∈ℤ
{|ci |e−ri/q} = max{e−rq/q , sup

i≠q
{|bi |e−ri/q}} = e−r

for any r ∈ (0, r0]. This proves the claim.

Now let f = ∑i∈ℤ ait i ∈ r for some r ∈ (0, r0]. To prove that '(f ) ∈ r/q , it su�ces to
show that the sequences ('K (ai)ui)i≥0 and ('K (a−iu−i)i≥0 converge to zero with respect to the
s-norm for s ∈ (0, r/q]. We have, for s in this range,

lim
i→±∞

|'K (ai)ui |s = lim
i→±∞

|ai |e−sqi = 0

because sq ∈ (0, r]. This proves the �rst part of the lemma. Given r0 > 0 as in the claim, we
now verify the compatibility of ' with the r-norms for r ∈ (0, r0]. We have |u − tq |r/q < e−r .
This implies | utq − 1|r/q < 1 by multiplicativity of the r-norms and hence u

tq is a unit in r0 .

Claim. If we write x = u
tq , then |x i − 1|r/q < 1 for all i ∈ ℤ.

Proof of Claim. The claim is trivial for i = 0. For i > 0, we have

|x i − 1|r/q = |((x − 1) + 1)i − 1|r/q =
|||||

i
∑
k=1(

i
k)

(x − 1)k
|||||r/q

≤ max
1≤k≤i

{|x − 1|kr/q} = |x − 1|r/q < 1.

We then get the desired result for i < 0 as well since |x i −1|r/q = |x i |r/q |x−i −1|r/q < |x |ir/q = 1.

The claim implies that for all r ∈ (0, r0] and all i ∈ ℤ,

|ui − tqi |r/q < |tqi |r/q = e−ri . (1.2.1)

If we now write

'(f ) = ∑
i∈ℤ

'K (ai)ui = ∑
i∈ℤ

'K (ai)tqi + ∑
i∈ℤ

'K (ai)(ui − tqi),
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then the �rst summand has r/q-norm

||||
∑
i∈ℤ

'K (ai)tqi
||||r/q

= sup
i∈ℤ

{|'K (ai)|e−(r/q)qi} = sup
i∈ℤ

{|ai |e−ri} = |f |r

whereas the second summand has r/q-norm

||||
∑
i∈ℤ

'K (ai)(ui − tqi)
||||r/q

≤ sup
i∈ℤ

{|ai | ⋅ |ui − tqi |r/q} < sup
i∈ℤ

{|ai |e−ri} = |f |r .

Here we use (1.2.1) in the last line and the fact that the supremum is really a maximum. This
implies |'(f )|r/q = |f |r by the strict triangle inequality.

Remark 1.19. It follows that a relative Frobenius lift gives a well-de�ned endomorphism of the
Robba ring. The compatibility with the r-norms together with Lemma 1.13 then implies that '
preservesb andint. In fact, if we let r → 0 then it follows that the discrete valuation w onb

is '-invariant.

Proposition 1.20. Let ' be a relative Frobenius lift on and let A be a n ×n matrix with entries
inint. Then the map v ↦ v − A'(v) induces a bijection on (/b)n.

Proof. For any m ∈ ℤ the matrix A′ = (tm/'(tm))A has entries in int as well. We have a
commutative square

(/b)n (/b)n

(/b)n (/b)n

v↦v−A'(v)

⋅tm ⋅tm

v↦v−A′'(v)

Clearly, the vertical arrows are bijective so it su�ces to show that the lower arrow is bijective.
By Lemma 1.12, we may choosem′ ≤ 0 such that the entries of t−m′A are bounded by 1 on some
annulus e−r ≤ |t | < 1. Since tm′/'(tm′) = t (1−q)m′ , we then have |A′|r = |t (1−q)m′A|r ≤ |t−m′A|r ≤ 1.
Replacing A, v by A′, tmv for m = −m′, we may therefore assume that the entries of A are
bounded by 1 on the annulus e−r ≤ |t | < 1. After possibly making r smaller, we may also
assume that r ∈ (0, r0] where r0 > 0 is as in Lemma 1.18.

To show injectivity, we must see that if w = v−A'(v) is bounded (i.e. has bounded entries),
then so is v. Choose c > 0 such that |w|s ≤ c for 0 < s ≤ r and |'(v)|s ≤ c for r/q ≤ s ≤ r .
The latter is possible because '(v) is bounded on any closed annulus by Remark 1.11. Then
|v|s = |w + A'(v)|s ≤ c for any s ∈ [r/q, r] by the strict triangle inequality and because the
entries of A are bounded by 1. Hence |'(v)|s = |v|sq ≤ c for all s ∈ [r/q2, r/q]. We may repeat
the argument inductively to get |'(v)|s ≤ c for all s ∈ [r/qm+1, r/qm] for any m ≥ 0. Thus,
|v|s = |'(v)|s/q ≤ c for 0 < s ≤ r . Hence v is bounded by Lemma 1.13, proving injectivity.

To prove surjectivity, let w ∈ n. De�ne the sequence {wl}l≥0 as follows. Start by setting
w0 = w. Given wl , write wl = ∑i∈ℤ wl,it i . Set w+

l = ∑i>0wl,it i and w−
l = wl − w+

l , and de�ne
wl+1 = A'(w+

l ). Since the entries of t−1w+
l are analytic on the entire open unit disc, we have

er |w+
l |r = |t−1w+

l |r ≤ |t−1w+
l |r/q = e

r/q |w+
l |r/q ≤ e

r/q |wl |r/q

by Remark 1.11. Since the entries of A are bounded by 1, we deduce that

|wl+1|r/q ≤ |'(w+
l )|r/q = |w+

l |r ≤ e
−r+r/q |wl |r/q .
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Hence the wl converge to zero under | ⋅ |r/q . In particular, the w+
l converge to zero under | ⋅ |r/q

and hence under | ⋅ |s for any s ≥ r/q using Remark 1.11 again. On the other hand, we have for
0 < s ≤ r/q,

|w−
l |s ≤ |w−

l |r/q ≤ |wl |r/q
by the �nal observation in Remark 1.11. It follows that the w−

l converge to zero under | ⋅ |s
for any s ∈ (0, r/q]. Now de�ne v = ∑∞

l=0w+
l . Then v has entries analytic on the closed disc

|t | ≤ e−r/q by convergence of w+
l to zero under | ⋅ |s for s ≥ r/q. Moreover,

w − v + A'(v) = w0 −
∞
∑
l=0

w+
l +

∞
∑
l=0
A'(w+

l ) = w0 −
∞
∑
l=0

w+
l +

∞
∑
l=0

wl+1 =
∞
∑
l=0

w−
l .

The series on the right is convergent and its limit is bounded on e−r/q ≤ |t | < 1 by the observa-
tions made on the w−

l . In other words, the class of v is a (potential) preimage of the class of w. It
remains to extend v to an annulus of outer radius 1 as then v will have entries in . Since '(v)
is analytic on the closed disc |t | ≤ e−r/q2 by properties of ', we can write v = w+A'(v)−∑l≥0w−

l
and thus extend v across the annulus e−r/q ≤ |t | ≤ e−r/q2 . Proceeding inductively, we may extend
v to the entire open unit disc. This proves surjectivity.

1.3 Some properties of Bézout domains

We conclude our overview of the Robba ring with some algebraic properties of Bézout domains.
These can be found in [16, Remark 1.1.2 and §3.4] and/or Clark’s Commutative Algebra notes
[6, §3.9.2], for example.

Lemma 1.21. Let R be a Bézout domain. The following assertions are true:

• Any �nite locally free R-module is free.

• Any torsion-free R-module is �at.

• Any �nitely generated R-submodule of a torsion-free R-module is free.

• If M is a �nite free R-module and N is an R-submodule of M which is saturated, that is,
N = M ∩ (N ⊗R Frac(R)), then both N and M/N are �nite free.

Remark 1.22. The set N sat = M ∩ (N ⊗R Frac(R)) = {m ∈ M ∶ rm ∈ N for some 0 ≠ r ∈ R} is
called the saturation of N (in M).

Proposition 1.23. Let R → S be an inclusion of domains where R is Bézout. Then S is faithfully
�at over R if and only if S× ∩ R = R×.

Proof. Recall that S is �at over R if and only if for each proper ideal I of R, the multiplication
map I ⊗R S → S is injective. In fact, it su�ces to check this for �nitely generated ideals since
every ideal of R is an inductive limit of �nitely generated ones. Moreover, if S is �at over R,
then it is faithfully �at if and only if for every proper ideal I of R, I ⊗R S = I S ≠ S. Again, it
su�ces to check this for �nitely generated ideals.

Now let I ⊊ R be a �nitely generated ideal of R. Since R is Bézout, there is r ∈ R ⧵ R× such
that I = rR. Then I ⊗R S = rR ⊗R S ≃ rS whence the map I ⊗R S → S is just the inclusion rS ⊆ S
which is of course injective. We have rS = S if and only if r ∈ S×. This gives the claim.

Lemma 1.24. Let R be a Bézout ring. If u1,… , un generate the unit ideal, then there exists an
invertible n × n matrix U over R such that Ui1 = ui for all 1 ≤ i ≤ n.
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Proof. We proof the claim by induction on the number of elements, the case n = 1 being triv-
ial. Let d be a generator of the ideal (u1,… , un−1) so that the ui/d generate the unit ideal. By
induction hypothesis there exists an invertible matrix B such that Bi1 = ui/d for 1 ≤ i ≤ n − 1.
We extend B to an invertible n × n matrix by setting Bnn = 1 and Bin = Bni = 0 for 1 ≤ i ≤ n − 1.
Since (d, un) is the unit ideal, we can �nd e, f ∈ R such that de − f un = 1. De�ne the matrix

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

d 0 … 0 f
0 1 … 0 0
⋮ ⋱ ⋮
0 0 … 1 0
un 0 … 0 e

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Then U = BC does the job.

Lemma 1.25. LetM,N be two modules over a Bézout domain R. Given a presentation∑n
i=1 yi ⊗zi

of x ∈ M ⊗R N and elements u1,… , un ∈ R which generate the unit ideal, there exists another
presentation x = ∑n

j=1 y′j ⊗ z′j with y′1 = ∑n
i=1 uiyi .

Proof. By the previous lemma, there exists an invertible matrix U over R with Ui1 = ui for
1 ≤ i ≤ n. Given such U , we calculate

∑
i
yi ⊗ zi = ∑

i,j,l
Uij(U −1)jlyi ⊗ zl

= ∑
j
(∑
i
Uijyi) ⊗ (∑

l
(U −1)jlzl ).

Hence y′j = ∑n
i=1 Uijyi and z′j = ∑n

l=1(U −1)jlzl are as required.

Corollary 1.26. LetM,N be two modules over a Bézout domain R. If∑n
i=1 yi⊗zi is a presentation

of some x ∈ M ⊗R N with n minimal (i.e. there is no presentation of x with fewer summands),
then y1,… , yn are linearly independent over R.

Proof. Suppose that y1,… , yn are linearly dependent over R. Choose u1,… , un ∈ R not all zero
such that ∑n

i=1 uiyi = 0. Since R is Bézout, the ideal generated by the ui is a principal ideal, say
generated by u ∈ R ⧵ {0}. Replacing u1,… , un by u1/u,… , un/u if necessary, we may assume
that the ui generate the unit ideal. By Lemma 1.25, we can then �nd another presentation
x = ∑n

j=1 y′j ⊗ z′j with y′1 = ∑n
i=1 uiyi = 0, contradicting the minimality of n. Hence the yi must

be linearly independent over R.

2 '-modules

In this section, we introduce '-modules and various properties they may have. Such objects
appear in a variety of situations, e.g. in the classi�cation of p-divisible groups.

2.1 The category of '-modules

We begin our study of '-modules with two equivalent de�nitions of what a '-module is and
some simple semilinear algebra. It will pay o� later to be a bit more precise here than what is
perhaps necessary.

De�nition 2.1. A '-ring (resp. a '-�eld) is a ring (resp. a �eld) R equipped with an endomor-
phism ' = 'R . We say that R is inversive if ' is bijective. A morphism of '-rings f ∶ R → S is a
'-equivariant ring homomorphism f ∶ R → S, that is, f ◦'R = 'S◦f .
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Starting now, every ring will be a '-ring.

Notation. By abuse of notation, we write ' instead of 'R even when there are multiple rings.
Since all ring homomorphisms ' will be compatible this should not cause any confusion.

De�nition 2.2. Let M be a �nite free R-module equipped with a '-semilinear map 'M ∶ M →
M , that is, 'M is additive and satis�es 'M (rm) = '(r)'M (m) for all r ∈ R and all m ∈ M . Let
e1,… , en be some R-basis of M . The matrix A = (Aij)i,j ∈ Rn×n satisfying 'M (ej) = ∑n

i=1 Aijei for
all 1 ≤ j ≤ n is called the representing matrix of 'M (w.r.t. e1,… , en).

Remark 2.3. If we use the basis e1,… , en to identifyM with Rn, then 'M (v) = A'(v), that is, the
action of ' on M is given by multiplication with the matrix A times the componentwise action of
'. For this reason, we often call 'M the '-action on M .

Remark 2.4. If e′1,… , e′n is another R-basis ofM and U = (Uij)i,j denotes the change-of-base ma-
trix (i.e. e′j = ∑n

i=1 Uijei for all j), then the representing matrix of 'M w.r.t. e′1,… , e′n is U −1A'(U ).
In particular, the representing matrix of 'M w.r.t. some basis is invertible over R if and only if this
is true for any basis.

By the previous remark, the following de�nition is reasonable.

De�nition 2.5. A '-module over R is a �nite free R-module equipped with a '-semilinear map
'M ∶ M → M whose representing matrix w.r.t. some (hence any) R-basis is invertible over R.

We will primarily use the above de�nition of a '-module, but in some instances it is con-
venient to use another de�nition. Both de�nitions are easily seen to be equivalent.

De�nition 2.6. A '-module over R is a �nite free R-module equipped with an R-linear isomor-
phism 'linM ∶ '∗M = R⊗R,'M → M . We recover 'M from 'linM by precomposing with the canonical
map M → '∗M,m ↦ 1 ⊗ m and we obtain 'linM from 'M via 'linM (r ⊗ m) = r'M (m).

Example 2.7. R equipped with ' ∶ R → R is a '-module of rank 1 over R. Similarly, Rn with
the componentwise action of ' is a '-module of rank n over R. It is called the trivial '-module (of
rank n) over R. A '-module M over R is called trivial if it is isomorphic to the trivial '-module
over R. This means thatM should admit a basis which is invariant under the '-action, i.e. a basis
such that the representing matrix of 'M is the n × n identity matrix En. Such a basis will be called
a '-invariant basis.

De�nition 2.8. A morphism of '-modules f ∶ M → N is an R-linear map f ∶ M → N
commuting with the '-actions, i.e. f ◦'M = 'N ◦f . The set of morphisms of '-modules fromM to N
is denoted HomR,'(M,N ). We write Hom(M,N ) if there is no confusion about R or ' and reserve
HomR(M,N ) for the set of all R-linear maps from M to N .

We obtain the category of '-modules over R. This allows us to talk about categorical no-
tions such as '-submodules or irreducible '-modules. We look at some natural constructions
with '-modules.

De�nition 2.9. Given two '-modulesM,N over R, we equip the tensor productM ⊗R N with the
'-action 'M⊗RN = 'M ⊗'N . In particular, if R → S is a morphism of '-rings, then we can perform
a base change from '-modules over R to '-modules over S. Having de�ned the tensor product of
two '-modules, one can also de�ne symmetric and exterior powers of '-modules. Note that these
are free by construction so we really get '-modules.

Notation. If R is clear from context, we write M ⊗ N instead of M ⊗R N .
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De�nition 2.10. Given a '-module M over R, there is a unique way to equip the dual M∨ =
HomR(M, R) with the structure of a '-module such that 'M∨(f )('M (m)) = f (m) for any f ∈ M∨

and allm ∈ M . Alternatively, the isomorphism 'linM ∶ '∗M → M induces an isomorphism ('linM )∨ ∶
M∨ → ('∗M)∨. Taking the inverse and precomposing with the isomorphism '∗M∨ ≃ ('∗M)∨ gives
the desired structure of a '-module on M∨.

Remark 2.11. If R is inversive andM is a '-module over R, then 'M is bijective and 'M∨ is given
by 'M∨(f ) = '◦f ◦'−1M for f ∈ M∨.

One would also like to take kernels, images or quotients in the category of '-modules,
but these need not be free in general. Thankfully, we will be working mostly over Bézout
domains where we can take quotients by saturated submodules (cf. Lemma 1.21). Hence, if R
is Bézout, kernels of morphisms of '-modules are '-submodules of the source because they
are clearly saturated. This implies that images of morphisms of '-modules are naturally '-
modules as well. Next, we talk about morphisms and extensions of '-modules. As it turns out,
the following de�nition will be crucial.
De�nition 2.12. If M is a '-module over R, set

H 0(M) = ker('M − 1) and H 1(M) = coker('M − 1).

Lemma 2.13. If M,N are '-modules, then

Hom(M,N ) = H 0(M∨ ⊗ N ) and ExtR,'(M,N ) = H 1(M∨ ⊗ N ).

Here ExtR,'(M,N ) denotes the group of isomorphism classes of extensions of '-modules

0 N P M 0

where two such extensions are equivalent if there is an isomorphism of the middle terms inducing
the identities on the outer terms. We write Ext(M,N ) if there is no ambiguity about R or '.
Proof. We prove the lemma only under the assumption that ' is bijective since we will only
need it in this case. If ' is bijective, then the natural isomorphism of R-modules M∨ ⊗ N ≃
HomR(M,N ) is an isomorphism of '-modules with the '-action on H = HomR(M,N ) given
by 'H (f ) = 'N ◦f ◦'−1M for f ∈ H . An element of ker('H − 1) is thus precisely an R-linear map
f ∶ M → N which satis�es f = 'N ◦f ◦'−1M . This is just another way of saying that f is a
morphism of '-modules, proving the claim about H 0. For the claim about H 1, we follow the
proof of [12, Proposition 2.4]. Given ℎ ∈ H , we set Eℎ = N ⊕ M with the '-action given by

'Eℎ = (
'N ℎ◦'M
0 'M )

i.e. 'Eℎ(n,m) = ('N (n) + ℎ◦'M (m), 'M (m)). This gives rise to an extension of '-modules

0 N Eℎ M 0

Since '-modules are free, any short exact sequence of '-modules splits as a short exact se-
quence of R-modules and hence is isomorphic to one of the above form. It remains to see when
the extensions associated to ℎ, ℎ′ ∈ H are isomorphic. This is the case if and only if

(
1 k
0 1) ⋅(

'N ℎ◦'M
0 'M ) ⋅(

1 k
0 1)

−1
= (

'N ℎ′◦'M
0 'M )

for some k ∈ H . Writing this out gives
ℎ◦'M + k◦'M − 'N ◦k = ℎ′◦'M ⟺ ℎ − ℎ′ = 'N ◦k◦'−1M − k = ('H − 1)(k).

Hence the extensions associated to ℎ and ℎ′ are isomorphic if and only if the classes of ℎ and
ℎ′ in H 1(H ) agree, as desired.
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2.2 Twisted polynomial rings

An R-module M equipped with an R-linear map M → M can be viewed as a module over the
polynomial ring R[T ]. We can think of '-modules in a similar way, but one has to be a bit
careful since our de�nition of a '-module includes the condition that it is �nite free.

De�nition 2.14. The twisted polynomial ring R{T} over R is the set of polynomials in the variable
T with coe�cients in R, equipped with the unique structure of a (non-commutative) ring such that
Ta = '(a)T for all a ∈ R. If R is inversive, we can impose a similar condition for '−1 and T −1
and de�ne the twisted Laurent polynomial ring R{T ±}. We may also view this as a localization of
R{T} in the non-commutative setting. Since we will work only with twisted polynomials, we will
drop the descriptor "twisted" most of the time.

Remark 2.15. If R is a �eld then all left ideals of R{T} (and R{T ±}, if R is inversive) are principal.
This is because we have a Euclidean algorithm as for R[T ] (cf. [18, Theorem 6]).

We can now view a '-module M over R as an R{T}-module by letting T act as 'M . If R
is inversive, we see that a '-module over R is the same as a left R{T ±}-module which is �nite
free over R.

Lemma 2.16. If R is an inversive '-�eld then any irreducible '-module M over R is isomorphic
to R{T ±}/R{T ±}P for some irreducible Laurent polynomial P ∈ R{T ±}.

Proof. Let m ∈ M be nonzero and write n = rk(M). The R-submodule of M generated by
m, 'M (m),… , 'n−1M (m) is '-stable and must be all of M because M is irreducible. Consider the
map R{T ±}→ M sending ∑i∈ℤ aiT i to ∑i∈ℤ ai'iM (m). It is surjective by the previous observa-
tion. The kernel of this map is a left ideal of R{T ±} and hence is a principal ideal generated by
some P ∈ R{T ±}. Thus, M = R{T ±}/R{T ±}P with the '-action given by multiplication with T
from the left. To conclude, we note that any nontrivial factorization of P would give rise to a
nontrivial '-submodule of M . Since M is irreducible, this forces P to be irreducible.

Remark 2.17. Since T is a unit in R{T ±}, we can always achieve that P ∈ R{T}.

De�nition 2.18. Let a ≥ 1 be an integer. View '-modules as left modules over R{T} and 'a-
modules as left modules over R{T a}. De�ne the a-pushforward functor [a]∗ (resp. the a-pullback
functor [a]∗) to be the restriction of scalars (resp. the extension of scalars) along the inclusion
R{T a}→ R{T}.

Remark 2.19. • IfM is a '-module, then the 'a-module [a]∗M is the R-moduleM equipped
with the 'a-semilinear map 'aM . Note that if A is the representing matrix of 'M , then the
representing matrix of 'aM is A'(A)⋯ 'a−1(A). It will be convenient to de�ne the twisted
powers A{n} of A by the recurrence

A{0} = En, A{n+1} = A'(A{n}).

Then the representing matrix of 'aM is A{a}. Note that the above recurrence can be viewed
as a two-way recurrence if ' is invertible. Hence we can also de�ne twisted powers with
negative exponent in this case.

• IfN is a 'a-module, then we can explain the a-pullback functor as follows. Recall that R{T}
is a free R{T a}-module of rank a with basis 1, T ,… , T a−1. Now [a]∗N = R{T} ⊗R{T a} N
is a '-module via multiplication with T from the left on R{T}. Writing R{T} = R{T a} ⊕
TR{T a} ⊕ ⋯ ⊕ T a−1R{T a}, we can identify [a]∗N with N a, the direct sum of a copies of
N . Since 'N is multiplication by T a, we see that under this identi�cation the map '[a]∗N is
given by (n0,… , na−1)↦ ('N (na−1), n0,… , na−2).
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We collect some properties of the functors [a]∗ and [a]∗ in the following lemma. Most of
these are to be expected.

Lemma 2.20. LetM be a '-module and N a 'a-module over R. The following assertions are true:

1. [a]∗ and [a]∗ are adjoint (in both orders).

2. Both functors are exact and commute with duals.

3. [a]∗ commutes with tensor products over R, but [a]∗ does not.

4. M ⊗R [a]∗N ≃ [a]∗([a]∗M ⊗R N ) ("projection formula").

5. rk([a]∗M) = rk(M) and rk([a]∗N ) = a rk(N ).

6. [a]∗[a]∗N ≃ N ⊕ '∗N ⊕⋯ ⊕ ('a−1)∗N .

Proof. We only prove (vi) because it is maybe the least obvious and the '-action on the right
deserves some explanation. We identify [a]∗N with N a as in the above remark. That is,
'N a is given by the map (n0,… , na−1) ↦ ('N (na−1), n0,… , na−2). Applying [a]∗, we see that
[a]∗[a]∗N is isomorphic to N a equipped with the 'a-semilinear map 'aN a ∶ (n0,… , na−1) ↦
('N (n0),… , 'N (na−1)). Finally, note that in the isomorphism [a]∗N ≃ N a, each summand N is
identi�ed with ('i)∗N , and the '-action given by ('i)∗'N . Hence the '-action on the right is
really 'N in each component. Putting everything together gives the claim.

Lemma 2.21. If N is a 'a-module for some integer a ≥ 1, then

H i(N ) ≃ H i([a]∗N ), i = 0, 1.

Proof. Again, we identify [a]∗N with N a and the '-action given by the map (n0,… , na−1) ↦
('N (na−1), n0,… , na−2). If 'N (n) = n then '[a]∗N (n,… , n) = (n,… , n) and it is also easy to see that
any element �xed by '[a]∗N must be of the form (n,… , n) for some n ∈ N by applying '[a]∗N
repeatedly. This proves the assertion for i = 0. Consider the morphism [a]∗N ∋ (n0,… , na−1)↦
∑a−1
i=0 ni + im('N − 1) ∈ H 1(N ). It is clearly surjective and one checks that its kernel is exactly

im('[a]∗N − 1). This gives the desired result for i = 1.

2.3 Semistability and the HN �ltration

We introduce a notion of semistability for '-modules. A formal consequence will be the ex-
istence of a canonical �ltration, the HN �ltration. Most of this can be done axiomatically as
in [1, §1.3], but there is no real bene�t to introducing the category theory required for it. For
the rest of this section, we make the following hypothesis which comes in a weak and a strong
form. Unless otherwise stated, we only assume that the weak form holds.

Hypothesis 2.22. Let Rint ⊆ Rb ⊆ R be inclusions of integral domains where R is Bézout and Rb
is a discretely valued �eld with valuation subring Rint. Also assume that R× ⊆ Rb. Let ' be an
endomorphism of R which preserves Rb and Rint. Assume that the discrete valuation w ∶ Rb →
ℤ ∪ {+∞} is '-invariant and that w(R×) = ℤ. Finally, assume that for any n × n matrix A over
Rint the map v ↦ v − A'(v) on Rn induces an injection (weak form) or a bijection (strong form)
on (R/Rb)n.

Remark 2.23. In [16, Hypothesis 1.4.1] the rings Rint, Rb and R are only assumed to be Bézout,
but this may not be su�cient in some places. With the above assumptions we should not run into
any problems.
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Lemma 2.24. Let a ≥ 1 be an integer. Then Hypothesis 2.22 also holds for 'a.

Proof. We only need to check the last assertion. Given an n × n matrix A over Rint, apply the
assertion for ' to the na × na matrix

Ā =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 … 0 A
En 0 0
0 En ⋱
⋮ ⋱ 0
0 … 0 En 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

It follows that the map

(v0,… , va−1)↦ (v0 − A'(va−1), v1 − '(v0),… , va−1 − '(va−2)) (2.3.1)

is injective or bijective on (R/Rb)na. Let v ∈ Rn with v − A'a(v) ∈ (Rb)n and set vi = 'i(v) for
0 ≤ i ≤ a − 1. We have v0 − A'(va−1) = v − A'a(v) ∈ (Rb)n, and

v1 − '(v0) = v2 − '(v1) = ⋯ = va−1 − '(va−2) = 0

by de�nition of vi . But then the injectivity of (2.3.1) implies that v = v0 ∈ (Rb)n. If w ∈ Rn and
(2.3.1) is surjective, then we �nd v0,… , va−1 ∈ Rn with

w ≡ v0 − A'(va−1) mod (Rb)n

and vi −'(vi−1) ≡ 0 mod (Rb)n for 1 ≤ i ≤ a −1. The last condition implies that va−1 ≡ 'a−1(v0)
mod (Rb)n, that is,

w ≡ v0 − A'(va−1) ≡ v0 − A'a(v0) mod (Rb)n.

Hence v0 is a preimage of w modulo (Rb)n.

Remark 2.25. If N is a 'a-module and A is the representing matrix of 'N w.r.t. some basis, then
the corresponding representing matrix of '[a]∗N is the matrix Ā above (see also Remark 2.19).

Example 2.26. As the notation suggests, Hypothesis 2.22 holds for (Rint, Rb, R) = (int,b,),
the Robba ring and variants, if we take as ' any relative Frobenius lift and as w the discrete
valuation on b (cf. Section 1). The hypothesis is also satis�ed for (Rint, Rb, R) = (oK , K , K ), the
discretely valued �eld from Section 1. Here ' = 'K and w = vK .

We now de�ne the slope of a '-module.

De�nition 2.27. Let M be a '-module over R and let A be the representing matrix of 'M w.r.t.
some R-basis. The determinant of A is a unit in R and hence an element of Rb so we can apply the
valuation w to it. Since w is '-invariant, the quantity deg(M) = w(det(A)) is independent of the
choice of basis (cf. Remark 2.4). It is called the degree of M . If M is nonzero, then we de�ne the
slope of M as �(M) = deg(M)/ rk(M).

Remark 2.28. Since we will often only be interested in the slope or the degree of a '-module M ,
we will sometimes speak of "the determinant det('M ) of 'M " or "the representing matrix A of 'M "
although both may well depend on the chosen basis.

Example 2.29. • The trivial '-module R has degree and slope 0. Given n ∈ ℤ, there is � ∈ R×
with w(�) = n. The '-module R(n) is the R-module R equipped with the '-semilinear map
�' ∶ R → R. It has degree and slope n.
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• IfM = R{T}/R{T}P for some polynomial P (T ) = T n + an−1T n−1 +⋯ + a0 ∈ R{T}, then the
degree of M is w(a0). This is because the representing matrix of 'M (i.e. multiplication by
T ) w.r.t. the basis 1, T ,… , T n−1 is a companion matrix of P and hence has determinant ±a0.

Before giving the de�nition of semistability, we prove some useful properties of the degree
and slope.

Lemma 2.30. The following assertions are true:

1. If 0 → M1 → M → M2 → 0 is a short exact sequence of '-modules, then we have
deg(M) = deg(M1) + deg(M2).

2. If M,N are two '-modules, then �(M ⊗ N ) = �(M) + �(N ).

3. If M is a '-module of rank n, then �(∧iM) = i�(M) for 0 ≤ i ≤ n.

4. If M is a '-module, then deg(M∨) = − deg(M) and hence �(M∨) = −�(M).

5. If M is a '-module, then �([a]∗M) = a�(M).

6. If N is a 'a-module, then �([a]∗N ) = a−1�(N ).

Proof. All assertions can be checked easily, but let us give some short arguments.
(1.) The representing matrix of 'M is a block diagonal matrix with one block the representing
matrix of 'M1 and one block the representing matrix of 'M2 . The claim now follows from
properties of the determinant and of the valuation w .
(2.) Let rk(M) = m and rk(N ) = n so that rk(M⊗N ) = mn, and write 'M ⊗'N = ('M ⊗1)◦(1⊗'N ).
The determinant of the �rst morphism is det('M )n and that of the second is det('N )m. Applying
w and dividing by mn yields the claim.
(3.) ∧nM is a '-module of rank 1 and the map ∧nM → ∧nM induced by 'M is multiplication by
det('M ). This gives the claim for i = n. The rest is a generalization of this special case using
the isomorphism in [1, Proposition 2.2.2].
(4.) Let A be the representing matrix of 'M w.r.t. some basis. By de�nition of the '-module
structure on M∨, the representing matrix of 'M∨ w.r.t. the dual basis is the transpose of A−1. In
particular,

deg(M∨) = w(det('M∨)) = w(det(A−1)) = −w(det(A)) = − deg(M).

(5.) [a]∗M has the same rank as M and '[a]∗M = 'aM has determinant det('M )a.
(6.) [a]∗N has rank a rk(N ) and degree deg([a]∗N ) = deg(N ) (see Remark 2.25).

Remark 2.31. • Item (1.) implies that �(M) is a weighted average of �(M1) and �(M2), pro-
vided that M1 and M2 are nonzero. More precisely,

�(M) = �(M1)
rk(M1)
rk(M)

+ �(M2)
rk(M2)
rk(M)

.

• A short exact sequence as in (1.) is really a commutative diagram with exact rows

0 M1 M M2 0

0 M1 M M2 0

' ' '

Note that the diagram remains commutative if we replace the vertical arrows by ' − 1 so
that the snake lemma gives an exact sequence relating H 0 and H 1 of M,M1, M2.
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• By a similar argument as for item (2.), we see that base change of '-modules preserves
slopes, at least when this makes sense.

As for vector bundles on a curve, we can now de�ne semistability for '-modules. Note
however the opposite choice of sign in our de�nition of the slope. This causes all inequalities
to be �ipped!

De�nition 2.32. A '-module M is called semistable (resp. stable) if we have �(N ) ≥ �(M) (resp.
�(N ) > �(M)) for any nonzero '-submodule N ⊊ M .

Both properties are preserved under twisting, i.e. tensoring with a '-module of rank 1.

Lemma 2.33. Let M,N be '-modules where N has rank 1. Then M is semistable (resp. stable) if
and only if M ⊗ N is.

Proof. This follows directly from Lemma 2.30 and the exactness of twisting. For the converse,
twist by N ∨ instead.

Our next goal is to construct the HN �ltration. We start with some preliminary results.

Proposition 2.34. Any '-module of rank 1 is stable.

Proof. If M is a '-module of rank 1, then we may twist by M∨ and invoke Lemma 2.30 and
2.33 to reduce to the case that M has degree 0. In other words, it su�ces to show that M = R
is stable. Let N ⊆ M be a nonzero '-submodule of M . Since N is �nitely generated and R is
Bézout, N must be of the form N = Rx for some nonzero x ∈ R. Let � ∈ R× ⊆ Rb with '(x) = �x .
By de�nition, �(N ) = w(�). Assume that �(N ) ≤ 0, so that �−1 ∈ Rint. Then the injectivity of
v ↦ v − �−1'(v) on R/Rb (Hypothesis 2.22) implies that x ∈ Rb because x − �−1'(x) = 0 ∈ Rb.
But then x ∈ (Rb)× ⊆ R× whence N = M and �(N ) = �(M) = 0. This shows that �(N ) > 0 = �(M)
unless N = M , as desired.

Corollary 2.35. If N ⊆ M is an inclusion of '-modules of the same rank then �(N ) ≥ �(M) with
equality if and only if N = M .

Proof. Let n = rk(M) = rk(N ). It su�ces to show that deg(N ) ≥ deg(M). We have an inclusion
of '-modules of rank 1, ∧nN ⊆ ∧nM where the slopes are the degrees of N and M , respectively
(cf. Lemma 2.30). Hence the claim follows from the previous proposition.

Lemma 2.36. LetM be a '-module. Then the slopes of nonzero '-submodules ofM are bounded
below.

Proof. We proceed by induction on n = rk(M). The case n = 1 follows from Proposition 2.34 so
we are left with the induction step. The corollary above gives the claim for '-submodules of
full rank. If M has no nonzero '-submodules of lower rank, then we are done. Otherwise, let
N be a '-submodule of rank m < n. Replacing N by its saturation (which has rank m as well),
we may assume that N is saturated so that M/N is also a '-module. By induction hypothesis,
the slopes of nonzero '-submodules of N and M/N are bounded below. If P is any nonzero
'-submodule of M , then we have a short exact sequence

0 N ∩ P P P/(N ∩ P ) 0

where the outer terms are '-submodules of N and M/N , respectively. If one of these vanishes,
�(P ) is simply the slope of the other term, hence is bounded below. If not, then both �(N ∩ P )
and �(P/(N ∩ P )) are bounded below. Being a weighted average of the two, �(P ) is bounded
below as well.
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Lemma 2.37. Let M be a nonzero '-module over R. Then there exists a largest '-submodule
(w.r.t. inclusion) of M of least slope. It is semistable and saturated.

Proof. By the previous lemma, the slopes of nonzero '-submodules of M are bounded below.
Since the denominators of possible slopes of '-submodules of M are bounded above by rk(M),
this implies the existence of a least slope s. By minimality, any '-submodule of M of slope
s must be semistable. To prove the lemma, it remains to check that the set of '-modules of
slope s is stable under taking sums and saturations. Let N be a '-submodule of slope s with
saturation N sat. This is a saturated '-submodule of M of the same rank as N so we must have
�(N ) ≥ �(N sat) by Corollary 2.35. The reverse inequality holds by minimality of s whence
�(N sat) = s and N = N sat by Corollary 2.35 once more. Next, let N1, N2 be two saturated '-
submodules of M of slope s. We wish to show that the slope of N1 + N2 (which is indeed a
'-module) is also s. We consider the following two short exact sequences of '-modules

0 N1 ∩ N2 N1 (N1 + N2)/N2 0

and
0 N2 N1 + N2 (N1 + N2)/N2 0

This gives

�(N1 + N2) = �(N2)
rk(N2)

rk(N1 + N2)
+ �((N1 + N2)/N2)

rk((N1 + N2)/N2)
rk(N1 + N2)

= �(N2)
rk(N2)

rk(N1 + N2)
+(�(N1) − �(N1 ∩ N2)

rk(N1 ∩ N2)
rk(N1) )

rk(N1)
rk(N1 + N2)

≤ s
rk(N2)

rk(N1 + N2)
+(s − s

rk(N1 ∩ N2)
rk(N1) )

rk(N1)
rk(N1 + N2)

= s.

Hence �(N1 + N2) = s because the reverse inequality holds by minimality of s.

Remark 2.38. Clearly, M is semistable if and only if the '-submodule in the lemma is M itself.

Lemma 2.39. Let M,N be two semistable '-modules with �(M) < �(N ). Then Hom(M,N ) = 0.

Proof. Assume that f ∶ M → N is nonzero. Then im(f ) ⊆ N is a nonzero '-submodule whence
�(im(f )) ≥ �(N ) by semistability of N . If f were injective, we would get the contradiction

�(N ) > �(M) = �(im(f )) ≥ �(N ).

Thus, ker(f ) ⊆ M is a nonzero '-submodule which forces �(ker(f )) ≥ �(M) because M is also
semistable. Consider the short exact sequence of '-modules

0 ker(f ) M im(f ) 0

This leads to the contradiction

�(M) = �(ker(f ))
rk(ker(f ))
rk(M)

+ �(im(f ))
rk(im(f ))
rk(M)

≥ �(M)
rk(ker(f ))
rk(M)

+ �(N )
rk(im(f ))
rk(M)

> �(M).

We conclude that any morphism of '-modules from M to N must vanish.
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Remark 2.40. One can generalize this result quite a bit as in [16, Proposition 1.4.18] by introduc-
ing slope polygons. We will not need this explicitly, but a similar argument will be used later.

Corollary 2.41. Let M be a '-module over R. Then for any integer a ≥ 1, M is semistable if and
only if [a]∗M is semistable.

Proof. Assume that [a]∗M is semistable and let M ′ ⊆ M be a nonzero '-submodule. By exact-
ness of the a-pushforward, [a]∗M ′ ⊆ [a]∗M is a 'a-submodule. It follows from Lemma 2.30 and
the semistability of [a]∗M that a�(M ′) = �([a]∗M ′) ≤ �([a]∗M) = a�(M) so M is also semistable.
Conversely, if [a]∗M is not semistable, then its largest 'a-submodule of least slope is a 'a-
submodule M1 of lower rank. Write �(M1) = s. Note that 'M (M1) ⊆ M is a 'a-submodule of M
which has the same slope asM1. By the uniqueness in Lemma 2.37, 'M must therefore preserve
M1, i.e. M1 is even a '-submodule of M . But if we consider M1 as a '-module, then its slope is
s/a < �([a]∗M)/a = �(M). Hence M is not semistable either.

Proposition 2.42. Every nonzero '-module M over R admits a unique �ltration 0 = M0 ⊂ M1 ⊂
… ⊂ Ml = M by saturated '-submodules such that Mi/Mi−1 is semistable for 1 ≤ i ≤ l, and

�(M1) < �(M2/M1) < ⋯ < �(M/Ml−1).

It is called the Harder-Narasimhan �ltration (HN �ltration, for short) ofM . One calls the quantities
�(Mi/Mi−1) the HN slopes of M .

Proof. The proposition is really a formal consequence of Lemma 2.37. Namely, start by letting
M1 be the '-submodule constructed there. If M1 = M , we are done. Otherwise, let M2 be the
preimage in M of the largest '-submodule of least slope of M/M1. It su�ces to check that
M2/M1 is semistable with �(M1) < �(M2/M1) as the desired �ltration can then be constructed by
repeating the process, proving existence. Note that this process must terminate after �nitely
many steps since the ranks of the '-submodules must increase strictly every time. By con-
struction, M2/M1 is isomorphic to the largest '-submodule of least slope of M/M1 and hence is
semistable. We have a short exact sequence of '-modules

0 M1 M2 M2/M1 0

Note that we cannot have �(M2) ≤ �(M1) as M1 is strictly contained in M2 and the former is the
largest '-submodule of least slope of M . So �(M2) > �(M1) and we get the desired inequality

�(M2/M1) = �(M2)
rk(M2)

rk(M2/M1)
− �(M1)

rk(M1)
rk(M2/M1)

> �(M1).

Next, we show uniqueness. Assume we are given two HN �ltrations of M ,

0 = M0 ⊂ M1 ⊂ … ⊂ Ml = M and 0 = M ′
0 ⊂ M ′

1 ⊂ … ⊂ M ′
m = M.

We may assume �(M1) ≤ �(M ′
1). By Lemma 2.39, the morphism M1 → M → M/M ′

m−1 must be
the zero map. Hence M1 ⊆ M ′

m−1. By the same argument, M1 → M ′
m−1 → M ′

m−1/M ′
m−2 is also

the zero map and inductively we deduce M1 ⊆ M ′
1 . In particular, �(M1) ≥ �(M ′

1) because M ′
1

is semistable. By a symmetric argument, we then get M1 = M ′
1 and hence �(M1) = �(M ′

1). We
repeat the whole argument for M2/M1 and M ′

2/M ′
1 to see that M2 = M ′

2 . It follows by induction
that l = m and Mi = M ′

i for all i. This �nishes the proof.

Lemma 2.43. IfM is semistable of slope s and N ⊊ M is a saturated '-submodule of slope s, then
M/N is also semistable of slope s.
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Proof. Note that N is necessarily semistable and that �(M/N ) = s by the remark after Lemma
2.30. If we can show that the slope of the largest '-submodule of least slope of M/N is at least
s, then it must be M/N and we are done. Denote the preimage in M of that submodule by M ′.
Then M ′ is a '-submodule of M containing N and in particular is nonzero. We have

�(M ′/N ) = �(M ′)
rk(M ′)
rk(M ′/N )

− �(N )
rk(N )

rk(M ′/N )
≥ s

using that �(N ) = s and �(M ′) ≥ s by semistability ofM . NowM ′/N is isomorphic to the largest
'-submodule of least slope of M/N , �nishing the proof.

2.4 Étale and pure '-modules

Having introduced the auxiliary notion of a semistable '-module, we now turn to the properties
of '-modules we are really interested in, namely étale and pure '-modules. These can be
expressed in terms of representing matrices.

De�nition 2.44. A '-moduleM over R or Rb is called étale if it can be obtained by base extension
from a '-module over Rint. That is, there should exist a �nite free Rint-submodule N ⊆ M whose
base extension to R or Rb is M and such that 'M induces an isomorphism '∗N → N . We call N
an étale lattice of M . It need not be unique.

Remark 2.45. • Since N is a '-module over Rint, the representing matrix of 'N w.r.t. any
Rint-basis is invertible over Rint. It follows thatM admits an R-basis such that the represent-
ing matrix of 'M is invertible over Rint. In particular,M has degree and slope 0. Conversely,
any '-module of rank 1 and slope 0 is étale since it must contain a '-invariant generator
and hence must be isomorphic to R or Rb.

• The dual of an étale '-module M is again étale, because we can take as an étale lattice for
M∨ the Rint-dual of an étale lattice of M .

• If M is étale, then so is ∧iM for 0 ≤ i ≤ rk(M).

De�nition 2.46. An isogeny '-module over Rint is a �nite free Rint-moduleM , equipped with an
injection '∗M → M whose cokernel is annihilated by some power of a uniformizer of Rint. Since
any uniformizer is a unit in R, such an object becomes a '-module after tensoring with R or Rb.

Proposition 2.47. Let M be an isogeny '-module over Rint. Then the natural maps H i(M ⊗Rint
Rb) → H i(M ⊗Rint R) for i = 0 (under weak Hypothesis 2.22) or i = 0, 1 (under strong Hypothesis
2.22) are bijective.

Proof. Choosing a basis, we can write M = (Rint)n, M ⊗Rint Rb = (Rb)n, M ⊗Rint R = Rn and 'M =
A'. Assume that the weak form of Hypothesis 2.22 holds. We need to show that the inclusion
H 0((Rb)n)↪ H 0(Rn) is bijective. The injectivity is clear. If v ∈ H 0(Rn), then v = 'M (v) = A'(v),
i.e. v + (Rb)n lies in the kernel of (R/Rb)n → (R/Rb)n, v ↦ v − A'(v). But then we must have
v ∈ (Rb)n by the injectivity in Hypothesis 2.22. This proves the surjectivity.

Now assume that the strong form of Hypothesis 2.22 holds. We need to show that the
natural map H 1((Rb)n) → H 1(Rn) is bijective. If the class of v ∈ (Rb)n in H 1(Rn) is zero, then
v = w−A'(w) for some w ∈ Rn. Since the class of v in (R/Rb)n is trivial and (R/Rb)n → (R/Rb)n
is injective, we must in fact have w ∈ (Rb)n. Hence the class of v in H 1((Rb)n) is zero, proving
injectivity. To prove surjectivity, let v ∈ Rn. Since (R/Rb)n → (R/Rb)n is surjective, we �nd
v′ ∈ Rn such that v + (Rb)n = v′ − A'(v′) + (Rb)n. Since (R/Rb)n → (R/Rb)n is injective, this
forces w = v − v′ + A'(v′) ∈ (Rb)n. Hence the class of w in H 1((Rb)n) is a preimage of the class
of v. This �nishes the proof.
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Proposition 2.48. The base change functor from étale '-modules over Rb to étale '-modules over
R is an equivalence of categories.

Proof. Given an étale '-module M over R, choose an étale lattice M0 of M . The '-module
M0 ⊗Rint Rb over Rb is visibly étale and base changes to M . This proves essential surjectivity.

To check full faithfulness, we need to see that if M1, M2 are two étale '-modules over Rb,
then

HomRb,'(M1, M2) = HomR,'(M ⊗Rb R, N ⊗Rb R).

We use Lemma 2.13 to rewrite these sets in terms of H 0 and thus need to show that the natural
map

H 0(M∨
1 ⊗Rb M2) H 0(M∨

1 ⊗Rb M2 ⊗Rb R)

is a bijection. This is true by the same argument as in the proof of Proposition 2.47.

Remark 2.49. • As a consequence of the proposition, many of the results to follow are true
both for R and Rb. To simplify statements slightly, we write S whenever we mean either one
of R or Rb. For example, we may say that the category of étale '-modules over S is a full
subcategory of the category of all '-modules over S.

• Note that we only used the weak form of Hypothesis 2.22 to prove full faithfulness.

Proposition 2.50. Let 0 → M1 → M → M2 → 0 be a short exact sequence of '-modules over
R. If any two of them are étale (except possiblyM1, M2 under weak Hypothesis 2.22), then so is the
third.

Proof. Suppose that M and M2 are étale. By Proposition 2.48, the '-modules M,M2 and the
morphism M → M2 are obtained by base change from '-modules Mb, Mb

2 over Rb and a mor-
phism Mb → Mb

2 , respectively. Choose an étale lattice Mb
0 of Mb. The kernel of the map

Mb
0 → Mb

2 is a �nitely generated '-stable Rint-submodule of M (NB: it is saturated; now use
Lemma 1.21), hence is a '-module over Rint by Lemma 2.51 below. This gives an étale lattice
for M1. If M and M1 are étale then we consider the short exact sequence obtained by dualizing
the one of the proposition. Since M∨ and M∨

1 are étale, the case already treated shows that M∨
2

is étale. Thus, M2 = (M∨
2 )∨ is also étale.

Finally, suppose thatM1 andM2 are étale and that the strong form of Hypothesis 2.22 holds.
By Proposition 2.48, M1, M2 are obtained by base change from étale '-modules Mb

1 , Mb
2 over Rb.

Additionally, the extension of M2 by M1 is obtained from an extension of Mb
2 by Mb

1 by Lemma
2.13 and Proposition 2.47 (with i = 1). So we have a short exact sequence of '-modules over Rb

0 Mb
1 Mb Mb

2 0

which base changes to the one of the proposition. The morphisms Mb
1 → Mb and Mb → Mb

2
are given by multiplication with a matrix with entries in Rb. Multiplying by a su�ciently large
power of a uniformizer, we can achieve that all entries are in Rint. We then get an étale lattice
forMb by lifting one ofMb

2 (i.e. taking preimages of a basis) and adding one ofMb
1 and invoking

Lemma 2.51 again.

Lemma 2.51. Let M be an étale '-module over Rb. Then any �nitely generated 'M -stable Rint-
submodule of M is a '-module over Rint.
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Proof. Let M0 be an étale lattice of M and let N be a �nitely generated '-stable Rint-submodule
of M . Write generators of N as linear combinations (with coe�cients in Rb) of a basis of M0.
Multiplying by some power of a uniformizer, we may assume that all coe�cients lie in Rint so
that N ⊆ M0. Then N is a �nitely generated Rint-submodule of the �nite free Rint-module M0,
hence is �nite free itself because Rint is Bézout. Now note that ' makes Rint a torsion-free Rint-
module. Since torsion-free modules over Bézout domains are �at, we deduce that '∗N → '∗M0
is injective whence '∗N → N (note that N is 'M -stable) is also injective. Thus, '∗N → N is
an injection of Rint-modules of the same rank so its cokernel is torsion. Since Rint is a DVR, it
follows that it is annihilated by some power of a uniformizer. To summarize, we at least know
that N is an isogeny '-module over Rint.

It remains to see that the determinant of 'N has valuation 0. After possibly replacing M,N
by ∧rk(N )M, ∧rk(N )N (NB: ∧rk(N )M is also étale), we may reduce to the case that rk(N ) = 1. Let
e1,… , en be an Rint-basis of M0, let A be the corresponding representing matrix and let v be a
generator of N . Write v = ∑n

j=1 cjej so that 'M (v) = ∑n
i=1∑

n
j=1 '(cj)Aijei = ∑n

i=1 diei . On the
other hand, 'M (v) = rv = ∑n

i=1 rciei for some r ∈ Rint since N is 'M -stable. The equality

n
∑
i=1
rciei = 'M (v) =

n
∑
i=1
diei

yields r = ci/di for any i. In particular, w(ci) ≥ w(di) for any i bacause w(r) ≥ 0. Let w(ck) =
min1≤i≤n{w(ci)}. For any i, we have

w(di) = w(
n
∑
j=1
'(cj)Aij) ≥ min1≤j≤n

{w('(cj) + w(Aij)} ≥ min1≤j≤n
{w(cj)} = w(ck).

Altogether, w(ck) ≥ w(dk) ≥ w(ck) and hence w(r) = w(ck) − w(dk) = 0.

We now introduce the more general notion of pure '-modules.

De�nition 2.52. Let M be a '-module over S of slope s = c/d where c, d are coprime integers
with d > 0. M is called pure (or isoclinic; or isocline) of slope s if for some 'd -module N of rank 1
and degree −c over S, the 'd -module ([d]∗M) ⊗S N is étale.

We make some immediate observations.

Remark 2.53. • If we can �nd one N as in the de�nition, then any other will work as well.
This follows from the fact that modules of rank 1 and slope 0 are étale.

• Any '-module of rank 1 is pure since d = 1 and we can take N = M∨.

• As for étale '-modules, the dual of a pure '-module of slope s is pure of slope −s.

• A '-module is pure of slope 0 if and only if it is étale since we must have c = 0 and d = 1 in
this case. More precisely, if M is pure of slope 0 then M ⊗S N is étale for some N which is
itself étale by Remark 2.45. Therefore, also M ≃ (M ⊗S N ) ⊗S N ∨ is étale.

We look at the most basic example of a pure '-module of slope c/d .

Example 2.54. Let � be a uniformizer of Rint. For coprime integers c, d ∈ ℤ with d > 0, we de�ne
the '-module M�,c,d = Mc,d = [d]∗R(c) to be the free module of rank d over R with basis e1,… , ed
and '-action given by

'Mc,d (e1) = e2,… , 'Mc,d (ed−1) = ed , 'Mc,d (ed ) = �
ce1.
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It is easily seen that 'dMc,d
acts on the basis e1,… , en by a diagonal matrix where each entry is the

image of � c under some power of '. It follows that the representing matrix of �−c'dMc,d
is invertible

over Rint whence Mc,d is pure of slope c/d . A '-module isomorphic to Mc,d is called a standard
pure '-module.

Lemma 2.55. Let M be a '-module over S, and let a ≥ 1 be an integer. Then M is pure of slope s
if and only if [a]∗M is pure of slope as.

Proof. We �rst treat the case that s = 0. Here we have to prove thatM is étale if and only if [a]∗M
is. Assume thatM is étale. Since [a]∗ is exact and commutes with tensor products, we can obtain
an étale lattice for [a]∗M by applying [a]∗ to one ofM . It follows that [a]∗M is étale. Conversely,
if [a]∗M is étale, then for any i ≥ 0 we have an isomorphism (('a)i+1)∗[a]∗M → (('a)i)∗)[a]∗M
by applying ('a)∗ to the isomorphism ('a)∗[a]∗M → [a]∗M repeatedly. By Proposition 2.48,
these isomorphisms all descend to Rb. In other words, we may work over Rb. Let N be an étale
lattice of [a]∗M and let N ′ be the Rint-span of N , 'M (N ),… , 'a−1M (N ). By assumption, 'aM acts
on N by a matrix with coe�cients in Rint. It follows that N ′ is 'M -stable and it is also visibly
�nitely generated hence �nite free over Rint. Thus, N ′ is an étale lattice for M .

In the general case, we write s = c/d in lowest terms and set b = gcd(a, d). Then, again in
lowest terms, as = (ac/b)/(d/b). Let N be a 'd -module of rank 1 and degree −c. Then [a/b]∗N
has rank 1 and degree −ac/b. The following are equivalent:

• M is pure of slope s

• ([d]∗M) ⊗S N is étale

• [a/b]∗(([d]∗M) ⊗S N ) ≃ ([ad/b]∗M) ⊗S ([a/b]∗N ) ≃ ([d/b]∗([a]∗M)) ⊗S ([a/b]∗N ) is étale

• [a]∗M is pure of slope as

The �rst and last two are equivalent by de�nition and the second and third are equivalent by
the slope 0 case treated before. This yields the claim.

Remark 2.56. • By the lemma, it is equivalent to impose the condition in the de�nition of a
pure '-module for any pair of integers c, d ∈ ℤ with s = c/d and d > 0.

• As for étale '-modules, we see that if M is pure of slope s, then ∧iM is pure of slope is for
any 0 ≤ i ≤ rk(M).

Corollary 2.57. If M,N are pure '-modules of slopes s1, s2 over S, then M ⊗S N is pure of slope
s1 + s2.

Proof. First of all, the slope of M ⊗S N is s1 + s2 by Lemma 2.30. Since [a]∗ commutes with
tensor products over S, we may reduce to the case s1, s2 ∈ ℤ by choosing a = rk(M) rk(N ) and
invoking the lemma above. We may then twist by '-modules of degrees −s1 and −s2 to reduce
to the case that s1 = s2 = 0, i.e. it su�ces to show that if M and N are étale then so is M ⊗S N .
Since '-modules over Rint admit tensor products, we may take as an étale lattice for M ⊗S N
the tensor product over Rint of an étale lattice of M and of N .

Theorem 2.58. For any rational number s, the base change functor from pure '-modules of slope
s over Rb to pure '-modules of slope s over R is an equivalence of categories.

Proof. IfM,N are pure of slope s, thenM∨⊗RbN is pure of slope 0 by the above corollary, hence
is étale. Therefore the proof of Theorem 2.48 works unchanged.
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Theorem 2.59. Let 0 → M1 → M → M2 → 0 be a short exact sequence of '-modules over R.
If any two of them are pure of slope s (except possiblyM1, M2 in the case of weak Hypothesis 2.22),
then so is the third.

Proof. [a]∗ and twisting are both exact functors so we may reduce to the case s = 0. The
theorem then follows from Proposition 2.50.

Lemma 2.60. Let M be a pure '-module over R with �(M) > 0. Then H 0(M) = 0.

Proof. Note that for any a ≥ 1, we have H 0(M) ⊆ H 0([a]∗M) because if 'M (m) = m then
certainly 'aM (m) = m. We may thus replace M by [a]∗M for a = rk(M) to reduce to the case
where �(M) ∈ ℤ>0. By Theorem 2.58, there exists a pure '-module M0 over Rb with M =
M0 ⊗Rb R. We have H 0(M0) = H 0(M) by Proposition 2.47.

Since M is pure, M ⊗S N has a representing matrix in Rint for some N of rank 1 and slope
−�(M) < 0. Let f1,… , fn be a corresponding basis of M ⊗S N , denote by e a generator of N and
by e∨ the generator of N ∨ dual to e. Then all entries of the representing matrix A of 'M w.r.t.
the basis ei = fi ⊗ e∨ of M ⊗S N ⊗S N ∨ ≃ M have valuation at least �(M) (because ' acts on the
generator e∨ of N ∨ by an element of valuation �(M)). Now if v = ∑n

i=1 ciei ∈ H 0(M) is nonzero,
then writing out v = 'M (v) in terms of the ei gives ci = ∑n

j=1 Aij'(cj) for all i. Applying w
yields, for any i,

w(ci) = w(
n
∑
j=1
Aij'(cj)) ≥ minj {w(Aij) + w(cj)} > minj {w(cj)}

which is absurd. Hence H 0(M) = H 0(M0) = 0.

Corollary 2.61. Let M,N be pure '-modules over R with �(M) < �(N ). Then Hom(M,N ) = 0.

Proof. Since Hom(M,N ) = H 0(M∨ ⊗R N ) with M∨ ⊗R N pure of slope �(N ) − �(M) > 0 this
follows directly from the lemma.

Theorem 2.62. Let M be a pure '-module of slope s over R. We have:

1. M is semistable.

2. If N is a '-submodule of M with �(N ) = s, then N is saturated and both N and M/N are
pure of slope s.

Proof. (1.) Let N be any nonzero '-submodule of M . We wish to show that �(N ) ≥ s. Since
∧iM is pure of slope is for any 0 ≤ i ≤ rk(M), we may replace M and N by ∧rk(N )M and ∧rk(N )N ,
respectively, and thus assume that N is a '-submodule of rank 1. We then apply [rk(M)]∗ and
invoke Lemma 2.55 to reduce to the case that s = �(M) ∈ ℤ. Finally, we twist by N ∨ and invoke
Lemma 2.33 to reduce to the case that N is isomorphic to R as a '-module. Since 1 ∈ R is
'-invariant, we then have 0 ≠ H 0(N ) ⊆ H 0(M). To avoid contradicting Lemma 2.60, we must
have s ≤ 0 = �(N ), as required. Hence M is semistable.
(2.) That N is saturated was shown in the course of the proof of Lemma 2.37. As usual, we
reduce to the case that s = 0 by applying [a]∗ and twisting. In this case, M is étale and N has
slope 0 and we need to show that N and M/N are both étale also. Let M0 be an étale lattice of
M . The kernel of M0 → M → M/N is a 'M -stable Rint-submodule of M . It is saturated and
therefore �nite free, hence is a '-module over Rint by Lemma 2.51. In particular, the image P0
of M0 → M/N is a '-module over Rint. Let P be the R-span of P0. Then P0 is an étale lattice for
P whence the latter is an étale '-submodule of M/N . Note that P has full rank by construction.
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Now �(N ) = �(M) = 0 by assumption so that �(M/N ) = 0 by Lemma 2.30. Since P is étale it
has slope 0 as well and we must have M/N = P by Corollary 2.35. Hence M/N is étale as then
must be N by Proposition 2.50.

Corollary 2.63. IfM,N are '-modules over R, thenM ⊕N is pure of slope s if and only ifM and
N are both pure of slope s.

Proof. It is worth noting that here we equip M ⊕N with the '-linear map 'M ⊕'N . If M and N
are both pure of slope s, then so isM⊕N . This is because both [a]∗ and tensor product commute
with direct sums. In particular, we don’t need to use Theorem 2.59 which would require the
strong form of Hypothesis 2.22. Conversely, if M ⊕N is pure of slope s, then it is semistable by
Theorem 2.62 (1.) so M and N each have slope at least s. Since �(M ⊕N ) is a weighted average
of �(M) and �(N ) by Lemma 2.30, this is only possible if �(M) = �(N ) = s. Hence M and N are
both pure of slope s by Theorem 2.62 (2.).

We conclude this section with an analogue of Lemma 2.55 for [a]∗.

Corollary 2.64. Let N be a 'a-module over R. Then N is pure of slope s if and only if [a]∗N is
pure of slope s/a.

Proof. By Lemma 2.55, [a]∗N is pure of slope s/a if and only if [a]∗[a]∗N is pure of slope s. By
Lemma 2.20, we have

[a]∗[a]∗N ≃
a−1
⨁
i=0
('i)∗N .

If N is pure of slope s, then clearly so is ('i)∗N for i = 0,… , a − 1. Thus, [a]∗[a]∗N is a direct
sum of '-modules which are pure of slope s and hence is pure of slope s itself by the previous
corollary. Conversely, if [a]∗[a]∗N is pure of slope s, then the above decomposition shows that
N is a direct summand of a pure 'a-module of slope s and is therefore itself pure of slope s,
again by the previous corollary.

3 The slope �ltration theorem

We state the slope �ltration theorem here as a forward reference and outline how the proof
will be done in the following sections.

Theorem 3.1 (Slope �ltration theorem). Every semistable '-module over the Robba ring is pure.
In particular, any '-module M over  admits a unique �ltration 0 = M0 ⊂ M1 ⊂ … ⊂ Ml = M by
saturated '-submodules whose successive quotients are all pure of strictly increasing slopes.

Proof. The proof is divided into two steps. In the �rst step, we construct a '-ring ̃ and a
'-equivariant embedding  ∶  → ̃. We then prove that semistable '-modules over ̃ are
pure (cf. Theorem 4.29). In the second step, we establish the following two facts using faithfully
�at descent:

• If M is a semistable '-module over , then M ⊗ ̃ is also semistable (cf. Theorem 5.19);

• If M ⊗ ̃ is pure, then so is M (cf. Theorem 5.21).

Everything else follows from the existence of the HN �ltration.
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Remark 3.2. By the slope �ltration theorem, the tensor product of semistable '-modules over
 is semistable again. Indeed, the tensor product of pure '-modules is pure (cf. Corollary 2.57)
and hence semistable (cf. Theorem 2.62). This implies that the HN �ltration is ⊗-multiplicative
(cf. [1, §2.3] which in turn implies that the HN �ltration of the tensor product of two '-modules
is given by the product �ltration (op. cit. [Theorem 2.3.3]). Note that the analogous statement for
vector bundles on smooth varieties in characteristic zero is also true and is nontrivial as well (see
the introduction of [16, §1.7]).

Remark 3.3. The uniqueness of the HN �ltration implies that it inherits any additional group
action that M may carry. For example, the '-submodules appearing in the HN �ltration of a
(', Γ)-module are all (', Γ)-submodules (see Section 6).

Remark 3.4. The slope �ltration theorem does not assert that the HN �ltration splits. Of course,
we shouldn’t expect such a strong statement to begin with. However, a slope �ltration gives a
replacement for a direct sum decomposition which is good enough for many purposes because of
the formal properties of slopes.

4 Classi�cation over an extended Robba ring

The aim of this section is to construct the ring ̃ appearing in the proof of Theorem 3.1 and
prove that semistable '-modules over it are pure. We may think of ̃ as a very rough analogue
of an "algebraic closure" of . Our �rst task will be to explain what this should mean.

4.1 Di�erence-closed �elds

We give a brief overview of di�erence-closed �elds. This is an analogue of algebraic closure
for '-�elds in the sense that we can solve polynomial '-equations. It will however be more
convenient to work with a di�erent characterization (cf. [17, Lemma 14.3.3]).

De�nition 4.1. A '-�eld F is called weakly di�erence-closed if every '-module over F is trivial.
We say that F is strongly di�erence closed if it is weakly di�erence closed and inversive.

Remark 4.2. Note that being weakly di�erence-closed includes the property that short exact se-
quences of '-modules over F always split.

For the rest of this section, we make the following hypothesis. A �eld satisfying these
conditions will be constructed in the next section.

Hypothesis 4.3. Throughout this section, assume that ' is a relative Frobenius lift on  such
that 'K is an automorphism of K . Also assume that � = �K is weakly di�erence-closed. This
implies that any extension of '-modules over � splits so that H 1 vanishes for any '-module over
� (cf. Lemma 2.13).

Remark 4.4. • Keep in mind that 'K is also isometric so that it reduces to an automorphism
of �. In other words, � is automatically strongly di�erence-closed.

• Using Lemma 2.21, we see that the hypothesis still holds if we replace ' by 'a for some
integer a ≥ 1.

Lemma 4.5. In Hypothesis 4.3, it is equivalent to ask that all étale '-modules over K be triv-
ial. This implies that any extension of étale '-modules over K splits since such extensions are
themselves étale by Proposition 2.50. In particular, H 1 vanishes for any étale '-module over K .
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Proof. If '-modules over � are trivial, then one can adjust the proof of [19, Satz 8.20] slightly
to show that étale '-modules over K are trivial. For the basis property one uses Nakayama’s
lemma and instead of the residue �eld being algebraically closed one uses that '�−1 is surjective
(cf. the proof of Corollary 4.10 for the surjectivity). Conversely, if étale '-modules over K are
trivial, then we can just lift a given '-module over � to a '-module over oK . This gives rise
to an étale '-module over K which must admit a '-invariant basis by assumption. Hence the
'-module over � we started with is trivial.

4.2 The extended Robba ring

We now construct the ring ̃ using Hahn series. By a well-ordered set we mean a set equipped
with a total order such that any non-empty subset contains a least element. This is equivalent
to the requirement that any strictly decreasing sequence of elements of the set terminates after
�nitely many steps.

De�nition 4.6. Let R be any ring. The ring of Hahn series over R (with value group ℚ), denoted
R((uℚ)), is the set of formal series ∑i∈ℚ aiui in some variable u over R with well-ordered support,
that is, {i ∈ ℚ ∶ ai ≠ 0} is well-ordered. R((uℚ)) becomes a ring by de�ning addition coe�cientwise
and multiplication by the convolution product

(∑
i∈ℚ

xiui) ⋅ (∑
j∈ℚ

yjuj) = ∑
k∈ℚ

( ∑
i+j=k

xiyj)uk .

This is well-de�ned because

• the set of k ∈ ℚ admitting at least one representation as i + j where xiyj ≠ 0 is well-ordered;

• for each k ∈ ℚ, the number of representations of k as i + j where xiyj ≠ 0 is �nite.

The ring R((uℚ)) is a �eld if R is. See [17, Example 1.5.8].

Remark 4.7. If ∑i∈ℚ aiui ∈ R((uℚ)) is nonzero, then its support is non-empty and hence contains
a least element. That is, R((uℚ)) comes equipped with a u-adic valuation v sending∑i∈ℚ aiui to the
smallest i ∈ ℚ with ai ≠ 0. Note that R((uℚ)) is complete w.r.t. the u-adic valuation (the argument
is the same as for the ring of Laurent series). If R is a �eld, then the subring R((uℚ+)) of R((uℚ)) of
series with support in [0, +∞) is a local ring with maximal ideal generated by u and residue �eld
R.

Lemma 4.8. Let ' be an automorphism of R((uℚ)) of the form∑i∈ℚ aiui ↦ ∑i∈ℚ 'R(ai)uqi where
'R is some automorphism of R. Then the map 1 − ' is bijective on the set of series with constant
term zero.

Proof. Note �rst that if x ∈ R((uℚ)) has constant term zero, then so does x −'(x). If x is nonzero,
then v(x) = j for some j ∈ ℚ ⧵ {0}. We have v('(x)) = qj = qv(x) whence v(x) ≠ v('(x)). It
follows from the strict triangle inequality that v(x − '(x)) = min{qv(x), v(x)} ≠ 0. In other
words, no series with constant term zero is mapped to zero so 1 − ' is injective.

Given x = ∑i∈ℚ xiui ∈ R((uQ)), set

y+ =
∞
∑
j=0

∑
i>0
'jR(xi)u

iqj , y− = ∑
i<0
(
∞
∑
j=0
−'−j−1R (xiqj+1))ui

Note that the sum over j is �nite for each i in the de�nition of y− since there are no in�nite
decreasing sequences in the support of x . Hence both sums give well-de�ned elements of
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R((uℚ)). Note also that applying ' to either series just causes the sum over j to start from j = 1
instead of j = 0. Set y = y+ + y−. This series has constant term zero by construction. Using the
observation made before, we calculate

y − '(y) = y+ − '(y+) + y− − '(y−)

= −∑
i>0
'0R(xi)uiq

0
− ∑
i<0
−'0R(xiq0)ui

= x − x0.

This proves surjectivity.

Remark 4.9. Obviously, the assertion of the lemma holds also for ' −1, but note that it also holds
for 1 − c' for any c ∈ R×. Indeed, we only need to replace 'R by c'R everywhere.

Corollary 4.10. For any c ∈ �×, the map 1 − c' on �((uℚ)) is surjective.

Proof. Since '-modules over � are trivial by Hypothesis 4.3, there is a ∈ �× which is invariant
under c−1'� . This amounts to '�(a) = ca. We can therefore always write

(1 − c')(x) = a−1(ax − '(ax))

so it su�ces to prove the corollary in the case that c = 1. Now the surjectivity of 1 − ' on
the series with constant term zero follows from Lemma 4.8. It remains to show that we can
also �nd a preimage of the constant term, i.e. that 1 − '� is surjective on �. This follows again
from Hypothesis 4.3 since Ext(�, �) is trivial and can be identi�ed with the cokernel of 1 − '�
by Lemma 2.13.

Remark 4.11. The corollary implies that any extension of trivial '-modules over �((uℚ)) splits
since it implies that H 1 vanishes for any trivial '-module over �((uℚ)). In other words, any exten-
sion of trivial '-modules over �((uℚ)) is trivial.

We are now ready to de�ne the extended Robba ring ̃. We use the de�nition given in
[17, De�nition 16.5.6] instead of the one in [16, De�nition 2.2.4] since the former includes an
important erratum.

De�nition 4.12. If r > 0 is a real number, we denote by ̃r the set of formal series ∑i∈ℚ aiui
with coe�cients in K , satisfying the following conditions:

1. For all s ∈ (0, r], we have limi→±∞|ai |e−si = 0

2. For all s ∈ (0, r] and all c > 0, the set of i ∈ ℚ such that |ai |e−si ≥ c is well-ordered.

The union ̃ = ⋃r>0 ̃r is called the extended Robba ring (over K ). Addition on ̃ is de�ned
coe�cientwise and multiplication by the usual formula. One sees that this is well-de�ned by
combining the arguments for  and the ring of Hahn series with coe�cients in K . We denote by
̃b and ̃int the subrings of series with bounded and integral coe�cients, respectively. On ̃r , we
de�ne the r-norm | ⋅ |r by the usual formula

|||||
∑
i∈ℚ

aiui
|||||r
= sup

i∈ℚ
{|ai |e−ri}.

This de�nition makes sense by (2.).
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̃ can also be constructed as follows. LetK ((uℚ)) be the �eld of Hahn series with coe�cients
in K . On the subring of series with bounded coe�cients, we can de�ne for any r > 0 the r-
norm | ⋅ |r by the above formula. We can then take the completion with respect to | ⋅ |r . The
union over r > 0 of these completions gives the ring ̃ (see the discussion after [17, De�nition
16.5.6]).

Lemma 4.13. If f ∈ ̃, then f ∈ ̃int if and only if there exists j ∈ ℚ and r > 0 such that ujf is
bounded by 1 under | ⋅ |s for all s ∈ (0, r]. More generally, f ∈ ̃b if and only if there exists some
r > 0 such that f is uniformly bounded under | ⋅ |s for all s ∈ (0, r].

Proof. One only has to adjust the proof of Lemma 1.12 slightly. Instead of noting that con-
vergence implies that |ai |e−ri > 1 only for �nitely many i, one uses that the set of such i is
well-ordered and hence contains a minimal element (if it is nonempty). Everything else can be
copied.

Lemma 4.14. If f ∈ ̃r and r ′ ≤ r , then f is uniformly bounded under | ⋅ |s for all s ∈ [r ′, r].

Proof. This is the analog of Remark 1.11. One needs to make the same adjustments as in the
previous lemma.

Lemma 4.15. ̃ is a Bézout domain. Its units are the nonzero elements of the discretely valued
�eld ̃b. The corresponding valuation subring is ̃int. It is henselian with residue �eld �((uℚ)).

Proof. See the discussion after [17, De�nition 16.5.6]. The discrete valuation w on ̃b is given
by the same formula as on b.

Just like int, the discrete valuation ring ̃int is not �-adically complete. We denote the
�-adic completions of ̃b and ̃int by ̃ and ̃ int, respectively.

De�nition 4.16. We equip ̃ with the endomorphism

'(∑
i∈ℚ

aiui) = ∑
i∈Q

'K (ai)uqi .

It is an automorphism because 'K is bijective by Hypothesis 4.3. Moreover, it restricts to an auto-
morphism of ̃b and ̃int since 'K is an isometry.

Remark 4.17. The fact that ' ∶ ̃ → ̃ is an automorphism makes the study of '-modules
over ̃much easier than that of '-modules over. We also see directly that the discrete valuation
w on ̃ is '-invariant and that |'(f )|r/q = |f |r for any r > 0 and any f ∈ ̃r .

If we want any chance of deducing results for from results for ̃, we need a '-equivariant
embedding  → ̃. This is the content of the following lemma.

Lemma 4.18. There exists a '-equivariant embedding  ∶  → ̃. Moreover, for r0 > 0 as in
Remark 1.18, it preserves r-norms for all r ∈ (0, r0).

Proof. If '(t) = tq , then we can set  (t) = u and we are done. In general, we must work a
bit harder. We inductively construct morphisms  l ∶  → ̃ for l ≥ 1, each of the form
 l (∑i∈ℤ ait i) = ∑i∈ℤ aiuil for some ul ∈ ̃int such that the following conditions are satis�ed:

1. |ul |r = |t |r for r ∈ (0, r0).

2.  l ('(x)) ≡ '( l (x)) mod � l̃int for all x ∈ int. It su�ces to check this for x = t .
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If in addition the  l are compatible with the transition maps, that is, ul+1 ≡ ul mod � l̃int

for any l ≥ 1, then we get an induced map  ∶  int → ̃ int between the projective limits
which is '-equivariant by (2.). Condition (1.) implies that  preserves r-norms for r ∈ (0, r0)
(compare with the proof of Lemma 1.18) so  maps int into ̃int. By localizing, we obtain
a morphism b → ̃b preserving r-norms which then extends to  ∶  → ̃ with all the
desired properties by continuity. Hence it remains to construct the  l .

Start with u1 = u. Then condition (1.) is satis�ed for all r > 0. Since '(t) ≡ tq mod �int,
we have

 1('(t)) ≡  1(tq) = uq = '(u) = '( 1(t)) mod �̃int.
Given  l , ul , we need to construct ul+1 with the desired properties. Our �rst goal is to construct
Δ ∈ ̃int with

'(� lΔ/u) − q� lΔ/u = ( l ('(t)) − '(ul ))/uq . (4.2.1)
Note that ul =  l (t) so the right side of this equation, which we will denote by Δ′, is an element
of � l̃int by induction hypothesis. Write Δ′ = ∑i∈ℚ aiui . We �rst assume that q ≠ 0 in �. In this
case, q ∈ o×K and we can adjust the construction in the proof of Lemma 4.8 as follows. De�ne
the twisted powers q{n}, n ∈ ℤ, of q by the two-way recurrence

q{0} = 1, q{n+1} = 'K (q{n})q−1.

The de�nition is made so that (q−1'K )n = q{n}'nK for any n ∈ ℤ. If we now set y′ = y+ + y−
where

y+ =
∞
∑
j=0

∑
i>0
q{j}'jK (ai)u

iqj , y− = ∑
i<0
(
∞
∑
j=0
q{−j−1}'−j−1K (aiqj+1))ui ,

then it is easily checked that '(y′) − qy′ = ∑i≠0 aiui and that y′ de�nes an element of ̃int.
In fact, it is an element of � l̃int since ai ∈ � loK and q−1'K is isometric. Hence it remains to
construct a preimage of a0 under 'K − q. By Hypothesis 4.3, the étale '-module (K, q−1'K ∶
K → K ) is trivial. It follows that the map q−1'K is surjective on oK , i.e. there is y0 such that
q−1'K (y0) − y0 = q−1a0. Let y = y′ + y0. Then y ∈ � l̃int and Δ = �−lyu satis�es (4.2.1).

Next, we construct Δ in the case that q = 0 in �K , that is, q ∈ �oK . In this case we cannot
quite make the same construction as above because q−1 ∉ oK . We can however make a similar
construction coe�cientwise. De�ne the twisted powers q{n} of q as before. However, this time
we only need them for n ≥ 0. Note that vK (q{n}) = vK (qn) = nvK (q) so that q{n} ∈ �noK . If
we set bi = ∑∞

j=0 q{j}'
−j
K (aiqj ) for i ∈ ℚ, then the series converges �-adically for any i by the

previous observation and because '−1K is an isometry. In fact, bi ∈ � loK for all i since this is
true for all the ai . Write � lΔ/u = ∑i∈ℚ biui . Then Δ ∈ � l̃int and one checks directly that this
solves equation (4.2.1). This �nishes the construction of Δ.

For any r ∈ (0, r0), we have

|'(ul )|r/q = |ul |r = |t |r = e−r and | l ('(t))|r/q = |'(t)|r/q = |t |r = e−r .

On the right we use that  l preserves r-norms as noted in the beginning. It follows from
the triangle inequality that Δ′ has r/q-norm at most 1, using that |uq |r/q = e−r . If we write
� lΔ/u = ∑i∈ℚ biui , then |bi |e−ri ≤ 1 for any i ≥ 0 since Δ ∈ ̃int. By (4.2.1) and the triangle
inequlity, we have

|� lΔ/u|r = |'(� lΔ/u)|r/q = |Δ′ + q� lΔ/u|r/q ≤ max{|Δ′|r/q , |q� lΔ|r/q} ≤ max{1, |� lΔ/u|r/q}.

If we had |� lΔ/u|r/q > 1, then supi∈ℚ{|bi |e−ri/q} would have to be achieved for some i < 0 since
|bi | ≤ 1. However, for i < 0, we have e−ri > e−ri/q which would lead to the contradiction

|� lΔ/u|r ≤ |� lΔ/u|r/q < |� lΔ/u|r .
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It follows that � lΔ/ur ≤ 1 or, equivalently, |� lΔ|r ≤ e−r . Now set ul+1 = ul + � lΔ. Then
|ul+1|r ≤ max{|ul |r , |� lΔ|r} is at most e−r . On the other hand, we add in each step of the iteration
an element of �̃int so the coe�cient of u in ul always remains a unit in oK . Hence |ul+1|r ≥
|u|r = e−r . Combined with the previous observation this means ul+1 satis�es (1.). For (2.), note
that

'( l+1(t)) = '(ul+1) = '(ul ) + '(� lΔ)
=  l ('(t)) + q� lΔuq−1

≡  l+1('(t)) mod � l+1̃int.

In the second line, we multiply both sides of (4.2.1) by uq = '(u) and reorder. The third line
requires a bit more work. Write '(t) = ∑i∈ℤ cit i with ci ∈ �oK for all i ≠ q and cq ∈ 1 + mK .
Since ul+1 = ul + � lΔ, we see that ciuil+1 ≡ ciuil mod � l+1̃int for i ≠ q. For i = q, we have

cquql+1 = cq
q
∑
k=0(

q
k)

ukl (�
lΔ)q−k ≡ cquql + q�

lΔuq−1 mod � l+1̃int,

noting that cq ≡ 1 mod � . This proves property (2.) and �nishes the construction of the
morphisms  l . Since ul+1 ≡ ul mod � l̃int they are compatible with the transition maps,
�nishing the proof.

Remark 4.19. Note that by construction  mapsb andint into ̃b and ̃int, respectively. In
particular, if M is a pure '-module of some slope over, then M ⊗ ̃ is a pure '-module over ̃
of the same slope since the representing matrix of the '-action does not change.

Lemma 4.20. The elements of ̃ which are �xed by ' all belong to K .

Proof. Assume that x = ∑i∈ℚ aiui ∈ ̃ is �xed by ' and that ai ≠ 0 for some i ≠ 0. Then x is
�xed by 'n for any n ∈ ℤ and it follows that aiqn = 'nK (ai) for all n ∈ ℤ. But this would consti-
tute a strictly decreasing sequence of elements of the support of x which does not terminate,
contradicting De�nition 4.12.

We have already seen that ̃ sati�es all assertions of Hypothesis 2.22, except possibly the
last one. Just like the other assertions, this is more or less a formality.

Proposition 4.21. Let A be an n × n matrix with entries in ̃int. Then the map v ↦ v − A'(v)
induces a bijection on (̃/̃b)n.

Proof. Making some small adjustments and using Lemma 4.14 and 4.13 instead of Remark 1.11
and Lemma 1.12, the proof of Proposition 1.20 can be copied.

4.3 The main result

We prove that semistable '-modules over ̃ are pure. To do this, we need some auxiliary
results which we state here and prove in the following subsections.

Proposition 4.22. Let M,N be pure '-modules over ̃ obtained by base change from K , with
�(M) > �(N ). Then Hom(M,N ) ≠ 0.

Proof. The assumptions ensure that M∨ ⊗ N is a pure '-module obtained by base change from
K , with negative slope. Reformulating the proposition using H 0, it is therefore equivalent to
show that if M is a pure '-module over ̃ of slope �(M) < 0 which is obtained by base change
from K , then H 0(M) ≠ 0. Write M = M0 ⊗K ̃ for some pure '-module M0 over K . Write
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�(M) = �(M0) = c/d with c, d ∈ ℤ and d > 0. Since M0 is pure, there exists a K -basis such that
the representing matrixA of 'M0 has entries in �−coK and � cA is invertible over oK . This allows
us to view M as a space of column vectors with entries in ̃ and '-action given by the matrix
A. Let A{n}, n ∈ ℤ, denote as usual the twisted powers of A. Choose any nonzero element
w ∈ M0 and any i > 0. The sum

v = ∑
n∈ℤ

'nM (uiw) = ∑
n∈ℤ

uiq
n
A{n}'nK (w)

converges in M because clearly no negative powers of u appear and

|uiq
n
A{n}'nK (w)|r ≤ e−riq

n
|A|n |w| ≤ e−riq

n
|� |−nc |w| → 0, n → ∞,

for any r > 0. Hence v is a nonzero element of M which satis�es 'M (v) = ∑n∈ℤ 'n+1M (uiw) = v,
that is, v ∈ H 0(M).

De�nition 4.23. Fix a uniformizer � ∈ K . Let ̃(n) be the (pure) '-module of rank 1 and degree
n ∈ ℤ over ̃ obtained by equipping ̃ with the '-semilinear map �n' ∶ ̃ → ̃. We will use
̃(n) for twisting and write M(n) = M ⊗ ̃(n).

Proposition 4.24. LetM be a nonzero '-module over ̃. Then H 0(M(−n)) ≠ 0 and H 1(M(−n)) =
0 for n ≫ 0.

Remark 4.25. Note that H 0(M(−n)) = Hom(̃(n), M). In other words, the proposition ensures
the existence of a nonzero morphism of '-modules ̃(n)→ M which is necessarily injective.

Proposition 4.26. For any s ∈ ℚ, the base change functor induces an equivalence of categories
between the categories of pure '-modules of slope s over K and over ̃.

Remark 4.27. The case that s = 0 implies that étale '-modules over ̃ are trivial.

Proposition 4.28. Let N ′ be a pure 'n-module over ̃ of rank 1 and degree 1, let P a pure
'-module over ̃ of rank 1 and degree -1, and assume that

0 [n]∗N ′ M P 0

is a short exact sequence of '-modules. Then H 0(M) ≠ 0.

These assemble to give the slope �ltration theorem for ̃.

Theorem 4.29. Any semistable '-module over ̃ is pure.

Proof. We proceed by induction on the rank. Since any '-module of rank 1 is pure by Remark
2.53, we are left with the induction step. Now assume that for n ≥ 1 and any a ≥ 1 every
semistable 'a of rank at most n is pure. LetM be a semistable 'a-module of rank n+1 and slope
c/d over ̃. We need to show thatM is pure. By Lemma 2.55, this is the case if and only if [d]∗M
is pure. Now [d]∗M is semistable by Corollary 2.41 so that we may replace M by [d]∗M and
assume that �(M) ∈ ℤ. Since twisting preserves and re�ects both purity and semistability (cf.
Corollary 2.57 and Lemma 2.33), we may then reduce to the case that �(M) = 0. To summarize,
we are now given a semistable 'a-module M of rank n + 1 and slope 0 and we need to show
that M is étale. We assume hereafter that M is a '-module to simplify notation. Note again
that Hypothesis 4.3 is not disturbed if we replace ' by a power. Before proceeding, we prove
the following claim. It will be crucial in the argument.
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Claim. Suppose that Theorem 4.29 holds for all '-modules of rank at most n. If M is a pure '-
module over ̃ and N is an arbitrary '-module over ̃ with �(N ) ≤ �(M) and rk(N ) ≤ n, then
Hom(M,N ) ≠ 0. In particular, if M has rank 1, there is an injection of M into N .

Proof of Claim. We may assume without loss of generality that N is semistable by replacing it
with the �rst step of its HN �ltration, if necessary. In this case, N is pure since Theorem 4.29
holds for '-modules of rank at most n. By Proposition 4.26, both M and N are obtained by base
change from K . If �(M) > �(N ), then the claim follows from Proposition 4.22. If �(M) = �(N ),
then M∨ ⊗ N is an étale '-module over ̃, hence is trivial. It follows that 0 ≠ H 0(M∨ ⊗ N ) =
Hom(M,N ). Finally, if M has rank 1, then any nonzero ̃-linear map M → N is automatically
injective because N is torsion-free.

Write M ′ = [n]∗M . Then M ′ is a semistable 'n-module of rank n + 1 and slope 0 (Corollary
2.41). By the remark after Proposition 4.24, there exists c ≥ 0 such that M ′ admits a pure
'n-submodule N ′ of rank 1 and slope c. Choose c minimal with this property. Note that the
saturation of N ′ in M ′ is also of rank 1 and slope c so that we may assume N ′ to be saturated.
We show that in fact c = 0, i.e. that N ′ is étale.

Suppose that c ≥ 2. We have �(M ′/N ′) = −c/n < 0 ≤ c −2 = �(̃(c −2)). By the claim above,
M ′/N ′ has a 'n-submodule which is isomorphic to ̃(c −2) (the 'n-module of rank 1 and slope
c − 2 de�ned as above with ' replaced by 'n). Denote the preimage in M ′ of that submodule
by Q′. By tensoring with ̃(1 − c), we obtain from the short exact sequence

0 N ′ Q′ ̃(c − 2) 0

the short exact sequence

0 N ′(1 − c) Q′(1 − c) ̃(−1) 0

Applying Proposition 4.28 in the case n = 1, we see that H 0(Q′(1 − c)) ≠ 0. But then 0 ≠
H 0(Q′(1− c)) ⊆ H 0(M ′(1− c)) so M ′ would admit a pure 'n-submodule of rank 1 and slope c −1,
contradicting the minimality of c.

Next, suppose that c = 1 and write N = [n]∗N ′. By Corollary 2.64, N is pure of slope
c/n = 1/n. The adjunction between [n]∗ and [n]∗ converts the inclusion N ′ ↪ M ′ into a
nonzero map f ∶ N → M . Since N is semistable (Theorem 2.62 (1.)), we have �(im(f )) ≤ 1/n.
Note that the denominator of �(im(f )) is at most n because rk(N ) = n. Hence we must either
have �(im(f )) ≤ 0 or �(im(f )) = 1/n. In the �rst case, H 0(im(f )) = Hom(̃, im(f )) ≠ 0 by the
claim. In particular, 0 ≠ H 0(M) ⊆ H 0(M ′). In the second case, im(f ) has rank n so that f must
be injective. This leads to a short exact sequence

0 N M P 0f

By Theorem 2.59, P is pure of rank rk(M) − rk(N ) = 1 and slope −1 (cf. Lemma 2.30). Applying
Proposition 4.28, we again deduce that 0 ≠ H 0(M) ⊆ H 0(M ′). This means that in either case we
have H 0(M ′) ≠ 0 so that M ′ admits a pure 'n-submodule of rank 1 and slope 0, contradicting
the minimality of c.

We conclude that c = 0, that is,M ′ admits an étale 'n-submoduleN ′ of rank 1. The quotient
M ′/N ′ is semistable of slope 0 (Lemma 2.43), hence étale by induction hypothesis. But then M ′

must be étale as well by Theorem 2.59. We conclude by invoking Lemma 2.55 once more.
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With some additional work one can deduce the existence of a decomposition of Dieudonné-
Manin type for '-modules over ̃. We will not need this explicitly and refer to [17, Corollary
16.5.8] for a proof.

Corollary 4.30. Every '-module over ̃ can be split (non-uniquely) into a direct sum of standard
pure '-modules of various slopes (see [17, De�nition 14.6.1] or Example 2.54).

4.4 Construction of �xed vectors

We prove Proposition 4.24: If M is a nonzero '-module over ̃, then H 0(M(−n)) ≠ 0 and
H 1(M(−n)) = 0 for n ≫ 0.

Proof of Proposition 4.24. As usual, we view M as a space of column vectors with 'M given by
multiplication with an invertible matrix A over ̃ times the componentwise action of '. In
particular, '−1M is given by multiplication with '−1(A−1) times the componentwise action of '−1.
We may choose r > 0 so that A and A−1 both have entries in ̃r . For d ∈ ℚ>0 and n ≥ 1 to be
speci�ed later, we de�ne the following.

• De�ne the splitting function f +d , f −d as follows: Given x = ∑i∈ℚ xiui ∈ ̃, set

f +d (x) = ∑
i≥d

xiui and f −d (x) = ∑
i<d

xiui = x − f +d (x).

We extend the de�nition to vectors as usual. Once d is �xed, we write w± for f ±d (w).

• Let g ∶ M → M be the map

g(w) = �−nA'(w+) + '−1(�nA−1w−).

We inspect |'(f +d (x))|r and |'−1(f −d (x))|r for x as above:

|'(f +d (x)|r = sup
i≥d
{|xi |e−riq} ≤ e−rd(q−1) sup

i∈ℚ
{|xi |e−ri} = e−rd(q−1)|x |r ;

|'−1(f −d (x))|r = sup
i<d
{|xi |e−ri/q} ≤ e−rd(q

−1−1) sup
i∈ℚ

{|xi |e−ri} = e−rd(q
−1−1)|x |r

Of course, this generalizes to vectors so if we are given d, n, we have

|g(w)|r ≤ max{|� |−n |A|re−rd(q−1), |� |n |'−1(A−1)|re−rd(q
−1−1)}|w|r

by the triangle inequality. If we can choose d, n such that the quantities in the maximum
are both strictly less than 1, then g is contractive towards zero. One checks directly that this
happens if

d ∈ (
n(− log|� |) + log|A|r

r(q − 1)
,
qn(− log|� |) − q log|A−1|qr

r(q − 1) ) .

The interval is nonempty if we take n su�ciently large because n(− log|� |) < qn(− log|� |) and
all other quantities appearing are constant. In particular, once we have one n > 0 for which
the interval is nonempty, then any m ≥ n will work as well. Fix such an n and �x d ∈ ℚ>0 in
the interval and de�ne the map g as above.

We �rst show that H 1(M(−n)) = 0, that is, the cokernel of �−nA' is trivial. Given w with
entries in ̃r , de�ne the sequence {wl}l≥0 by w0 = w and wl+1 = g(wl ) for l ≥ 0. The series

v =
∞
∑
l=0
(w+

l − '
−1(�nA−1w−

l )) (4.4.1)
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converges under | ⋅ |r since w+
l and '−1(�nA−1w−

l ) both converge to 0 under | ⋅ |r by choice of
n, d . We have |v|r ≤ |w+

0 − '−1(�nA−1w−
0 )|r ≤ |w|r and

v − �−nA'(v) =
∞
∑
l=0
(w+

l − '
−1(�nA−1w−

l ) − �
−nA'(w+

l ) +w
−
l )

=
∞
∑
l=0
(wl − g(wl )) =

∞
∑
l=0
(wl −wl+1) = w0 = w

so that v is a potential preimage ofw. A priori, we only know that the sum de�ning v converges
under | ⋅ |r , but the equation v = �−nA'(v) +w implies that it also converges under | ⋅ |r/q since
�−nA'(v),w ∈ r/q . Inductively, we see that the series de�ning v converges under | ⋅ |r/qm for
any m ≥ 0 (cf. the proof of Proposition 1.20) so v has entries in ̃r . Hence H 1(M(−n)) = 0.

We modify the construction slightly to show that H 0(M(−n)) ≠ 0, that is, the kernel of
�−nA' − 1 is nontrivial. Let w = (ud , 0,… , 0) and construct v as in (4.4.1). Then de�ne the
sequence {w′

l}l≥0 by w′
0 = w, w′

1 = '−1(�nA−1w′
0) and w′

l+1 = g(w′
l ) for l ≥ 1. Since w = w+,

this means we just swap w+ and w− in the de�nition of g in the �rst step. De�ne the series

v′ = −'−1(�nA−1w) +
∞
∑
l=1
((w′

l )
+ − '−1(�nA−1(w′

l )
−))).

One checks that we have v′ − �−nA'(v′) = w as before. However, |v|r = |w+
0 | = |ud |r whereas

|v′|r = |−'−1(�nA−1w0)|r < |w0|r = |ud |r . Hence v − v′ is a nonzero element of H 0(M(−n)).

4.5 Twisted polynomials and their Newton polygons

We adapt the tool of Newton polygons to the setting of twisted polynomials. Some additional
care is needed to treat the case of polynomials over K and over �((uℚ)) simultaneously. We
follow [16, §2.4], but some details are inspired by [15, §6].

Notation. Throughout this subsection, �x a real number s ≥ 1, and let (F , vF ) be a �eld equipped
with an automorphism ' = 'F and a valuation vF for which it is complete and which satis�es
vF ('F (x)) = svF (x) for all x ∈ F .

De�nition 4.31. Let i ∈ ℤ. If s = 1, we set [i] = i. If s > 1, we set [i] = si−1
s−1 . One checks that in

either case [0] = 0, [1] = 1 and [i + j] = [i] + si[j] for all i, j ∈ ℤ. Let P (T ) = ∑i∈ℤ aiT i ∈ F{T ±}.
De�ne the homogeneous Newton polygon NewtP of P as the lower convex hull of the set

{(−[i], vF (ai)) ∣ i ∈ ℤ}.

In other words, NewtP is the convex polygon which is largest in terms of value such that all points
(−[i], vF (ai)) lie on or above it. We refer to the slopes of this polygon as the homogeneous (Newton)
slopes of P and to the points where the slope changes as the breakpoints of NewtP . Clearly, NewtP
is �nite only on a segment of �nite length and when we talk about the Newton polygon of P , we
are really only interested in this part.

As in the usual theory of Newton polygons, the following de�nition will be crucial.

De�nition 4.32. For r ∈ ℝ and P (T ) = ∑i∈ℤ aiT i ∈ F{T ±}, set

vr (P ) = mini∈ℤ
{vF (ai) + r[i]}

That is, vr (P ) is the value at zero of the supporting line of slope r of NewtP . Note that vr satis�es
the strict triangle inequality, but it is not quite a valuation as it is only submultiplicative in general
(see below).
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Remark 4.33. The data of the Newton polygon of P is now equivalent to giving vr (P ) for all
r ∈ ℝ. This is because the graph of a convex continuous function is determined by the positions of
its supporting lines of all slopes (see [17, Remark 2.1.7]). Intuitively, the breakpoints of NewtP are
exactly the points where several supporting lines of NewtP intersect.

Remark 4.34. Clearly, multiplying P by a nonzero element a ∈ F just shifts the Newton polygon
vertically by vF (a). For m ∈ ℤ, we have

vr (TmP ) = mini∈ℤ
{vF ('mF (ai)) + r[i +m]}

= min
i∈ℤ

{smvF (ai) + r[m] + smr[i]}

= smmin
i∈ℤ

{vF (ai) + r[i]} + r[m]

= smvr (P ) + r[m].

So multiplying by a power of T results in a horizontal shift which moreover preserves slopes, but
the segments of a given slope may get longer or shorter (if s ≠ 1).

The point of introducing Newton polygons is to �nd factorizations. This is what we will
do now. We start by analyzing the behavior of slopes in products of a special kind.

Lemma 4.35. For P (T ) ∈ F{T} and Q(T ) ∈ F{T −} such that vr (Q) ≥ 0, we have vr (PQ) ≥
vr (P ) + vr (Q).

Proof. Write P (T ) = ∑i≥0 aiT i and Q(T ) = ∑j≤0 bjT j . By de�nition of multiplication in F{T ±},
we have

(PQ)(T ) = ∑
k∈ℤ

∑
i+j=k

ai'i(bj)T k = ∑
k∈ℤ

ckT k .

Hence for any k ∈ ℤ,

vF (ck) ≥ min
i+j=k

{vF (ai'i(bj))} = min
i+j=k

{vF (ai) + sivF (bj)}.

Choose ik , jk attaining the minimum on the right. Note that for any i, j,

vF (ai'i(bj)) + r[i + j] = vF (ai) + r[i] + si(vF (bj) + r[j]). (4.5.1)

Choose k with vr (PQ) = vF (ck) + r[k]. Then the above inequalities give

vF (ck) + r[k] ≥ vF (aik ) + r[ik] + s
ik (vF (bjk ) + r[jk]) ≥ vr (P ) + vr (Q),

using that s ≥ 1, ik ≥ 0 and vr (Q) ≥ 0. This �nishes the proof.

Proposition 4.36. Let r0 ∈ ℝ. Suppose that P (T ) ∈ F{T} andQ(T ) ∈ F{T −1} are such that P has
constant coe�cient 1 and all slopes ≤ r0, and Q has constant coe�cient 1 and all slopes ≥ r0. Then
the set of slopes of PQ is obtained by taking the union (with multiplicities) of the sets of slopes of
P and Q.

Proof. P has all slopes ≤ r0 and constant coe�cient 1. In particular, vr (P ) ≤ 0 for all r and
vr (P ) = 0 whenever r ≥ r0 because in this range the lowest possible supporting line of slope r
through a vertex of NewtP must have right endpoint (0, 0). We have a similar relation for Q so
altogether,

r ≥ r0 ⟹ vr (P ) = 0, vr (Q) ≤ 0
r ≤ r0 ⟹ vr (P ) ≤ 0, vr (Q) = 0.
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The claim of the proposition can only be true if the slopes of PQ arise by taking �rst the slopes
of P and then the ones of Q because the slopes have to increase from left to right by convexity.
Since NewtPQ is determined by the data of vr (PQ) for all r ∈ ℝ, it su�ces to show that

vr (PQ) =
⎧⎪⎪
⎨⎪⎪⎩

vr (P ) r < r0
0 r = r0

vr (Q) r > r0.

We use the notation from the proof of Lemma 4.35. If r ≤ r0, take the smallest i with vF (ai) +
r[i] = vr (P ). Note that vr (Q) = 0 in this range, so vr (PQ) ≥ vr (P ) + vr (Q) = vr (P ) by Lemma
4.35. On the other hand, (4.5.1) equals vr (P ) for j = 0 but is strictly bigger for any other pair k, l
with sum i. Hence vr (PQ) ≤ vr (P ) and we must have equality. This proves the cases r < r0 and
r = r0. The case r ≥ r0 is similar by choosing instead the smallest j with vF (bj)+r[j] = vr (Q).

Remark 4.37. Conceptually, this means that to obtain the Newton polygon of PQ, one patches
together the Newton polygon of P and that of Q at the common vertex (0, 0).

We now prove a factorization result and examine afterwards when it can be applied.

Proposition 4.38. Let r ∈ R and suppose that R ∈ F{T ±} satis�es vr (R −1) > 0. Then there exist
c ∈ F and P (T ) ∈ F{T}, Q ∈ F{T −1} such that vF (c − 1) > 0, P has constant term 1 and all slopes
< r , Q has constant term 1 and all slopes > r , and cPQ = R.

Proof. We inductively construct ci ∈ F , Pi(T ) ∈ F{T} and Qi(T ) ∈ F{T −} for i ≥ 0 with the
following properties:

1. min{vF (ci − 1), vr (Pi − 1), vr (Qi − 1)} ≥ vr (R − 1);

2. Pi has constant term 1 and all slopes < r , and Qi has constant term 1 and all slopes > r ;

3. vr (R − ciPiQi) ≥ (i + 1)vr (R − 1).

Start by setting c0 = P0 = Q0 = 1. These clearly satisfy all conditions. Given ci , Pi and Qi , write
R − ciPiQi = ∑j∈ℤ rjT j . For convenience, write R+ = ∑j>0 rjT j and R− = ∑j<0 rjT j . Now set

ci+1 = ci + r0, Pi+1 = Pi + R+, Qi+1 = Qi + R−.

Clearly, Pi+1 and Qi+1 have constant term 1. Condition (3.) ensures that vr (R+), vr (R−), vF (r0) ≥
vr (∑j∈ℤ rjT j) ≥ ((i + 1)vr (R − 1). Hence, using (1.),

vr (Pi+1 − 1) = vr (Pi − 1 + R+) ≥ min{vr (Pi − 1), vr (R+)} ≥ vr (R − 1)

and similarly for ci+1 and Qi+1. Next, we show that Pi+1 has all slopes < r . Note that the
condition on the slopes of Pi is equivalent to saying that vs(Pi − 1) > 0 for all s ≥ r . We have,
for s ≥ r ,

vs(Pi+1 − 1) ≥ min{vs(Pi − 1), vs(R+)}
≥ min{vs(Pi − 1), vr (R+)}
> min{0, vr (R − 1)} = 0

using in the second line that only positive powers of T appear in R+. Hence Pi+1 has all slopes
< r . Analogously, one shows thatQi+1 has all slopes > r . To check that condition (3.) is satis�ed
for ci+1, Pi+1, Qi+1, write

R − ci+1Pi+1Qi+1 = r0(1 − PiQi)⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=A

+ (1 − ciPi)R−⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=B

+ R+ − ciR+Qi⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=C

+ ci+1R+R−⏟⏞⏞⏞⏟⏞⏞⏞⏟
=D
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(NB: R − ciPiQi = r0 + R+ + R−). Note that 1 − PiQi = (1 − Pi) + Pi(Qi − 1) whence vr (1 − PiQi) ≥
vr (R − 1) ≥ 0 using the triangle inequality and Lemma 4.35. It follows from Lemma 4.35 and
the induction hypothesis that

vr (A) = vr (r0(1 − PiQi)) ≥ vr (r0) + vr (1 − PiQi) ≥ (i + 1)vr (R − 1) + vr (R − 1) = (i + 2)vr (R − 1).

Similarly, one shows that vr (B), vr (C) ≥ (i + 2)vr (R − 1) (NB: C = (1 − ci)R+i − ciR+i (Qi − 1)). Since
vF (ci+1) = 0, we also have

vr (D) = vr (R+i R−i ) ≥ 2(i + 1)vr (R − 1),

using Lemma 4.35 and vr (R+i ), vr (R−i ) ≥ (i + 1)vr (R − 1) by induction hypothesis. Altogether, we
have

vr (R − ci+1Pi+1Qi+1) ≥ min{(i + 2)vr (R − 1), 2(i + 1)vr (R − 1)} = (i + 2)vr (R − 1),

as desired. This �nishes the inductive construction of ci , Pi , Qi . Condition (3.) implies that the
coe�cients of R − ciPiQi tend to zero as i → ∞. Hence ci , Pi , Qi converge to limits c, P , Q with
the desired properties. Here we use that the induction procedure never introduces monomials
in T which don’t already appear in R. Therefore, the limits really are polynomials (and not
formal power series) in T , T −1.

Remark 4.39. The proof given above is inspired by that of [15, Lemma 6.3.2] which is a bit easier
to follow than that of [16, Proposition 2.4.5].

Lemma 4.40. Write R(T ) = ∑i∈ℤ aiT i . The condition vr (R − 1) > 0 is equivalent to the following
two conditions:

1. vF (a0 − 1) > 0. In particular, a0 ∈ o×F ;

2. The supporting line of slope r touches the Newton polygon of R only in (0, 0) and nowhere
else. In particular, r is not a slope of NewtR .

Proof. If vr (R − 1) > 0, then vF (ai) + r[i] > 0 for all i ≠ 0 and vF (a0 − 1) > 0. This implies that
vF (a0) = 0 whence vr (R) = 0. Hence (0, 0) lies on the Newton polygon of R and it is the only
point in which the supporting line of slope r touches NewtR . Conversely, conditions (1.) and
(2.) imply that vF (a0) = 0 and that vF (ai) + r[i] > 0 for all i ≠ 0 since otherwise there would be
at least two points of NewtR on the supporting line of slope r . Hence vr (R − 1) > 0.

Remark 4.41. If R satis�es condition (2.), then we can apply the proposition to a−10 R, i.e. the �rst
condition can essentially be neglected.

If R has at least two slopes r1 < r2, then we can get into a situation where we can apply
the proposition as follows. Let (−[k], ak) be a breakpoint of NewtR , i.e. a point where the slope
changes. We may and do assume that it changes from r1 to r2. In particular, for any r ∈ (r1, r2),

vr (R) = mini∈ℤ
{vF (ai) + r[i]} = vF (ak) + r[k]

and k is the only index realizing this minimum. In other words, the supporting line of slope r
touches NewtR only in (−[k], vF (ak)) and nowhere else for any r in this range. If we can shift
this point to (0, 0) without changing the Newton polygon too much, then we can apply the
proposition. This is done by multiplying with a−1k and then with T −k from the left (the order
is important if s > 1!) using Remark 4.34. It follows that we get a factorization whenever we
have at least two slopes. This implies the following corollary.

Corollary 4.42. If R(T ) ∈ F{T ±} is irreducible, then it has only one slope.
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4.6 Classi�cation of pure '-modules

We show that �((uℚ)) is strongly di�erence-closed. From this we can then deduce that the
categories of pure '-modules over �((uℚ)) and over ̃ of a given slope s are equivalent.

Notation. With the notation of the previous subsection, we let F = �((uℚ)), s = q, vF the u-adic
valuation and 'F an automorphism of the form ∑i∈ℚ aiui ↦ ∑i∈ℚ '�(ai)uqi for some automor-
phism '� of �.

Lemma 4.43. Let P (T ) ∈ F{T} be a polynomial over F with all Newton slopes equal to 0. Then
there exists x ∈ o×F such that P ('F )(x) = 0.

Proof. Write P (T ) = anT n + an−1T n−1 + ⋯ + a0. Since all Newton slopes of P are zero, we have
vF (aj) ≥ vF (a0) = vF (an) for all j. Dividing by a0, we can thus assume that P has all coe�cients
in oF , constant coe�cient 1 and leading coe�cient in o×F . This ensures thatM = oF{T}/oF{T}P
is free of rank n over oF . We equip it with multiplication by T from the left which de�nes a
'-semilinear map 'M ∶ M → M . Its representing matrix has determinant ±a0 = ±1 ∈ o×F so
that M is a '-module over oF . Its reduction M̄ = M/mFM is then a '-module over � = oF /mF
and so must be trivial by Hypothesis 4.3. In particular, there is a nonzero v ∈ M̄ which is �xed
by scalar multiplication with T . Denote the reduction of P modulo mF by Q. Then

Q(T ) ⋅ v = Q(')(v) = ān'n(v) +⋯ + ā1'(v) + ā0v
= ānv +⋯ + ā1v + ā0v
= Q(')(1) ⋅ v

where ̄(⋅) denotes the reduction modulomF . However, multiplication withQ(T ) is the reduction
of multiplication with P (T ) which is zero on M . It follows that Q(')(1) ⋅ v = 0 which implies
that Q(')(1) = 0 in � since v ≠ 0. Hence P (')(1) ∈ mF . Now note that for any x ∈ mF ,

vF ((P − 1)(')(x)) = vF (an'n(x) +⋯ + a1'(x))
≥ min{vF (an) + qnvF (x),… , vF (a1) + qvF (x)}
> vF (x)

using in the last line that q > 1, vF (x) ≥ 1 and vF (aj) ≥ 0 for all j. In other words, (P − 1)(') is
norm decreasing on mF whence P (') = 1 + (P − 1)(') is bijective on mF with inverse

∞
∑
k=0
(−1)k(P − 1)(')k

by the geometric series. This means that we can �nd y ∈ mF with P (')(y) = P (')(1). It follows
that x = 1 − y ∈ o×F satis�es P (')(x) = 0, as desired.

Lemma 4.44. Let P (T ) ∈ F{T} be a monic polynomial of degree n over F with all Newton slopes
equal to zero. Then there exist a1,… , an ∈ o×F such that P (T ) = ∏n

j=1(T − aj).

Proof. By the previous lemma, there is x ∈ o×F such that P (')(x) = 0. Let a = '(x)/x . By the
Euclidean algorithm (cf. [18, §I.2]), P can be divided by Q(T ) = (T − a) from the right, that is,
there are P ′, R ∈ F{T} such that P = P ′Q+R with R of degree zero. Since P (')(x) = Q(')(x) = 0,
we deduce that R = 0. By inspection of the equality P = P ′Q, we see that P ′ ∈ oF{T} is
monic with all Newton slopes equal to zero because the constant and leading coe�cient have
valuation zero. The lemma now follows by induction.
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Lemma 4.45. Every irreducible '-module over F is trivial.

Proof. Let M be an irreducible '-module over F . Write M = F{T ±}/F{T ±}P for some monic
irreducible polynomial P (T ) = T n +an−1T n−1+⋯+a0 ∈ F{T}. By Corollary 4.42, P has only one
slope. Since the value group of F isℚ, we can �nd b ∈ F× with vF (b) = −(q−1)/(qn−1)vF (a0). The
polynomial Q(T ) = b−1⋯ 'n−1(b−1)P (bT ) is monic and irreducible because P is irreducible. It
follows that Q(T ) also has only one Newton slope and by construction its constant and leading
coe�cient have valuation 0. Hence the only slope of Q must be 0. Since R(T ) ↦ R(bT ) is an
automorphism of F{T ±} it follows that we can replace P by Q and assume that the only slope
of P was 0 to begin with. In this case P can be factored into linear polynomials by Lemma 4.44.
Since P is irreducible, this forces P (T ) = T −a for some a ∈ o×F . Now the equation '(x) = ax has
a solution x ∈ o×F by Lemma 4.43 so we conclude that M = F{T ±}/F{T ±}(T − a) is isomorphic
to F as a '-module via Q + F{T ±}P ↦ Q(')(x).

Proposition 4.46. Every '-module over F is trivial, that is, �((uℚ)) is strongly di�erence-closed.

Proof. Any '-module over F can be written as a successive extension of irreducible ones using
a composition series. Now irreducible '-modules over F are trivial by the lemma above so
that it su�ces to show that any extension between trivial '-modules over �((uℚ)) splits. This
follows was already remarked after Corollary 4.10.

To solve inhomogeneous '-equations over F , we introduce the following variation of the
homogeneous Newton polygon.

De�nition 4.47. Let P (T ) = ∑i∈ℤ aiT i ∈ F{T ±} be nonzero and z ∈ F . De�ne the inhomogeneous
Newton polygon of the pair (P, z) as the lower convex hull of the set

{(−qi , vF (ai)) ∣ i ∈ ℤ} ∪ {(0, vF (z))}.

The slopes of this convex polygon will be called the inhomogeneous (Newton) slopes of P .

Remark 4.48. Any slope of the inhomogeneous Newton polygon not involving the point (0, vF (z))
is just a multiple of a slope of the homogeneous Newton polygon. More precisely, any such slope
is q − 1 times a slope of the homogeneous Newton polygon. This is easily seen by comparing the
distances between −[i] and −[j] and between −qi and −qj for i, j ∈ ℤ.

Proposition 4.49. Let P ∈ F{T ±} nonzero and z ∈ F . If r ∈ ℝ occurs as a slope of the inhomo-
geneous Newton polygon of (P, z), then there exists x ∈ F with vF (x) = r such that P ('F )(x) = z.

Proof. The proof is done by induction on the number of homogeneous slopes, ultimately re-
ducing the claim to Corollary 4.10 and its proof.

Since P is nonzero, the homogeneous Newton polygon of P consists of at least one vertex.
If it is only one vertex, then P (T ) = aTm for some m ∈ ℤ and some nonzero a ∈ F . The only
inhomogeneous slope is then the slope of the line connecting (−qm, vF (a)) and (0, vF (z)) which
is q−m(vF (z) − vF (a)). Let x = '−mF (a−1z) ∈ F . Then x satis�es P ('F )(x) = a'm(x) = z and has
u-adic valuation vF (x) = q−m(−vF (a) + vF (z)), as desired.

Next, we treat the case that P has exactly one homogeneous slope. By the same calculation
as above, we see that multiplying with some power of T doesn’t a�ect the problem so we may
assume that P (T ) = ∑m

i=0 aiT i ∈ F{T} with nonzero constant term. After multiplying by a−10 , if
necessary, we may then assume that a0 = 1. Choose b ∈ F with vF (b) = −vF (am)/(qm − 1) and
consider Q(T ) = b−1P (T )b = ∑m

i=0 aib−1'iF (b)T i ∈ F{T}. Since P has only one homogeneous
slope, the same is true for Q. Moreover, the constant coe�cient of Q is still 1 and its leading
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coe�cient has u-adic valuation zero by choice of b. Hence the only homogeneous slope of
Q is zero. Assume we were able to �nd x′ ∈ F with Q('F )(x′) = b−1z. Let x = bx′, then
P ('F )(bx′) = bQ('F )(x′) = z. Now note that x has exactly the right u-adic valuation since
any inhomogeneous slopes of (P, z) is vF (b) plus an inhomogeneous slope of (Q, b−1z). Hence,
after replacing P by Q if necessary, we may assume that the only homogeneous slope of P is
zero. Then P can be factored into linear polynomials by Lemma 4.44. Assume that P = P1P2
where Pi(T ) = T − ai with ai ∈ o×F . If we can solve P1('F )(y) = z and P2('F )(x) = y, then
P ('F )(x) = P1('F )(P2('F )(x)) = P1('F )(y) = z (NB: of course, one needs to check that x has
the desired u-adic valuation, but we will see a similar argument later so we omit it here). By
induction on the number of factors, we may thus reduce to the case that P (T ) = T − a for some
a ∈ o×F . In this situation, the inhomogeneous Newton polygon of (P, z) has either one or two
slopes. If vF (z) ≥ 0, then it consists of a segment of slope 0 from (−q, 0) to (−1, 0), followed
by a segment of slope vF (z) from (−1, 0) to (0, vF (z)). If vF (z) < 0, then it consists only of a
segment of slope vF (z)/q from (−q, 0) to (0, vF (z)). By Lemma 4.43, there is x0 ∈ o×F such that
'F (x0) = ax0. Assume we could �nd x1 ∈ F with vF (x1) = r and 'F (x1) − x1 = (ax0)−1z. Then
x = x0x1 satis�es vF (x) = vF (x1) = r and

'F (x0x1) − ax0x1 = ax0'F (x1) − ax0x1 = ax0(ax0)−1z = z.

Since (T − 1, (ax0)−1z) and (T − a, z) have the same inhomogeneous Newton polygon, we may
therefore assume that a = 1. By Corollary 4.10, the map 'F − 1 is surjective on F so we can �nd
x ∈ F with P ('F )(x) = 'F (x) − x = z. If vF (z) < 0, then vF (z) = vF ('F (x) − x) = qvF (x). Hence
vF (x) = vF (z)/q. If vF (z) ≥ 0, then the construction in the proof of Corollary 4.10 actually
shows that vF (x) = vF ('F (x) − x) = vF (z). If vF (z) > 0, then r = 0 is also an inhomogeneous
slope of P . In this case, choose x′ ∈ F with vF (x′) = vF (z) > 0 and 'F (x′) − x′ = z. The element
x = 1 + x′ ∈ F has u-adic valuation 0 and satis�es 'F (x) − x = 'F (x′) − x′ = z.

We are left with the induction step. That is, we assume that the proposition holds for any
Laurent polynomial with at most n ≥ 1 homogeneous slopes. Assume that P (T ) = ∑i∈ℤ aiT i ∈
F{T ±} has n + 1 homogeneous slopes r1 < r2 < ⋯ < rn+1. Let (−[m], vF (am)) be the breakpoint
between the segment of slope rn and the segment of slope rn+1. As seen at the end of the
previous subsection, vr (T −ma−1m P − 1) > 0 for any r ∈ (rn, rn+1). It follows from Proposition 4.38
that there exists c ∈ F with vF (c − 1) > 0, P ′ ∈ F{T} with all slopes < r , and Q ∈ F{T −} with
all slopes > r such that T −ma−1m P = cP ′Q. We may rewrite this as P = amTmcP ′Q. By the case
treated in the beginning, we can ignore the factor amTmc and hence assume that P = P ′Q. By
Proposition 4.36, the homogeneous slopes of P ′ are r1,… , rn and Q has only one homogeneous
slope, namely rn+1. If r ∈ ℝ is an inhomogeneous slope of (P, z), then there are two possible
cases to consider. Note that (0, 0) is a breakpoint of the homogeneous Newton polygon of P so
(−1, 0) is potentially a point of the inhomogeneous Newton polygon of (P, z).

Case 1: If r ≤ (q − 1)rn, then r is also a slope of the inhomogeneous Newton polygon of
(P ′, z) because it must either be (q−1)ri for some 1 ≤ i ≤ n or the slope from (−1, 0) to (0, vF (z)).
By the induction hypothesis, we can �nd x′ ∈ F with vF (x′) = r and P ′('F )(x′) = z. Since
r < (q − 1)rn+1, the inhomogeneous Newton polygon of (Q, x′) consists of a single line of slope
r from (−1, 0) to (0, vF (x′)). Hence we may �nd x ∈ F with Q('F )(x) = x′. It follows that

P ('F )(x) = P ′('F )(Q('F )(x)) = P ′('F )(x′) = z.

Case 2: If r > (q − 1)rn, then (−1, 0) lies on the inhomogeneous Newton polygon of (P ′, z)
because r could only possibly be the slope on the segment from (−1, 0) to (0, vF (z)). Hence
the inhomogeneous Newton polygon of (P ′, z) certainly has a segment of slope vF (z). By the
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induction hypothesis, there is x′ ∈ F with vF (x′) = vF (z) and P ('F )(x′) = z. Note that the
inhomogeneous Newton polygon of (Q, x′) is the same as that of (Q, z) so that both must have
a segment of slope r . Hence we can �nd x ∈ F with vF (x) = r and Q('F )(x) = z. Then
P ('F )(x) = z as before.

Remark 4.50. Note that there is seemingly a contradiction here. For example, if vF (z) = 0 and
'� is the identity on �, then the equation 'F (x) − x = z cannot be solved since the left side of
the equation has constant term 0 whereas the right side does not. This can not occur under the
assumption of Hypothesis 4.3 because � equipped with the identity is not a strongly di�erence-
closed '-�eld (cf. [17, Remark 14.3.2]).

Proposition 4.51. Let A be an n × n matrix with entries in ̃int. If v ∈ ̃n satis�es Av = '(v),
then v ∈ (̃b)n.

Proof. We note that as in Lemma 1.9, ̃ int is the ring of series ∑i∈ℚ aiui with coe�cients in oK
such that for any c > 0, the set of i ∈ ℚ with |ai | ≥ c is well-ordered and limi→−∞ vK (ai) = ∞.

Rescaling by a factor of u as in the proof of Proposition 4.21, we may assume that the
entries of A are bounded by 1 under | ⋅ |r . Moreover, we may assume that v has entries in ̃ int
by replacing v, A by �nv, A'(�n)/�n, if necessary. To show that v in fact has entries in ̃int,
we only need to see that v has entries in ̃s for some s > 0 because then v has entries in
̃ ∩ ̃ int = ̃int. Write v = ∑n

j=1∑i∈ℚ cijuiej and Av = ∑ j = 1n ∑i∈ℚ dijuiej where e1,… , en
denote the standard basis vectors. We �rst prove the following.

Claim. |cijui |r ≤ 1 for all i, j, that is, |v|r ≤ 1.

Proof of Claim. Assume that |v|r > 1. Then also |'−1(Av)|r = |v|r > 1. Since v = '−1(Av)
has coe�cients in oK , any pair (i, j) with |'−1(dijui)|r > 1 satis�es i < 0 and this quantity
becomes bigger as i decreases. By well-ordering, the supremum |'−1(Av)|r is attained, i.e. we
may choose i, j with |'−1(dijui)|r = |'−1(Av)|r > 1. Since i < 0, this gives the contradiction
|v|r = |'−1(Av)|r = |'−1(dijui)|r = |cijui/q |r < |cijui |r ≤ |v|r .

To prove that v has entries in ̃, we need to show that |cij |e−ri → 0 as i → −∞ as the same
will then be true for any s ∈ (0, r]. From the equation Av = '(v), we deduce that

|v|rq = |'(v)|r = |Av|r ≤ |v|r

because |A|r ≤ 1. It therefore follows from the claim that |cijui |rq ≤ 1 for all i, j. By induction,
we get |cijui |rqn ≤ 1 for any n ≥ 0 and all i, j. But this is only possible if |cij |e−ri → 0 since
|ui |rqn = e−riq

n → ∞ as i → −∞ for any given n ≥ 0. This �nishes the proof.

Remark 4.52. For invertible matrices A over ̃int, we can also deduce from an equation of the
form A'(v) = v that v has entries in ̃b by applying the proposition to the equation '(v) = A−1v.
This implies that the base change functor from étale '-modules over ̃b to étale '-modules over
̃ is fully faithful (cf. the proof of Proposition 2.48).

Corollary 4.53. Let ' be any relative Frobenius lift on, and let A be an n×n matrix overint.
If v ∈ n satis�es Av = '(v), then v ∈ (b)n.

Proof. Follows immediately from the proposition since all inclusions are well-behaved.

Remark 4.54. As above, this implies that the base change functor from étale '-modules overb

to étale '-modules over  is fully faithful.
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We can now prove Proposition 4.26: The categories of pure '-modules over K and over ̃
of a given slope s ∈ ℚ are equivalent.

Proof of Proposition 4.26. We check full faithfulness �rst. Recall that by Lemma 2.55, a '-module
M over ̃ or K is pure of slope s if and only if [a]∗M is. So by twisting and using the fact that
[a]∗ commutes with tensor products, we may reduce to the case that s = 0. As in the proof of
Proposition 2.48, we can then formulate the claim in terms of H 0 so we must show the follow-
ing: Given an étale '-module M0 over K , we have H 0(M0) = H 0(M0 ⊗K ̃). But M0 is trivial by
Hypothesis 4.3 so that M0 ⊗K ̃ is also trivial. Hence what we need to show is that a vector
with entries in ̃ whose entries are �xed by ' must actually have entries in K . This follows
from Lemma 4.20.

To prove essential surjectivity, we again reduce to the case that s = 0. Since étale '-modules
over K are trivial by Hypothesis 4.3, we need to show that étale '-modules over ̃ are trivial.
Let M be an étale '-module over ̃. It is obtained by base change from an étale '-module over
̃b (Proposition 2.48). We denote this '-module by M again. The base extension M̃ = ̃ ⊗̃b M
of M to ̃ is an étale '-module over ̃ . Choose some basis of M such that 'M acts on M by
an invertible matrix A over ̃int. Note that the residue �eld of ̃ is �((uℚ)) which is strongly
di�erence-closed by Proposition 4.46. Now ̃ is mK -adically complete so by the same argument
as in the proof of Lemma 4.5, we can �nd a basis invariant under 'M̃ . This basis consists of
vectors v with entries in ̃ satisfying A'(v) = v. By Proposition 4.51, applied to the equation
A−1v = '(v), these vectors must have entries in ̃b and hence correspond to elements of M . It
follows that M is trivial, as desired.

4.7 The local calculation

We make the explicit calculation proving Proposition 4.28. To do this, we �rst translate the
proposition into certain '-equations.

De�nition 4.55. Denote by ̃tr the set of elements of ̃ whose support has a least element. This
forms a subring of ̃ which carries a u-adic valuation v. By an argument as for the ring of formal
Laurent series over a �eld, we see that ̃tr is u-adically complete.

Remark 4.56. Note that an element x = ∑i∈ℚ aiui ∈ ̃ whose support has a least element j ∈ ℚ
such that |ai | ≤ |aj | for all i ∈ ℚ is a unit in ̃tr. This is clear because any such element must lie in
̃b, but another way of seeing this is to reduce to j = 0 and a0 = 1 by multiplying with a−1j u−j . In
this case we can construct x−1 by the usual geometric series argument. It follows that any element
which is invertible over ̃tr must be of this form. The upshot is that (̃tr)× ⊆ ̃b so we can apply
the valuation w to such elements.

Lemma 4.57. Let P be a '-module over K of rank 1 and degree n > 0, and �x a generator v of P .
We have the following:

1. For any x ∈ ̃tr with support in [0, +∞), the class of xv in H 1(P ⊗K ̃) vanishes;

2. Each class in H 1(P ⊗K ̃) has a representative of the form∑n−1
j=0 ujv, where for each j, either

uj = 0, or uj ∈ (̃tr)×, w(uj) = j, and v(uj) < 0.

Proof. (1.) It is equivalent to show that the class of any element x ∈ ̃tr with support in [0, +∞)
vanishes in H 1(̃(n)), that is, x = y − �n'(y) for some y ∈ ̃. Here � ∈ K is some uniformizer,
as usual. De�ne the twisted powers �{i}, i ≥ 0 by the recurrence

�{0} = 1, �{i+1} = 'K (�{i})�n.
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Write x = ∑i≥0 xiui ∈ ̃tr. Since the map 1 − �n'K is surjective on K by Hypothesis 4.3, the
class of x is equivalent to the class of x+ = ∑i>0 xiui . Since x+ has no constant term, the series
y = ∑∞

i=0 �{i}'i(x+) converges in ̃ and it is easily seen that it satis�es y − �n'(y) = x+. Hence
the class of x+ in H 1(̃(n)) vanishes, as claimed.
(2.) As in (1.), we can reformulate the assertion for classes in H 1(̃(n)). By (1.), we can always
�nd a representative of the form x = ∑i<0 xiui . We only sketch how one can �nd a represen-
tative of the desired form in a special case. The full calculation can be found in [14, Lemma
4.3.2]. Let l ∈ ℤ and assume that w(xi) = l for all i < 0 with xi ≠ 0. The conditions on elements
of ̃ then imply that the support of x has a least element. As all coe�cients of x have the same
valuation this implies that x is a unit in ̃tr by the previous remark. Let m ∈ ℤ be the unique
integer such that l + mn ∈ {0,… , n − 1}. Then x and x′ = �mn'n(x) represent the same class
in H 1(̃(n)) and x′ is of the desired form (where we set ul+mn = x′ and uj = 0 for all other j).
The general case uses a clever iteration of this idea (NB: in places where minima are chosen,
use the well-orderedness condition instead).

The sequence in Proposition 4.28 is isomorphic to one of the form

0 [n]∗N ′ E� P 0

where E� = P ⊕ [n]∗N ′ with the '-action given by 'E� (n, p) = ('[n]∗N ′(n) + �◦'P (p), 'P (p)) for
some class � ∈ Ext(P, [n]∗N ′) = H 1(P∨ ⊗ [n]∗N ′). The snake lemma yields an exact sequence

H 0(Eℎ) H 0(P ) H 1([n]∗N ′)�

To prove the proposition, it su�ces to show that the �rst map has nonzero image. By exactness,
this is equivalent to showing that � has nonzero kernel. Going through the construction of � ,
we see that in our situation it is given by pairing with the class � , that is,

H 0(P ) ∋ p �(p) = �(p) + im('[n]∗N ′ − 1) ∈ H 1([n]∗N ′).

Under the identi�cations H 1(P∨ ⊗ [n]∗N ′) ≃ H 1([n]∗([n]∗P∨ ⊗ N ′)) = H 1([n]∗P∨ ⊗ N ′) and
H 1([n]∗N ′) = H 1(N ′) (cf. Lemma 2.20 and 2.21) this can also be viewed as the composi-
tion of H 0(P ) ↪ H 0([n]∗P ) with the map H 0([n]∗P ) → H 1(N ′) given by pairing with � ∈
H 1([n]∗P∨ ⊗ N ′). If the class of � vanishes, then we are done because H 0(P ) ≠ 0 by Proposition
4.22 and 4.26. We assume hereafter that � does not vanish.

Notation. By Proposition 4.26, P and N ′ are obtained by base change from a '-module P0 and
a 'n-module N ′

0 over K , respectively. These have rank 1 so we may choose generators v and w
and de�ne �, � ∈ K× by 'P (v) = �v and 'N ′(w) = �w. We view P as ̃ equipped with the '-
semilinear map �' and N ′ as ̃ equipped with the 'n-semilinear map �'n. Set Q0 = [n]∗P∨0 ⊗ N ′

0
and Q = [n]∗P∨ ⊗ N ′ ≃ Q0 ⊗K ̃. We write v∨ for the generator of P∨ dual to v and let x be
the generator v∨ ⊗ w of Q0. De�ne the twisted powers �{m} and �{m} of � and � by the two-way
recurrences

�{0} = 1, �{m+1} = '(�{m})� and �{0} = 1, �{m+1} = 'n(�{m})�.

We then have 'mP = �{m}'m and 'mN ′ = �{m}'nm for all m ∈ ℤ.

By Lemma 4.57, we can represent the class � ∈ H 1(Q) by a nonzero element of Q of the
form ∑n

j=0 ujx where each uj is either zero or a unit in ̃tr with w(uj) = j and v(uj) < 0. The
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map � ∶ H 0(P ) → H 1(N ′) is then given by pv ↦ ∑n
j=0 ujpx. Viewing everything in ̃, the

proof of Proposition 4.28 therefore amounts to �nding x, y ∈ ̃ solving the two equations

�'(x) − x = 0,
n
∑
j=0
ujx = �'n(y) − y.

(The �rst equation translates to x ∈ H 0(P ) and the second translates to �(x) ∈ H 1(N ′))

Proposition 4.58. The equations above can be solved over ̃.

Proof. We follow the proof of [13, Lemma 4.12]. For j ∈ {0,… , n} such that uj ≠ 0, l ∈ ℤ and
m ∈ (0, +∞), de�ne

e(j, l, m) = (v(uj) +mq−l )q−n(j+l).

If we �x j, m, then we make the following observations:

• e(j, l, m) approaches 0 from below as l → +∞;

• e(j, l, m) tends to +∞ as l → −∞.

In particular, the minimum ℎ(m) = minj,l{e(j, l, m)} is well-de�ned. The function ℎ ∶ (0, +∞)→
ℝ is clearly continuous. In fact, it is piecewise linear since it is the minimum of linear functions
in m. Moreover, it is strictly increasing because e(j, l, m) is strictly increasing in m. Observe
that e(j, l + 1, qm) = q−ne(j, l, m) whence ℎ(qm) = q−nℎ(m). Since v(uj) < 0, we have ℎ(m) < 0
for m su�ciently small. It follows that ℎ(qjm) = q−njℎ(m) < 0 for all j ∈ ℤ so that ℎ only
takes on negative values. Altogether, ℎ is a continuous increasing bijection (0, +∞)→ (−∞, 0).
Another way of interpreting this is as follows. Let H be the lower convex hull of the set of
points

{(−q−nj−(n+1)l , q−n(j+l)v(uj)) ∣ j = 0,… , n and l ∈ ℤ}.

The point corresponding to (j, l) lies on H if and only if there is some r ∈ ℝ such that the value
of the supporting line of slope r of H is q−n(j+l)v(uj) + rq−nj−(n+1)l which is nothing other than
e(j, l, r). In fact, this is the case if and only if e(j, l, r) = ℎ(r). In other words, if r ∈ ℝ is a slope
of H , then r is a breakpoint of ℎ and vice versa.

Now choose r ∈ (0, +∞) at which ℎ changes its slope, i.e. r is a slope of H . Let T be the
set of all ordered pairs (j, l) such that e(j, l, r) < 0. This is an in�nite set because e(j, l, r) < 0
for in�nitely many l ≥ 0. However, for �xed j, the possible values for l such that (j, l) ∈ T
are bounded below because e(j, l, r) tends to +∞ as l → −∞. We denote by S the subset of T
consisting of those pairs (j, l) with e(j, l, r) < q−nℎ(r). For �xed j, the possible values for l such
that (j, l) ∈ S are again bounded below, but they are also bounded above because e(j, l, r) <
q−nℎ(r) < 0 only for �nitely many l ≥ 0 since e(j, l, r) tends to 0 as l → +∞. That is, S is a �nite
set. For any pair (j, l), set s(j, l) = ⌊logqn (ℎ(r)/e(j, l, r))⌋.

Claim. The following assertions are true:

1. For (j, l) ∈ T , we have s(j, l) ≥ 0.

2. For (j, l) ∈ T , we have e(j, l, r)qns(j,l) ∈ [ℎ(r), q−nℎ(r)).

3. We have (j, l) ∈ S if and only if (j, l) ∈ T and s(j, l) = 0.

4. For any c > 0, there are only �nitely many pairs (j, l) ∈ T with s(j, l) ≤ c.
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Proof of Claim. (1.) For (j, l) ∈ T , we have ℎ(r) ≤ e(j, l, r) < 0 so that ℎ(r)/e(j, l, r) ≥ 1.
(2.) We have e(j, l, r)qns(j,l) ≥ e(j, l, r) ≥ ℎ(r) by (1.). This gives the lower bound. Moreover,
e(j, l, r)qns(j,l) ≤ e(j, l, r)ℎ(r)/e(j, l, r) = ℎ(r) < q−nℎ(r) since ℎ(r) < 0 and q−n < 1. This gives the
upper bound.
(3.) If (j, l) ∈ S ⊆ T , then e(j, l, r) < q−nℎ(r). It follows that ℎ(r)/e(j, l, r) > qn so that s(j, l) =
⌊logqn ℎ(r)/e(j, l, r)⌋ < 1. Since s(j, l) ≥ 0 by (1.), we deduce that s(j, l) = 0. Conversely, if
s(j, l) = 0, then logqn ℎ(r)/e(j, l, r) must be at least 0, but strictly smaller than 1. It follows that
ℎ(r)/e(j, l, r) > qn, as desired.
(4.) For �xed j, the possible values for l such that (j, l) ∈ T are bounded below so it su�ces
to show that s(j, l) ≤ c only for �nitely many l > 0. Since ℎ(r) is independent of l and e(j, l, r)
tends to zero from below as l → +∞, we have s(j, l) = ⌊logqn ℎ(r)/e(j, l, r)⌋ → +∞ for l → +∞.
This gives the desired result.

For c ∈ ℝ, let Uc be the set of z ∈ ̃tr ∩ ̃int with v(z) ≥ c. For any c, the set Uc is �-adically
complete because the support of elements in Uc is bounded below. That is, we got rid of the
sequences that show that ̃int is not �-adically complete. For z ∈ Ur , de�ne the function

R(z) = ∑
(j,l)∈T

�{−j−l+s(j,l)}'−n(j+l−s(j,l))(uj�{−l}'−l (z)).

To see that this series converges �-adically, we compute the �-adic valuation of each summand.

w(�{−j−l+s(j,l)}'−n(j+l−s(j,l)(uj�{−l}'−l (z)))

= w(�{−j−l+s(j,l)}) + w(uj) + w(�{−l} + w(z)
= (−j − l + s(j, l))w(�) + j + (−l)w(�)
= −j − l + s(j, l) + j + l = s(j, l)

Here we use multiple times that w is '-invariant and the de�nitions of uj , � and �. Hence the
series converges �-adically by (4.) and because the term in brackets lies in ̃tr. In fact, we can
show that it lies in Uℎ(r). To see this, we check that each summand has u-adic valuation at least
ℎ(r). We ignore the twisted powers of � and � since these don’t change the u-adic valuation.

v('−n(j+l−s(j,l))(uj'−l (z))) = q−n(j+l−s(j,l))(v(uj) + q−lv(z))

= qns(j,l)e(j, l, v(z))

≥ qns(j,l)e(j, l, r) ≥ ℎ(r)

where the �nal estimate holds by (2.). If we reduce R(z) modulo � , we get

R(z) ≡ ∑
(j,l)∈S

�{−j−l}'−n(j+l)(uj�{−l}'−l (z))

= ∑
(j,l)∈S

�{−j−l}'−n(j+l)(uj�{−l})'−nj−(n+1)l (z) mod �.

This is because s(j, l) = 0 for all (j, l) ∈ S by (3.) and s(j, l) ≥ 1 for all (j, l) ∈ T ⧵ S by (1.)
and the de�nition of s(j, l). Note that the values −nj − (n + 1)l are all distinct because j runs
only through {0,… , n}. Hence the summands in the bottom line are all distinct monomials in
'(z). Since S is �nite, we may therefore write this sum as Q(')(z) for some Laurent polynomial
Q(T ) ∈ �((uℚ)){T ±}. Let w ∈ Uℎ(r) be arbitrary. By construction, the inhomogeneous Newton
polygon of (Q,w) is the lower convex hull of the set of points

{(−q−nj−(n+1)l , q−n(j+l)v(uj)) ∣ (j, l) ∈ S} ∪ {(0, v(w))}.
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We claim that it has a segment of slope r . To see this, consider the line y = rx + ℎ(r). Since
e(j, l, r) ≥ ℎ(r), the point corresponding to (j, l) either lies on or above this line, depending on
whether e(j, l, r) = ℎ(r) or e(j, l, r) > ℎ(r). Moreover, since v(w) ≥ ℎ(r), the point (0, v(w)) also
lies either on or above this line. Since H has a segment of slope r , there must be at least two
pairs (j, l) which lie on the line. Now by de�nition any such pair must lie in T . In fact, these
must be precisely the pairs in S by (2.) and (3.). Hence the inhomogeneous Newton polygon of
(Q,w) indeed has a segment of slope r . By Proposition 4.49, there exists z ∈ Ur with v(z) = r
and Q(')(z) = w , that is, R(z) ≡ w mod � . Note that if R(z) = w + �w′, then the support of w′

must also lie in [ℎ(r), +∞) so w′ ∈ Uℎ(r). By iteration, we conclude that the image of Ur under
R is dense in Uℎ(r) with respect to the �-adic topology. Since Ur is complete, it follows that Ur
surjects onto Uℎ(r). Choosing w = 0 ∈ Uℎ(r), there is z0 with v(z0) = r and R(z0) ≡ 0 mod � . In
particular, z0 is nonzero modulo � . We may then choose z1 ∈ Ur with R(z1) = R(z0)/� and set
z = z0 − �z1. Then z ≡ z0 ≢ 0 mod � and hence is nonzero, but R(z) = 0.

Claim. The element
∑
l∈Z

'−lP (zv) = ∑
l∈Z

�{−l}'−l (z)v ∈ H 0(P )

pairs to zero with the class of � , that is, ∑n
j=0∑l∈ℤ uj�{−l}'−l (z) ∈ im(�'n − 1).

It can be shown that the series ∑l∈ℤ �{−l}'−l (z) converges in ̃ using that '−l (z) has support
bounded below (NB: v('−l (z)) = q−lv(z) ≥ q−lr ) and �-adic completeness of ̃tr∩̃int. We have

�'(∑
l∈ℤ

�{−l}'−l (z)) = ∑
l∈ℤ

�'(�{−l})'−l+1(z) = ∑
l∈ℤ

�{−l+1}'−l+1(z) = ∑
l∈ℤ

�{−l}'−l (z)).

This proves that ∑l∈ℤ �{−l}'−l (z)v ∈ H 0(P ). Now write

n
∑
j=0

∑
l∈ℤ

uj�{−l}'−l (z) = ∑
(j,l)∈T

uj�{−l}'−l (z) + ∑
(j,l)∉T

uj�{−l}'−l (z)

and denote the two series on the right by A and B, respectively. Recall that z was chosen such
that v(z) ≥ r . It follows that v('−l (z)) ≥ rq−l . For (j, l) ∉ T , we have e(j, l, r) ≥ 0 which is
equivalent to v(uj) ≥ −rq−l . Hence v(uj'−l (z)) ≥ 0 for all (j, l) ∉ T so that the class of B is zero
in H 1(N ′) by Lemma 4.57 (1.). It remains to show that the class of A is also zero. Set

a = ∑
(j,l)∈T

j+l−s(j,l)−1
∑
k=0

�{k−j−l+s(j,l)}'n(k−j−l+s(j,l))(ui�{−l}'−l (z)).

It can be shown that this series converges as well (cf. the end of the proof of [13, Lemma 4.12]).

Claim. We have a − �'n(a) = R(z) − A.

We are done if we can prove this claim since R(z) = 0 by choice of z and the claim then
implies that the class of A is zero in H 1(N ′). Note that applying �'n to a has the same e�ect
as letting the sum over k, for given (j, l) ∈ T , run from k = 1 to k = j + l − s(j, l) instead. In
particular, for given (j, l) ∈ T , the sum over k in a − �'n(a) telescopes, leaving the summand
corresponding to k = 0 minus the summand corresponding to k = j + l − s(j, l), that is,

�{−j−l+s(j,l)}'−nj−nl+ns(j,l)(uj�{−l}'−l (z)) − �{−l}uj'−l (z).

This is exactly the summand corresponding to (j, l) in R(z) − A.
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5 Faithfully �at descent

In this section, we �nish the proof of Theorem 3.1 by constructing the �eld extension of K
demanded in Hypothesis 4.3 and then descending the result of Theorem 4.29 back down to .

5.1 Construction of a coe�cient �eld

We go back and construct the �eld demanded in Hypothesis 4.3. To simplify some statements,
we make the following de�nition. It will only be used in this subsection.

De�nition 5.1. Suppose that K is inversive. An admissible extension of K is a �eld extension L
of K , complete for a nonarchimedean absolute value extending the one on K with the same value
group, and equipped with an isometric �eld automorphism 'L extending 'K .

Remark 5.2. If we are given K as in Section 1 which is not inversive, then we can embed it into
its '-perfection. This is the completed direct limit of the direct system K → K → … where the
transition maps are all 'K . It is an inversive '-�eld which shares all the properties of K we need
(cf. [17, Hypothesis 14.4.1]). In other words, the assumption that K is inversive is not a problem
because we can simply replace K by its '-perfection, if necessary.

For K as in the above de�nition, we now construct an extension with strongly di�erence-
closed residue �eld. We need two preliminary results.

Lemma 5.3. For any z ∈ K×, there exists an admissible extension L of K such that the equation
'L(x) − x = z has a solution x ∈ L.

Proof. For � > 0, consider on the polynomial ring K [x] in the variable x over K the �-norms.
That is, |∑n≥0 anxn |� = maxn≥0{|an |�n} which extends to the rational function �eld K (x) by
multiplicativity. Choose the normalization � = |z| ∈ |K×| and complete K (x) with respect to
| ⋅ |� . We obtain a complete nonarchimedean valued �eld L whose absolute value extends the
one on K . Since K (x) is dense in L, it su�ces to de�ne the value of 'L on the variable x . Set
'L(x) = x + z. Then 'L is an isometry since |'L(x)|� = |x + z|� = |x |� by construction. Hence L
is an admissible extension of K and x ∈ L is a solution of the equation.

Remark 5.4. This means in particular that if we are given an extension of trivial '-modules
over K , then the extension splits if we extend scalars to a suitably large admissible extension of K
(Lemma 2.13).

Lemma 5.5. Let P (T ) = T n + an−1T n−1 + ⋯ + a0 be a twisted polynomial over oK with |a0| = 1.
Then there exists an admissible extension L of K such that the equation P ('L)(x) = 0 has a solution
x ∈ o×L .

Proof. We repeat the previous construction with more variables. Let L be the completion of the
rational function �eld K (y0,… , yn−1) under the Gauss norm normalized such that the variables
y0,… , yn−1 all have norm 1. Extend 'K to an isometric automorphism 'L of L by setting 'L(yi) =
yi+1 for i = 0,… , n − 2 and 'L(yn−1) = −an−1yn−1 −⋯ − a0y0. Then

P ('L(y0)) = 'nL (y0) + an−1'n−1L (y0) +⋯ + a0y0
= −an−1yn−1 −⋯ − a0y0 + an−1yn−1 +⋯ + a0y0
= 0

so x = y0 ∈ o×L is a solution of the equation.
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Proposition 5.6. There exists a complete extension L of K with the same value group, equipped
with an extension of 'K to an automorphism 'L, such that any étale '-module over L is trivial. In
other words, �L is strongly di�erence-closed.

Proof. If we can �nd for an arbitrary étale '-module M over K an admissible extension L′ such
that ML′ = L′ ⊗K M is trivial, then the �eld L demanded by the proposition exists by a standard
argument using Zorn’s lemma. So let M be an étale '-module over K . We can write M as a
successive extension of irreducible '-modules using the composition series. The �rst step, M1,
is an irreducible '-submodule of M . Let M0 be an étale lattice of M . Then N0 = M0 ∩ M1 is
a '-module over oK (cf. Lemma 2.51) and is an oK -lattice of M1. Therefore, M1 is étale. By a
similar argument, we see that all the quotients in the decomposition series are irreducible étale
'-modules. If we can show that these are all trivial, then we can split the �ltration by passing
to a suitably large admissible extension (cf. Lemma 5.3 and the remark thereafter).

It remains to show that if M is an irreducible étale '-module over K , then M becomes
trivial over some extension of K . Write M = K{T ±}/K{T ±}P for some irreducible P (T ) =
T n +an−1T n−1+⋯+a0 ∈ K{T}. SinceM is étale, we have 0 = deg(M) = vK (a0) so P has constant
and leading term of valuation 0. Since P has only one homogeneous slope (Corollary 4.42), we
must have vK (aj) ≥ 0 for all j so P actually has coe�cients in oK . By Lemma 5.5, there exists an
admissible extension L of K over which the equation P ('L)(x) = 0 has a solution x ∈ o×L . This
solution gives rise to a factorization of P (T ) over oL{T} and we can repeat the construction to
obtain an admissible extension, still denoted L, over which P splits into linear factors. This is
nothing but a �ltration of L⊗KM by '-modules such that the successive quotients all have rank
1. In fact, these quotients are all étale because every linear factor has coe�cients in o×L . Note
that any étale '-module of rank 1 is trivial so we have found a �ltration of L ⊗K M by trivial
'-modules. We now enlarge L using Lemma 5.3 to split this �ltration, �nishing the proof.

5.2 The descent argument

We set up the descent argument and prove the remaining statements to �nish the proof of
Theorem 3.1.

De�nition 5.7. Let R → S be a faithfully �at morphism of '-rings and let M be a '-module
over R. Write MS = M ⊗R S and let NS be a '-submodule of MS . We say that NS descends to R if
there exists a '-submodule N of M such that the image of N ⊗R S in MS coincides with NS .

Proposition 5.8. Let R → S be a faithfully �at morphism of '-rings which are integral domains.
Write S′ = S ⊗R S and de�ne i1, i2 ∶ S → S′ by i1(s) = s ⊗1 and i2(s) = 1⊗s. LetM be an R-module
equipped with an isomorphism '∗M → M and write MS = M ⊗R S as in the above de�nition. A
'-submodule NS ofMS descends to R if and only if N ⊗i1,R S′ = N ⊗i2,R S′ insideM ⊗R S′. Moreover,
if this occurs, then N is the unique R-submodule of M with NS = N ⊗R S which is �nite locally
free and comes equipped with an isomorphism '∗N → N .

Proof. See [11, Exposé VIII, Corollaire 1.3] for the descent ofNS as a module, op. cit. [Corollaire
1.2] for the action of ' and op. cit. [Proposition 1.10] for the �nite local freeness.

Remark 5.9. Note that if R is Bézout, then the R-submodule N will in fact be a '-module over R
because �nite locally free modules over a Bézout domain are free.

We introduce another triplet of rings. Let L be the �eld constructed in Proposition 5.6.

De�nition 5.10. De�ne

 int = ̃int
L ⊗int ̃int

L , b = ̃b
L ⊗b ̃b

L,  = ̃L ⊗ ̃L
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Remark 5.11. b carries an mK -adic valuation extending the mK -adic valuation w on ̃b
L. On

simple tensors it satis�es w(x ⊗ y) = w(x) + w(y) (cf. [2, Lemma 7]).

Notation. We write [0, 1)ℚ = [0, 1) ∩ ℚ to make the following results look slightly nicer.

Proposition 5.12. There exists a continuous, -linear map f ∶ ̃L →  which sections the
inclusion  → ̃L. If r0 > 0 is as in Remark 1.18, then we have, for any r ∈ (0, r0) and any
x ∈ ̃r

L,
|x |r = sup

�∈[0,1)ℚ,a∈L×
{|a|−1e−r� |f (au−�x)|r}. (5.2.1)

Proof. The idea is more or less the same as in the proof of Lemma 4.18 in that we de�ne com-
patible maps fn for any n ≥ 1 which induce a map f with the desired properties. Fix a basis B
of �L over �K containing 1 and lift it to a subset B of oL containing 1. We also �x a uniformizer
� of K . Note that for any n ≥ 1, the ring ̃int

L /�ñint
L is naturally isomorphic to (oL/�noL)((uℚ)).

Indeed, if we truncate elements of ̃int
L modulo �n, then we just get Hahn series with the coef-

�cients reduced modulo �n. In particular, we can write x ∈ ̃int
L /�ñint

L as x = ∑i∈ℚ aiui with
ai ∈ oL/�noL. Since any i ∈ ℚ can be written uniquely as i = � + n for some n ∈ ℤ, we may
then write

x = ∑
i∈ℚ

aiui = ∑
�∈[0,1)ℚ

(∑
n∈ℤ

a�+nun)u� = ∑
�
x�u� .

We use the morphism  from Lemma 4.18 to embed int/�nint into ̃int
L /�ñint

L (i.e. we
identify the variable t with  (t)). In particular, the formula for the r-norms in the proposition
holds at best for r ∈ (0, r0) since this is the only range where we know that  preserves r-norms.
It is easily seen that B is a basis of (oL/�noL)((t)) over (oK /�noK )((t)). If we write each x� in this
basis, then we see that x can be written uniquely as

x = ∑
�∈[0,1)ℚ

∑
b∈B

x�,bbu� (5.2.2)

where each x�,b ∈ int/�nint. By construction, this presentation has the following two prop-
erties:

• For each � ∈ [0, 1)ℚ, we have x�,b ≠ 0 only for �nitely many b ∈ B;

• If Sc denotes the set of � ∈ [0, 1)ℚ for which there is at least one b ∈ B such that the
t-adic valuation of x�,b is less than c (the t-adic valuation of x�,b is well-de�ned because
it is truncated modulo �n), then Sc is well-ordered for all c and empty for c su�ciently
small.

If x is presented as above, we let fn(x) = x0,1. This is well-de�ned and compatible with the
transition maps by uniqueness of the presentation. Moreover, fn(b−1u−�x) = x�,b for any �, b
and fn(�x) = �fn(x) for any � ∈ int/�nint. The latter equality uses implicitly that fn(�) =
fn( (�)) = �. It follows that the map f ∶ ̃ intL →  int induced by the fn sections the map  and is
 int-linear. By localizing, we obtain an -linear map ̃L →  sectioning  . If we can show that
it is compatible with the r-norms in the sense of the proposition, then it restricts to anb-linear
map ̃b

L → b. This map then extends by continuity to an-linear map f ∶ ̃L → with the
desired properties. By construction, the map f ∶ ̃ int →  int satis�es x = ∑�,b f (b−1u−�x)bu�

for all x ∈ ̃ int. As in [14, Lemma 2.2.19], one shows that if x ∈ ̃int ∩̃r then also f (b−1u−�x) ∈
int ∩r for all �, b. Note that |∑b∈B rbb| = supb |rb | for all rb ∈ oK whence |∑b f (b−1u−�x)b|r =
supb |f (b−1u−�x)|r for all � . Moreover, if � ≠ � , then the supports of ∑b f (b−1u−�x)bu� and
∑b f (b−1u−�x)bu� are disjoint. This gives |x |r = supb,�{e−r� |f (b−1u−�x)|r} and proves (5.2.1)
(where L× could be replaced by a smaller set).
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Remark 5.13. • Note that f preserves bounded elements, that is, f maps ̃b
L intob.

• Let x ∈ ̃r . The formula for |x |r together with Lemma 1.13 implies that x ∈ ̃b
L if and only

if the quantity
|a|−1e−�r |f (au−�x)|r

is uniformly bounded for all a ∈ L×, all � ∈ [0, 1)ℚ and all s ∈ (0, r].

Proposition 5.14. The multiplication map � ∶ ̃b
L ⊗b  → ̃L, x ⊗ y ↦ xy , is injective.

Proof. Assume that x ≠ 0 lies in the kernel of �. Write x = ∑n
i=1 yi ⊗ zi with yi ∈ ̃b

L, zi ∈ 
and n minimal. By Corollary 1.26, the zi are linearly independent over b. Since x ≠ 0, we
may assume without loss of generality that y1 ≠ 0. Then |y1|r ≠ 0 and as a consequence
of (5.2.1) there must be a ∈ L×, � ∈ [0, 1)ℚ with f (au−�y1) ≠ 0. But then 0 = |f (�(x))|r =
|∑n

i=1 f (au−�y1)zi |r using that f is -linear. In particular, 0 = ∑n
i=1 f (au−�yi)zi which is a non-

trivial dependence relation over b because f maps ̃b
L into b. This contradicts the linear

independence of the zi so � must be injective.

We now explain which faithfully �at ring homomorphisms we will be considering and why
they are faithfully �at.

Proposition 5.15. The morphisms b → ,  → ̃L, ̃b
L → ̃L, b → ̃b

L and int →
̃int

L are all faithfully �at. Moreover,

̃b
L ⊗b ̃b

L ↪ ̃b
L ⊗b ̃L ≃ (̃b

L ⊗b ) ⊗ ̃L ↪ ̃L ⊗ ̃L,

that is, b →  is injective.

Proof. b →  is faithfully �at by Proposition 1.23 because × = (b)×. The morphism
̃b

L → ̃L is faithfully �at by the same argument. The inclusion  → ̃L is faithfully �at
because ̃×

L = (̃b
L)× and (̃b

L)× ∩ = (b)× = × by construction (cf. Lemma 4.57). Since this
inclusion respects bounded and integral elements, the embeddings b → ̃b

L and int → ̃int
L

are also faithfully �at. The �nal remark follows from Proposition 5.14 and the faithful �atness
of ̃b

L → ̃L we just proved.

To calculate on  , we will need the following two-variable analog of the previous remark.

Lemma 5.16. For x ∈  , we have x ∈ b if and only if for some r > 0, the quantity

|ab|−1e−�s−�s |(f ⊗ f )((au−� ⊗ bu−� )x)|s (5.2.3)

is uniformly bounded for all s ∈ (0, r], all a, b ∈ L×, and all �, � ∈ [0, 1)ℚ.

Proof. If x ∈ b , choose a presentation x = ∑n
i=1 yi ⊗ zi with yi , zi ∈ ̃b

L. Using (5.2.1), we may
bound |a|−1e−�r |f (au−�yi)|s for all � ∈ (0, 1]ℚ, all a ∈ L× and all s ∈ (0, r] for some r > 0 and we
may do the same for the zi . Since there are only �nitely many i, we may choose these bounds,
C and C′, respectively, to work for all i simultaneously. Since f is -linear, we have

(f ⊗ f )((au−� ⊗ bu−� )
n
∑
i=1
yi ⊗ zi) =

n
∑
i=1
f (au−�yi)f (bu−�zi).

We can thus bound (5.2.3) by CC′ for all �, � ∈ [0, 1)ℚ, all a, b ∈ L× and all s ∈ (0, r].
Conversely, assume that x ∈  and that (5.2.3) is bounded. We may also assume that x ≠ 0.

Choose a presentation x = ∑n
i=1 yi ⊗ zi with yi , zi ∈ ̃L and n minimal. In particular, the zi are
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linearly independent over  by Corollary 1.26. We proceed by induction on n ≥ 1. Since y1 ≠ 0
by minimality of n, we can choose a, � with f (au−�y1) ≠ 0. The case n = 1 follows from (5.2.1)
by inspection of (5.2.3) after �rst varying �, b for �xed �, a and then varying �, a for �xed �, b.

Now let b = 1 and � = 0 in (5.2.3). Then we see that

|a|−1e−�r |(f ⊗ f )(au−� ⊗ 1)x)|s = |a|−1e−r� |
n
∑
i=1
f (au−�yi)f (zi)|s

is bounded for all � ∈ [0, 1)ℚ, all a ∈ L× and all s ∈ (0, r]. Note that the quantity on the right
is exactly what we get if we plug x′ = ∑n

i=1 f (au−�yi)zi into (5.2.1). It follows that x′ ∈ ̃b
L.

Since x′ ≠ 0, this implies that x′ is a unit in ̃L. Hence the ideal generated by the f (au−�yi) in
 extends to the unit ideal in ̃L. Now both  and ̃L are Bézout so the ideals generated by
these elements are principal. By the previous observation, the generator in ̃L is a unit, hence
so must be the generator in  by Proposition 1.23. To summarize, the f (au−�yi) generate
the unit ideal in  so Lemma 1.25 yields another presentation x = ∑n

i=1 y′i ⊗ z′i where z′1 =
∑n
i=1 f (au−�yi)zi ∈ ̃b

L. As noted before, this element is nonzero.
Pick b, � such that f (bu−�z′1) is nonzero (use (5.2.1)). Then f (bu−�z′1) is a unit in  because

it is an element of b by Remark 5.13. Write ci = f (bu−�z′i )/f (bu−�z′1) for i = 2,… , n, and set

y′′i =

{
y′1 + c2y′2 +⋯ + cny′n i = 1

y′i i > 1
and z′′i =

{
z′i i = 1

z′i − ciz′1 i > 1

We then have x = ∑n
i=1 y′′i ⊗ z′′i by de�nition. Since f is -linear, we have f (bu−�z′′i ) = 0 for

i = 2,… , n so that y′′1 f (bu−�z′′1 ) = ∑n
i=1 y′′i f (bu−�z′′i ) ∈ ̃b

L (cf. Remark 5.13). Since f (bu−�z′′1 ) ∈
b, we deduce that y′′1 ∈ ̃b

L. The induction hypothesis applied to x − y′′1 ⊗ z′′1 = ∑n
i=2 y′′i ⊗ z′′i

now yields the claim.

Proposition 5.17. Let A be an n × n matrix with entries in  int. If v ∈ n satis�es v = A'(v),
then v has entries in b.

Proof. For each entry vi of v, choose a presentation vi ∑j yij ⊗ zij with yij , zij ∈ ̃L. As in the
proof of Proposition 1.20 (or 4.21), after rescaling by a power of u, we may choose r ∈ (0, r0)
such that each term in a presentation of the entries of A has entries in ̃r

L and is bounded
by 1 on the annulus e−r ≤ |u| < 1. After shrinking r if necessary, we can also assume that
yij , zij ∈ ̃r

L for all i, j. Choose c > 0 such that |yij |s , |zij |s ≤ c for all i, j and any s ∈ [r/q, r].
This is possible because we pick s from a closed interval (cf. Lemma 4.14). As usual, we have
|'m(yij)|s/qm = |yij |s ≤ c and |'m(zij)|s/qm = |zij |s ≤ c for all i, j and any integer m ≥ 0.

Claim. Fix any m ≥ 0. Then for all i, all �, � ∈ [0, 1)ℚ, all a, b ∈ L× and all s ∈ [r/qm+1, r/qm],

|ab|−1e−�s−�s |(f ⊗ f )((au−� ⊗ bu−� )vi)|s ≤ c2.

If we can prove the claim, then we get the above inequality for all s ∈ (0, r] by varying
m ≥ 0. This implies that vi ∈ b by Lemma 5.16, proving that v has entries in b.

We prove the claim by induction on m ≥ 0. For m = 0 the inequality holds by choice of c
and Lemma 5.12. Explicitly, for any i, any �, � , any a, b, and all s ∈ [r/q, r], we have

|ab|−1e−�s−�s |(f ⊗ f )((au−� ⊗ bu−� )vi |s = |ab|−1e−�s−�s |f (au−�yi)f (bu−�zi)|s
= |a|−1e−�s |f (au−�yi)|s |b|−1e−�s |f (bu−�zi)|s
≤ |yi |s |zi |s ≤ c2.
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Here we use in the last line the formula for the s-norm from Proposition 5.12 and the choice of
c. For the induction step, we use that Av = '(v). For any s ∈ [r/qm+1, qm], all �, � and all a, b,

|ab|−1e−�s−�s |(f ⊗ f )((au−� ⊗ bu−� )vi)|s = |ab|−1e−�s−�s |(f ⊗ f )((au−� ⊗ bu−� )∑
j
Aij'(vi))|s

≤ |ab|−1e−�s−�s max
j

|(f ⊗ f )((au−� ⊗ bu−� )'(vj))|s

= |ab|−1e−�s−�s max
j

|(f ⊗ f )((au−� ⊗ bu−� )vj |sq

≤ c2.

Here we use in the second line that the entries of A are bounded by 1 and in the last line the
induction hypothesis. This �nishes the induction and proves the claim.

Remark 5.18. • One can do without the induction and just use that v = A'(v) implies
v = A'(A)⋯ 'm−1(A)'m(v) for anym ≥ 1, but this makes the calculation a bit less apparent.

• The proposition implies that Homb,'(M,N ) → Hom ,'(M ⊗b  , N ⊗b ) is bijective.
Indeed, we can argue as in the proof of Proposition 2.48.

Now we can �nally �nish the proof of the slope �ltration theorem.

Theorem 5.19. Let M be a semistable '-module over. Then ML = M ⊗ ̃L is semistable.

Proof. Assume that ML is not semistable and let 0 = ML,0 ⊆ ⋯ ⊂ ML,l = ML be its HN �ltration.
We wish to show that ML,1 descends to  along the faithfully �at inclusion  → ̃L. To do
so, we prove that ML,1 ⊗i2  ⊆ ML,j ⊗i1  for j = l, l − 1,… , 1 by descending induction. The case
j = l is clear because ML,l = M . Now assume that ML,1 ⊗i2  ⊆ ML,j ⊗i1  for some j > 1. We
then have a homomorphism of '-modules over  ,

ML,1 ⊗i2  → ML,j ⊗i1  → (ML,j/ML,j−1) ⊗i1  . (5.2.4)

By de�nition of the HN �ltration, both ML,1 and ML,j/ML,j−1 are semistable and hence pure
(cf. Theorem 4.29). Moreover, we have �(ML,1) < �(ML,j/ML,j−1). By Theorem 2.58, ML,1 and
ML,j/ML,j−1 descend to ̃b

L. Write ML,1 = Mb
L,1 ⊗̃b

L
̃L and ML,j/ML,j−1 = (ML,j/ML,j−1)b ⊗̃b

L
̃L.

Now Proposition 5.17 implies that also the homomorphism ML,1 ⊗i2  → (ML,j/ML,j−1) ⊗i1 
descends (i.e. arises via base change along ( ⋅ ) ⊗b ). Therefore, it su�ces to show that the
homomorphism Mb

L,1 ⊗ib2 
b → (ML,j/ML,j−1)b ⊗ib1 

b is trivial. Since (Mb
L,1)∨ ⊗̃b

L
(ML,j/ML,j−1)b is

pure of positive slope and b carries an mK -adic valuation extending that of ̃b
L (cf. Remark

5.11), one can argue as in Lemma 2.60 and Corollary 2.61. It follows thatML,1⊗i2 ⊆ ML,j−1⊗i1 ,
completing the induction. In particular, ML,1 ⊗i2  ⊆ ML,1 ⊗i1  and we have equality by a
symmetric argument. Thus, ML,1 descends to a '-submodule M1 of M (cf. Proposition 5.8). But
then �(M1) = �(ML,1) < �(ML) = �(M) so M is not semistable either.

Remark 5.20. Although we do not need it, the '-submodule M1 of M obtained by descending
ML,1 to  is the �rst step of the HN �ltration of M . See also the proof of [14, Theorem 6.4.1].

Theorem 5.21. Let M be a '-module over. If ML = M ⊗ ̃L is pure, then so is M .

Proof. We have �(M) = �(ML). Applying [rk(M)]∗ and invoking Lemma 2.55, we may assume
that �(M) ∈ ℤ. By twisting, we can then assure that 0 = �(M) = �(ML). In other words, it
su�ces to show that if ML is étale then so is M . By Proposition 4.26, ML is obtained by base
change from an étale '-module over L which must be trivial by choice of L (cf. Proposition
5.6). Hence we can �nd a basis v1,… , vn of ML on which ' acts by the n × n identity matrix En.
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Claim. M descends tob.

Proof of Claim. It seems that we cannot quite use Proposition 5.8, but we can argue as follows.
Let N ′ be the ̃b

L-submodule of ML generated by v1,… , vn, that is, N ′ is the '-module over ̃b
L

obtained by descending ML to ̃b
L as in Proposition 2.48. We have bases v1 ⊗i1 1,… , vn ⊗i1 1 and

v1 ⊗i2 1,… , vn ⊗i2 1 of M ⊗i1  and M ⊗i2  (using the notation of Proposition 5.8). Let U be
the change-of-basis matrix (with entries in ) from the basis v1 ⊗i1 1,… , vn ⊗i1 1 to the basis
v1 ⊗i2 1,… , vn ⊗i2 1, that is,

vj ⊗i1 1 =
n
∑
i=1
Uij(vi ⊗i2 1)

for all j = 1,… , n. This may be rewritten as En ⊗i1 1 = U −1(En ⊗i2 1)'(U ) which implies that
U = '(U ). By Proposition 5.17 applied to each column of U separately, U must have entries in
b. Now note that M∨

L = M∨ ⊗ ̃L is also étale so that the same argument with M replaced by
M∨ and v1,… , vn replaced by the dual basis shows that U −1 also has entries in b.

By the above calculation, the images of N ′ under the two maps ML → M ⊗ij  , j = 1, 2,
generate the same b-submodule. We obtain an induced descent datum on N ′ with respect
to the faithfully �at morphism b → ̃b

L. Thus, by [20, Proposition 35.3.9], N ′ = N ⊗b ̃b
L

where N is the di�erence kernel of the two maps. By the canonical descent of M ⊗ ̃L, the
b-module N is an b-submodule of M . By construction, we now have

M ⊗ ̃L = ML = N ′ ⊗̃b
L
̃L = (N ⊗b ̃b

L) ⊗̃b
L
̃L = (N ⊗b ) ⊗ ̃L.

Since  → ̃L is faithfully �at, we deduce that N ⊗b  → M is an isomorphism.

Let N be the '-module obtained by descending M to b. We now have access to Lemma
2.51 to construct an étale lattice of N (hence of M ) as follows. Choose any b-basis e1,… , en
of N and let P be the int-span of the images of the basis elements under powers of 'M . Write
e1,… , en in terms of the vi (with coe�cients in b). Since ' acts by the identity matrix on the
basis v1,… , vn, we see that P is contained in the int-submodule of N generated by the basis
e1,… , en. It follows that P is a 'M -stable int-lattice in M . Hence P ⊗int ̃int

L is a 'ML-stable
̃int

L -submodule of the étale '-module ML and so is a '-module over ̃int
L by Lemma 2.51. Now

the inclusion int → ̃int
L is faithfully �at so that P must itself be a '-module over int (if

'∗(P ⊗int ̃int) → P ⊗int ̃int is an isomorphism, then so must be '∗P → P ). Hence P is an
étale lattice for M .

6 Trianguline representations

The original goal of this section was to de�ne trianguline representations and talk about the
p-adic local Langlands correspondence for GL2(ℚp). However, to do this in some detail one has
to introduce a lot of terminology and theory having very little to do with the slope �ltration
theorem. It therefore seems more reasonable to instead focus on the impact of the theorem
on p-adic Hodge theory and especially the works of Berger on (', Γ)-modules. This is what
we will do in the �rst subsection. What was originally meant to be a section on trianguline
representations has been condensed into a very brief second subsection culminating in the
statement of the p-adic local Langlands correspondence for GL2(ℚp).

Notation. Fix a prime number p . Throughout this section, K denotes a �nite extension ofℚp and
vp denotes the p-adic valuation. We write  = K for the Robba ring with coe�cients in K and
denote by ' the Frobenius lift t ↦ (1 + t)p − 1.  is endowed with an action of the group Γ = ℤ×

p
via ([ ]f )(t) = f ((1 + t) − 1) for  ∈ Γ.
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Remark 6.1. In some references the assumption p ≠ 2 is made, but it seems that all statements
also hold for p = 2. It should therefore be of no harm to include this case.

6.1 (', Γ)-modules and p-adic representations

One of the original goals of p-adic Hodge theory is to distinguish those p-adic Galois repre-
sentations which arise as étale cohomology of varieties over K . For this purpose, Fontaine
introduced the rings of periods Bcris, Bst and BdR, to de�ne and study semistable, crystalline
and de Rham representations. We will explain this brie�y and outline the progress made in this
theory using the slope �ltration theorem.

De�nition 6.2. A (', Γ)-module over  is a '-module M over , endowed with a semilinear
continuous action of the group Γ which is compatible with 'M . We say that M is étale (resp. pure
of slope s ∈ ℚ) if the underlying '-module is étale (resp. pure of slope s).

An important example is the following. It is similar to the twists(n)we considered earlier.

Example 6.3. Let � ∶ ℚ×
p → K× be a character (i.e a continuous group homomorphism). We

de�ne(�), called the twist of by � , to be the '-module of rank 1 with generator e� satisfying
'(e� ) = �(p)e� . It becomes a (', Γ)-module via [a](e� ) = �(a)e� for a ∈ Γ. By de�nition, the slope
of (�) is �((�)) = vp(�(p)). It follows that (�) is étale if and only if �(p) ∈ o×E . One may
similarly de�ne the twist of any (', Γ)-module by � .

Notation. We write u(�) = �((�)) = vp(�(p)).

We now describe what we mean by a p-adic Galois representation.

De�nition 6.4. A p-adic representation of Gal(ℚp |K ) is a �nite dimensional ℚp-vector space V ,
equipped with a continuous ℚp-linear action of Gal(ℚp |K ) where V is given the topology induced
from ℚp and Gal(ℚp |K ) carries the pro�nite topology. Equivalently, a p-adic representation is a
�nite dimensional ℚp-vector space V together with a group homomorphism � ∶ Gal(ℚp |K ) →
GLℚp (V ) where GLℚp (V ) denotes the group of ℚp-linear automorphisms of V .

Fontaine constructed the rings of periods Bcris,Bst and BdR to sort through p-adic repre-
sentations. All three rings are ℚp-algebras equipped with an action of Gal(ℚp |ℚp) and each
have certain additonal structures. A very good overview and some historical background of
this is given in [3]. One now de�nes crystalline, semistable and de Rham representations. We
follow [5, §3.1]. Let K0 = W (�K )[1/p] be the maximal unrami�ed subextension of K |ℚp .

De�nition 6.5. If V is a p-adic representation of Gal(ℚp |K ) and ∗ ∈ {cris, st, dR}, set D∗(V ) =
(B∗ ⊗ℚp V )

Gal(ℚp |K ) where ( ⋅ )Gal(ℚp |K ) denotes the elements invariant under the group action. Then
Dcris(V ) (resp. Dst(V ), resp. DdR(V )) is a vector space over K0 (resp. K0, resp. K ) of dimension at
most dimℚp (V ). We say that V is crystalline (resp. semistable; resp. de Rham) if we have equality
of dimensions for ∗ = cris (resp. ∗ = st; resp. ∗ = dR).

Remark 6.6. • We say that a p-adic representation of Gal(ℚp |K ) is potentially semistable
if its restriction to Gal(ℚp |L) is semistable for some �nite extension L of K . Potentially
semistable representations are always de Rham.

• If X is a proper smooth variety over K , then the étale cohomology groups H i
et(XK ,ℚp) are

p-adic representations. One can shown that these are de Rham (cf. [3, §IV.5]).
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• Our de�nition of a semistable '-module and the above de�nition of a semistable p-adic
representation are not directly related!

Berger later constructed another ring of periods, denoted B̃†rig (roughly comparable to ̃),
which is endowed with an endomorphism ' and a commuting action of Gal(ℚp |ℚp). The in-
clusion of  into B̃†rig is '-equivariant and compatible with the action of Γ in an explicit way
(cf. the discussion after [5, De�nition 2.3]).

De�nition 6.7. If M is a (', Γ)-module over , then we let V (M) = (B̃†rig ⊗ M)'=1. Here ( ⋅ )'=1
denotes the elements invariant under the '-action. This is a (�nite or in�nite-dimensional) ℚp-
vector space, endowed with an action of Gal(ℚp |K ) (loc. cit.).

One has the following theorem which is a variant of results of Fontaine and Cherbonnier-
Colmez (see [17, §24.2]) complemented by the slope �ltration theorem.

Theorem 6.8 (Berger). If M is an étale (', Γ)-module over , then V (M) = (B̃†rig ⊗ M)'=1 is a
p-adic representation of of Gal(ℚp |K ). The resulting functor induces an equivalence of categories
between the categories of étale (', Γ)-modules over  and the category of p-adic representations
of Gal(ℚp |K ). We denote the inverse functor by V ↦ D(V ).

Proof. See [17, Theorem 24.2.8] or [5, Theorem 1.3].

The essential in�uence of the slope �ltration theorem to p-adic Hodge theory is that it
allows one to study p-adic representations via their associated (', Γ)-modules (note that the
functor D also has an explicit description). Berger has advanced this theory tremendously by
extending the de�nitions of crystalline and semistable representations to (', Γ)-modules and
proving that these de�nitions are compatible with those of Fontaine (cf. [5, Theorem 3.1]).
One obtains as a corollary an a�rmative answer to a former conjecture of Fontaine, the p-adic
monodromy conjecture.

Corollary 6.9. Every de Rham representation is potentially semistable.

Proof. See [17, Corollary 24.4.5].

6.2 2-dimensional trianguline representations

We have already seen that the slope �ltration theorem has lead to many advancements in the
theory of (', Γ)-modules. We will now look at what one can do with (', Γ)-modules. Essentially
all results in this section are due to Colmez. We follow Berger’s survey [5] and explain how one
can construct a parameter space for all (irreducible) 2-dimensional trianguline representations
and conclude with a few words on the the p-adic local Langlands correspondence for GL2(ℚp).

De�nition 6.10. A p-adic representation V of Gal(ℚp |K ) is called trianguline if D(V ) is a suc-
cessive extension of (', Γ)-modules of rank 1 over.

This means that there should exist a basis of D(V ) such that the representing matrices of
'D(V ) and of the elements of Γ are all upper triangular. One can classify all (', Γ)-modules of
rank 1 over  and the possible extensions between them explicitly as follows.

Theorem 6.11. We denote by x the character ℚ×
p → K× induced by the inclusion ℚp ⊆ K , and

by | ⋅ |p the character which sends z ∈ ℚ×
p to p−vp(z).
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1. IfM is a (', Γ)-module of rank 1 over, then there exists a unique character � ∶ ℚ×
p → K×

such that M ≃ (�).

2. If �1, �2 ∶ ℚ×
p → K× are two characters, then Ext((�2),(�1)) is a 1-dimensional K -vector

space, unless �1�−12 is either of the form x−i for some integer i ≥ 0 or of the form |x |px i for
some integer i ≥ 1. In the latter case, Ext((�2),(�1)) is 2-dimensional.

Proof. The theorem is stated as a forward reference in [7, Théorème 0.2]. The proofs can be
found in op. cit. [Proposition 3.1] and [Théorème 2.9].

Remark 6.12. Part (2.) of the theorem implies that there is either only one nonsplit extension
of (�1) by (�2) or the set of such extensions is parametrized by the projective line ℙ1(K ). The
parameter of such an extension is called the -invariant.

In particular, if V is a 2-dimensional trianguline representation, then there exists a short
exact sequence of (', Γ)-modules

0 (�1) D(V ) (�2) 0

That is, D(V ) is determined by two characters �1, �2 ∶ ℚ×
p → K× and an -invariant. Since

D(V ) comes from the p-adic representation V , we also know that D(V ) is étale (cf. Theorem
6.8). It follows from Lemma 2.30 that u(�1) + u(�2) = 0. Moreover, u(�1) ≥ 0 by Theorem 2.62.
Given s = (�1, �2,), we write D(s) for the étale (', Γ)-module associated to s in this way.

Remark 6.13. If u(�1) = 0, then u(�2) = 0. In this case (�1) and (�2) are both étale so that
the extension above corresponds to an extension of p-adic representations, that is, V is then itself
an extension of two representations.

Colmez proceeds to construct a parameter space for all 2-dimensional trianguline repre-
sentations and determines, using the invariant u(�) of a character � ∶ ℚ×

p → E× and another
invariant w(�) (the weight of �), when they are semistable, crystalline or non-geometric and
when they are irreducible (cf. the introduction of [7]). Now one of the reasons one might
be interested in trianguline representations is their appearance in the p-adic local Langlands
correspondence for GL2(ℚp). This is a correspondence between certain 2-dimensional p-adic
representations of Gal(ℚp |ℚp) and certain (not necessarily �nite dimensional) representations
of GL2(ℚp). The �rst examples of such a correspondence were given by Breuil for special rep-
resentations of Gal(ℚp |ℚp) (see [4, §2.3]). To reproduce these examples in a functorial way,
Colmez realized that the correct condition on the associated (', Γ)-modules was to be an ex-
tension of two (', Γ)-modules of rank 1 which lead him to study trianguline representations.
To conclude, we present the aforementioned correspondence.

Theorem 6.14. There is a functor Π↦ V (Π), called the Montreal functor, from RepK (GL2(ℚp))
to RepK (Gal(ℚp |ℚp)) which induces a bijection between the isomorphism classes of

1. absolutely irreducible non-ordinary Π ∈ BanadmGL2(ℚp)(K );

2. 2-dimensional absolutely irreducible continuous K -linear representations of Gal(ℚp |ℚp).

The rough strategy of the proof is the following (where the terminology and notation is
explained in [10, §1]). Given an irreducible trianguline representation one can attach to it in
a functorial way a so-called p-adic unitary Banach space representation of GL2(ℚp) ([8, §V.1]).
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One then attaches as in [9, §6] to any 2-dimensional p-adic representation of Gal(ℚp |ℚp) a rep-
resentation of GL2(ℚp) coinciding with the previous construction for trianguline representa-
tions. Since there are "enough" trianguline representations, it remains to show that the functor
is suitably well-behaved and has the desired properties for trianguline representations (cf. [5,
Theorem 4.1] and the discussion thereafter).

Remark 6.15. The general idea is that certain n-dimensional representations of Gal(ℚp |ℚp)
should correspond to certain representations of GLn(ℚp). Moreover, this correspondence should
satisfy a list of nice properties to make it canonical/unique. For the p-adic local Langlands cor-
respondence such a list does not yet seem to exist. That the correspondence of the theorem above
satis�es a number of desirable properties is the content of [10].
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