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1 Introduction

In this thesis, we will introduce the standard model structure on the category of simplicial
sets in detail. This will equip us with the necessary prerequisites to prove the main results
of the thesis that the category of simplicial sets forms a model category (Theorem 4.6.10)
which is Quillen equivalent to the model category of topological spaces (Theorem 4.6.11).
The modern simplicial homotopy theory has its origins in the mid-20th century thanks to
the groundbreaking work by Daniel Kan in the 1950s and Daniel Quillen in the 1960s, who
first stated and proved the theorems in [Qui67]. The two main references we will follow for
the proofs are [GJ99] Chapter I and [Hov99] Chapter 3.

A simplicial set is a contravariant set valued functor from the simplex category, the category
with objects of all finite non-empty ordered sets, with monotonous maps between them.
These functors form a category whose morphisms are the natural transformations. In Chap-
ter 2, we will introduce the category of simplicial sets in more detail and we will describe
some important examples and basic properties. A simplicial set gives rise to a topological
space formed by gluing topological simplices together along the abstract information given
by the functor. This topological space is called the geometric realization of the simplicial
set and gives rise to a functor between the two categories of simplicial sets and topological
spaces, as defined in Section 2.2. This geometric realization functor leads to a fundamen-
tal adjunction, and later we will see that this is a Quillen equivalence between the model
categories of simplicial sets and topological spaces.

In Chapter 3, we will give an overview of the categorical definitions as well as presenting
the necessary properties for model structures and Quillen equivalences, needed later on in
this thesis. A model structure (also called a Quillen model structure or a Quillen homotopy
structure) on a given category consists of three classes of morphisms, the so called fibrations,
cofibrations and weak equivalences, satisfying a certain list of properties (cf. Definition 3.1.1).
A model category, first introduced by Quillen in 1967, is a complete and cocomplete category
endowed with a model structure (cf. Definition 3.1.5). A Quillen functor is an adjoint
functor between two model categories, preserving half of the model structure, either fibrations
and trivial fibrations (in case of a right adjoint), or cofibrations and trivial cofibrations (in
case of a left adjoint; cf. Definition 3.1.10). Trivial fibrations are defined to be fibrations
which are also weak equivalences; analogously for trivial cofibrations. A Quillen equivalence
is a pair of adjoint Quillen functors compatible with the weak equivalences in a suitable
way (cf. Definition 3.1.12). The notion of an equivalence of categories is fundamental in
modern mathematics. A Quillen equivalence is something weaker, however, since it is not an
equivalence between the categories themselves. Rather, it induces an equivalence between the
corresponding homotopy categories of the two respective model categories. The homotopy
category of a model category is obtained by formally inverting the morphism class of weak
equivalences, also called the localization at the weak equivalences. A main feature of model
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1. Introduction

categories is that the additional structure given by the classes of fibrations and cofibrations
allows us to describe the localization at the weak equivalences in a better way (cf. [Hov99]
Theorem 1.2.10).
In Section 3.2, we will briefly introduce the model structure on the category of topological
spaces, and subsequently arrive at the result (without proof) that this structure indeed
satisfies the required properties and forms a model category (cf. Theorem 3.2.2).

In the last Chapter, we will construct the model structure on the category of simplicial
sets in a stepwise procedure, by presenting the necessary morphism classes and techniques.
This will be the main focus of this thesis, starting with the class of fibrations, the so called
Kan fibrations, in Section 4.1. This definition of fibrations turns out to be natural, as we
will see that fibrations in the category of topological spaces map to Kan fibrations under
the fundamental adjunction. Ending this section, we will give some examples of fibrant
simplicial sets. An object in a model category is called fibrant if the unique morphism to the
terminal object is a fibration. In Section 4.2, we will introduce the next class of morphisms
in the category of simplicial sets, the so called anodyne extensions. These morphisms play
an important role in simplicial homotopy theory, as it turns out that these are exactly the
trivial cofibrations of the model structure.
In the following two sections, we will introduce homotopies between morphisms of simplicial
sets and function complexes. Historically, the latter turned out to be an important discovery
since the concept provided an indispensable tool on the way to prove the axioms of a model
structure, as we will frequently see throughout this thesis.
Next, using the knowledge about simplicial homotopies, we will introduce the concept of
simplicial homotopy groups for fibrant simplicial sets in Section 4.5. As we will see in the
following section, there are isomorphisms between the homotopy groups of a simplicial set
and the topological homotopy groups of its geometric realization. This will lead us to the
definition of weak equivalences in the category of simplicial sets, since a morphism between
simplicial sets is defined to be a weak equivalence, if and only if its realization is in the
category of topological spaces. Within this category, the class of weak equivalences is just
the class of (weak) homotopy equivalences (cf. Section 3.2).
Finally, in the last Section 4.6, we will bring all the previous results together and prove
Theorem 4.6.10 (i.e. we really get a model structure on the category of simplicial sets) and
Theorem 4.6.11 (i.e. the model categories of simplicial sets and topological spaces are Quillen
equivalent via the geometric realization functor).

This thesis presents a concise summary of simplicial homotopy theory, which is an important
subject in modern algebraic topology, as well as in general abstract homotopy theory. The
thesis aims to give a readable and detailed summary of most concepts needed for working with
the model structure on the category of simplicial sets. On our way, we state all the necessary
definitions and properties concerning model categories; no prior knowledge is needed.

I want to thank Professor Jan Kohlhaase, for his support and mentorship throughout my
studies at the University of Duisburg-Essen. Without his guidance and tireless supervision,
this thesis would not have been possible. I also wish to thank Professor Marc Levine and his
former group at the University of Duisburg-Essen for their extraordinary effort in teaching,
especially Dr. Tariq Syed and Dr. Daniel Harrer. To give just one example, they held an
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1. Introduction

extra-curricular seminar on higher homotopy theory upon students’ requests. This seminar
gave me a much deeper understanding and appreciation of Algebraic Topology.
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2 The Category of Simplicial Sets

2.1 Basic definitions

In this very first chapter we define the category of simplicial sets, give some basic examples
and show some essential properties. For example, there exists a fundamental adjunction
between this category and the category of topological spaces. Therefore, we start by intro-
ducing the simplicial category, i.e., the category of finite ordinal numbers, denoted by ∆.
More precisely, the objects of ∆ are finite totally ordered sets n := {0 < 1 < . . . < n}
for n ≥ 0, n ∈ N0, whose morphisms are all order-preserving maps f : n → m, i.e. all
maps f such that for i, j ∈ n with i ≤ j we also have f(i) ≤ f(j). These are also called
monotonous.

Among all of the morphisms m→ n appearing in ∆ there are the following special ones.

Definition 2.1.1. (i) For each n > 0 and 0 ≤ i ≤ n, the i-th coface map is the unique
monotonous injection di : n− 1 ↪→ n satisfying i /∈ di(n− 1), i.e.

di : n− 1→ n, di(k) =
{
k, if 0 ≤ k < i,

k + 1, if i ≤ k ≤ n− 1.

(ii) For each n ≥ 0 and 0 ≤ i ≤ n, the i-th codegeneracy map is the unique monotonous
surjection si : n+ 1 � n satisfying si(i) = si(i+ 1), i.e.

si : n+ 1→ n, si(k) =
{
k, if 0 ≤ k ≤ i,
k − 1, if i < k ≤ n+ 1.

As a matter of fact, every morphism f : n→ m in ∆ can be decomposed uniquely as f = ds,
where d : k → m is injective, and s : n → k is surjective. More precisely, f even can be
factored into coface and codegeneracy maps, i.e. as

f = dip ◦ . . . ◦ di1 ◦ sj1 ◦ . . . ◦ sjq ,

where the non-negative integers p and q satisfy n+ p− q = m and the superscripts i and j
satisfy

0 ≤ i1 < . . . < ip ≤ m and 0 ≤ j1 < . . . < jq ≤ n+ 1.

Here the empty composite is taken to be the identity map. The maps dj and si satisfy the
following list of relations which are called the cosimplicial identities:
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2.1. Basic definitions

(i) djdi = didj−1, i < j

(ii) sjdi =


disj−1, i < j,

id, i = j or i = j + 1,
di−1sj , i > j + 1.

(iii) sjsi = sisj+1, i ≤ j.

Hence, the maps di, sj and these relations can be viewed as a set of generators and relations
of ∆.

Example 2.1.2. By Top, we denote the category of topological spaces with continuous
maps between them as morphisms. We recall some notations from algebraic topology first.
The topological standard n-simplex ∆n ⊆ Rn+1 is the space

∆n = {(t0, . . . , tn) ∈ Rn+1|
n∑
i=0

ti = 1, ti ≥ 0},

endowed with the subspace topology. These standard n-simplices ∆n are homeomorphic to
the n-th unit disc Dn ⊆ Rn. The i-th vertex of ∆n is the vector

ei := (0, . . . 0, 1, 0, . . . , 0) ∈ ∆n

where ti = 1 and tj = 0 for j 6= i. The i-th face map is the map

di∆ : ∆n−1 → ∆n, (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti+1, . . . , tn)

and the j-th degeneracy map is

sj∆ : ∆n+1 → ∆n, (t0, . . . , tn+1) 7→ (t0, . . . , ti−1, ti + ti+1, . . . , tn+1).

We indicate these maps with ∆ to avoid misunderstandings regarding previous notations.
The i-th face is the image under di which is homeomorphic to ∆n−1.
There is a standard covariant functor

r : ∆→ Top,

which is given on objects by n 7→ ∆n. On morphisms it is defined as follows. A map
θ : n→ m in ∆ induces a map θ∗ : ∆n → ∆m in Top which is defined by

θ∗(t0, . . . , tn) = (s0, . . . , sm),

where

si =
∑

j∈θ−1(i)
tj .

This, indeed, defines a functor. We also note that (di)∗ = di∆ and (sj)∗ = sj∆.
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2.1. Basic definitions

Definition 2.1.3. A simplicial set is a functor

X : ∆op → Set

between the categories ∆ and Set, the category of sets. We denote the category of simplicial
sets by sSet := [∆op,Set]. Its morphisms are the natural transformations.

Remark 2.1.4. For a simplicial set X, we will write Xn := X(n) and f∗ = X(f) for a map
f ∈ Hom∆(n,m). The set Xn is called the set of n-simplices or simplices of dimension n.
Specifically, an element in X0 is called a vertex of X. By the above remark, any map in ∆
may be uniquely factorized as a composition of codegeneracies and cofaces. Thus, in order
to define a simplicial set X, it suffices to write down a collection of sets Xn, n ≥ 0 together
with maps

di := X(di) : Xn → Xn−1, 0 ≤ i ≤ n, n > 0 (faces)
sj := X(sj) : Xn → Xn+1, 0 ≤ j ≤ n (degeneracies)

satisfying the analogous relations, the so called simplicial identities:

(i) didj = dj−1di, i < j

(ii) disj =


sj−1di, i < j,

id, i = j or i = j + 1,
sjdi−1, i > j + 1.

(iii) sisj = sj+1si, i ≤ j.

This is the classical way of describing the combinatorial data for a simplicial set X.

Example 2.1.5. (i) For two given simplicial sets X,Y ∈ sSet one can construct new
simplicial sets termwise, corresponding to the product and coproduct in Set. The
product X × Y of X and Y , now to be defined in the category sSet, is the simplicial
set with

(X × Y )n := Xn × Yn, for all n ≥ 0.

The face and degeneracy maps are defined to be

dX×Yi := dXi × dYi : (X × Y )n → (X × Y )n−1 and
sX×Yj := sXj × sYj : (X × Y )n → (X × Y )n+1, for all i, j ∈ N0.

One checks easily that these maps satisfy the simplicial identities, by using the prop-
erties of di and sj on Xn and Yn, respectively. A similar construction can be done for
the disjoint union. We define the simplicial set X t Y via

(X t Y )n := Xn t Yn, for all n ≥ 0

and

dXtYi := dXi t dYi , sXtYj := sXj t sYj .

We note that these constructions yield a product and coproduct in sSet, respectively,
since they are constructed component wise from those in the category Set.
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2.1. Basic definitions

(ii) A similar construction can be made for pullbacks and pushouts. If X,Y, Z ∈ sSet are
simplicial sets with morphisms X f−→ Z

g←− Y , then we have a pullback diagram

Xm ×
Zm

Ym
prm

2 //

prm
1
��

Ym

gm

��
Xm

fm

// Zm

for each degree m ∈∆. We define the simplicial set (X ×
Z
Y ) pointwise via

(X ×
Z
Y )m := (Xm ×

Zm

Ym), for each m ≥ 0,

and for a map f : m→ n in ∆ we define

(X ×
Z
Y )(f) : (X ×

Z
Y )n → (X ×

Z
Y )m

to be the product map f̄ = X(f) × Y (f) received by the universal property of the
diagram

Xn ×
Zn

Yn

prn
2

++

prn
1

��

f̄

%%

Yn
Y (f)

��
Xn

X(f) **

Xm ×
Zm

Ym //

��

Ym

��
Xm

// Zm

in Set. If we define the natural transformations p1 := (pn1 )n∈∆ and p2 := (pn2 )n∈∆,
then the simplicial set X ×

Z
Y satisfies the universal property of a pushout for the

diagram

X ×
Z
Y

pr2 //

pr1
��

Y

g

��
X

f
// Z

in the category sSet. The universal property of the pullback follows again from the
universal property in Set by using the universal property in each component. With an
analogous construction one defines the pushout X t

Z
Y in sSet. Similar constructions

also give arbitrary small (co)products.

Remark 2.1.6. The categories Set and Top are both complete and cocomplete, which
means that all small limits and small colimits exist, since all pullbacks and (small) products
and, respectively, all pushouts and (small) coproducts exist. Hence, so does the category
sSet of simplicial sets by working component wise, as seen above.
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2.1. Basic definitions

Example 2.1.7. A main example of simplicial sets are the contravariant representable func-
tors Hom∆(−, n). For a given n ∈ N0 we call this simplicial set the standard (combinatorial)
n-simplex and denote it ∆n. In other words, ∆n ∈ sSet is the functor

∆n : ∆op → Set, m 7→ (∆n)m := Hom∆(m,n) and
f : m→ k 7→ (− ◦ f) : (∆n)k → (∆n)m.

Yoneda’s Lemma (see the following result) implies that simplicial maps ∆n → Y classify
n-simplices of a given simplicial set Y in the sense that there is a natural bijection

HomsSet(∆n, Y ) ∼= Yn = Y (n)

between the set Yn and the set HomsSet(∆n, Y ) of simplicial maps from ∆n to Y .

Since we will use it very often, we will state Yoneda’s Lemma once.

Lemma 2.1.8. (Yoneda Lemma, contravariant version)
Let C be a locally small category and X ∈ C an object of C. Furthermore, let F ∈ Ĉ :=
[Cop,Set], and hX := HomC(−, X) be a representable functor in Ĉ. Then:

(i) The map

HomĈ(hX , F )→ F (X), µ 7→ µX(idX)

is bijective and functorial in X, with inverse map

F (X)→ HomĈ(hX , F ), ξ 7→ µξ = (µξY )Y ∈C

where

µξY : hX(Y )→ F (Y ), f 7→ F (f)(ξ).

(ii) The Yoneda embedding C → Ĉ with

X 7→ hX and f : X → Y 7→ µf := (f ◦ −) : hX → hY

is fully faithful, i.e. for all X,Y ∈ C the map

HomC(X,Y )→ HomĈ(hX , hy), f 7→ µf

is bijective.

(iii) If F ∈ Ĉ is representable then the representing object X ∈ C is unique up to isomor-
phism.

Proof. See [KS06] Proposition 1.4.3 and Corollary 1.4.4 or [Mac00] Chapter III Section 2.

Definition 2.1.9. Let X : ∆op → Set be a simplicial set. A simplicial set Y : ∆op → Set
is called a simplicial subset of X, denoted by Y ⊆ X, if it is a subfunctor. More precisely, if
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2.1. Basic definitions

(i) for all n ∈∆, Y (n) = Yn is a subset of Xn = X(n) and

(ii) for all morphisms f : n→ m in ∆ we have

X(f)(Ym) ⊆ (Yn) and Y (f) = X(f)|Ym .

Remark 2.1.10. Of course, it suffices to prove the properties in (ii) for the faces and
degeneracies.

Example 2.1.11. (i) For two simplicial subsets X,Y ⊆ Z of a given Z ∈ sSet we again
can define new simplicial sets. The union X ∪ Y is the simplicial subset of Z defined
via

(X ∪ Y )n := Xn ∪ Yn for all n ≥ 0,

and the face and degeneracy maps are the induced ones from X and Y . We note that
the di’s and si’s of X and Y agree on Xn ∩ Yn, since both, X and Y are simplicial
subsets.

(ii) Another important simplicial subset is the boundary of the standard n-simplex ∆n.
To define this, we take a look at the natural transformations

di = (di ◦ −)m∈∆ : ∆n−1 → ∆n,

induced by the injections di : n− 1 ↪→ n, for 0 ≤ i ≤ n. Its image

∂i∆n = im(di : ∆n−1 → ∆n)

forms a simplicial subset of ∆n, called the i-th (n− 1)-face of ∆n. More precisely,

(∂i∆n)m := {di ◦ f | f ∈ Hom∆(m,n− 1)} ⊆ Hom∆(m,n).

Since all natural transformations di : ∆n−1 → ∆n are pointwise monomorphisms, we
have isomorphisms ∂i∆n ∼= ∆n−1 in sSet. The boundary of ∆n then is defined as the
union of all (n− 1)-faces,

∂∆n :=
n⋃
i=0

∂i∆n.

Therefore any element in (∂∆n)m is of the form di ◦ f for some 0 ≤ i ≤ n and
f ∈ Hom∆(m,n− 1). Since any map f : m → n in ∆ can be factorized into a
composition of coface and codegeneracy maps, we can give an explicit description of
the m-simplices of ∂∆n, namely

(∂∆n)m = {α : m→ n | α is not surjective}.

In particular we have that ∂∆n
k = ∆n

k for all k < n.

(iii) By ∗ we denote the simplicial set ∆0. In each degree (∆0)m = Hom∆(m, 0) is the
one-point set, since it consists of only one map. Hence, ∗ is the terminal object in
the category sSet of simplicial sets. The boundary ∂∆0 ⊆ ∆0 is ∂∆0 = ∅, the initial
object in sSet.
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2.2. The geometric realization

Another example of a simplicial set is the nerve of a small category.

Example 2.1.12. Let C be a small category. One assigns a simplicial set BC to C, the so
called nerve (or classifying space), where the set of n-simplices BCn is defined to be the set
of all n-composable morphisms

c0 → c1 → ...→ cn

in C. By convention, the 0-simplices BC0 is the set of objects of C. Moreover, the 1-simplices
are the morphisms in C. The face maps

di : BCn → BCn−1

are defined by composing the morphisms at the i-th object and sending a string of length n

c0 → ...→ ci−1 → ci → ci+1 → ...→ cn

to the string

c0 → ...→ ci−1 → ci+1 → ...→ cn

of length n− 1. The degeneracy maps

si : BCn → BCn+1

are defined similarly by adding the identity map at the i-th object and sending

c0 → ...→ ci → ci+1 → ...→ cn

to

c0 → ...→ ci → ci → ci+1 → ...→ cn.

If we view n as a category with objects 0, 1, ..., n and consisting only of one morphism i→ j
if i ≤ j, then one could also define the nerve as

BCn := [n, C],

where [n, C] denotes the set of functors from n to C.

2.2 The geometric realization

Our next step is to define a realization functor | | : sSet→ Top. This means that we want
to assign to any simplicial set X a topological space which is given by a disjoint union of
some discs Dn glued together according to the abstract information given by the Xn and
X(f). There is a quick way to construct this which uses the so called simplex category (also
called the comma category often) ∆ ↓ X of a given simplicial set X. The objects of ∆ ↓ X

14



2.2. The geometric realization

are all maps σ : ∆n → X, i.e., the simplices of X. A morphism of ∆ ↓ X is a commutative
diagram of simplicial sets

∆n θ //

σ !!

∆m.

τ
||

X

Note that θ is induced by a unique map θ : n→ m, by Yoneda’s lemma, since it is an element
of

HomsSet(∆n,∆m) ∼= ∆m
n = Hom∆(n,m).

By Yoneda’s lemma, every simplicial set X can be written as a colimit of representable
functors as follows. We see that

HomsSet( lim
−→

∆n→X
in ∆↓X

∆n, Y ) ∼= lim
←−

∆n→X
in ∆↓X

HomsSet(∆n, Y ) ∼= lim
←−

∆n→X
in ∆↓X

Yn

= {y = (yx,n)x,n ∈
∏
x∈Xn

n∈N0

Yn | Y (f)(yx,m) = yX(f)(x),n for all x ∈ Xm, f ∈ Hom∆(n,m)}

= {t = (tn)n ∈
∏
n∈N0

HomSet(Xn, Yn) | f∗ ◦ tj = ti ◦ f∗ for all f ∈ Hom∆(n,m)}

= HomsSet(X,Y ),

using the properties of limits and colimits, Yoneda’s lemma, and the definition of natuaral
transformations. And hence, by the covariant version of Yoneda’s lemma, we have

X ∼= lim
−→

∆n→X
in ∆↓X

∆n.

Definition 2.2.1. The geometric realization |X| of a simplicial set X is defined as the
colimit

|X| = lim
−→

∆n→X
in ∆↓X

∆n

in the category of topological spaces, where the transition maps are the θ∗ as in Example
2.1.2.

If f : X → Y is a morphism between simplicial sets, then any simplex ∆n → X gives rise to
∆n → X

f−→ Y and therefore, by the universal property of colimits, it induces a continuous
map |f | : |X| → |Y |. The realization |∆n| of the representable functors ∆n ∈ sSet is the
topological space ∆n, since ∆ ↓ ∆n has terminal object 1 : ∆n → ∆n. Thus we just use
the notation |∆n| for the topological standard n-simplex ∆n in the following. This yields a
covariant functor | | : sSet → Top, which extends the functor r from Example 2.1.2 in the
way that we have a commutative triangle

15



2.2. The geometric realization

∆ ∆ //

r
!!

sSet,

|−|{{
Top

where ∆ denotes the Yoneda embedding Hom∆(−,−) viewed as a functor in the second
variable.

Remark 2.2.2. The geometric realization of a simplicial set X is the topological space

|X| =
∐
n≥0

(Xn × |∆n|)
/
∼,

where ∼ is the equivalence relation defined by the rule that (X(f)(x), t) ∼ (x, f∗(t)) with
x ∈ Xn, t ∈ |∆m| and f ∈ Hom∆(m,n). The Xn are endowed with the discrete topology.
Product, coproduct and the quotient are endowed with the corresponding topologies. In
other words, |X| is endowed with the final topology with respect to the maps (Xn× |∆n| →
|X|)n≥0.

Definition 2.2.3. Let T be a topological space. The singular set S(T ) is the simplicial set
given by

n 7→ HomTop(|∆n|, T )

and

(θ : n→ m) 7→ (− ◦ θ∗ : HomTop(|∆m|, T )→ HomTop(|∆n|, T )),

where θ∗ : |∆n| → |∆m| is the induced map of Example 2.1.2. In other words, the face
maps di : S(T )n → S(T )n−1 and degeneracy maps sj : S(T )n → S(T )n+1 are induced by the
corresponding standard maps between topological simplices di∆ and sj∆, respectively. From
this, we get a functor

S : Top→ sSet, T 7→ S(T ),
f : T → T ′ 7→ ηf := (f ◦ −)n∈∆,

called the singular functor.

Proposition 2.2.4. The realization functor is left adjoint to the singular functor in the
sense that there is a bijection of sets

HomTop(|X|, Y ) ∼= HomsSet(X,S(Y )),

which is natural in simplicial sets X and topological spaces Y .
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2.2. The geometric realization

Proof. (Cf. [GJ99] Chapter I Proposition 2.2) Let X ∈ sSet be a simplicial set and Y ∈ Top
a topological space. Then, using the properties of colimits, we see that

HomTop(|X|, Y ) = HomTop( lim
−→

∆n→X

|∆n|, Y ) ∼= lim
←−

∆n→X

HomTop(|∆n|, Y )

∼= lim
←−

∆n→X

HomsSet(∆n, S(Y )) ∼= HomsSet( lim
−→

∆n→X

∆n, S(Y ))

∼= HomsSet(X,S(Y )).

Note that the isomorphism X ∼= lim−→
∆n→X

∆n was constructed above. Moreover, we use that

HomTop(|∆n|, Y ) = S(Y )n = HomsSet(∆n, S(Y )).

Since left adjoints preserve colimits we obtain the following result.

Corollary 2.2.5. The realization functor | | : sSet→ Top preserves colimits.

Later in this chapter, we are going to show that the realization of a simplicial set is a CW-
complex. First we need to discuss some fundamental properties to understand the structure
of simplicial sets.

Definition 2.2.6. Let X be a simplicial set. An n-simplex x ∈ Xn is called degenerate
if there is a surjection η : n → m with m < n and an m-simplex y ∈ Xm such that
X(η)(y) = η∗y = x. We write

e(X)n := {x ∈ Xn| x is not of the form η∗y for any m < n, y ∈ Xm and η : n� m}

for the set of nondegenerate n-simplices.

Example 2.2.7. An m-simplex f of ∆n is degenerate if it is of the form

m
f−→ n = m

η−→ k
g−→ n,

where k < m and η : m � k is a surjection in ∆. Using the factorization in coface
and codegeneracy maps, we can determine the number of nondegenerate simplices of ∆n

in dimension n and n + 1. The only nondegenerate n-simplex is the identity as the empty
product. Every other factorization starts with a codegeneracy map si. Similarly, ∆n has
precisely n+1 nondegenerate n−1-simplices, corresponding to the coface maps di : n− 1→
n, for 0 ≤ i ≤ n (cf. [HP14] Observe 3.17).

Proposition 2.2.8. (The Eilenberg-Zilber Lemma)
For each x ∈ Xn there exists a unique surjection η : n → m and a unique non-degenerate
y ∈ Ym, such that x = η∗y.
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2.3. The skeleton of a simplicial set

Proof. (Cf. [JT] Proposition 1.2.2 and [Rue17] Lemma 2.19) We start proving the existence.
For every x ∈ Xn we consider the set of pairs y ∈ Xm and η : n � m with η∗y = x. This
set is non-empty, as it contains (η, y) = (idn, x). So if x is non-degenerate, we are done.
The set has a pair (η, y) which is minimal in m, since the appearing dimensions m, 0 is a
lower bound. If x is degenerate we choose this minimal pair (η, y) with y ∈ Xm, m < n.
Then y must be non-degenerate, because otherwise we would find a pair of lower dimension.
To show the uniqueness, we suppose (η, y) and (η′, y′) to be two such pairs. We look at the
pushout diagram

n
η // //

η′
����

m

η2

��
m′ η1

// p

in the category ∆ as a subcategory of Set. Since the covariant Hom functor preserves
pushouts, we get the pushout diagram

∆n η //

η′
��

∆m

η2
��

∆m′

η1
// ∆p

of simplicial sets in sSet. By assumption, we have η∗y = x = η′∗y′. Using the universal
property of the pushout we get

∆n η //

η′
��

∆m

η2
�� y

��

∆m′ η1 //

y′ ,,

∆p

∃!z

!!
X,

i.e. there is z : ∆p → X such that y′ = η∗1z and y = η∗2z. Since y and y′ are non-degenerate,
η1 = η2 = id, and thus y = y′ and η = η′.

2.3 The skeleton of a simplicial set

Our goal now is to show that the realization of a simplicial set X is a CW-complex. To this
aim, we construct a filtration for X by so-called skeletons. These are subcomplexes of X
which are generated by the simplices of X of lower degree. Then by applying the realization
functor to the filtration, we obtain a CW-structure on the topological space |X|.

Definition 2.3.1. (i) Let ∆n denote the full subcategory of ∆ whose objects are the to-
tally ordered sets m for m ≤ n. A functor X : ∆n

op → Set is called an n-truncated

18



2.3. The skeleton of a simplicial set

simplicial set. By

sSetn := [∆n
op,Set]

we denote the category of n-truncated simplicial sets.

(ii) Let X ∈ sSet. The restriction functor

trn : sSet→ sSetn

induced by the inclusion ∆n →∆ is called the n-th truncation functor. It truncates a
simplicial set X at n. For p ≤ n the representable functor Hom∆n(−, p) in sSetn on
p is denoted by ∆p

n. It is the truncation of ∆p ∈ sSet at n.

(iii) Let X ∈ sSetn be an n-truncated simplicial set. We define the simplicial set sknX ∈
sSet as

sknX := lim
−→

∆p
n→X

∆p.

This defines a functor skn : sSetn → sSet.

Proposition 2.3.2. The functor skn is left-adjoint to trn.

Proof. (Cf. [HP14] Proposition 3.11) Similar to the proof of Proposition 2.2.4, one has

HomsSet(sknX,Y ) = HomsSet( lim
−→

∆p
n→X

∆p, Y ) ∼= lim
←−

∆p
n→X

Yp

∼= lim
←−

∆p
n→X

HomsSetn(∆p
n, tr

nY ) ∼= HomsSetn(X, trnY ).

Remark 2.3.3. (i) Since ∆n is a full subcategory of ∆, the inclusion ∆n → ∆ is fully
faithful. Hence, (sknX)m = Xm for m ≤ n. It follows that the unit X → trnsknX of
the adjunction is an isomorphism, and skn is fully faithful, too.

(ii) As sknX is defined as such a colimit, it is a quotient of a sum of some ∆p for p ≤ n,
and the m-simplices of ∆p are degenerate for m > n. It follows that (sknX)m consists
only of degenerate simplices for m > n (Cf. [JT] pages 7/8).

Proposition 2.3.4. The counit skntrnX → X of the adjunction is a monomorphism.

Proof. (Cf. [JT] Proposition 1.2.3) By the above remark, the map (skntrnX)m → Xm is
a bijection for m ≤ n. Therefore, it suffices to prove that if f : Y → X is a natural
transformation of simplicial sets such that fm : Ym → Xm is injective for m ≤ n and the
m-simplices of Y are degenerate for m > n then fm is injective for all m.
Let y, y′ ∈ Ym for m > n. By the Eilenberg-Zilber-Lemma, there are surjections η : m � p
and η′ : m � p′ and non-degenerate simplices z ∈ Yp and z′ ∈ Yp′ such that η∗z = y and
η′∗z′ = y′. Since p, p′ ≤ m and fp, fp′ are injective, it follows that fp(z) and fp′(z) are
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2.3. The skeleton of a simplicial set

non-degenerate. Indeed, if for example fp(z) = α∗x with α : p � q is surjective, q < p and
x ∈ Xq, then α has a section ε : q → p such that αε = id. It follows that

ε∗fp(z) = ε∗α∗x = x and so α∗(ε∗fp(z)) = α∗x = fp(z).

Since f is a natural transformation we have α∗ε∗fp(z) = fp(α∗ε∗z)). As seen above, the left
hand side is equal to fp(z). The injectivity of fp therefore gives α∗ε∗z = z and thus z is
degenerate which yields a contradiction. Since fm(y) = η∗fp(z) and fm(y′) = η′∗fp′(z′), if
fm(y) = fm(y′) we have η = η′ and fp(z) = fp′(z′) by the Eilenberg-Zilber-Lemma. Thus,
we have p = p′ and since fp is injective z = z′, and y = y′.

Definition 2.3.5. We write SknX for the image of the monomorphism skntrnX → X and
call it the n-skeleton of X. We say X is of dimension n if SknX = X.

Remark 2.3.6. (i) We have (SknX)m = Xm form ≤ n, and form > n (SknX)m consists
of those m-simplices x ∈ Xm for which there is a surjection η : m→ p with p ≤ n and
a y ∈ Xp such that x = η∗y. This follows from the Eilenberg-Zilber lemma.

(ii) Any X ∈ sSet is the union of its skeleta⋃
n≤0

SknX = X

with

Sk0X ⊆ Sk1X ⊆ ... ⊆ Skn−1X ⊆ SknX ⊆ ...

(cf. [JT] page 8).

Proposition 2.3.7. For each simplicial set X ∈ sSet, the geometric realization |X| is a
CW-complex.

Proof. (Cf. [GJ99] Chapter I Proposition 2.3 and [JT] pages 9/10) We want to construct a
filtration for the topological space |X|, such that it is a CW-complex. Therefore we start
with the filtration of the simplicial set X in its skeletons SknX and claim that each SknX
can be obtained from the previous skeleton Skn−1X in the following way:

Let e(X)n, n ≥ 0, be the set of non-degenerate n-simplices of X. For each x ∈ e(X)n,
n ≥ 1, we have the diagram

∂∆n //

��

∆n

x
��

Skn−1X // SknX,

where the vertical maps send f to f∗x and the horizontal maps are the injections. By
summing over all x ∈ e(X)n we get the diagram∐

x∈e(X)
∂∆n //

��

∐
x∈e(X)

∆n

��
Skn−1X // SknX.
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2.3. The skeleton of a simplicial set

This square is a pushout. Indeed, since all the simplicial sets are of dimension ≤ n, it suffices
to show that this diagram is a pushout after applying the functor trn, i.e. that

(
∐

x∈e(X)
∂∆n)m //

��

(
∐

x∈e(X)
∆n)m

��
(Skn−1X)m // (SknX)m

is a pushout of sets for all m ≤ n. For m ≤ n − 1 this is clear since the two horizontal
maps are isomorphisms. For m = n the complement of (∂∆n)n in (∆n)n consists only of one
element, idn. Thus, the complement of

∐
x∈e(X)(∂∆n)n in

∐
x∈e(X)(∆n)n is isomorphic to

e(X)n. But (SknX)n = (Skn−1X)n ∪ e(X)n so that the diagram is indeed a pushout. Next
we look at the diagram

∆n−2 dj−1
//

ini<j

��

∆n−1

ini
��

di

##∐
0≤i<j≤n

∆n−2 φ //
ψ
//
n∐
i=0

∆n−1 // ∂∆n

∆n−2
di

//

ini<j

OO

∆n−1

inj

OO

dj

;;

where in denote the various injections. I.e., the maps φ and ψ are determined by φ◦ ini<j =
ini ◦ dj−1 and ψ ◦ ini<j = inj ◦ di. The row in the middle is a coequalizer diagram in sSet.
To prove this, one constructs a coequalizer diagram

∐
0≤i<j≤n

∆n−1 ×
∂∆n

∆n−1 p1 //
p2
//

∐
0≤i≤n

∆n−1 // ∂∆n,

over the fibre product ∆n−1 ×
∂∆n

∆n−1. By using the isomorphisms

∆n−1 ×
∂∆n

∆n−1 ∼= ∆n−1 ×
∆n

∆n−1 ∼= ∆n−2,

the statement follows. We will not give the details here, since later on we will check the
coequalizer property in a very similar situation (cf. Lemma 4.1.1). Since | − | preserves
colimits it follows that there is a coequalizer diagram of spaces

∐
0≤i<j≤n

|∆n−2| ////
n∐
i=0
|∆n−1| // |∂∆n|.

Applying this to the diagram∐
i<j

∆n−2 ////
∐
i

∆n−1 //

ξ
##

∂∆n

��
∆n,
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2.3. The skeleton of a simplicial set

with ξ ◦ ini = di, it follows that |∂∆n| ∼= ∂|∆n| and the induced map |∂∆n| → |∆n| maps
|∂∆n| onto the (n− 1)-sphere bounding |∆n|. Thus, |X| has a filtration |Sk0X| ⊆ |Sk1X| ⊆
... ⊆ |SknX| ⊆ ... where |X|n := |SknX| is obtained from |X|n−1 := |Skn−1X| by attaching
n-cells according to the pushout diagram∐

x∈e(X)
|∂∆n| //

� _

��

|Skn−1X|� _

��∐
x∈e(X)

|∆n| // |SknX|.

By KTop we denote the full subcategory of Top consisting of k-spaces. A topological space
T is called a k-space (or Kelly-space) if every compactly open subset is open (a subset U
of T is called compactly open if for every continuous map f : K → X where K is compact
Hausdorff, f−1(U) is open in K). Since the realization |X| of a simplicial set X is a CW-
complex (in particular a compactly generated Hausdorff space), we can view the realization
functor as a functor | − | : sSet → KTop (cf. [Hov99] Definition 2.4.21 and page 77). One
can use this to prove the following important property of the realization functor.

Proposition 2.3.8. The realization functor | − | : sSet→ KTop preserves finite limits.

Proof. See [Hov99] Lemma 3.2.4.
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3 Model categories

3.1 Model structure and Quillen equivalence

After introducing the category of simplicial sets, we start with the basic theory of model
categories. In particular, this section briefly gives the main definitions and properties of
Quillen homotopy theory also including Quillen equivalences.

Definition 3.1.1. Let C be a category. A model structure on C (also called a Quillen model
structure or a Quillen homotopy structure) consists of three classes of morphisms of C, the
so called fibrations, cofibrations and weak equivalences satisfying the following properties:

Q1: (2-out-of-3) If f : X → Y and g : Y → Z are morphisms of C such that two of f , g or
gf are weak equivalences, then so is the third.

Q2: (Retracts) Let f : X → Y and f ′ : X ′ → Y ′ be morphisms of C such that f is a retract
of f ′, i.e. there is a commutative diagram of the form

X //

f
��

X ′ //

f ′

��

X

f
��

Y // Y ′ // Y,

where the horizontal composites are identities. If f ′ is a fibration, cofibration or weak
equivalence, then so is f .

Q3: (Lifting) Let

A //

i
��

X

f
��

B //

??

Y,

be a commutative diagram in C where i is a cofibration and f is a fibration. If either
i or f is also a weak equivalence, then the dotted arrow exists, making both triangles
commute.

Q4: (Factorization) Any morphism f : X → Y can be factored as

X
f //

i   

Y

E

p

>>
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3.1. Model structure and Quillen equivalence

in two ways. One in which p is a fibration and i is a cofibration and a weak equivalence.
And one way in which i is a cofibration and p is a fibration and a weak equivalence.

Definition 3.1.2. Let C be a category with a model structure on it. A morphism which is
both a cofibration and a weak equivalence is called a trivial cofibration. And, analogously, a
morphism is called a trivial fibration, if it is a fibration and a weak equivalence.

Definition 3.1.3. Let i : A → B and p : X → Y be two morphisms in a category C. We
say i has the left lifting property (LLP) with respect to p and p has the right lifting property
(RLP) with respect to i if, for every commutative diagram

A
f //

i
��

X

p

��
B g

// Y,

there is a lift h : B → X such that h ◦ i = f and p ◦ h = g.

Remark 3.1.4. With these two definitions the Lifting and Factorization properties can be
reformulated in an easier way as follows:

Q3: Trivial cofibrations have the left lifting property with respect to fibrations, and trivial
fibrations have the right lifting property with respect to cofibrations.

Q4: Any morphism f : X → Y can be factored as:

(a) f = p ◦ i where p is a fibration and i is a trivial cofibration, and

(b) f = q ◦ j where q is a trivial fibration and j is a cofibration.

Definition 3.1.5. A model category is a category C with all small limits and colimits together
with a model structure on C.

We point out that the definition of a model category can vary rather significantly, depending
on the references. For example, the reader should compare with the definition given in
[Hov99] Section 1.1.

Example 3.1.6. (i) Let C be a category with all small colimits and limits. We obtain a
trivial model structure on C by choosing one of the classes of fibrations, cofibrations
and weak equivalences to be the isomorphisms and the other two classes to be all
morphisms in C.

(ii) Let C and D be two model categories. Then the product category C×D is the category
whose objects are pairs (X,Y ) with X ∈ C, Y ∈ D and the morphisms from (X1, Y1)
to (X2, Y2) are pairs (f, g), where f : X1 → X2 is a morphism of C and g : Y1 → Y2 is
a morphism of D. We obtain a model structure on C ×D from those of C and D in the
following way: a morphism (f, g) in C×D is a fibration (cofibration, weak equivalence)
if and only if so are both f and g in C and D, respectively.
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3.1. Model structure and Quillen equivalence

(iii) Let C be a model category with classes of fibration, cofibration and weak equivalence
denoted by (F ,G,W). Then the dual category Cop becomes a model category with
morphism classes (Fop,Gop,Wop) by choosing Fop := G, Gop := F and Wop :=W. All
axioms follow immediately from C being a model category. For the factorization axiom
Q4, for any f ∈ HomCop(X,Y ) = HomC(Y,X) the first factorization in C becomes the
second in Cop and, similarly, the other way around. The lifting diagram in axiom Q3
just flips.

Since a model category C has all finite limits and colimits, it has an initial object, the colimit
of the empty diagram, and a terminal object, the limit of the empty diagram. This leads us
to the following definition.

Definition 3.1.7. Let C be a model category with initial object I and terminal object T . An
object of X ∈ C is called cofibrant if the map I → X is a cofibration, and fibrant if the map
X → T is a fibration.

If C is a model category and X ∈ C we can apply the second factorization in axiom Q4 to
the map I → X from the initial object to X. This gives us a factorization

I → QX → X,

where the left morphism is a cofibration and right one is a trivial fibration. Hence, we
obtain a cofibrant object QX together with a trivial fibration QX qX−−→ X. This is called the
cofibrant replacement of X. Depending on the axioms of a model category or depending on
the situation, this construction can be made functorial and X 7→ QX is called the cofibrant
replacement functor. Similarly, by applying first factorization to the map from X to the
terminal object we obtain a fibrant object RX, called the fibrant replacement, together with
a trivial cofibration X rX−−→ RX. Accordingly, if the construction is made functorial, we get
a functor X 7→ RX, called the fibrant replacement functor.

A useful result in order to work with model categories, is the following.

Lemma 3.1.8. Let C be a model category. Then a map is a cofibration (a trivial cofibration)
if and only if it has the left lifting property with respect to all trivial fibrations (fibrations).
Dually, a map is a fibrations (a trivial fibrations) if and only if it has the right lifting property
with respect to all trivial cofibrations (cofibrations).

Proof. See [Hov99] Lemma 1.1.10.

Remark 3.1.9. In particular, the classes of fibrations and cofibrations are both closed under
composition, as can be seen by iteratively applying the lifting property twice. Moreover,
every isomorphism in a model category is a trivial cofibration and a trivial fibration.

Definition 3.1.10. Let C and D be model categories.

(i) We call a functor F : C → D a left Quillen functor if F is a left adjoint and preserves
cofibrations and trivial cofibrations.
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3.1. Model structure and Quillen equivalence

(ii) We call a functor U : D → C a right Quillen functor if U is a right adjoint and
preserves fibrations and trivial fibrations.

(iii) Suppose (F,U, ϕ) is an adjunction from C to D. That is, F is a functor C → D, U
is a functor D → C, and ϕ is a natural isomorphism HomD(FA,B)→ HomC(A,UB)
expressing U as a right adjoint of F . We call (F,U, ϕ) a Quillen adjunction if F is a
left Quillen functor.

Remark 3.1.11. A triple (F,U, ϕ) as in part (iii) of the definition is a Quillen adjunction
if and only if U is a right Quillen functor (cf. [Hov99] Lemma 1.3.4). Hence, the definition
is in fact symmetric in F and U .

Definition 3.1.12. A Quillen adjunction (F,U, ϕ) : C → D is called a Quillen equivalence
if and only if, for all cofibrant X in C and fibrant Y in D, a map f : FX → Y is a weak
equivalence in D if and only if ϕ(f) : X → UY is a weak equivalence in C.

An important property of Quillen equivalences is that the functors induce an inverse equiv-
alence between the corresponding homotopy categories (cf. Hovey section 1.3.2 and propo-
sition 1.3.13). We will not introduce the homotopy category of a model structure. However,
here is a list of criteria to check whether a Quillen adjunction is a Quillen equivalence.

Proposition 3.1.13. Let (F,U, ϕ) : C → D be a Quillen adjunction. Then the following
are equivalent:

(i) (F,U, ϕ) is a Quillen equivalence.

(ii) For all cofibrant objects X ∈ C the composite

X → U(F (X))
U(rF (X))−−−−−−→ U(RF (X))

is a weak equivalence and for all fibrant Y ∈ D and the composite

F (QU(Y ))
F (qU(Y ))−−−−−−→ F (U(Y ))→ Y

is a weak equivalence as well.

(iii) F reflects weak equivalences between cofibrant objects and, for every fibrant Y ∈ D,
the map F (QU(Y ))→ Y is a weak equivalence.

(iv) U reflects weak equivalences between fibrant objects and, for every cofibrant X ∈ C,
the map X → U(RF (X)) is a weak equivalence.

Proof. See [Hov99] Proposition 1.3.13 and Corollary 1.3.16.

Remark 3.1.14. A functor is said to reflect some property of morphisms if any morphism
f has this property whenever F (f) does. All maps in this proposition without explicit
description are induced by the isomorphisms coming from the adjunction HomD(F (C), D) ∼=
HomC(C,U(D)).
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3.2. The model structure on Top

3.2 The model structure on Top

Now we turn to Top, the category of topological spaces. We want to construct a non-trivial
model structure on Top. First, we give a categorical definition, which helps us define the
classes of fibrations and cofibrations, concisely.

Definition 3.2.1. Let I be a class of morphisms in a category C.

(i) A morphism in C is called I-injective if it has the right lifting property with respect to
every map in I. The class of I-injective maps is denoted by I-inj.

(ii) A morphism in C is called I-projective if it has the left lifting property with respect to
every map in I. The class of I-projective maps is denoted by I-proj.

(iii) A morphism in C is called an I-cofibration if it has the left lifting property with respect
to every I-injective map. The class of I-cofibrations is the class (I-inj)-proj and is
denoted by I-cof.

(iv) A morphism in C is called an I-fibration if it has the right lifting property with respect
to every I-projective map. The class of I-fibrations is the class (I-proj)-inj and is
denoted by I-fib.

To define the required classes on Top, we fix some notations. By Dn ⊆ Rn we denote the
n-th unit disc and by Sn−1 ⊆ Rn the unit sphere, so that we have the boundary inclusion
Sn−1 ↪→ Dn, for n ≥ 0. For n = 0 we set D0 = {0} and S−1 = ∅. By I := [0, 1] we denote
the unit interval, as usual. For all n ≥ 0, define the set of maps I to consist of the inclusions
Dn → Dn × I and the set J to consist of all boundary inclusions Sn−1 ↪→ Dn. Note that
the notation of the maps in I is an abbreviation for Dn × {0} → Dn × I. For our model
structure, we start with constructing the fibrations in Top, the so called Serre fibrations. A
continuous map f : E → X of topological spaces is defined to be a fibration if it is in I-inj,
i.e. if h : Dn × I → X is a homotopy and p : Dn → E such that f ◦ p = h0 then there is a
homotopy h̄ : Dn × I → E such that h̄0 = p and f ◦ h̄ = h. Schematically:

Dn p //

��

E

f
��

Dn × I
h
//

∃h̄
::

X.

A map i : A → B in Top is defined to be a cofibration if it is in J -cof, i.e. if we have the
following commutative diagram of solid arrows,

A //

i
��

E

f
��

B //

∃
>>

X,

with f : E → X having the RLP with respect to all boundary inclusions Sn−1 ↪→ Dn,
then the diagonal map exists, making both triangles commute. And last, the class of weak
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equivalences in Top are the (weak) homotopy equivalences f : X → Y , i.e. all maps f for
which the induced map

f∗ : π0(X)→ π0(Y )

is a bijection, and the induced group homomorphisms

πn(f, x) : πn(X,x)→ πn(Y, f(x)), [α] 7→ [f ◦ α]

are isomorphisms for all n ≥ 1 and all x ∈ X, where πn(X,x) denotes the n-th homotopy
group of X at x.

Theorem 3.2.2. With the above definitions of fibrations, cofibrations and weak equiva-
lences, the category Top admits a model structure.

Proof. See [Hov99] Theorem 2.4.19.

Since we will use it later for our model structure on sSet, we prove property Q1 in Definition
3.1.1 for the category Top.

Proposition 3.2.3. The weak equivalences in Top as defined above satisfy the two out of
three axiom.

Proof. (Cf. [Hov99] Lemma 2.4.4) Suppose we are given the commutative diagram

X
g◦f //

f   

Z

Y

g

??

of topological spaces. The only case which is not clear is the one where f and g ◦ f are weak
equivalences. We need to show that

g∗ : πn(Y, y)→ πn(Z, g(y))

is an isomorphism for all n ≥ 0 and all y ∈ Y . But y may not be in the image of f . Since
f∗ : π0(X)→ π0(Y ) is a bijection between the sets of path components, there exists a point
x ∈ X and a path α : I → Y from f(x) to y in Y . Therefore we get a commutative diagram

πn(Y, y) g∗ //

��

πn(Z, g(y))

��
πn(Y, f(x)) // πn(Z, f(g(f(x))),

where the vertical maps are the composition with the paths α and g ◦ α, respectively and
their inverse paths. As known, these maps are isomorphism for different choices of the
basepoint in the same path-component (cf. [Hat01] page 341). The bottom horizontal map
is an isomorphism by applying the assumption. Therefore, the upper horizontal map is an
isomorphism as well, as required.
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Example 3.2.4. (i) An easy example for a Serre-fibration in Top we will need later on,
are projection maps X × Y prX−−→ X onto the first component. If we have a diagram of
the form

Dn p //

��

X × Y
prX

��
Dn × I

h
// X,

we can lift the homotopy by defining h̄ : Dn×I → X×Y as h̄(r, t) := (h(r, t), prY (p(r)).
Similarly, the projections onto the second componentX×Y prX−−→ Y are Serre-fibrations.

(ii) A better known class of morphisms in the category Top are the Hurewicz fibrations,
playing an important role in higher homotopy theory. This is a continuous map f :
E → X of topological spaces with the homotopy lifting property, i.e. for any diagram

Y
h0 //

��

E

f
��

Y × I g
//

;;

X,

the lifted homotopy h : Y × I → E exists. Clearly, every Hurewicz fibration is a Serre
fibration. This gives us a bunch of more examples of Serre fibrations like covering maps
(cf. [Ark11] Sections 3.3 and 3.4).

Remark 3.2.5. A Hurewicz cofibration is a continuous map i : A → X such that the
homotopy extension in the diagram

A //

i

��

A× I

i×idI

��

g

{{
Y

X //

h0
>>

X × I

h

cc

exists for every space Y , map h0 : X → Y and homotopy g : A×I → Y (cf. [Ark11] Definition
3.2.1). These Hurewicz fibrations and cofibrations build another model structure on Top,
where the weak equivalences are the strong homotopy equivalences, i.e. all morphisms f :
X → Y with a homotopy inverse g : Y → X such that g ◦ f ∼ idX and f ◦ g ∼ idY . This
model structure is called the Strøm model structure (cf. [Str72] Theorem 3). The identity is
a Quillen equivalence TopStrom

id−→ TopQuillen, since any strong homotopy equivalence is a
(weak) homotopy equivalence (cf. [Hat01] page 342) and any Hurewicz fibration is a Serre
fibration.

Remark 3.2.6. (i) Every map in J -inj is a trivial fibration and every trivial fibration
is in J -inj (cf. [Hov99] Proposition 2.4.10 and Theorem 2.4.12). Hence the class of
cofibrations can be defined as maps that have the left lifting property with respect to
all trivial fibrations.
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3.2. The model structure on Top

(ii) Every map in I-cof is a trivial cofibration (cf. [Hov99] Proposition 2.4.9).

(iii) Every topological space is fibrant (cf. [Hov99] Corollary 2.4.14).
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4 The model structure on simplicial sets

4.1 Kan Fibrations

In the subsequent sections, our goal is to construct a model structure on the category sSet,
the category of simplicial sets. Therefore, we are going to define five classes of morphisms.
Later on, we will prove that these five classes overlap and actually constitute only three
classes, which satisfy the required properties of a model structure. In this section, we will
be starting with the fibrations in sSet, the so called Kan fibrations. For this, we introduce
the concept of the k-th horn in addition to the boundary ∂∆n. Recall that the i-th face of
∆n is the simplicial set ∂i∆n := im(di : ∆n−1 → ∆n). For n ≥ 1 and 0 ≤ k ≤ n the k-th
horn of ∆n is defined to be the simplicial subset

Λnk :=
⋃
i 6=k

∂i∆n.

Thus, for m ≥ 0, the set (Λnk)m ⊆ Hom∆(m,n) consists of all maps f : m→ n which can be
factored as f = di◦f ′ with f ′ ∈ Hom∆(m,n− 1) and i 6= k. Since any map f ∈ Hom∆(m,n)
has a unique representation in cofaces and codegeneracies as in the beginning of Chapter 2,
one can make this explicit for the different cases ofm. Form < n−1, we have (Λnk)m = (∆n)m
and for m = n − 1, (Λnk)n−1 consists of all maps in (∆n)n−1 whose unique representation
does not contain dk. In the cases m ≥ n, any map in (Λnk)m contains codegeneracies in their
representation, i.e. all m-simplices are degenerate (cf. [Sin18] Remark 2.2.3).

As we will see later, the geometric realization of Λnk is the union of all faces of |∆n| that
contain the k-th vertex. For example, one could represent the topological space |Λ2

0| by the
picture

|Λ2
0| ∼=

1 2

0

⊆

1 2

0

∼= |∆2|.

In the last chapter we had the coequalizer diagram

∐
0≤i<j≤n

∆n−2 ////
n∐
i=0

∆n−1 // ∂∆n
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4.1. Kan Fibrations

for the boundary ∂∆n of ∆n. There is a similar diagram for the horn Λnk as follows:

∆n−2 dj−1
//

ini<j

��

∆n−1

ini

��

di

""∐
0≤i<j≤n

∆n−2 φ //
ψ
//
∐
i 6=k

∆n−1 // Λnk

∆n−2
di

//

ini<j

OO

∆n−1

inj
OO

dj

<<

where in denote the injections. I.e., the maps φ and ψ are determined by φ◦ini<j = ini◦dj−1

and ψ ◦ ini<j = inj ◦ di.

Lemma 4.1.1. The diagram

∐
0≤i<j≤n

∆n−2 ////
∐

0≤i≤n
i 6=k

∆n−1 // Λnk

is a coequalizer in sSet.

Proof. (Cf. [GJ99] Chapter I Lemma 3.1) The diagram

∐
0≤i<j≤n

∆n−1 ×
Λn

k

∆n−1 p1 //
p2
//

∐
0≤i≤n
i 6=k

∆n−1 // Λnk ,

where the fibre product ∆n−1 ×
Λn

k

∆n−1 comes from the square

∆n−1 ×
Λn

k

∆n−1 p2 //

p1

��

∆n−1

di

��
∆n−1

dj
// Λnk

is a coequalizer. We check this pointwise. Let m be an object in ∆, then we have

(∆n−1 ×
Λn

k

∆n−1)m = {(f1, f2) ∈ ∆n−1
m ×∆n−1

m | di ◦ f1 = dj ◦ f2}.

The above coequalizer in degree m is the set
∐

0≤i≤n
i 6=k

∆n−1
m

/
∼,
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4.1. Kan Fibrations

where the equivalence relation is induced by p1 and p2, but this means by definition for
f, g ∈

∐
i 6=k ∆n−1

m , that f ∼ g if and only if di ◦ f = dj ◦ g. And therefore, it is in bijection
with the union of the images under the maps di, which is by definition the horn in degree m

(Λnk)m =
⋃
i 6=k

im(di : ∆n−1
m → ∆n

m).

But the fibre product ∆n−1 ×
Λn

k

∆n−1 is isomorphic to ∆n−1 ×
∆n

∆n−1, because Λnk ⊆ ∆n is a

simplicial subset. Next, for i < j we look at the diagram

n− 2 dj−1
//

di

��

n− 1

di

��
n− 1

dj
// n

in ∆, which is commutative by the simplicial identities. Hence, we get a pushout square

∆n−2 dj−1
//

di

��

∆n−1

di

��
∆n−1

dj
// ∆n

and therefore,

∆n−1 ×
∆n

∆n−1 ∼= ∆n−2.

To proceed, it is useful to characterize the set of morphisms HomsSet(Λnk , X) for the horn Λnk
and a simplicial set X ∈ sSet as it is in Yoneda’s Lemma for the representing functors ∆n.
One could show this directly but we use our previous lemma to prove the following result.

Corollary 4.1.2. The set HomsSet(Λnk , X) of simplicial set maps from Λnk to X is in bijective
correspondence with the set of n-tuples (y0, . . . , ŷk, . . . , yn) of (n-1)-simplices yi of X such
that diyj = dj−1yi if i < j, and i, j 6= k, i.e.,

HomsSet(Λnk , X) = {(y0, . . . , ŷk, . . . , yn) ∈ (Xn−1)n | diyj = dj−1yi ∀ i < j, i 6= k and j 6= k}.

Proof. By applying the functor HomsSet(−, X) to the above coequalizer diagram, it turns
into the equalizer∐

0≤i<j≤n
HomsSet(∆n−2, X)

∐
0≤i≤n
i 6=k

HomsSet(∆n−1, X)oooo HomsSet(Λnk , X)oo

since it is contravariantly representable. By using the two isomorphisms

HomsSet(
∐

0≤i≤n
i 6=k

∆n−1, X) ∼=
∏

0≤i≤n
i 6=k

HomsSet(∆n−1, X)
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4.1. Kan Fibrations

and

HomsSet(∆n−1, X) ∼= Xn−1,

as well as the functoriality of the latter, the statement follows.

Remark 4.1.3. A similar consideration can be done for the boundary ∂∆n. Using the
coequalizer diagram in the proof of Proposition 2.3.7, one gets that

HomsSet(∂∆n, X) = {(y0, . . . , yn) ∈ (Xn−1)n | diyj = dj−1yi ∀ i < j}.

Now, we can define when a morphism in sSet is a fibration.

Definition 4.1.4. For n > 0 and 0 ≤ k ≤ n let ι : Λnk ↪→ ∆n be the inclusion, i.e. the
natural transformation ι = (ιm)m∈∆, where

ιm : (Λnk)m
⊆−→ (∆n)m

is the inclusion of sets. A map f : X → Y of simplicial sets is a (Kan) fibration in sSet, if
it has the RLP with respect to all inclusions ι : Λnk ↪→ ∆n. That is if for every commutative
diagram

Λnk //

ι

��

X

f

��
∆n //

>>

Y,

there is a dotted arrow, making the diagram commute.

Remark 4.1.5. By Yoneda’s Lemma and our previous Corollary 4.1.2, the definition of
being a Kan fibration for f : X → Y amounts to the condition that if (x0...x̂k...xn) is an
n-tuple of n − 1-simplices of X such that dixj = dj−1xi for i < j, i, j 6= k, and if there is
an n-simplex y of Y such that diy = fn−1(xi), then there is an n-simplex x of X such that
dix = xi, i 6= k, and such that fn(x) = y.

One can show that there are homeomorphisms |∆n| ∼= Dn ∼= Dn−1×I and |Λnk | ∼= Dn−1 such
that the inclusion Λnk → ∆n becomes the inclusion Dn−1 → Dn−1 × I. Thus a continuous
map of spaces f : T → U is a Serre fibration if it has the right lifting property for all
diagrams

|Λnk | //

��

T

f

��
|∆n| //

==

U.

And by the adjointness of the functors |− | a S(−) (cf. Proposition 2.2.4), all such diagrams
can be identified with their corresponding diagrams

34



4.1. Kan Fibrations

Λnk //

��

S(T )

S(f)
��

∆n //

<<

S(Y ),

so that f : T → U is a Serre fibration if and only if S(f) : S(T )→ S(U) is a Kan fibration.
This is a main part of the motivation, to define Kan fibrations in such this way. The other
statement that the realization of a Kan fibration is again a Serre fibration does not follow
immediately and the proof is a long technical result.

Lemma 4.1.6. For every space T ∈ Top, the map S(T )→ ∗ = ∆0 is a fibration.

Proof. (Cf. [GJ99] Chapter I Lemma 3.3) Since |Λnk | ⊆ |∆n| is a retract, the inclusion
i : |Λnk | ↪→ |∆n| has a section r : |∆n| → |Λnk |. Now we consider a commutative diagram of
solid arrows in Top of the form

|Λnk |
g //

i
��

T

��
|∆n| //

∃h
>>

∗,

where ∗ is the one-point space. Then the dotted arrow exists by defining h = g ◦ r, showing
that T → ∗ is a Serre fibration for any topological space T . And therefore, S(T )→ S(∗) =
∆0 = ∗ is a Kan fibration.

A simplicial set X ∈ sSet is called a Kan complex if the the canonical morphism X → ∗ is
a fibration, i.e. if it is fibrant (cf. Definition 3.1.7). Alternatively, by Remark 4.1.5 above,
a simplicial set X is a Kan complex if and only if one of the following equivalent conditions
holds:

K1: Every morphism α : Λnk → X can be extended to a map defined on ∆n in the sense
that there is a commutative diagram

Λnk
α //

��

Y

∆n

>>

K2: For each n-tuple of (n − 1)-simplices (x0...x̂k...xn) of X such that dixj = dj−1xi if
i < j, i, j 6= k, there is an n-simplex x such that dix = xi for i 6= k.
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4.1. Kan Fibrations

As we have seen in Lemma 4.1.6, any singular complex S(T ) for T ∈ Top is a Kan complex.
Another standard example of Kan complexes is that of simplicial groups. A simplicial group
is a simplicial set G ∈ sSet such that for any n ∈ ∆, the set Gn carries a group structure
and for any map θ : m → n in ∆, the map θ∗ : Gn → Gm is a group homomorphism. In
other words, a simplicial group is a group functor

G : ∆op → Grp,

where Grp denotes the category of groups. We denote the unit element of the group Gn
by en. That these simplicial groups are fibrant, will be shown in the following proposition
which was a result by Robert Lee Moore in 1954. The proof needs some work but uses
no other techniques than easy group calculations and the simplicial identities. There is a
more "geometric" version of the proof in [JT] Theorem 3.1.3, using the theory of anodyne
extensions, which we will introduce in the next section.

Proposition 4.1.7. (Moore)
The underlying simplicial set of a simplicial group

G : ∆op → Grp

is a Kan complex.

Proof. (Cf. [May67] Theorem 17.1 and [HP14] Proposition 4.9) Let

x0, ..., xk−1, xk+1, ..., xn ∈ Gn−1

be a family of (n− 1)-simplices of G which satisfy the condition dixj = dj−1xi for all i < j
and i, j 6= k. We want to inductively construct a family y0, ..., yk−1 ∈ Gn such that for
any i = 0, ..., k − 1 we have dj(yi) = xj , ∀j < k. Note that we may assume k > 0 in this
step. Having finished that we recursively define elements yk+1, ..., yn ∈ Gn, starting with the
construction of yn and inductively going downward to yn, . . . yi for n ≥ i > k, such that such
that dj(yi) = xj for all j < k and all i < j ≤ n. Then yk+1 ∈ Gn is our required element
with dj(yk+1) = xj for all j ∈ {0, ..., k − 1, k + 1, ...n} and by the above condition K2, G is
fibrant. We start defining our family with y0 := s0(x0) and

yi := si(xi · di(y−1
i−1)) · yi−1, for 0 < i < k.

Then we have

di(yi) = di(si(xi)) · di(si(di(y−1
i−1))) · di(yi−1) = xi · di(y−1

i−1) · di(yi−1) = xi,

because disi = id. We need to show that the same equation holds for j < i. Using the
assumption djxi = di−1xj and the defining properties of the previous element yi−1, we get

dj(xi) = di−1(xj) = di−1(dj(yi−1)) = dj(di(yi−1)),

and

dj(xi · di(y−1
i−1)) · dj(xi) =dj(xi · di(y−1

i−1)) · dj(di(yi−1))
=dj(xi · di(y−1

i−1) · di(yi−1)) = dj(xi)

36



4.1. Kan Fibrations

and therefore dj(xi · di(y−1
i−1)) = en−2. Hence, we get for j < i

dj(yi) =dj(si(xi · di(y−1
i−1)) · yi−1) = dj(si(xi · di(y−1

i−1))) · dj(yi−1)
=si−1(dj(xi · di(y−1

i−1))) · xj = en−1 · xj = xj ,

as required. Now we want to construct the rest of the family yk+1, ..., yn, starting with the
last one and defining the rest inductively backwards. To do so, we set

yn := sn−1(xn · dn(y−1
k−1)) · yk−1

(if k = 0 one can take the unit element en instead of yk−1) and we define yi from yi+1 as

yi := si−1(xi · di(y−1
i+1)) · yi+1,

for k + 1 ≤ i ≤ n− 1. Then again, we have

di(yi) = di(si−1(xi · di(y−1
i+1)) · di(yi+1) = xi · di(y−1

i+1) · di(yi+1) = xi.

It remains to show that dj(yi) = xj for j > i and j < k. We have

dj(yi) = dj(si−1(xi · di(y−1
i+1))) · dj(yi+1) = si−1(dj−1(xi · di(y−1

i+1))) · xj for j > i

and

dj(yi) = dj(si−1(xi · di(y−1
i+1))) · dj(yi+1) = si−2(dj(xi · di(y−1

i+1))) · xj for j < k,

so we just need to show that dj−1(xi · di(y−1
i+1)) = en−2 = dj(xi · di(y−1

i+1)) for both cases. In
the second case j < k < i+ 1 we have

dj(xi) = di−1(xj) = di−1(dj(yi+1)) = dj(di(yi+1))

and therefore

dj(xi · di(y−1
i+1)) · dj(xi) = dj(xi · di(y−1

i+1)) · dj(di(yi+1)) = dj(xi).

For the first case j > i, we calculate similarly

dj−1(xi) = di(xj) = di(dj(yi+1)) = dj−1(di(yi+1))

and therefore

dj−1(xi · di(y−1
i+1)) · dj−1(xi) = dj−1(xi · di(y−1

i+1)) · dj−1(di(yi+1)) = dj−1(xi).

Hence, we have dj−1(xi ·di(y−1
i+1)) = en−2 for j > i and dj(xi ·di(y−1

i+1)) = en−2 for j < k.

Our last example of a fibrant simplicial set is that of a nerve of a group (cf. Example
2.1.12). Any group G gives rise to a category also denoted by G, with one single object ∗
and morphisms g : ∗ → ∗ for each element g ∈ G. Composition is defined by multiplication
in G and the neutral element forms the identity morphism. In particular, every morphism
in the category is an isomorphism, i.e. the category G is a so-called groupoid. Then we can
talk about the nerve BG of G and we have the following statement, which is in fact true for
groupoids in general (cf. [GJ99] Chapter I Lemma 3.5).
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4.2. Anodyne extensions

Lemma 4.1.8. For every group G, the nerve BG is a Kan complex.

Proof. See [GJ99] Chapter I Lemma 3.5.

Remark 4.1.9. The realization |BG| for the nerve of a group G is the Eilenberg-Mac Lane
space K(G, 1). In other words all homotopy groups πn(|BG|) of |BG| vanish except the
first one, for which π1(|BG|) ∼= G. We will see this later in the last chapter, by defining
simplicial homotopy groups for fibrant simplicial sets and giving isomorphisms between both
the simplicial and the topological homotopy groups of a Kan complexX and |X|, respectively.

Example 4.1.10. For the rest of the work we fix some notations, often used in the following
sections. In the 1-simplex ∆1 there are the two faces ∂1∆1 = im(d1 : ∆0 → ∆1) and ∂0∆1 =
im(d0 : ∆0 → ∆1), building the boundary ∂∆1 ⊆ ∆1. Since d1 ◦ f = 0 : m→ 1, m 7→ 0 and
d0 ◦ f = 1 : m → 1, m 7→ 1 are the constant maps mapping to 0 or 1, respectively for all
f ∈ ∆0(m), the faces are one-pointed sets in each degree. Thus, they are disjoint, building
the two vertices in ∆1. We denote the faces by

{0} := ∂1∆1 and {1} := ∂0∆1,

with {0} ∪̇ {1} = ∂∆1 ⊆ ∆1.

Example 4.1.11. The standard n-simplex ∆n is no Kan-complex for n > 0 (cf. [GJ99]
page 15). For n = 1 we consider the lifting diagram

Λ2
0

α //

��

∆1

∆2

>>

over the horn inclusion Λ2
0 ⊆ ∆2 as depicted above. Here α ∈ HomsSet(Λ2

0,∆1) is the natural
transformation corresponding (−, 1, 0) ∈ (∆1

1)2 (cf. Corollary 4.1.2). But the lifting property
fails since there is no map f ∈ HomsSet(∆2,∆1) = ∆1

2 = Hom∆(2, 1) such that f(1) = 1
and f(2) = 0, since it would not be order-preserving.

4.2 Anodyne extensions

A leading role in homotopy theory of simplicial sets is played by the class of anodyne ex-
tensions, which we will discuss in this section. As we will see later on, this class forms the
trivial cofibrations on sSet.

Definition 4.2.1. A class M of monomorphisms of sSet is said to be saturated if the
following conditions are satisfied:

(i) M contains all isomorphisms of sSet
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4.2. Anodyne extensions

(ii) M is closed under pushouts. That is, if

A //

i

��

C

i′

��
B // B t

A
C

is a pushout diagram and if i lies inM then so does i′.

(iii) M is closed under retracts. That is, if

A′
j //

i′

��

A
u //

i
��

A′

i′

��
B′

k
// B v

// B′

is a commutative diagram with uj = idA′, vk = idB′ and if i ∈M, then i′ ∈M.

(iv) M is closed under coproducts. That is, if (ij : Aj → Bj)j∈J s a family of monomor-
phisms with ij ∈M for each j ∈ J , then the induced morphism

∐
j∈J

ij :
∐
j∈J

Aj →
∐
j∈J

Bj

is inM.

(v) M is closed under ω-composites. That is, if

A1
i1−→ A2

i2−→ A3
i3−→ ...

is a countable family of morphisms ofM, then the morphism

A1 → lim
−→
n≥1

An

is inM.

Remark 4.2.2. Note that in Set, the category of sets, if we have an injective map i : X →
X1 and a pushout

X //

i

��

X2

i′

��
X1 // X1 t

X
X2
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then the map i′ is injective, as well, by commutativity of the diagram

X
f //

i

��

X2

i′

�� id

��

X1 //

ī ,,

X1 t
X
X2

φ

##
X2,

where ī is defined as follows. For x ∈ i(X) there is a unique a ∈ X such that x = i(a) and
we set ī(x) := f(a). For x /∈ i(X) we set ī(a) := ẑ, for fixed ẑ ∈ X2 6= ∅. Alternatively, one
could work with the explicit definition of a pushout in Set. Hence, if we have a pushout
diagram

A //

i

��

C

i′

��
B // B t

A
C

in sSet, where i is a pointwise monomorphism then i′ is a pointwise monomorphism, as it
holds for any required morphism in the above definition.

Lemma 4.2.3. Let p : X → Y be a fixed morphism of simplicial sets. Then the class Mp

of all monomorphisms which have the LLP with respect to p is saturated.

Proof. (Cf. [GJ99] Chapter I Lemma 4.1 and [HP14] Lemma 5.3) Clearly, all isomorphisms
have the LLP. The other conditions follow from construction and the universal properties.
We want to show at least some of them, starting with the property of being closed under
pushouts. Let i : A→ B be a morphism in Mp and consider a commutative diagram of the
form

A //

i

��

C //

j

��

X

p

��
B // B t

A
C // Y,

where the left square is a pushout. Since i ∈Mp, there is a map θ : B → X such that

A //

��

C //

��

X

��
B //

θ

66

B t
A
C //

<<

Y

the diagram of solid arrows commutes. By the universal property of the pushout, the dotted
arrow B t

A
C → X exists. Hence, j ∈Mp using that j is a monomorphism by our discussion
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above. The closedness under countable composition also follows from the universal property
of the colimit in the following way. Consider the diagram

A1 //

i1
��

X

p

��

...

��
An
in

��

FF

...

��
lim
−→

An //

JJ

Y,

where the maps An → X are constructed inductively using that in : An → An+1 is in Mp

for all n. The commutativity of all solid diagrams then gives the dotted arrow lim
−→

An → X

making everything commutative. Again, it is clear from the construction of colimits in sSet
that together with all in also the map A1 → lim

−→
An is a monomorphism. The statements that

Mp is closed under coproducts follows in a similar way and for retracts it follows immediately
from the definition.

Definition 4.2.4. Let B be a class of monomorphisms of sSet. The intersection of all
saturated classes containing B is called the saturated class generated by B and denoted by
MB.

Example 4.2.5. To get used to this new terminology, we want to look at a first example.
Therefore, consider the family of inclusions B := {∂∆n ↪→ ∆n | n ≥ 0}. We claim that the
saturated class MB generated by this family consists of all monomorphisms in sSet. To see
this, let i : A→ X be an arbitrary monomorphism and let

e(X \A)n := {x ∈ Xn \An | x is not of the form siy for any 0 ≤ i ≤ n− 1 and y ∈ Xn−1}

be the set of non-degenerate n-simplices of X which are not in A, where we view A ⊆ X as
a subcomplex. By condition (iv) in Definition 4.2.1, together with ∂∆n ↪→ ∆n also∐

e(X\A)n

∂∆n →
∐

e(X\A)n

∆n

has to be in MB. Similarly to the proof of Proposition 2.3.7, one can show that the diagram∐
e(X\A)n

∂∆n //

��

∐
e(X\A)n

∆n

��
Skn−1X ∪A // SknX ∪A
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4.2. Anodyne extensions

is a pushout for all n ≥ 0 and by axioms (ii) and (v) also the map

Sk−1X ∪A→ lim
−→
n≥−1

SknX ∪A

is in MB, where we introduce by convention Sk−1X = ∅. But since Skn−1X ⊆ SknX ⊆
...

⋃
n Sk

nX = X we have

Sk−1X ∪A = A and lim
−→
n≥−1

SknX ∪A = X,

and therefore, the above map is precisely i : A → X. Hence, the saturated class generated
by B contains all monomorphisms in sSet (cf. [JT] pages 38/39).

Definition 4.2.6. The saturated class generated by the family of inclusions

{Λnk ↪→ ∆n| 0 ≤ k ≤ n, n > 0}.

is called the class of anodyne extensions.

Proposition 4.2.7. A morphism p : X → Y is a Kan fibration if and only if it has the RLP
with respect to all anodyne extensions.

Proof. Clearly, by definition, if a morphism has the RLP with respect to all anodyne exten-
sions it is a fibration. For the other direction let p : X → Y be a fibration in sSet. By
Lemma 4.2.3, Mp, the class of monomorphisms with LLP with respect to p, is saturated.
But the anodyne extensions are defined to be the saturated class generated by all Λnk ↪→ ∆n

which all have the LLP with respect to p. Hence, by minimality, the anodyne extensions are
contained in Mp.

Later we will interprete this result in the sense that the anodyne extensions are exactly the
cofibrations of a model structure which are also weak equivalences (cf. Proposition 4.6.8).

Proposition 4.2.8. Consider the three classes of monomorphisms

B1 := the set of all inclusions Λnk ↪→ ∆n, 0 ≤ k ≤ n, n > 0,

B2 := the set of all inclusions (∆1 × ∂∆n) ∪ ({e} ×∆n) ↪→ (∆1 ×∆n), e = 0, 1,

where 0, 1 ⊆ ∆1 are the two simplicial subsets only containing the constant maps in each
degree, and

B3 := the set of all inclusions (∆1 × Y ) ∪ ({e} ×X) ↪→ (∆1 ×X),

where Y ⊆ X is an inclusion of simplicial sets, and e = 0, 1. Then the families B1, B2 and
B3 all generate the same saturated class.

Proof. See [GJ99] Chapter I Proposition 4.2.
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4.2. Anodyne extensions

Corollary 4.2.9. Let j : K ↪→ L be an anodyne extension let I : Y ↪→ X be an arbitrary
inclusion. Then the induced map

(K ×X) ∪ (L× Y )→ (L×X)

and the induced map

(K ×X) t (L× Y )
(K×Y )

→ (L×X)

from the pushout are anodyne extensions.

Proof. See [GJ99] Chapter I Corollary 4.6 for the first statemant and [Hov99] Theorem 3.3.2
for the second statemant.

Next, we define a new class of morphisms in sSet, the class of trivial fibrations. This is
an explicit definition. Of course, once we have our model structure on sSet there will be
a second definition of a trivial fibration. Namely, this will be a morphism which is both
a fibration and a weak equivalence. However, we will see later, that these two definitions
coincide.

Definition 4.2.10. A morphism p : X → Y is called a trivial fibration if it has the RLP
with respect to the family {∂∆n ↪→ ∆n | n ≥ 0}.

Remark 4.2.11. Let p : X → Y be a trivial fibration, and let Mp be the class of all
monomorphisms with the LLP with respect to p. This, again, is saturated and contains all
∂∆n ↪→ ∆n by definition. But as we have discussed in Example 4.2.5, the saturated class
generated by {∂∆n ↪→ ∆n | n ≥ 0}, contains all monomorphisms. Hence, p has the RLP
with respect to all Λnk ↪→ ∆n. So at least we can say, that any trivial fibration is also a
fibration, as expected.

An important step for our model structure on sSet is to show the factorization axiom in the
definition. To this end, we will need the following theorems.

Theorem 4.2.12. Any morphism f : X → Y in sSet can be factored as

X
f //

i   

Y

E

p

>>

where i is an anodyne extension and p is a fibration.

Proof. (Cf. [JT] Theorem 3.1.1) Let L be the set of all commutative diagrams of the form

Λnk //

��

X

f

��
∆n // Y,
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4.2. Anodyne extensions

with n ≥ 1 and 0 ≤ k ≤ n. Taking the coproduct over L this yields to the diagram
∐
L

Λnk //

i

��

X

f

��∐
L

∆n // Y,

where i is anodyne, since the inclusions Λnk ↪→ ∆n are anodyne. Now we take the pushout

∐
L

Λnk //

i

��

X

i0

��∐
L

∆n // X1,

of i and the upper horizontal map, denoted by X1, where again, by definition, i0 is anodyne.
By the universal property, we get a map f1 : X1 → Y such that the diagram

∐
L

Λnk //

i

��

X

i0

�� f

��

∐
L

∆n //

++

X1
f1

��
Y,

commutes. Thus, we have a factorization

X
i0 //

f ��

X1

f1
~~

Y

with i0 anodyne. We now repeat this whole process with f1 instead of f and obtain the
diagram

X
i0 //

f
!!

X1 i1 //

f1

��

X2

f2
}}

Y

where, again, i1 is anodyne and we keep repeating it with any obtained fn. We set X0 = X
and f0 = f and E = lim

−→
n≥0

Xn for the colimit. By the universal property we get an induced
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4.2. Anodyne extensions

map p : E → Y by all fn and we denote the map X → E by i. This gives us a factorization

X
f //

i   

Y

E

p

>>

with i anodyne. It remains to show that p is a fibration. Consider any diagram of the form

Λnk
h //

��

E

p

��
∆n // Y,

with n ≥ 1 and 0 ≤ k ≤ n. Since Λnk has only finitely many non-degenerate simplices, h
factors through some Xj for j ≥ 0 as in

Λnk
h //

��

!!

E

p

��

Xj

>>

fj

  
∆n // Y.

To see why, we assume given a map of simplicial sets Λnk → E. For any m ≥ 0 the set Em is
the union of the (Xi)m. Therefore, there is an index i such that (Λnk)m maps to Xi

m for all
0 ≤ m ≤ n, since the set of simplices of Λnk is finite. It remains to see that (Λnk)m maps to
(Xi)m also if m > n. To see this, let f : m→ n be an m-simplex of Λnk . It can be factorized
as m g−→ j

h−→ n, where g is surjective and h is injective. Then we have j ≤ n and there is a
commutative diagram

(Λnk)j //

g∗

��

Ej

g∗=E(g)
��

(Λnk)m // Em.

Since f = h ◦ g ∈ (Λnk)m is the image of h ∈ (Λnk)j under g∗ and since h maps into (Xi)j ,
using that j ≤ n, we get that f maps into (Xi)m.
Using this factorization of h means we have reduced our lifting problem to the diagram

Λnk
h //

��

Xj ij //

fj

��

Xj+1

fj+1
||

∆n //

66

Y
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4.2. Anodyne extensions

But here the dotted map exists, because Xj+1 and f j+1 were constructed from such a
pushout as above, satisfying the required condition. Hence, we obtain a lift from ∆n to E,
making the diagram

Λnk
h //

��

E

p

��
∆n //

>>

Y

commute and therefore p is a fibration.

Corollary 4.2.13. Any morphism f : X → Y that has the LLP with respect to the class
of all Kan fibrations is anodyne.

Proof. (Cf. [JT] Corollary 3.1.1) By our previous Theorem 4.2.12, we can factorize f as

X
f //

i   

Y

E

p

>>

where i is an anodyne extension and p is a fibration. From this factorization we get the
commutative diagram

X
i //

f
��

E

p

��
Y

idY

//

k

>>

Y,

where the dotted arrow exists, since f has the LLP with respect to p. But then f is a retract
of i via

X
idX //

f
��

X
idX //

i
��

X

f
��

Y
k
// E p

// Y

and therefore, f is anodyne.

Theorem 4.2.14. Any morphism f : X → Y in sSet can be factored as

X
f //

i   

Y

E

p

>>

where i is a monomorphism, and p is a trivial fibration.

Proof. The proof is analogous to the one of Theorem 4.2.12. Replacing the family of inclu-
sions {∂∆n ↪→ ∆n | n ≥ 0} with {Λnk ↪→ ∆n| 0 ≤ k ≤ n, n > 0} will yield to the proof of
the theorem at hand.
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4.3. Function complexes

4.3 Function complexes

Given two simplicial sets X,Y ∈ sSet we construct a new simplicial set Hom(X,Y ). It will
help us later to work with simplicial homotopies. As we will see, this construction behaves
nicely under the property of being fibrant in the sense that if Y is fibrant then Hom(X,Y )
is fibrant for all X ∈ sSet.
Definition 4.3.1. Let X and Y be simplicial sets. The function complex (sometimes called
mapping complex or mapping space) Hom(X,Y ) is the simplicial set defined by

Hom(X,Y )(n) = Hom(X,Y )n := HomsSet(X ×∆n, Y )

on objects. And on morphisms θ : m→ n the induced function

Hom(X,Y )(θ) = θ∗ : Hom(X,Y )n → Hom(X,Y )m
is defined by

(X ×∆n f−→ Y ) 7→ (X ×∆m id×θ−−−→ X ×∆n f−→ Y ).

Remark 4.3.2. The simplicial set Hom(X,Y ) depends contravariantly onX and covariantly
on Y , hence, we have a functor

Hom(−,−) : sSetop × sSet→ sSet.

There is an important natural transformation

ev : X ×Hom(X,Y )→ Y,

the so called evaluation map, defined as follows. Given x ∈ Xn and f : X × ∆n → Y ∈
Hom(X,Y )n we set

evn(x, f) := fn(x, 1n) ∈ Yn,

where 1n ∈ ∆n(n) = Hom∆(n, n) is the identity. To see that the evaluation map is indeed a
natural transformation of simplicial sets, it suffices to show the commutativity with the face
and degeneracy maps. For a coface map dj : n− 1→ n we consider the diagram

Xn−1 ×Hom(X,Y )n−1
evn−1 // Yn−1

Xn ×Hom(X,Y )n evn
//

dX
j ×(dj)∗

OO

Yn,

dY
j

OO

where we denote dXj := X(dj) and dYj := Y (dj) the face maps on X and Y , respectively. Let
x ∈ Xn and f ∈ Hom(X,Y )n. Then we have

evn−1(dXj x, (dj)∗(f)) =fn−1 ◦ (id× dj)(dXj x, 1n−1) = fn−1(dXj x, dj ◦ 1n−1)
=fn−1(dXj x, 1n ◦ dj) = dYj (fn(x, 1n))
=dYj (evn(x, f)),

since f : X ×∆n → Y is a natural transformation itself. The similar calculation holds for
degeneracies and therefore ev commutes with all θ∗ for θ : m→ n and hence, is a morphism
of simplicial sets.
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Proposition 4.3.3. (The Exponential Law)
Let K,X, Y be simplicial sets. The map

ev∗ : HomsSet(K,Hom(X,Y ))→ HomsSet(X ×K,Y )

which is defined by sending the simplicial map g : K → Hom(X,Y ) to the composition

X ×K id×g−−−→ X ×Hom(X,Y ) ev−→ Y,

is a bijection which is contravariantly natural in K and X, and covariantly natural in Y .

Proof. (Cf. [GJ99] Chapter I Proposition 5.1) We construct an explicit inverse

ev−1
∗ : HomsSet(X ×K,Y )→ HomsSet(K,Hom(X,Y ))

of the map ev∗ by sending a morphism g : X ×K → Y to ev−1
∗ (g) = g∗ : K → Hom(X,Y ),

where g∗ is defined as follows. Let x ∈ Kn be an n-simplex of K which is, by Yoneda’s
Lemma, associated to a unique simplicial map ιx ∈ HomsSet(∆n,K) ∼= Kn. Then (g∗)n(x) ∈
Hom(X,Y )n is defined to be the composite

X ×∆n id×ιx−−−→ X ×K ev−→ Y.

This gives an inverse to ev∗, since ev evaluates at 1n ∈ Hom∆(n, n) and ιx is characterized
by (ιx)n(1n) = x.

Proposition 4.3.4. Let i : K ↪→ L be an inclusion of simplicial sets and p : X → Y be a
Kan fibration. Then the map

Hom(L,X) (i∗,p∗)−−−−→ Hom(K,X)×Hom(L, Y )
Hom(K,Y )

,

which is induced by the commutative diagram

Hom(L,X)
p∗

++

i∗

%%

))
Hom(K,X)×Hom(L, Y )

Hom(K,Y )
//

��

Hom(L, Y )

i∗

��
Hom(K,X) p∗

// Hom(K,Y ),

is a Kan fibration, where i∗ = (− ◦ (i× id))m∈∆ and p∗ = (p ◦ −)m∈∆.

Proof. (Cf. [GJ99] Chapter I Proposition 5.2) Every diagram of the form

Λnk //

��

Hom(L,X)

(i∗,p∗)
��

∆n // Hom(K,X)×Hom(L, Y )
Hom(K,Y )

(4.1)
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can be identified with a diagram

(Λnk × L) t (∆n ×K)
(Λn

k
×K)

//

��

X

p

��
∆n × L // Y,

(4.2)

using the exponential law and the universal properties of pushouts and pullbacks. To see
this, we start by constructing the lower diagram from a given upper one. The map Λnk →
Hom(L,X) gives a map Λnk × L→ X by the exponential law. Similarly, the map

Λnk → Hom(L,X) i∗−→ Hom(K,X)

gives a map Λnk ×K → X. This map equals the composition

Λnk ×K
id×i−−−→ Λnk × L→ X,

by the functoriality of the exponential law. Next, the map

Λnk ↪→ ∆n → Hom(K,X)×Hom(L, Y )
Hom(K,Y )

pr1−−→ Hom(K,X)

gives a map Λnk ×K ↪→ ∆n ×K → X. By the commutativity of our given diagram, these
two maps from Λnk to X coincide. Using the universal property in the pushout diagram

Λnk ×K
id×i //

��

Λnk × L

��

��

∆n ×K //

--

(Λnk × L) t (∆n ×K)
(Λn

k
×K)

''
X

gives us the upper horizontal map in (4.2). Finally, applying the exponential law to the map

∆n → Hom(K,X)×Hom(L, Y )
Hom(K,Y )

pr2−−→ Hom(L, Y )

gives us the remaining map in (4.2). The commutativity of the upper square (4.1) and the
functoriality of the exponential law then imply that (4.2) commutes. The inverse construction
is done in a similar manner. One starts by constructing the lower horizontal map in (4.1),
again, using the exponential law and the universal property of the pullback. Once we have
shown that each of these two diagrams (4.1) and (4.2) are equivalent, the rest of the proof
is mostly a collection of previous results. The left vertical map in (4.2) is anodyne by
Corollary 4.2.9. Since p is a fibration it has the RLP with respect to all anodyne extensions
by Proposition 4.2.7, hence there is a lift ∆n × L → X in (4.2). Applying the exponential
law to this lift, we get a lift ∆n → Hom(L,X) in (4.1). And therefore (i∗, p∗) is a fibration,
as required.
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Corollary 4.3.5. (i) If p : X → Y is a fibration, then so is p∗ : Hom(K,X)→ Hom(K,Y )
for any K ∈ sSet.

(ii) If i : K ↪→ L is an inclusion and X is fibrant, then i∗ : Hom(L,X)→ Hom(K,X) is a
fibration. In particular, if X is fibrant then so is Hom(L,X) for any L ∈ sSet.

Proof. (Cf. [GJ99] Chapter I Corollary 5.3)

(i) The diagram

Hom(K,Y ) id //

��

Hom(K,Y )

��
∗ // ∗

is a pullback and we consider the inclusion i : ∅ ↪→ K, where ∅ is the simplicial set
with the empty set in each degree. Then we have Hom(∅, X) = ∗ for any X ∈ sSet
and the diagram

Hom(K,X)
p∗

))

$$

''
Hom(K,Y ) id //

��

Hom(K,Y )

��
Hom(∅, X) p∗

// Hom(∅, Y )

∗ ∗

commutes, where the morphism Hom(K,X) → Hom(∅, X) is uniquely determined.
Hence, by the above Proposition 4.3.4, the map

(i∗, p∗) = p∗ : Hom(K,X)→ Hom(K,Y )

is a fibration.

(ii) If X is fibrant, than the map p : X → ∗ is a fibration and we have Hom(K, ∗) = ∗ for
any K ∈ sSet. Again, applying this to the pullback

Hom(K,X) //

id
��

∗

��
Hom(K,X) // ∗
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we get the commutative diagram

Hom(L,X)

**

i∗

$$

''
Hom(K,X) //

id
��

Hom(L, ∗) = ∗

��
Hom(K,X) // Hom(K, ∗) = ∗

and hence, the map i∗ : Hom(L,X) → Hom(K,X) is a fibration. The special case
follows immediately by taking the fibration X → ∗ and K = ∅. Then the map

Hom(L,X)→ ∗×
∗
∗ = ∗

is a fibration and therefore, Hom(L,X) is fibrant.

Remark 4.3.6. If in the setting of Proposition 4.3.4 the inclusion i : K ↪→ L is anodyne,
then the map

Hom(L,X) (i∗,p∗)−−−−→ Hom(K,X)×Hom(L, Y )
Hom(K,Y )

,

is even a trivial fibration. This follows from the fact that as in the above proof every diagram
of the form

∂∆n //

��

Hom(L,X)

(i∗,p∗)
��

∆n // Hom(K,X)×Hom(L, Y )
Hom(K,Y )

can be identified with a diagram

(∂∆n × L) t (∆n ×K)
(∂∆n×K)

//

��

X

p

��
∆n × L // Y.

Note that in the lower diagram there exists a lift of p since the inclusion is anodyne (cf.
Corollary 4.2.9 using that i : K ↪→ L is anodyne). Applying the inverse construction yields
the claim.
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4.4 Simplicial homotopy

For two given morphisms of simplicial sets, we need to introduce a concept of a homotopy
between them. This turns out to be an equivalence relation in certain situations and we use
it later on to define homotopy groups for fibrant simplicial sets.

Definition 4.4.1. Let f, g : X → Y be two maps of simplicial sets. A (simplicial) homotopy
from f to g is a map

h : X ×∆1 → Y,

such that the diagram

X ×∆0

id×d1

��

X
f

��
X ×∆1 h // Y

X ×∆0

id×d0

OO

X

g

??

commutes. We will say that f is homotopic to g if there exists a (simplicial) homotopy from
f to g, and write f ' g.

Remark 4.4.2. By our above notation for the two vertices in ∂∆1 ⊆ ∆1, we could also
write

h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X,

as a shorthand notation. One also often writes I instead of the simplicial set ∆1, related to
homotopies of continuous maps and the fact that |∆1| = I.

Definition 4.4.3. Let i : A ↪→ X be an inclusion of simplicial sets and let f, g : X → Y be
simplicial maps such that that the restrictions f |A = g|A to A coincide. We say there is a
homotopy from f to g relative to A and write it f ' g (rel A) if there exists an h as in the
previous definition and, additionally, h is stationary on A in the sense that the diagram

A×∆1 pr1 //

i×id
��

A

α

��
X ×∆1

h
// Y

commutes, where α = f |A = g|A and pr1 denotes the projection onto the first factor.

Lemma 4.4.4. If X is a fibrant simplicial set then simplicial homotopy is an equivalence
relation on the set of its vertices X0 ∼= HomsSet(∆0, X).
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Proof. (Cf. [GJ99] Chapter I Lemma 6.1) For the proof we introduce the notation of the
boundary ∂(σ) of an n-simplex σ which is the collection of faces ∂(σ) = (d0σ, ..., dnσ).
By definition, two vertices x and y are homotopic if and only if there is a 1-simplex v
of X such that d1v = x and d0v = y, or expressed in our new notation ∂v = (y, x).
For the reflexivity of the homotopy relation we choose v = s0x, for x ∈ X0 and since
∂(s0x) = (d0s0x, d1s0x) = (x, x), we have x ' x. Now suppose that x ' y and y ' z, i.e.
we have v0, v2 ∈ X1 such that ∂(v2) = (y, x) and ∂(v0) = (z, y). Then d0v2 = y = d1v0 and
so v0 and v2 induce a well-defined natural transformation (v0, , v2) : Λ2

1 → X defined as

(Λ2
1)m 3 di ◦ g 7→ g∗(vi) ∈ Xm for i = 0, 2.

Alternatively, we could use our characterizing Corollary 4.1.2 for HomsSet(Λ2
1, X). Since X

is fibrant, we can lift the morphism to

Λ2
1

(v0, ,v2) //

��

X

∆2
θ

88

with θ ∈ HomsSet(∆2, X) ∼= X2. By taking d1θ ∈ X1, we get

∂(d1θ) = (d0d1θ, d1d1θ) = (d0d0θ, d1d2θ) = (d0v0, d1v2) = (z, x).

Hence, d1θ is the required homotopy from x to z and so the relation is transitive. It remains
to show the symmetry. For this, we proceed similarly. For a given homotopy v2 ∈ X1 from
x to y with ∂(v2) = (y, x), we set v1 := s0x ∈ X1 with d1v1 = x = d1v2. As above, this
induces a ( , v1, v2) : Λ2

1 → X and from the Kan condition, we choose a lift

Λ2
1

( ,v1,v2) //

��

X

∆2
θ′

88

Then for d0θ
′ ∈ X1 we have

∂(d0θ
′) = (d0d0θ

′, d1d0θ
′) = (d0d1θ

′, d0d2θ
′) = (d0v1, d0v2) = (x, y)

and therefore, y ' x.

Corollary 4.4.5. Let A ↪→ X be an inclusion and Y fibrant. Then

(i) homotopy of maps X → Y is an equivalence relation.

(ii) homotopy of maps X → Y (rel A) is an equivalence relation.

Proof. (Cf. [GJ99] Chapter I Corollary 6.2) Part (i) follows from part (ii) by choosing A = ∅.
By Corollary 4.3.5 (ii) the map

i∗ : Hom(X,Y )→ Hom(A, Y )
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is a fibration with i : A ↪→ X. Let f, g : X → Y be two simplicial maps matching on A, then
v = f |A = g|A ∈ Hom(A, Y )0 is a vertex of the function complex. We take the fiber

Fv //

��

Hom(X,Y )

i∗

��
∆0

v
// Hom(A, Y )

over the vertex v. The fibre over a fibration is a Kan complex, as will be discussed in detail
in the next section. Then homotopy between maps f, g : X → Y (rel A) corresponds to
homotopy of vertices in the fibre Fv = (i∗)(−1)(v). But this is an equivalence relation by the
previous Lemma 4.4.4.

4.5 Simplicial homotopy groups

In this section, we use our knowledge about simplicial homotopies to construct the homotopy
groups of a fibrant simplicial set. And, in the course of this, we define our last class of
morphisms in sSet, the weak equivalences, first for maps between Kan complexes, later on
generalized to arbitrary simplicial sets. For many results we will use explicit calculations to
construct equivalence classes or simplicial homotopies in this section.

Definition 4.5.1. Let X be a fibrant simplicial set. π0(X) is defined to be the set of homo-
topy classes of vertices of X and it is called the set of path components of X. A simplicial
set X is said to be connected if π0(X) is a one-point set.

Lemma 4.5.2. Let X be a fibrant simplicial set. Then the map π0(X)→ π0(|X|), mapping
an equivalence class [v] for v ∈ X0 to the path component of |X| containing |v|, is a bijection
of sets. Here we view v : ∆0 → X as a morphism of simplicial sets and let |v| be the image
of the associated map |∆0| → |X|. Note that |∆0| = ∗ is a singleton.

Proof. (Cf. [Hov99] Lemma 3.4.3) The realization of X is the topological space

|X| =
∐
n≥0

Xn × |∆n|
/
∼

with (x, dit) ∼ (dix, t) and (x, sjt) ∼ (sjx, t) for all x ∈ Xn, t ∈ |∆n| and 0 ≤ i, j ≤ n. Since
|∆n| is path connected for all n ≥ 0, every point of |X| is contained in a path component of
a vertex. On the other hand, for α = [v] ∈ π0(X) we define the simplicial subset Xα of X
containing all simplices x of X with a vertex in α, i.e. (Xα)n consists of those x ∈ Xn with
d0 . . . d0x ' v. Then X is the disjoint union of its path components

X =
∐

α∈π0(X)
Xα

and since the realization functor preserves colimits, the above map is injective. This also
uses that (obviously) π0(Xα) is a singleton. Therefore, we get a bijection π0(X) ∼= π0(|X|),
as required.
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Definition 4.5.3. Let X be a fibrant simplicial set, x ∈ X0 vertex and n ≥ 1. We define
πn(X, v) to be the set of homotopy classes of n-simplices α : ∆n → X (rel ∂∆n) for all
α : ∆n → X for which there exists a commutative diagram of the form

∆n α // X

∂∆n

OO

// ∆0.

v

OO

The set πn(X, v) is called the n-th homotopy group of X at v.

Remark 4.5.4. To fix some short hand notation, we will write v : ∂∆n → X for the
composition

∂∆n → ∆0 v−→ X.

Further, we denote the homotopy class of α by [α], in all contexts.

To get used to the terminology of simplicial homotopy, we spell it out one more time: An
element [α] ∈ πn(X, v) for an n-simplex α : ∆n → X that sends ∂∆n to v, is the equivalence
class defined by the relation α ∼ β if there is a simplicial homotopy h : ∆n ×∆1 → X such
that h equals α on ∆n × {0}, β on ∆n × {1}, and is the constant map v on ∂∆n ×∆1.

As for topological spaces in Algebraic Topology, we want to show that these homotopy
groups πn(X, v) are indeed groups and even abelian for n ≥ 2. We will construct the group
structure first and show the commutativity later on. To do this, let n ≥ 1 and let [α], [β] be
two elements of πn(X, v) represented by α, β : ∆n → X. We fix the family

vi =


v, 0 ≤ i ≤ n− 2,
α, i = n− 1,
β, i = n+ 1

of n-simplices in X, where v is the n-simplex ∆n → ∆0 → X. In other words, we view v
as the projection v = s0...s0v = X(n → 0)(v) to Xn. These simplices satisfy divj = dj−1vi
for i < j and i, j 6= n, since all faces of all simplices vi map through the vertex v by
definition of α and β on ∂∆n. Thus, the family vi determines a morphism of simplicial
sets (v0, ..., vn−1, , vn+1) : Λn+1

n → X, and since X is fibrant there is an extension ω in the
diagram

Λn+1
n

��

(v0,...,vn−1, ,vn+1) // X.

∆n+1
ω

55

For dnω ∈ Xn the boundary is

∂(dnω) =(d0dnω, ..., dn−1dnω, dndnω)
=(dn−1d0ω, ..., dn−1dn−1ω, dndn+1ω)
=(dn−1v, ..., dn−1α, dnβ)
=(v, ..., v)
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and therefore dnω is equal to v on ∂∆n. Hence, dnω represents an element in πn(X, v).
This new homotopy class is meant to be the multiplication of [α] and [β]. But first we need
to prove that this class is well-defined. To see this, we are going to construct an explicit
homotopy, by using the lifting property for fibrant simplicial sets. Since we have to use this
technique often in this chapter, we will do this first case in detail and abbreviate it in later
proofs.

Lemma 4.5.5. The homotopy class of dnω (rel ∂∆n) is independent of the choices of rep-
resentatives of [α] and [β] and of the choice of ω.

Proof. (Cf. [GJ99] Chapter I Lemma 7.1) Let α ' α′ and β ' β′ for α, α′, β, β′ : ∆n → X.
We choose homotopies hn−1 between α and α′ (rel ∂∆n) and hn+1 between β and β′ (rel
∂∆n). Let ω and ω′ be lifts as above, such that

∂ω = (v, ..., v, α, dnω, β)

and

∂ω′ = (v, ..., v, α′, dnω′, β′).

We need to show that dnω ' dnω
′ (rel ∂∆n), so that they represent the same homotopy

class in πn(X, v). To see this, consider the map

(∆n+1 × ∂∆1) ∪ (Λn+1
n ×∆1) ((ω′,ω),(v,...,v,hn−1, ,hn+1))−−−−−−−−−−−−−−−−−→ X,

where (ω′, ω) : ∆n+1×∂∆1 → X denotes the map which is ω′× id on the vertex ∆n+1×{0}
and ω × id on ∆n+1 × {1}. The order of ω′ and ω is crucial here, otherwise we would get a
homotopy the other way round. The map f := (v, ..., v, hn−1, , hn+1) : Λn+1

n ×∆1 → X is
defined as

f ◦ (di × id) = v for i < n− 1 and f ◦ (dn±1 × id) = hn±1.

We note that this map is well-defined, since hn−1 and hn+1 are constant with value v on
∂∆n ×∆1. Next, we choose an extension in the diagram

(∆n+1 × ∂∆1) ∪ (Λn+1
n ×∆1)

��

((ω′,ω),(v,...,v,hn−1, ,hn+1)) // X,

∆n+1 ×∆1
ω̄

22

which exists since X is fibrant and the inclusion is anodyne by Corollary 4.2.9, since the
horn inclusion is anodyne. Then the composite

∆n ×∆1 dn×id−−−−→ ∆n+1 ×∆1 ω̄−→ X
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is a homotopy dnω ' dnω′ (rel ∂∆n) because the diagram

∆n ×∆0

dnω

++

id×d1

��
∆n ×∆1 dn×id // ∆n+1 ×∆1 ω̄ // X

∆n ×∆0
dnω′

33

id×d0

OO

commutes.

Now we can define our multiplication

m : πn(X, v)× πn(X, v)→ πn(X, v)

on the n-th homotopy group πn(X, v) as

([α], [β]) 7→ [α] · [β] := [dnω],

where ω is a lift as above, such that ∂ω = (v, ..., v, α, dnω, β). This operation is well-
defined by the previous lemma. By e we denote the homotopy class [v] ∈ πn(X, v) which is
represented by the constant map

∆n → ∆0 v−→ X.

Theorem 4.5.6. With multiplication m and unit element e, we obtain a group structure
on the set πn(X, v) for n ≥ 1.

Proof. (Cf. [GJ99] Chapter I Theorem 7.2) We start to prove the associativity of the mul-
tiplication. To show this we take three n-simplices α, β, γ : ∆n → X, representing elements
in πn(X, v). Let ωn−1, ωn+1 and ωn+2 be (n + 1)-simplices such that [α] · [β] = [dnωn−1],
([α]·[β])·[γ] = [dnωn+1] and [β]·[γ] = [dnωn+2]. This means, these are lifts with the property

∂(dnωn−1) =(v, ..., v, α, dnωn−1, β),
∂(dnωn+1) =(v, ..., v, dnωn−1, dnωn+1, γ), and
∂(dnωn+2) =(v, ..., v, β, dnωn+2, γ).

Then we get a map Λn+2
n

(v,...,v,ωn−1, ,ωn+1,ωn+2)−−−−−−−−−−−−−−−−→ X, since this family satisfies the required
property for HomsSet(Λn+2

n , X) (cf. Corollary 4.1.2). Since X is fibrant the map can be
extended to

Λn+2
n

��

(v,...,v,ωn−1, ,ωn+1,ωn+2) // X,

∆n+2
ω

44
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where the n-th face dnω of the extension has the boundary

∂(dnω) =(d0dnω, ..., dn−2dnω, dn−1dnω, dndnω, dn+1dnω)
=(dn−1d0ω, ..., dn−1dn−2ω, dn−1dn−1ω, dndn+1ω, dndn+2ω)
=(v, ..., v, α, dnωn+1, dnωn+2).

And hence, we get

([α] · [β]) · [γ] = [dnωn−1] · [γ]
= [dnωn+1]
= [dndnω]
= [α] · [dnωn+2]
= [α] · ([β] · [γ]).

Now, let [α] ∈ πn(X, v). For the product e · [α], the n+ 1-simplex snα satisfies

∂(snα) = (v, ..., v, v, α, α)

and so we have e · [α] = [α]. The same holds for [α] · e = [α] using the lift sn−1α and
hence, e is the unit element. For the existence of inverse elements it remains to prove that
for any [α] ∈ πn(X, v), the map πn(X, v) → πn(X, v) induced by left multiplication by [α]
is bijective. Injectivity follows from composing a homotopy between [dnω] and [dnω′] by
degeneracy and face maps, receiving a homotopy between the two sources. To show the
surjectivity, one can lift the map (v, . . . , v, α, γ, ) : Λn+1

n+1 → X.

If f : X → Y is a morphism of fibrant simplicial sets, it induces a map between the n-th
simplicial homotopy groups of X and Y . This induced map is defined as

f∗ : πn(X, v)→ πn(Y, f0(v)), [α] 7→ [fn(α)].

This is well-defined, because for two n-simplices α, β : ∆n → X that represent the same class
in πn(X, v), the homotopy between them extends to a homotopy between f◦α, f◦β : ∆n → Y
by composing with f . For n ≥ 1, this is also a group homomorphism, since the defined lifting
for the multiplication also extends through f .

The following lemma is a useful criterion as to when a homotopy class in πn(X, v) equals
the unit element. We will need this later on.

Lemma 4.5.7. Let α : ∆n → X represent an element of πn(X, v). Then [α] = e if and only
if there is an (n+ 1)-simplex ω of X such that ∂ω = (v, ..., v, α).

Proof. (Cf. [Hov99] Lemma 3.4.5) We first suppose that [α] = [v]. Then there is a homotopy
h : ∆n × ∆1 → X between α and v, which is equal to v on ∂∆n × ∆1 and ∆n × {1}. We
consider the lifting diagram

(∆n+1 × {1}) ∪ (∂∆n+1 ×∆1)
(v,(v,...,v,h)) //

��

X,

∆n+1 ×∆1
ω̄

33
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where ω̄ : ∆n+1 ×∆1 → X exists since X is fibrant and the inclusion is anodyne. Then the
restriction ω := ω̄|∆n+1×{0} : ∆n+1 → X is the desired (n+ 1)-simplex such that diω = v for
i ≤ n and dn+1ω = α. Conversely, we consider an n+ 1-simplex ω such that dn+1ω = α and
diω = v for i ≤ n. Again, we look at a lifting diagram

(∆n+1 × ∂∆1) ∪ (Λn+1
n+1 ×∆1)

((α,v),(v,...,v, )) //

��

X.

∆n+1 ×∆1
θ

33

Then the composite

∆n ×∆1 dn+1×id−−−−−→ ∆n+1 ×∆1 θ−→ X

is the desired homotopy between α and v (rel ∂∆n). Hence, [α] = e in πn(X, v).

Our next goal is to show that the groups πn(X, v) are abelian for n ≥ 2. To see this, we
are going to define the so called loop-space ΩX for a simplicial set such that πn(X, v) ∼=
πn−1(ΩX, v) and show that πn−1(ΩX, v) is abelian for i ≥ 1. In order to do so, we need
to construct the long exact sequence of a fibration, similarly to Algebraic Topology. We
start with the homotopy groups for fibrations. Let X and Y be fibrant simplicial sets and
p : X → Y be a Kan fibration. Suppose v ∈ X0 is a vertex and let F denote the fibre of p
over ∗ := p0(v) ∈ Y0 in the sense that the diagram

F
i //

��

X

p

��
∆0

∗
// Y

is a pullback diagram. In other words F is the simplicial set p−1(∗). We note that F is
fibrant, as well. Indeed, for a given map

Λnk //

��

F //

��

X

p

��
∆n // ∆0 // Y

there is a lift ∆n → X, since p is a fibration. By the universal property of the pullback, we
get a map ∆n → F , such that the left square in the diagram commutes.
We want to construct a map ∂ between the n-th homotopy group of Y and the (n − 1)-th
homotopy group of F with vertex v ∈ F0. To do this, we look at a commutative diagram of
the form

Λn0

��

(,v...,v)// X

p

��
∆n

θ

>>

α
// Y,
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where α represents an element of πn(Y, ∗). Here θ exists since p is a fibration. By the
commutativity of the diagram, d0θ lies in F and did0θ = v for all 0 ≤ i ≤ n−1. Hence, [d0θ]
is an element in πn−1(F, v) and it is independent of the choice of the lift θ and representative
of [α]. To see this, we take another representative α′ : ∆n → Y for the class in πn(Y, ∗) and
a lift in the diagram

Λn0

��

(,v...,v)// X

p

��
∆n

θ′
>>

α′
// Y.

Since [α] = [α′], there is a homotopy h : ∆n ×∆1 → Y between these two simplices, which
is constant with value ∗ on ∂∆n ×∆1. Choose an extension h̄ in the diagram

(∆n × ∂∆1) ∪ (Λn0 ×∆1)

��

((θ′,θ),( ,v,...,v)) // X

p

��
∆n ×∆1

h̄

22

h
// Y,

as in the proof of Lemma 4.5.5. Then the composite

∆n−1 ×∆1 d0×id−−−→ ∆n ×∆1 h̄−→ X

is the desired homotopy d0θ ' d0θ
′ which takes values in the fiber F by the properties of h

and the commutativity of the diagram. For a more detailed proof I refer to [Hov99] Lemma
3.4.8. Altogether, this leads to the well-defined map

∂ : πn(Y, ∗)→ πn−1(F, v), [α] 7→ [d0ω],

the so called boundary map. As in higher homotopy theory for topological spaces, it forms
part of a long exact sequence.

Lemma 4.5.8. (i) The boundary map ∂ : πn(Y, ∗) → πn−1(F, v) is a group homomor-
phism if n > 1.

(ii) The sequence

...→ πn(F, v) i∗−→ πn(X, v) p∗−→ πn(Y, ∗) ∂−→ πn−1(F, v)→ ...

...
p∗−→ π1(Y, ∗) ∂−→ π0(F ) i∗−→ π0(X) p∗−→ π0(Y )

is exact in the sense that kernel equals image everywhere (where we view the zeroth
homotopy groups as pointed sets with base point the corresponding vertex, and the
kernels are defined as the preimage of the basepoint and i is the projection from the
above pullback diagram).

Proof. (Cf. [GJ99] Chapter I Lemma 7.3 and [Hov99] Lemma 3.4.9)
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(i) We start by proving that ∂ : πn(Y, ∗) → πn−1(F, v) is a group homomorphism for
n ≥ 2. To do this, we take three representatives αn−1, αn, αn+1 : ∆n → Y of elements
in πn(Y, ∗). Consider an (n+ 1)-simplex ω such that

∂ω = (∗, . . . , ∗, αn−1, αn, αn+1),

i.e. [αn−1][αn+1] = [dnω] = [αn]. For each three of these simplices we consider the
diagrams

Λn0

��

( ,v...,v)// X

p

��
∆n

θi

>>

αi

// Y,

i = n− 1, n, n+ 1. These lifts induce a diagram

Λn+1
0

��

( ,v,...,v,θn−1,θn,θn+1) // X

p

��
∆n+1

γ

55

αi

// Y,

with an extension γ : ∆n+1 → X such that

∂(d0γ) =(d0d0γ, ..., dn−1d0γ, dnd0γ)
=(d0d1γ, d0d2γ, . . . , d0dn−1γ, d0dnγ, d0dn+1γ)
=(v, . . . , v, d0θn−1, d0θn, d0θn+1).

Thus we have calculated that [d0θn] = [d0θn−1][d0θn+1] and therefore

∂([αn−1][αn+1]) = [d0θn] = [d0θn−1][d0θn+1] = ∂([αn−1])∂([αn+1]),

as desired.

(ii) We prove the exactness of the sequence at

πn(X, v) p∗−→ πn(Y, ∗) ∂−→ πn−1(F, v).

The rest of the proof is mostly straightforward using Lemma 4.5.7. We start by showing
that ker(∂) ⊆ im(p∗). To see this, we choose an n-simplex α : ∆n → Y with diα =
∗ = p(v) for all i, representing an element in πn(Y, ∗), such that ∂[α] = [v]. We choose
an extension in the diagram

Λn0

��

( ,v...,v)// X

p

��
∆n

θ

>>

α
// Y,
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with ∂[α] = [d0θ] = [v]. Hence, there is a homotopy h : ∆n−1 ×∆1 → F (rel ∂∆n−1)
between d0θ and v. Consider the lifting diagram

(∆n × {0}) ∪ (∂∆n ×∆1)
(θ,(h,v,...,v)) //

��

X

p

��
∆n ×∆1

h̄

33

α◦pr1
// Y.

Then the restriction β := h̄|∆n×{1} : ∆n → X defines a class in πn(X, v) such that
α ' p ◦ β by the homotopy

∆n ×∆1 h̄−→ X
p−→ Y.

Hence, [α] = p∗[β] and [α] ∈ im(p∗), as desired. It remains to show that the image
of p∗ is contained in the kernel of the boundary map. If p∗([α]) ∈ im(p∗) for a given
representative α : ∆n → X, then the diagram

Λn0

��

( ,v...,v)// X

p

��
∆n

α

>>

p◦α
// Y

commutes. Therefore, ∂(p∗([α])) = [d0α] = [v].

Before we can define the loop space, we need to introduce the concept of the so called path
space.

Definition 4.5.9. Let X be a fibrant simplicial set and v ∈ X0 a vertex. The path space
PX is defined to be the pullback in the diagram

PX

��

pr // Hom(∆1, X)

(d0)∗
��

∆0
v
// Hom(∆0, X) ∼= X.

Further, the map π : PX → X is defined to be the composite

PX
pr−→ Hom(∆1, X) (d1)∗−−−→ Hom(∆0, X) ∼= X.

Remark 4.5.10. Since (dε)∗, ε = 0, 1 are fibrations by Corollary 4.3.5 (ii), the path space
PX is fibrant, as discussed before.

Lemma 4.5.11. The group (respectively set) πi(PX,w) is trivial for i ≥ 0 and for all
vertices w ∈ PX0, and π is a fibration.
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Proof. (Cf. [GJ99] Chapter I Lemma 7.5) We will mostly sketch this proof, since all methods
used have been demonstrated before. The maps dε : ∆0 → ∆1 are anodyne, since they are
contained in the second set of inclusions in Proposition 4.2.8, for n = 0. We want to show
that (d0)∗ has the right lifting property with respect to all inclusions ∂∆n ↪→ ∆n. To see
this, one uses the same technique as in the proof of Proposition 4.3.4 applied to p : X → ∆0

and i : ∆0 → ∆1. Then the diagram

∂∆n //

��

Hom(∆1, X)

��
∆n // Hom(∆0, X)×Hom(∆1,∆0)

Hom(∆0,∆0)
Hom(∆0, X)

can be identified with a lifting diagram over the fibration p (cf. Remark 4.3.6). Note that
the map obtained on the left is anodyne, as mentioned above. By pullback, PX → ∆0 has
the RLP with respect to ∂∆n ↪→ ∆n as well. Now let α : ∆n → PX represent an element in
πn(PX,w). Then we can find an extension in the diagram

∂∆n+1

��

(w,...,w,α) // PX.

∆n+1

44

Therefore, [α] = e in πn(PX,w) by the homotopy ∆n+1 ∼= ∆n×∆1 → PX. Any two vertices
w,w′ ∈ PX0 are homotopic by choosing a lift in the diagram

∂∆1

��

(w′,w) // PX.

∆1

77

Altogether, we have that all groups πn(PX,w) are trivial for all vertices w ∈ PX0. It
remains to show that π : PX → X is a fibration. The map sits inside the pullback diagram

PX

π

��

// Hom(∆1, X)

i∗

��
Hom(∂∆1, X)

∼=
��

X
(v,idX) //

��

X ×X
pr1
��

∆0 // X,

where i∗ is a fibration by Corollary 4.3.5 with i : ∂∆1 ↪→ ∆1.
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Now, we finally reach the definition of the loop space.

Definition 4.5.12. Let X be a fibrant simplicial set with vertex ∗ ∈ X0. The loop space ΩX
is the fiber of π : PX → X over the base point ∗.

Remark 4.5.13. By the definition of π and PX, an n-simplex of ΩX is a simplicial map
f : ∆n ×∆1 → X such that the restriction of f to ∆n × ∂∆1 maps into ∗.

Lemma 4.5.14. Let X be a fibrant simplicial set and ∗ ∈ X0 a vertex. Then the homotopy
groups πn(ΩX, ∗) are abelian for n ≥ 1. Here we view ∗ : ∆0 → X as a 1-simplex ∆1 →
∆0 ∗−→ X of X (mapping to ∗ under both d0 and d1, hence it is an element of (ΩX)0).

Proof. (Cf. [GJ99] Chapter I Lemma 7.6) The set πn(ΩX, ∗) consists of homotopy classes of
maps of the form

∆n ×∆1 α // X

(∆n × ∂∆1) ∪ (∂∆n ×∆1)

OO

// ∆0

∗

OO

relative (∆n × ∂∆1) ∪ (∂∆n ×∆1). One can define two multiplications on πn(ΩX, ∗) as

Λn+1
n ×∆1

��

// X

∆n+1 ×∆1
ω

:: and ∆n × Λ2
1

��

// X,

∆n ×∆2
θ

::

where the first one is our known multiplication [α] · [β] = [ω ◦ (dn × id)] on the simplicial
homotopy groups. We denote the second one by [α]? [β] = [θ ◦ (id×d1)]. Similarly as above,
one can show that this multiplication is well-defined with identity element [∗]. Moreover,
one can show that

([α1] ? [β1]) · ([α2] ? [β2]) = ([α1] · [α2]) ? ([β1] ? [β2])

for all [α1,2], [β1,2] ∈ πn(ΩX, ∗) and by the Eckmann–Hilton argument both multiplications
are equal and abelian.

Corollary 4.5.15. Let X be a fibrant simplicial set and ∗ ∈ X0 a vertex. Then πi(X, ∗) is
abelian if i ≥ 2.

Proof. By the long exact sequence applied to π : PX → X, we get the exact sequence

...→ πn(ΩX, ∗)→ πn(PX, ∗)→ πn(X, ∗)→ πn−1(ΩX, ∗)→ ...

Since πn(PX, ∗) = 0, it follows that πn(X, ∗) ∼= πn−1(ΩX, ∗). Hence, πn(X, ∗) is abelian for
n ≥ 2.
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4.5. Simplicial homotopy groups

Example 4.5.16. Let G be a group. For the simplicial homotopy groups of the nerve BG
there are isomorphisms

πi(BG, ∗) =
{
G, if i = 1,
0, if i 6= 1,

for all vertices in BG (cf. [GJ99] Chapter I Proposition 7.8).

For maps of fibrant simplicial sets, we can define our next class of morphisms in the model
structure on sSet. We will generalize this definition to arbitrary morphisms in our category
later on.

Definition 4.5.17. Let f : X → Y be a morphism of fibrant simplicial sets. Then f is
called a weak equivalence if for each vertex x0 of X the induced map

f∗ : πi(X,x0)→ πi(Y, f(x0))

is an isomorphism for all i > 0, and the map

f∗ : π0(X)→ π0(Y )

is a bijection.

Remark 4.5.18. We have already seen, that a trivial fibration (cf. Definition 4.2.10) is
indeed a fibration. If p : X → Y is a morphism of fibrant simplicial sets with the RLP with
respect to all inclusions ∂∆n ↪→ ∆n, n ≥ 0, then it is a weak equivalence as well. First of
all, the induced map p∗ : π0(X)→ π0(Y ) is bijective. Indeed, if w is a vertex in Y , then the
lifting diagram

∂∆0

��

// X

p

��
∆0

==

w
// Y

shows the surjectivity, where the upper horizontal map is the unique map from the initial
object. If we have v, v′ ∈ X0 with [p(v)] = [p(v′)] in π0(Y ), then the homotopy in Y lifts to
a homotopy v ' v′ in X via the diagram

∂∆1

��

(v′,v) // X

p

��
∆1

==

h
// Y.

Hence, p∗ is injective. To prove that p∗ : πi(X,x)→ πi(Y, p(x)) is an isomorphism for i > 0,
one takes the fibre Fx of p over p(x). As we have seen above, Fx is fibrant and Fx → ∗ has
the RLP with respect to all ∂∆n ↪→ ∆n, n ≥ 0, as well. With the same argument as in
the proof of Lemma 4.5.11, one can show that π0(Fx) = ∗ and πi(Fx, x) = 0 for all i > 0.
Applying this to the long exact sequence for fibrations, p∗ : πi(X,x) → πi(Y, p(x)) is an
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isomorphism for all i ≥ 1.
Conversely, it is also true that a map of fibrant simplicial sets which is a fibration and a
weak equivalence, is a trivial fibration as defined in Definition 4.2.10. The proof is long and
technical and is omitted here. However, we record this result for later reference:

Theorem 4.5.19. A map between fibrant simplicial sets has the right lifting property with
respect to all inclusions ∂∆n ↪→ ∆n, n ≥ 0, if and only if it is a fibration and a weak
equivalence.

Proof. See [GJ99] Chapter I Theorem 7.10.

4.6 The model structure on sSet

In this last section, we define the remaining classes of morphisms for the model structure on
the category of simplicial sets. We will discuss the necessary properties of these morphisms
to show that the category of simplicial sets has the required properties Q1 to Q4 of a model
category (cf. Definition 3.1.1 and Definition 3.1.5). This will then prove Theorem 4.6.10.
We start with the definition of cofibrations in sSet.

Definition 4.6.1. A morphism i : X → Y of simplicial sets is called a cofibration if it is an
inclusion.

Proposition 4.6.2. Let f : X → Y be a trivial fibration in sSet. Then |f | : |X| → |Y | is a
Serre fibration.

Proof. (Cf. [Hov99] Lemma 3.2.5) By definition, f has the RLP with respect to all ∂∆n →
∆n, n ≥ 0, and therefore also the RLP with respect to all inclusions in sSet, as we have
seen before. In particular, we can find an extension f̄ in the commutative diagram

X

(id,f)
��

id // X

f
��

X × Y

f̄
;;

pr2
// Y.

This extension turns f into a retract of pr2 via the diagram

X

f
��

(id,f) // X × Y f̄ //

pr2
��

X

f
��

Y // Y // Y.

Therefore, |f | is a retract of |pr2| : |X| × |Y | → |Y |, which is a fibration since the geometric
realization preserves products (cf. Proposition 2.3.8) and by Example 3.2.4 (i). Thus, |f | is
a fibration.
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An important result is the following theorem of Quillen, which states that the realization
functor preserves fibrations.
Theorem 4.6.3. (Quillen)
Let p : X → Y ∈ sSet be a Kan fibration. Then its realization |p| : |X| → |Y | is a Serre
fibration.

Proof. See [GJ99] Chapter I Theorem 10.10 or [Hov99] Corollary 3.6.2.

The detailed proof can be found in the literature as cited above. Here, I will just give a
rough outline of the argument. To start with, one defines when a fibration is called minimal
(cf. [Hov99] Definition 3.5.5). Then one proves that any fibration p : X → Y can be
factorized as p = p′r, where p′ is a minimal fibration and r is a trivial fibration. The
realization of a minimal fibration is a Serre fibration (cf. [GJ99] Chapter I Theorem 10.9 or
[Hov99] Corollary 3.5.7 and Proposition 3.6.1). This result is also called the Gabriel-Zisman
Theorem. We have already seen that the realization of a trivial fibration is a Serre fibration
in Proposition 4.6.2. Thus, the theorem of Quillen follows since fibrations are closed under
composition. The theory of minimal fibrations is slightly technical and would be worth a
whole section of its own. For the details, I refer to [GJ99] Chapter I Section 10 or [Hov99]
Section 3.5.
Proposition 4.6.4. Let X be a Kan complex and let ηX : X → S(|X|) be the unit of the
adjunction | | a S. Then ηX induces an isomorphism

(ηX)∗ : πi(X, v)
∼=−→ πi(S(|X|), ηX(v))

on the simplicial homotopy groups for all i ≥ 0 and all v ∈ X0.

Proof. (Cf. [GJ99] Chapter I Proposition 11.1) First, we note that S(|X|) is fibrant again by
Lemma 4.1.6. Therefore, the homotopy groups for S(|X|) are defined. The proof is done by
induction on i. The base case for i = 0 is similar to the proof of Lemma 4.5.2 (details can be
found in the reference). For the induction step we assume that ηX induces an isomorphism

(ηX)∗ : πi(X, v)
∼=−→ πi(S(|X|), ηX(v))

for for all fibrant simplicial sets X and 0 ≤ i ≤ n. Then we obtain a commutative diagram

πn+1(X, v)
(ηX)∗ //

∼=
��

πn+1(S(|X|), ηX(v))

��
πn(ΩX, v)

(ηΩX)∗

∼= // πn(S(|ΩX|), ηΩX(v)),

where we already know that the lower horizontal and left vertical arrows are isomorphisms
(cf. the proof of Corollary 4.5.15). Here,

S(|ΩX|) //

��

S(|PX|)

��
∆0 // S(|X|),
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is again a pullback diagram, since right adjoints always preserve limits. As in the proof of
Corollary 4.5.15 it now remains to show that S(|PX|) has trivial homotopy groups. To see
this, we use the lifting diagram

(PX × ∂∆1) ∪ (∆0 ×∆1)

��

((idP X ,v),v) // PX

��
PX ×∆1

h

33

// ∆0,

where the extension h exists (cf. Remark 2.4.11), since PX → ∆0 has the RLP with respect
to all inclusions ∂∆n ⊆ ∆n, for n ≥ 0. Having this property, PX is also called contractible.
Since the realization functor preserves products, this gives us a homotopy |h| between the
identity map and a constant map, so |PX| is contractible and has trivial homotopy groups.
As discussed in the direct follow-up to this proof (applied to the space |PX|), also S(|PX|)
has trivial simplicial homotopy groups. This completes the proof.

We suppose Y to be an arbitrary topological space and v ∈ Y a point. If we recall the
definition of simplicial homotopy groups, then πn(S(Y ), v) consists of homotopy classes of
maps α : ∆n → S(Y ) relative ∂∆n such that α is constant with value v on ∂∆n in the sense
that the diagram

∆n α // S(Y )

∂∆n

OO

// ∆0

v

OO

commutes. The homotopy group πn(Y, v) consists of homotopy classes of maps (In, ∂In)→
(Y, v) relative ∂In. Using the adjunction

HomsSet(∆n, S(Y )) ∼= HomTop(|∆n|, Y )

we get an isomorphism between those homotopy groups, because any homotopy h : ∆n ×
∆1 → S(Y ) between two n-simplices α, β : ∆n → S(Y ) induces a homotopy

h : |∆n| × |∆1| ∼= In × I → S(Y )

between their adjoints. One can also run this adjunction backwards in a similar way. Ther-
fore, there are isomorphims between πn(Y, v) and πn(S(Y ), v). Applying this to the topo-
logical space |X| and using our previous Propostion 4.6.4, we get the following result.

Corollary 4.6.5. Let X be a Kan complex. Then there are isomorphims

πi(X, v) ∼= πi(S(|X|), ηX(v)) ∼= πi(|X|, |v|)

for all i ≥ 0 and all vertices v ∈ X0 between the simplicial and topological homotopy groups.

Hence, a morphism between Kan complexes is a weak equivalence if and only if its realization
is a weak equivalence in the category of topological spaces. This leads us to the definition
of our next class of morphisms for our model structure on sSet, the weak equivalences,
generalized for maps between arbitrary simplicial sets.
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Definition 4.6.6. A map f : X → Y is defined to be a weak equivalence in sSet, if the map
|f | : |X| → |Y | is a weak equivalence of spaces in Top.

With this definition, the following proposition follows directly from the corresponding result
in the category Top Proposition 3.2.3.

Proposition 4.6.7. Let

X
f //

g   

Y

E
h

>>

be a commutative diagram in sSet. If any two of f , g and h are weak equivalences, then so
is the third.

Proposition 4.6.8. Let p : X → Y be a map between simplicial sets. Then p is a Kan
fibration and a weak equivalence if and only if p has the RLP with respect to all inclusions
∂∆n ↪→ ∆n, n ≥ 0.

Proof. (Cf. [GJ99] Chapter I Theorem 11.2) Suppose that p : X → Y has the RLP with
respect to J . Then p is a Kan fibration as we have mentioned earlier (cf. Remark 4.2.11).
We want to prove that

S(|p|) : S(|X|)→ S(|Y |)

is a weak equivalence, since by the natural isomorphism πi(S(|X|), ηX(v)) ∼= πi(|X|, |v|),
then |p| is a weak equivalence in Top, as well. One starts by defining the set π0(Y ) to be the
set of equivalence classes of vertices of Y for the relation generated by the vertex homotopy
relation for an arbitrary simplicial set Y . Formally, for two vertices y, z ∈ Y0 we have y ' z
if and only if there are vertices

y = y0, y1, . . . , yn = z ∈ Y0

and 1-simplices

v1, . . . vn ∈ Y1

such that ∂vi = (yi−1, yi) or ∂vi = (yi, yi−1) for i = 1, . . . , n. If Y is a Kan complex, then
this definition coincides with the definition of π0(Y ) as the zeroth homotopy group. The
canonical map ηY : Y → S(|Y |) induces a bijection π0(Y ) → π0(S(|Y |)) for all simplicial
sets Y (similar to the base case in the proof of Proposition 4.6.4). By the required lifting
property of p the map p∗ : π0(X)→ π0(Y ) is a bijection as well, similarly to the discussion
in Remark 4.5.18. Thus, also the induced map S(|X|)→ S(|Y |) is a bijection. It remains to
show that

πi(S(|X|), x)→ πi(S(|Y |), p(x))
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is an isomorphism of simplicial homotopy groups for all vertices x of X and all i ≥ 1. To see
this, one proceeds as in the proof of Proposition 4.6.4 as follows. Let Fx be the fibre

Fx
j //

i
��

X

p

��
∆0

p(x)
// Y,

and thus S(|Fx|) is the fibre of S(|X|) → S(|Y |) over S(|p|(|x|)). One proves analogously
that Fx and hence S(|Fx|) both have trivial homotopy groups by looking at lifting diagrams
of the form

(Fx × ∂∆1) ∪ (∆0 ×∆1)

��

((idFx ,w),w) // Fx

��
Fx ×∆1 //

33

∆0.

We note that together with p : X → Y also Fx → ∆0 has the RLP with respect to all
boundary inclusions. And finally, by using the long exact sequence, the statement follows.
For the inverse implication one uses minimal fibrations to show that any Kan fibration which
is additionally a weak equivalence has the required lifting property. For a detailed proof I
refer to [GJ99] Chapter I Theorem 11.2.

Proposition 4.6.9. Let i : X → Y be a map between simplicial sets. Then i is anodyne if
and only if it is a cofibration and a weak equivalence.

Proof. (Cf. [GJ99] Chapter I Theorem 11.3 and [JT] Proposition 3.4.2) By definition, any
anodyne extension is a cofibration. We consider the class of morphisms in sSet consisting
of all inclusions i : X ↪→ Y such that the realization |i| : |X| → |Y | is a trivial cofibration
in Top. One can easily check that this class is saturated by using the colimit-preserving
property of the geometric realization functor. It also contains all horn inclusions Λnk → ∆n,
since their realizations have the LLP with respect to all fibrations, by definition, and all
homotopy groups of |Λnk | ∼= Dn−1 and |∆n| ∼= Dn vanish, since these spaces are contractible.
Thus all anodyne extensions are contained in this class and are weak equivalences, as well.
For the reverse implication we assume that i : X ↪→ Y is a weak equivalence. By Theorem
4.2.12 i can be factorized as

X
i //

j   

Y

E

p

>>

where j is anodyne and p is a fibration. Since j is a weak equivalence, by the first implication,
the 2-out-of-3 axiom gives that p is a weak equivalence as well. Hence, it is a trivial fibration
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in the sense of Definition 3.1.2. Applying this fact to the right lifting diagram

X
j //

i
��

E

p

��
Y

idY

//

s

>>

Y,

over the monomorphism i we get an extension s : Y → E. This extension turns i into a
retract of j via the diagram

X

i
��

idX // X
idX //

j
��

X

i
��

Y s
// Y p

// Y

and therefore i is anodyne by the definition of saturated classes.

Now we have all morphism classes for our model structure on the category of simplicial sets.
Summarizing our previous definitions and properties, the fibrations are the class of I − inj
maps where I is the set of horn inclusions

I = {Λnk ↪→ ∆n | n ≥ 1, 0 ≤ k ≤ n}.

The cofibrations are all inclusions of simplicial sets and a morphism in sSet is a weak
equivalence if and only if its realization is so in the category of topological spaces. Let

J = {∂∆n ↪→ ∆n | n ≥ 0}

denote the set of all boundary inclusions. As seen in the previous two propositions (cf.
Proposition 4.6.8 and Proposition 4.6.9), the trivial fibrations are precisely the class J -inj
and the trivial cofibrations are the anodyne extensions, i.e, the saturated class generated by
I. Taken all the results together, we can now state and prove the main result of this work.

Theorem 4.6.10. With the above fibrations, cofibrations and weak equivalences the cate-
gory sSet of simplicial sets is a model category.

Proof. (Cf. [GJ99] Chapter I Theorem 11.3 and [Hov99] Theorem 3.6.5) The proof is mainly
a summary of the previous results. The "2-out-of-3" axiom Q1 has been discussed in Propo-
sition 4.6.7. Axiom Q2, stating that the structure is closed under retracts, is trivially true
in all three cases. For example, the lifting property for Kan fibrations holds immediately for
the retract morphism. For weak equivalences, the property follows from the corresponding
axiom in Top, where it is trivial as well. The lifting axiom Q3 has been discussed in Propo-
sition 4.2.7 for fibrations and trivial cofibrations and in Lemma 4.2.3, Example 4.2.5 and
Remark 4.2.11 for the reverse case. The two possible factorizations in axiom Q4 are proven
in Theorem 4.2.12 and 4.2.14.

And finally, we prove the theorem, that the fundamental adjunction indeed is a Quillen
equivalence.
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Theorem 4.6.11. The realization and singular functors | − | : sSet � Top : S form a
Quillen equivalence and hence induce inverse equivalences on the corresponding homotopy
categories.

Proof. (Cf. [GJ99] Chapter I Theorem 11.4 and [Hov99] Theorem 3.6.7) First, we note that
these two functors are a Quillen adjunction, since it is an adjunction (cf. Proposition 2.2.4)
and the singular functor preserves fibrations and trivial fibrations (cf. the discussion after
Remark 4.1.5 and Corollary 4.6.5). Clearly, any simplicial set X ∈ sSet is cofibrant and
any topological space Y ∈ Top is fibrant. Therefore, it remains to show that the unit and
counit map

ηX : X → S(|X|) and εY : |S(Y )| → Y

of the adjunction | | a S are both weak equivalences for all simplicial sets X and spaces Y
in sSet and Top, respectively. We start to prove this property for ε. Let Y be a topological
space. It suffices to show that the map πi(|S(Y )|, v)→ πi(Y, v) is an isomorphism for every
point v of Y . Since S(Y ) is fibrant by Lemma 4.1.6, we have seen in Corollary 4.6.5 that
there are natural isomorphisms πi(S(Y ), v) ∼= πi(|S(Y )|, v). It remains to see that there are
isomorphisms πi(S(Y ), v) ∼= πi(Y, v). But this has been discussed in general above, after
the proof of Proposition 4.6.4. Next we look at the map η. Let X ∈ sSet be an arbitrary
simplicial set. By axiom Q4, we get a factorization diagram

X //

j   

∗

E

??

with j a trivial cofibration and E a Kan complex, since E → ∗ is a fibration. Thus, X is
weakly equivalent to a fibrant simplicial set. For ηE : E → S(|E|) we have already seen
that this is a weak equivalence (cf. Proposition 4.6.4). And therefore, ηX has to be weak
equivalence as seen in the diagram

X
ηX //

j

��

S(|X|)

S(|j|)
��

E ηE

// S(|E|),

where S(|j|) is a weak equivalence as well, since the composite functor S| | preserves them
by definition and by above isomorphisms of homotopy groups.
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