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Abstract. — Let A be an elliptic curve over the rationals with multiplicative re-
duction at a prime p, and let K be a quadratic field in which p is inert. Under a
generalised Heegner assumption, our previous contribution [BSV20] to this volume
attaches to (A, p, K) balanced diagonal classes in the Selmer groups of the p-adic
Tate module of A over certain ring class fields of K. These classes are obtained as
p-adic limits of geometric classes in the cohomology of higher-dimensional Kuga—Sato
varieties. The main result of this paper relates these diagonal classes to p-adic loga-
rithms of Heegner or Stark—Heegner points, depending on whether K is complex or
real respectively.

To Bernadette Perrin-Riou on her 65th birthday

Contents
1. Description and statement of results............................. 1
2. Derivatives of big logarithms IT.......... ... .. ... ... .. .. 7
3. Factorisations of p-adic L-functions.............................. 18
References. ... 25

1. Description and statement of results

Let (f,g., ha) be a triple of p-adic Hida families of common tame level N. Assume
that f interpolates the weight 2 cusp form attached to an elliptic curve A/Q with
multiplicative reduction at p, and that g, and h, respectively specialise in weight 1 to
(p-stabilised) theta-series g, and h,, associated to the same quadratic extension K/Q,
having good reduction at p and inverse characters. Let x(f,g,, o) be the diagonal
class constructed in our previous contribution [BSV20] to this volume. This article
builds on the main results of loc. cit. to relate (a component of) the Bloch-Kato
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logarithm of the specialisation at (2,1, 1) of k(f,g,, ha) to the product of the formal
group logarithms of two Heegner points, respectively Stark—Heegner points when K is
imaginary, respectively real. See Theorem A below for the precise statement, holding
under Assumption 1.1.

Our strategy goes along the following lines. Let iﬂpf (f, 9o ha) denote the restric-
tion to the line (k, 1, 1) of the triple product p-adic L-function .,?pf (f,94, ha) defined
in loc. cit.. Section 3 shows that fpf (f,9asha)? factors as a product of two Hida-
Rankin p-adic L-functions attached to A/K. A suitable extension of main result of
[BDO07], resp. [BD09] for K imaginary quadratic, resp. real quadratic shows that the
second derivative at k = 2 of the above mentioned Hida—Rankin p-adic L-functions
is equal to the square of the formal group logarithm of a Heegner point, resp. Stark—
Heegner point. Theorem A of [BSV20]| describes .iﬂpf(f,ga,ha) as the image by
a branch of the Perrin—Riou logarithm of the restriction of x(f,g,,ha) to the line
(k,1,1). Theorem A of this paper then follows from Proposition 2.2, which extends
results of [Ven16] to obtain a formula for the second derivative of the Perrin-Riou
logarithm of the above class at k = 2.

More precisely, let A/Q be an elliptic curve of conductor Nyp, having multiplicative
reduction at a prime p > 3 (hence p { Ny). Let K/Q be a quadratic extension of
discriminant dx coprime with Nyp and quadratic character ex : (Z/dgZ)* — po.
Let

f=Y an(A)-q" € So(N;p,Z)"
n>1
be the weight-two newform associated with A by the modularity theorem of Wiles,
Taylor—Wiles et al., and let

vy Gg — Q* and v, : Gx — QF

be two ray class characters of K. Write Ny = NfJr . fo, where fo is the product of
the prime divisors of Ny which are inert in K/Q. We make the following

Assumption 1.1. —
1. (Heegner hypothesis) p is inert in K/Q, N;~ is square-free and EK(—Nf_) = +1.
2. (Modularity) When K/Q is real, both vy and vy, have mized signature.
3. (Cuspidality) The characters vy and vy, are not induced by Dirichlet characters.
4. (Self-duality) The central characters of v, and vy, are inverse to each other.
5. (Local signs) The conductors of vy and vy, are coprime to p - dg - Ny.

6. (Residual irreducibility) The F,[Gql-module A,(Q) of p-torsion points of A is
irreducible.

Let ve denote either v, or v, and let L/Q, be a finite extension containing the
Fourier coefficients of f and the values of v¢. In light of Assumption 1.1, the two-
dimensional L-representation Indg(yg) of Gq induced by v¢ : Gg — L* is odd and
irreducible. Thanks to the work of Hecke [Miy06, Section 4.8|, it arises from the
cuspidal weight-one theta series

§=" ve(a) N € Si(Ne, xe)-
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Here the sum runs over the ideals a of Ok which are coprime to the conductor f¢ of vg,
Na denotes the norm of a, N¢ = di - Nf¢ and x¢ = ex - Ve, where 7 Gq — Q"
is the central character of v¢. The form £ is primitive of conductor N¢ and the dual
of its Deligne—Serre L-representation is isomorphic to Indg(ug).

Since p is inert in K/Q, one has a,(§) = 0 so that the p-th Hecke polynomial of £
is equal to

X2+ xe(p)-
Let ag € 0* be a fixed square root of —x¢(p), and write
. X¢\p
(1) o =&(q) = Be - €(¢7) € S1(Nep, xe),  with fe = z(g) = —ag

for the corresponding p-stabilisation. (Here we assume that L contains cg.) Since
Xg * X is the trivial character, without loss of generality we may assume that the
roots oy, By, an, B, are ordered in such a way that

(2) ag-ap = Bq - Br = ap(A) = £1.

As explained in Section 5 of our contribution [BSV20], the work of Hida and Wiles
implies the existence of a unique triple (f*, g%, h!,) of L-rational primitive Hida fami-
lies of tame conductors (N, Ny, Ni) and tame characters (xf, X g, x») which specialises
to the triple (f, ga, ha) at w,. Note that the triple (f*, g*, h*) satisfies Assumptions
1.1 and 1.2 stated in Section 1 of [BSV20] (cf. Equation (1) and Assumption 1.1.3),
and that w, = (2,1,1) is ezxceptional in the sense of Section 1.2 of loc. cit. (cf.
Equation (2)).

With notations as in Section 1.1 of loc. cit., denote by N the least common multiple
of Ny, Ny and Ny, by V(f, 94, ha) the big Galois representation attached to any choice
of level-N test vector for (f*, g%, h!,) (cf. Remark 1.3(3) of loc. cit.), and by

(190 o) € HLy(Q,V(F, 90 ha))

the corresponding diagonal class. In [Hsi20] Hsieh constructs a distinguished level- N
test vector (f, g, ha) (denoted (f*, g%, k) in [BSV20, Section 6.1]) for (f*, g%, hf),
and computes explicitly the local constants which appear in the interpolation formulae
satisfied by the p-adic L-function fl-f(f,ga, h,) (cf. Sections 1.1 and 6.1 of loc. cit.).

Let V,(A) = Tay(A) ®z Q be the p-adic Tate module of A with Q,-coefficients,
let Y1 (N¢p) be the open modular curve over Q of level I'1 (N¢p), and let V(f) be the
f-isotypic quotient of Hi (Y1(Np)g, Qp(1)) (cf. Sections 2.1 and 2.4 of [BSV20]).
Fix a modular parametrisation

Poo : Y1(Nyp) — A.

This induces an isomorphism of G'q-modules

(3) Poox : VI(f) = Vp(4)
which we often consider as an equality in what follows. Set
V(f.9:h) = Vp(A) @q, V(g) @1 V(h),

where V(§) = V(&) is the canonical model of the dual of the Deligne-Serre represen-
tation of £ = g, h arising from the specialisation of V(£,) at weight one (cf. Section 5
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of [BSV20]). The fixed test vector (f,g,,hs) and modular parametrisation ., de-
termine a projection V(fy, 9,1, Pa1) — V(f,g,h) (denoted w, in Section 2 below),
mapping the specialisation at w, of k(f,g,,ha) to a global class
Kaa(.faga h) € Hl(Qv V(f,g, h))
Let ¢ be the non-trivial element of Gal(K/Q) and let v§ : Gk — L* be the
conjugate of v¢ by ¢. By Assumption 1.1(4) the characters
p=vg-v, and Y =v,-v;

are ring class characters of K (i.e., ¢¢ = ¢~ and ¥° = ¢~1). Note the factorisation
of Gq-representations

(4) V(f,9,:h) = V,(A) ® Indg () © V,(A) @ Indg ().
In particular the Bloch-Kato Selmer group Sel(Q, V (f, g,h)) decomposes as
(5) Sel(Q, V(f,g,h)) = Sel(K,, Vp(A))¥ & Sel(Ky, V,(A)Y,

where K./K denotes the ring class field having the same conductor as - and
Sel(K.,V,(A)) is the submodule of the Selmer group Sel(K.,V,(A)) ®q, L of
Vp(A) ®q, L over K. on which Gal(K./K) acts via the inverse of -.

It follows from Equation (4) and the Artin formalism that the Garrett triple prod-
uct L-function L(f ® g ® h,s) = L(V(f,g,h), s) factors as the product of the Rankin
L-functions L(A/K, ¢, s) and L(A/K,,s), which have both sign —1 in their func-
tional equation by Assumption 1.1.1. In particular L(f ® g®h, s) vanishes to order at
least two at s = 1. Theorem B of [BSV20] in the exceptional case then proves that
the diagonal class kqa(f,g,h) is crystalline at p, hence belongs to the Bloch—Kato
Selmer group Sel(Q, V (f, g, h)) of the representation V(f,g,h) of Gq:

Faa(f;9,h) € Sel(Q,V(f,g,h)).
Write g for either ¢ or 1. The articles [BD07] and [BDO09] (see also [GSS16])

associate to f and p a p-adic L-function

interpolating the central values of the L-series L(fx/K, o, s) of the base change of fj
to K twisted by 0. Their definition, which depends only on the primitive family f*,
is recalled in Section 3.2 below.

Write K, for the completion of K at the inert prime p. Noting that p splits
completely in K,/K, let Frob, in Gal(K,/Q) be the Frobenius element determined
by the fixed embedding of Q into Qp, mapping K, to K,. Denote by

log,,, + A(Kp)L = A(Kp)®L — K, ®q, L

the L-linear extension of the composition

A(Kp)®QP = Hf-lin(Kp7 V(f)) loﬁ; tanKp (f) =~ Kp7

where H  is the finite subspace of H!, tan Kk, (f) is the tangent space of the de Rham
module H°(K,,V(f) ®q, Bar). the first isomorphism arises from the map oo and
Kummer theory, log, is the Bloch-Kato logarithm and the second isomorphism is
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evaluation at the canonical differential w; in the dual of tang, (f) associated with
[ (see Section 2.5 of [BSV20], in particular Equations (29), (30) and (32)). Under
our running assumptions, the p-adic L-function L,(f/K, o) vanishes at k = 2 to
order at least two. An extension of the main results of [BD07] and [BDO09] in
the imaginary quadratic and real quadratic setting respectively — see in particular
[GSS16, LMH20, LV14, Mok11| — prove the existence of a non-zero algebraic
constant Q € Q* such that
2

d
(6) C?‘ : WLp(f/K, 0)k=2 = Q- logf}f(Pg)7

where ¢y = ¢;(poo) € K, is an explicit non-zero p-adic constant (depending on o)
introduced in Section 2.2 below (see also Remark 1.2), and the point P; in A(K))L
are defined as follows.

If K is imaginary quadratic, choose a primitive Heegner point P in A(K,) and let

P, = Z o(c)™'-P° and Py :PQ+E-P§r°bP for e = a,(A).
seCal(K,/K)

Note that the global point P is viewed in Equation (6) as a local point via our fixed
embedding of Q into Qp. When p is quadratic one checks that Frob, acts on P, via
a sign €, (see for example the discussion in Section 4 of [BD07]).

If K is real quadratic, the local point P, in A(K,) is defined as in the above
formula, by exploiting the action of Pic(O,) on a Stark-Heegner point P € A(K,)
attached to K,, where Pic(O,) = Gal(K,/K) is the Picard group of the order O, of
K corresponding to K, via class field theory.

Remark 1.2. — The main results of [BD07, BD09] are stated in terms of the
logarithm
logy = log,, OSO%alte P A(K) — Kp,

where g4 is the Tate period of Aq,, ¥Tate : K;/qf‘ =~ A(K,) is the Tate parametri-
sation and log,, : K — K, is the branch of the p-adic logarithm which vanishes
at ga (see Section 2.2 below for more details). The p-adic constant c¢; € K (de-
fined in Equation (14) below) accounts for the discrepancy between log, and the
logarithm log,, . introduced above (cf. Lemma 2.1 below). The nontrivial element
of Gal(K,/Q,) acts on ¢y as multiplication by € = a,(A), hence C? belongs to Q.
Similarly logif (Pg) belongs to L, so that the identity (6) takes place in L.

Denote by
,pr(f7ga7ha) € ﬁ.f

the restriction of fpf(f,ga, h,) to the line (k,1,1). Theorem 3.1 below shows the
factorisation formula

(7> gpf(f>gavha)2:'Q{'Lp(f/Kvﬁp)'LP<f/K’w)7

where &/ is a bounded analytic function on Uy such that <7(2) is an element of Q*.
Under the assumptions of this section, Proposition 2.2 gives a formula for the
second derivative of the Perrin-Riou big logarithm of a balanced class along the line
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(k,1,1) at the point k = 2. Combined with [BSV20, Theorem A], this gives the
equality

d2
(8) C? ’ W"%pf(f7 Yo, ha)k=2 =Q- logﬂﬁ (resp(maa(fv 9, h)))a

where Q is an explicit constant in Q* and loggg (resp(ﬁaa (f, 9, h))) is the evaluation
of the p-adic Bloch-Kato logarithm of res,(kaq(f,g,h)) at a canonical differential
Wi @ wg, @ wp, (see Section 2 for details).

Combining Equations (6), (7) and (8) yields

Theorem A. — For Q in Q* one has the equality
loggg (resy (kaa(f, 9, 1)) = Q- log,,, (F;) - log,,, (P)).

Recall that the complex L-function L(f ® g ® h, s) attached to V(f, g, h) vanishes
to order at least 2 at s = 1 by Assumption 1.1.

Corollary B. — Let K be imaginary quadratic. If o = @ or v is quadratic, assume
that € = €,. Then
2

%L(f ®gRh,s)sm1 #0 = loggs(resy(kaalf 9,h))) # 0.

Proof. — Under the current assumptions P, is non-zero whenever P, is non-zero.
Corollary B then follows from Theorem A combined with S.-W. Zhang’s proof of the

Gross—Zagier formula for Shimura curves [ZhaO1]. O

Remark C. — Theorem A and a suitable converse to the Gross—Zagier—Kolyvagin
theorem show that the equivalent statements of Corollary B are also equivalent to the
equality

(9) Sel(Q,V(f,9,1)) = L - kaa(f,9.h) ® L - rgs(f,9,h),

that is the Selmer group Sel(Q, V' (f, g, h)) is generated by the global class ko (f, g, k)
and its counterpart xgs(f,g,h) defined by replacing the pair (g, ha) with (gg, hg)
(cf. Equation (2)).

To show that the equality (9) follows from the non-vanishing of the second deriva-
tive of L(f ® g ® h, s), one notes that this condition implies that Sel(Q, V(f,g,h))
is two-dimensional by the Gross—Zagier—Kolyvagin theorem. The classes kqa(f, g, h)
and kgg(f,g,h) are both non-trivial by Corollary B, hence one is reduced to prove
that they are linearly independent. This follows again from Corollary B, noting that

IOgBﬁ (I‘eSp(KB,@(f, 9, h’))) =0

since the Selmer class rgg(f, g, h) arises from the balanced class k(f, gz, hg).
Conversely, assume that the classes kao(f,g,h) and kgg(f,g,h) generate the
Selmer group Sel(Q, V(f,g,h)), so that

Granting a converse of the Gross—Zagier—Kolyvagin theorem of the form

(11) dimp Sel(K,,V,(A))? <1 = ord,=1L(f/K,e,s) = dimy Sel(K,, V,(A))°
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for o equal to ¢ and v as above, one concludes readily as follows. Since the sign
of the functional equation of L(f/K, g, s) is —1, Equations (10) and (11) imply that
L(f/K,o,s) has a simple zero at s = 1 for p = ¢ and %, hence L(f ® g ® h,s)
has a double zero at s = 1. The above converse theorem may be approached by an
extension of the methods of the forthcoming work [BLV17], which prove Birch and
Swinnerton-Dyer formulae for general families of anticyclotomic characters of p-power
conductor and are suited to extend such formulae to arbitrary ring class characters.

In the real quadratic setting, the next result relates the (local) Stark—Heegner
points to the (global) Selmer group Sel(Q, V(f, g, h)).

Corollary D. — Assume that K is real quadratic. If the Stark-Heegner points Pg
and Py are both non-trivial, then dimr, Sel(Q, V (f,g,h)) = 2.

Proof. — Theorem A implies that koo (f,9,h) and kgg(f,g,h) are non-zero. The
same argument as in Remark C shows that these classes are linearly independent. [

Remark E. — Under the assumptions of Corollary D, the definition of koo (f, g, 1)
and kgg(f, g, h) combined with Theorem A imply that the Stark—Heegner point P;
(0 = ¢, ) arises as the restriction at p of a Selmer class in Sel(K,, V,(4))2. We
refer the reader to the contribution [DR20] by Darmon-Rotger to this volume for an
extensive discussion of this application (see in particular Theorem A of loc. cit.).

2. Derivatives of big logarithms II

This section should be regarded as a continuation of [BSV 20, Section 6], where a
study of multivariable Perrin-Riou logarithms is undertaken. After the preliminary
Sections 2.1 and 2.2, Proposition 2.2 in Section 2.3 establishes a formula for the second
derivative of the Perrin-Riou big logarithm of a balanced class along the line (k, 1,1)
at the point k = 2, which constitutes a crucial ingredient in the proof of Theorem A.

Let (f,g,h) and (f*, g%, hi) be as in Section 1. Denote by (f,g,,ha), or more
simply (f,g,h), any level-N test vector for (f*, g ,h!) (where N is as in Section
1). Throughout this section Assumption 1.1 is in force. In particular Assumption
6.3 of loc. cit. is satisfied (as 4,(Q) is p-distinguished by Tate’s theory, since p > 5,
cf. Section 2.2 below), hence one can consider the distinguished level-N test vector
(f*,g%,h.) introduced in Section 6.1 of loc. cit.. (To ease notations, the latter was
simply denoted (f,g,,ha) in Section 1).

2.1. The projection wyg, and the class kao(f,g,h). — Associated with the
choice of a test vector (f,g,h) = (f,g,, ) we define a Gq-equivariant projection

(12) @gh : V(fa,91.h1) — V(f. gar ha)

by the following recipe. Let £ denote one of f, g, or h,. For each positive integer d
dividing N/N¢ denote by

Uq - YI(N7p) — Yl(Nﬁap)
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the degeneracy map corresponding to multiplication by d on H under the analytic
isomorphism defined in Equation (6) of loc. cit.. The Q-rational map v, induces
pull-backs v} : V*(&*) — V*(&€) (for - = 0,+), which in turn induce morphisms
vy s D*(E)F — D*(€)* and v} : HY(Q,, V*(&")) — HY(Q,, V*(£)') between the
associated period rings and Galois cohomology groups. As d runs over the positive
divisors of N/Ng, the images of D*(£*)* under the operators v} generate D*(£)*
over Ug. As a consequence, if w; and 7 (for - = (), %) denote the Og-adic differentials
associated to & in Equations (118) and (122) of loc. cit. respectively, one has

*

np = vp(nf), wg=vglwg) and wp =vi(w})

with Og-linear combinations vg of the operators vj. (See Section 5 of [BSV20],
especially Equation (95), Equations (117)—(123) and the discussion following them,
for more details.) Denote by vg. : V(§) — V(&°) the dual of vi under the perfect
pairing (103) of loc. cit. and set

Wfrgh = Vfx & Vg & Vpy - V(fvgah) — V(.fnvguaahna)'

With a slight abuse of notation, the map (12) is defined as the base change of w¢gp un-
der evaluation at w, = (2,1, 1) on Ofgn (cf. Equations (106) and (107) of [BSV20]).
Recall the modular parametrisation

oo Y1(Nyp) — A
fixed in Section 1 (cf. Equation (3)) and set
Wy = Poox & id o Wrrgrh?t ¢ V(f27glah1) — V(fv gavha) = V(fvga h)7

(where id denotes the identity on V(gq) @ V(ha) = V(g) @ V(h).) Then with the
notation of Section 1 (cf. Remark 1.3(3) and Theorem B of [BSV20])

Kaa(fagvh) = w*(ﬁ(anglvhl)) € Sel(Q7V(fagvh))

For each local crystalline class 3 in H} (Qp, V(f, ga, ha)) define the 33-component
of its p-adic logarithm by

logﬁ,é’ (3) = <10gp<3)?wf ® Wya oY wh"‘>fgaha 3

where wy is the differential associated with f in Equation (30) of [BSV20], the weight-
one differentials wy, and wy, are the specialisations of wg —and wj,  at weight one
(cf. Equation (129) of [BSV20]), and the pairing (-,-);, ;. arises from the product
of perfect dualities (-,-), introduced in Equations (31) and (128) of [BSV20], for
€ = f,9a,hq. Finally for any global Selmer class « in Sel(Q,V(f,g,h)) define (cf.
Equation (8))

logﬁﬁ(resp(/@)) = loggg (Kp),
where k, € HE (Qp, V(f, ga» ha)) is defined by pocs @ id(kp) = res, (k).
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2.2. Tate’s theory and the constant c¢;. — The Tate parametrisation (cf. Chap-
ter V of [Sil94]) yields a rigid analytic isomorphism

PTate * EqA — AKP

between the Tate curve
i Z
Eq, = G;;g,Kp/QA

over K, and the base change Af, of A to K. Here G;:Lg’ K, is the rigid multiplicative
group over K, and g4 € pZ, is the Tate period of Aq, (cf. loc. cit.).
Denote again by

PTate * Vp(EqA) = Vp(A)

the isomorphism of G'k,-modules induced by the Tate parametrisation on the p-adic
Tate modules with Q,-coefficients, and define

Tate = @’E;te O Poox * V(f) = VP(EQA)

as the composition of its inverse with peox @ V(f) = V,(A) (cf. Equation (3)). It
induces a morphism of filtered modules (denoted by the same symbol)

©Tate : Dar.x, (V(f)) = Dar,x, (Vo (Eq,)),

where Dar,x, (+) = HO(KP, - ®q, Bar) is Fontaine’s de Rham functor.
The projection Gf;f K, — E,, gives rise to an exact sequence of G ,-modules

(13) 00— Qp(l) — Vp(Eq,) — Qp — 0.
Applying Fontaine’s de Rham functor Dar k, (-) = H°(K,,-®q, Bar) to the previous

exact sequence yields a morphism Dgr k,(Vy(Eq,)) — Dar,k,(Qp) = K, which
restricts to an isomorphism FilODdRpr(Vp(EqA)) = K. Define

14 € Fil’Dyg,k, (Vy(Eq,))

for the generator corresponding to the identity of K, under this isomorphism. On the
other hand, the newform f corresponds (under Faltings’ comparison isomorphism) to
a canonical generator wy of FilODdRpr(V(f)) = Fil'ViR (f) ®q, Kp (cf. Equations
(29) and (30) of [BSV20], noting that V(f)(—1) = V*(f)). The non-zero p-adic
constant

cy € K;
which appears in Equation (6) of Section 1 is defined by the identity
(14) PTatc(wf) =Cf - 1A~

With the notations of Section 1, the following lemma shows that Equation (6) is a
restatement of the main results of [BD07, BD09] (cf. Remark 1.2).

Lemma 2.1. — Up to sign, one has the identity
cr

— Y log,.
deg(poc) 2

log,,, =



10 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

Proof. — Let u € Ok be a p-adic unit and let P = ¢mate(u) be its image in A(K))
under the Tate parametrisation, so that

(15) log 4 (P) = log,,(u),

where log, : K — K, is the p-adic logarithm.
For V equal to one of Q,(1),V,(4), V,(E,,) and V(f), denote by tangy (V) the
tangent space of Dgr,x, (V') and by

logy : Hg,(Kp, V) — tang (V)

the Bloch—Kato logarithm (viz. the inverse of the Bloch-Kato exponential map for
V', which is an isomorphism). After identifying (’)}p@QP7 resp. A(K,)®Q, with the
finite subspace of H' (K, Q,(1)), resp. H*(K,, V,(A)) via Kummer theory, one has
(16)

log, (u) = (logq, (1) (), 1),, = (logy, (&, ) (1) 1a)y, = (logy, (4)(P), Prate(14) )y,

where

(s Dar,x, (Qp(1)) ®k, Dar.x,(Qp) — Dar,k,(Qp(1)) = K,

is the pairing associated with the multiplication m : Q,(1) ®q, Qp — Q,(1), and
for A equal to either A, or E,,, the morphism

(- hw : tangge, (Vi (A)) @k, Fil’ Dar i, (Vo (A)) — Dar,x, (Qp(1)) = K,y

is the one induced by the Weil pairing W : V,,(A) ®q, Vp(A) — Qp(1). (The first
identity in Equation (16) is well known, while the others follow from the functoriality
of the Bloch—Kato logarithm and of the Weil pairing, after noting that the Weil pairing
on E,, and the multiplication map m are compatible via the exact sequence (13).)

Under the natural isomorphism between V,,(A) and Hj (Ag, Qp(1)), the Weil pair-
ing agrees (up to sign) with the cup-product pairing

Hj(Aq, Qp(1)) ®q, Heu(Aq, Qp(1)) — HE(Aq, Qp(2)) = Q,(1)

associated with the multiplication map Q,(1) ®q, Qp(1) — Q,(2), hence

<10ng(A) (P)v @Tate(lA)>W = deg(poo) ' <10gV(f)(p;ol*(P))a pgol* © SDTate(]-A)>f-

By the definitions of log,, ; and cy, the right hand side of the previous equation equals

deg(poo)
5] P).
” 0g,,, (P)

Together with Equations (15)-(16), this prove that log,, (P) and %- log 4(P) are
equal for each point P € A(K),) in the image of (9}}? under the Tate parametrisation.

Since (’);{p has finite index in E,, (K,), this concludes the proof. O
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2.3. An exceptional zero formula and Equation (8). — As above, denote by
(f,9,h) = (f,9.,ha) alevel-N test vector for (f*, g%, ht). Let

3¢ Htl)al(Qm V(f,g,h))

be a local balanced class such that

3% pu.(3) € Hh(Qp, V(S g1, h1)).

In other words we assume that the specialisation 3 of 3 at w, = (2,1, 1) belongs to the
Bloch-Kato Selmer finite subspace of H'(Q,, V(f5,91,h1)). The aim of this section
is to prove the following exceptional zero formula for the analytic function

Zr(3:k,1,1) = go.g(fvgah)(3)|(k,l,m):(k:,1,1) € 0y,

viz. the restriction to the line (k,1,1) of the image of 3 under the Perrin-Riou loga-
rithm 2y = Zog(f,g,h) (cf. [Venl6]). In light of Theorems A and B of our article
[BSV20], taking (f,g,h) = (f*, g}, h}) and 3 = res,(k(f,g,h)) in its statement
yields the key Equation (8) used in Section 1 to derive Theorem A.

Proposition 2.2. — One has ordg=2Z5(3;k,1,1) > 2 and (up to sign)

c2.d72$(3'k:11) - gl (1 _l'log (=1a10))
e L3 s = B ; 65 (@sgn(3))-

We first prove a simple lemma. As in Section 1.1 of [BSV20], denote by Ay the
ring of analytic functions on Uy bounded by one, so that 0 = Af[1/p]. Let
P GQp — A}k

be a continuous character such that ®(-)g—2 is the trivial character, and let V be a
free Op-module of finite rank on which Gq,, acts via ® - xcye. Let V =V @3 L be the
base change of V' under evaluation at k = 2 on fp. Multiplication by k —2 on V
gives rise to an exact sequence

17) - — HY(Q,, V) "3 H(Q,,V) — H'(Q,,V) = HT(Q,, V) — - .

As ®(-)g=2 is the trivial character of Gq, the representation V' is the direct sum of a
finite number of copies of L(1), hence there are natural isomorphisms

H'(Q,, V)= Q;®V(-1) and H*(Qp,V)=V(-1)

arising from Kummer’s theory and the invariant map inv, : H*(Q,, Q,(1)) & Q,
respectively. One considers the previous isomorphisms as identities in the rest of this
section. Define

By - QuOV(~1) 25 HX(Q,, V) — H(Q,, V) @5 L = V(-1),

where the second map is the natural projection (and the isomorphism comes from
the exact sequence (17), since H3(Q,, V') vanishes). Because ®(-)gx—2 is the trivial
character its derivative defines a morphism

d
dikq)(')k:2 € Hl(vaL) = Homeont (Qy, L),
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where the isomorphism is induced by the reciprocity map
rec, : Qy©Q,, = Gapr®Qp
(normalised as in [BSV20, Section 9.2]). Taking the tensor product over L with
V(—1) this induces a morphism (denoted by the same symbol)
d
—o
dk

Lemma 2.8. — By = %@(')kzg.

(V=2 : QRV(—1) — V(-1).

Proof. — Without loss of generality one can assume that V' is equal to Of(® - Xcyc),
hence V' = L(1). Let = q®v be an element of Q*®L and let ¢, : Gq, — L(1) be
a l-cocycle representing it. Let ¢, : Gq, — Of(® - Xcyc) be the 1-cochain defined
by viewing ¢, as a function with values in 0f. Clearly é,(-)g=2 = ¢;. If d denotes
the differential in the complex C¢,.(Qp, O (P - Xoyc)) of inhomogeneous continuous
cochains of Gq, with values in 0f(® - xcyc), then

deg(o,7) = (®(0) = 1) Xeye(0) - ca(T) = %(b(a)k:2 ) (chc(O') ’ Cw(T)) (k=2)+---,

where the dots denote higher terms in the Taylor expansion at k = 2. This and local
class field theory yield
d d
— —P(Ns_ - ) = —¢ —2 U,
Bv (z) mvP(dk (Vr=2Ucl(cz) 2 (@)g=2 - v

where U is the cup-product associated with the multiplication map L&, L(1) — L(1).
The lemma follows. [

Proof of Proposition 2.2. — By assumption 3 = 2,(2)) is the image of a (unique)
cohomology class Q) in H'(Q,, 2V (f, g, h)) under the map induced by the inclusion
v: F2V(f,g,h) = V(f,g,h). Set

= pwo*(ﬁ.)) € Hl(Qp>y2V<f27glvh1))7

so that 3 = pu,«(3) is the image of y under the natural map. By construction (cf.
[BSV20, Proposition 7.3])

(18) L5 (3) = L5 (ps(D))-

If @ and o denote either « or 3, define as in Section 9.2 of loc. cit. (cf. the proof of
Proposition 9.3 of loc. cit.)

V(fa)eo = V(f2) @1 V(g1)e @1 V(h1)o,

where - = 0,4+ and V(&) = V(&) and V(&)o = V(&)™ for € = g,h. In
the present setting the form &, is regular, viz. ¢, and f¢, = —oag¢, are distinct,
hence V(&) is equal to the subspace V (&;)¥P»=* of V(¢,) on which an arithmetic
Frobenius Frob, acts as multiplication by e¢ (cf. Section 9.2 of loc. cit.). It follows
that for - = () and - = & there are canonical direct sum decompositions

(19) V(f2:91,01) = V() e ©V(F2)ap ©V(F2)5a © V(F2)5s
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of L[Gq,]-modules. In particular V(f;,g1,h1); = V(f3)55 is a direct summand of
V(f3,91,h1)" (cf. Equation (191) of loc. cit.), hence

pr«(n) =0

since by assumption 3 is crystalline (cf. Section 9.1 of loc. cit., in particular Equation
(193)). As a consequence

(20) pr+D)=(k=2)De+1-1) - D+ (m—-1) Ym
for classes 9. in H(Q,, V(f,g,h)s) (cf. the proof of Proposition 7.3 of loc. cit. or
[Ven16, Lemma 5.6]). Set

Ve = pwo*(@k) € Hl(va V(f27glﬂ hl)f)'

Because Z% is Opgp-linear, Equation (18), Proposition 9.3(1) of loco citato and The-
orem 3.14 of [GS93| give

(21)

D) 3ok 1 Dk = o)y — £ (1)) =~ ()
YR O, R L k=2 =90 7)f ¥ Dk fﬁordp(qA) Delga)f,

where

1
—5 ¢ = dlogay (k) k=2

is the logarithmic derivative at k = 2 of the p-th Fourier coefficient a,(k) of f*
(cf. Section 9.2 of [BSV20]). In particular this implies that the quantity yx(ga)y is
independent of the choice of 9, satisfying Equation (20).

As shown in the proof of Proposition 9.3 of loc. cit. the class of the extension

(22) 0— V(fz)gg — V(fa)ps — V(fz)Eg —0
in

EthL[GQP}(V(fQ)Ega V(fz)/?g) = Q,@q,Homp (V(f2) 55, V(fz)gﬁ(_l))
is equal to

a5, = qa®0y,

for an isomorphism d¢, : V(f3)55 — V/( fz)gﬂ( —1), and the connecting morphisms 83}2
associated to (22) satisfy
(23) 9%,(v) = 4a®dys,(v) = q,Uv and 93, (p®v) = —p(qa)- 0, (v) = —qz,U(p®0)

for all ¢ in Homeont(Qy, L) and v in V(f;) 545, where U is the cup-product induced by
the evaluation map. Define

V(s = (V(f) @6, fii;ckm) @L V(g @L V(h)*.
These are 0f[Gq,]-modules, sitting in a short exact sequence
0—=V(flzs — V(Fles — V(flzs — 0

which specialises to (22) under evaluation at k = 2 on 0. Identify the Op-module
V(f)sp with the direct sum of V(f)gﬂ and V(f)z5 under a fixed Op-splitting of the
previous exact sequence. There is then a continuous map

a5 : Gq, — Homg, (V(£)55. V() 5s)
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satisfying the following properties. For all v* € V/( f)gﬂ and 0 € Gq, (cf. Equation
(101) of loc. cit.)

Weye(0) - KELE (0 _ o K?éy_ck/Q o) _ _
(24) o(vt) = cyel0) - Keye (9) s and o(v ):—T/Jf( ) ( )~'U +qf(o,v7),

¢f¢gl d}hq (U) wgll/Jhl (0)
where 9y : Ggp — A} is the unramified character of Gq, which sends an arith-
metic Frobenius Frob, to a,(k), and similarly vg ,vp, : Ggp — 0™ are defined by

g, (Frob,) = b,(1) and 9p, (Frob,) = c,(1) respectively. (Here one uses that both
xf and Xg - Xn are equal to the trivial character.) Moreover the specialisation

a5 (Je=2 : Gq, — Qp(1) ®q, Home, (V(£y) 54, V(£2)55(—1))

of gy at k = 2 (via Home, (V(f) 54,V (F)f5) ®2 L = Homp(V(£y) . V(£2) ) Is &
1-cocycle satisfying

(25) cl(ar(Jr=2) = gs,-
For future reference denote by ®f : Gq, — A} the character
(26) Op = kB2 gy

50 that @y (-)r=s is the trivial character and Gq, acts on V(f)$; via Xcye - @5
Denote by

Vs € H'(Qp, V(f)ps) and Dips € H (Qp, V(£)55)
the images of 9) and )i under the maps induced by the projections

F2V(f.g,h) — F*V(f, g1, h1) — V(f)sp

and

V(f,g,h)f - V(fvglvhl)f = V(‘f)gﬁ

respectively. (Here V(f,g,,h1) =V (f) @ V(g,) ®L V(hl)(/@éy}k/?). Note that the

discussion leading to Equation (19) yields a similar canonical decomposition of the
O¢|Gql-module V(f,g;,h1).) According to Equation (20) the cohomology class 9 sg
is represented by a 1-cocycle of the form

Ygg = Yﬁtﬁ @ (k-2)- Yﬁ_ﬁ : GQp — V(f)[gﬁ,
for 1—.c0chains Yis  Gq, = V(f)sp- Using Equation (24) the cocycle relation for
Ygp gives
(27) dYﬁ"’B(U, 7)=—(k—2)-qs(0,Yg5(7)) and dY;=0.

In particular the specialisations yz5 : Gq, — V(fQ)'ﬂB of Y5 at k = 2 are both

1-cocycles and by construction
(28) i (035) =vpp and (k—2)-cl(Y5) = (k—2)- Vs,
where Ugﬁ = cl(ygﬁ) € Hl(Qp,V(fg)é:B) are the classes represented by ygﬁ, the

map i} is the one induced by the inclusion it : V(fz)gﬁ — V(f,)pp and pgs in
HY(Q,,V(f,)pp) is the image of y under the map induced by the projection onto the

P
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direct summand V (f,) s of Z2V(fy,91,h1). The second identity in Equation (28)
implies

De(qa)r =g5(q4) s
(cf. the remark after Equation (21)), hence Equation (21) can be rephrased as

1 d? -1
29 1- )2 23k, s = ————— 1 .
(29 (1-3) sk 1 Dime = s w30
In light of Equations (24)—(26) and Lemma 2.3, the first equalities in Equations (27)
and (28) yield
(30)  —0f,(v55) = vy (cl(az, (0,y55())))

d 1

= _va;ﬁ (Ugﬁ) = —@‘I’f(‘);ﬂ)kﬂ Ty loqu(UEB)-
More precisely, the first equality follows from Equation (23), the second from Equa-
tions (25) and (27) and the definition of 5V(f)2rg’ and the third from Lemma 2.3.
Finally, for each unit u in Z5, one has (cf. Equation (26))

d d _ d _ 1
a5 2 (Whe=2 = %ny/f H(recy(u))p=2 = @(“m s = 5 logy(u)

and
%éf(p)k:Q = Qg Qh - %ap(k’)k:2 =5 %
which in light of the identity £3" = (l:zi’; ((Zi)) proved in [GS93, Theorem 3.14] yields

the last equality in Equation (30). (Here one denotes again by
logy, : QuAV (£2)45(—1) — V(f2)45(=1) = Deris(V(f2) 55)

the morphism induced by log,, = log, fiji"(((f]’:)) -ordy, 1 Q) — Q).
As the connecting morphisms 8;22 and —8} are adjoint to each other under the
cup-product induced by (-,-) ¢, 1, , Equations (23), (29) and (30) combine to give

(31)

1 d? 1 _
<1 B p> g 2Ok ez = 50 s (1080, (05). 7 (1, 8, ©ma) ) g,

Since f has trivial character, one has V*(f) = V(f) (—1) for - = 0, + (cf. Sections
2.5 and 5 of [BSV20]). There are then natural Gal(K,/Q,)-equivariant isomorphisms

FillDdR,Kp(V*(f>) o FiloDdR’Kp(V(f)) o Dcris,Kp(V(f)_) =V(f)~ ®q, Kp,
under which we identify the differential (cf. Section 2.5 of loco citato)
wy € Fil'Viz(f) = Fil' Dag &, (V*(f)) 9K/ Q0)

with an element of V(f)~. Lemma 2.4 below proves that
2
°f

0w Qwy, Qwp, ) =t—F"—

’ nf ®wgo¢ ®wha
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in V*(f);gﬁ =V(f)T(-1) ®q, V*(9)~ @1 V(h)~, hence by construction

- deg(poo) .
(32) 0z, (nf, ® wg, ©wh,) = £ 5= T (wr @ Wy, ©wn.),
!
where @} ), = v};®vg®u}, is the adjoint of @wggp under the Poicaré dualities (-, -) ,, 4,
and (-, ) fo0.h1- Finally, the first identity in Equation (28) gives

(33) log,,(n55) = ma5(10g,(3)),
where mgg is the composition
Dar(V(f2: 91, hl))/FﬂO = Dy(V(f2, 91, 01)") — Dcris(v(-fZ)g,B)

arising from Equations (191) and (192) of [BSV 20| and Equation (19). Since by con-
struction the 33-logarithm loggs factors through the projection s, the proposition
is a direct consequence of Equations (31)—(33). O

Lemma 2.4. — Let
9 V()™ — KyaV(f)T(-1)
be the connecting morphism associated with the eract sequence of Gk, -modules
0— V()T — V() — V() —0.
Then 0y = qa®8¢ for an isomorphism
8 V()T — V(N (1)
satisfying, up to sign, the following identity in V (f)T(—1):

c
Op(wr) = Ty
T deg(poe)
Proof. — Consider the following diagram of Q,[G i, ]-modules with exact rows, in

which all the vertical maps are isomorphisms.

(34) 0——=Q,(1) —=V,(E, Qp 0
PTate l ¢ Tate J/ PTate l

00—V, (A)* Vp(A) ——=Vp(4)” —=0
] T N

0——=V(f)* V(f)m —=0

Here prate is the map induced on the p-adic Tate modules by the Tate uniformisation
E,, = Ag,, and the first row is the short exact sequence induced by the natural

projection Gm k, — Eqa (cf. Introduction).
The class in

Xt (¢, 1 (Qpy Qp(1)) = H' (K, Qp(1) = K;©Q,
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represented by the first row equals g4®1, hence the associated connecting morphism
OTate : Qp — K;®Qp

satisfies

(35) OTate(1) = qa®1.

After setting

Yaa = : Ordp S Homcont(K;a Qp) = Hl(Kpa Qp)v

ordy(qa)
this implies

(36) (Yga» Orate(1)),, = 1,
where
<'v '>m : Hl(Kp’ Qp) ®Qp Hl(Kp’ Q;v(l)) — Kz)

is the local Tate pairing attached to the multiplication m : Q, ®q, Q,(1) — Q,(1).
Moreover, the Diagram (34) and Equation (35) imply that the connecting morphisms

Oa: VyA) — KLGVo(A) (1) and 0y : V()™ — K;&V()*(-1)
associated respectively to the second and third rows of Diagram (34) are of the form
(37) 0a=qa®04a and Of =qa® Iy
for isomorphisms d4 : V,(A)” — V,(A)"(=1) and 67 : V(f)~ — V(f)T(-1).

Up to sign, one has the identities

(wr,0p(wr))p = (Vaa ®wyp, Op(wp)) ¢

1
= deg(pn) (Vg @ Poox(@r); 04 (90 (Wr)) ) wen

(38) = % : <’Y¢IA ® (P%ate(]‘% 8A(<p%ate(1))>Weil
= ﬁ ) <7qA ® (p';ate(l)’ ‘PJTrate(aTate(l)»Wcil

C
f
= . ate (1 ’

deg(poo) <’Y(ZA’8T t ( )>m

where (-, )yeir : H (Kp, Vo (A) ") @q, H (Kp, Vp(A)~) — K, is the local Tate pairing
associated with the Weil paring on V,(A). Indeed, the first equality follows from
Equation (37). The second equality follows (up to sign) from the functoriality of
Poincaré duality under finite morphisms of curves and its compatibility with the Weil
pairing on elliptic curves. The third equality follows from the definition of ¢; (cf.
Equation (14)). The fourth equality follows from Diagram (34). The fifth and last
equality follows from the functoriality of the Weil paring under isogenies, after noting
that the Kummer duality between Q,(1) and Q, induced by the Weil pairing on
Vp(Eq,) is equal (up to sign) to the multiplication map m.

Since V(f)T(—1) = Deyis(V(f)™) is a one-dimensional Q,-vector space generated
by 1y and (wy,ny) ; = 1, the lemma follows from Equations (36) and (38). O
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3. Factorisations of p-adic L-functions

This section is devoted to the proof of Theorem 3.1 below, viz. the crucial factori-
sation formula (7) of Section 1, under the assumptions listed therein. In light of the
discussion of Section 1 (see Equations (7) and (8)) and of Section 2, this is the last
step in our proof of Theorem A.

The reader is cautioned that the notations for p-adic L-functions in force here are
consistent with those of [BSV20, Section 6] and differ slightly from those of Section
1. Thus L,(f* g* h*) denotes the square of the triple product square-root p-adic
L-function gpf (f*,g*, h*) attached to our fixed choice of test vector (f*,g*, h*), and
the restriction of L,(f*, g%, h*) to the line (k,1,1) is denoted

Lp(fﬁvgﬁhhli) = Lp(fﬁ»gou ha)

(recall that g* and h* interpolate the chosen p-stabilisations g, and h,, respectively).
Accordingly, the Hida—Rankin p-adic L-functions associated to the ring class charac-
ters ¢ and 1 are denoted by L,(f*, ) and L,(f*,v) (as observed in Section 1, they
depend only on the primitive family f*).

Theorem 3.1. — Up to shrinking Uy if necessary, there is a factorisation

Lp(fﬁag?h hnl) =4 - Lp(fn/Kv 90) ' Lp(fu/K7 w)a
where &/ € Of is a bounded analytic function on Uy such that

< (2) € Q(gi, h1)",
Q(gi, hY) being the field generated by the Fourier coefficients of g§ and h.

3.1. The Mazur—Kitagawa p-adic L-function. — Let y be a Dirichlet character
of conductor coprime to N¢p. For every classical point k € U;l let L(f{,x,s) be the
Hecke L-series of f{ ® x, defined as the analytic continuation of the Dirichlet series
> ons1 X(n)an(fi)-n~° converging absolutely for R(s) > (k+1)/2. A result of Shimura
gives complex periods Qoo (f)T and Qoo (ff) ™ in C* satisfying the following properties.
One has

QOO(f]i)+ : QOC(f]:)i = (f]nw f]i)prT(k)a
where r(k) is equal to one if k = 2 and to zero otherwise. Upon setting
Qoo (ffx) = Qoo (f7)7EX
(sign(x) being the sign of x(—1)) the quantity
(k/2—1)!-a(x) - L(fi, x. k/2)
(—=2mi)k/2=1 - Qoo (£, X)

belongs to the number field Q(ff,x) generated over Q by the Fourier coefficients
of fi and the values of x. Here g(x) = > ae(z /e z)- X(a) - G is the Gauk sum of

(39) L(f]i»Xvk/Q)alg = S Q(f]g;aX)

X = x~!, where ¢, is the conductor of y and (., = e*/°x. One calls L(f, X, k/2)alg
the algebraic part of the central critical value L(f{, x, k/2).
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According to a result of Mazur and Kitagawa (cf. [Kit94, GS93, BD07]) the
algebraic central values L(f}f, X, k/2)alg, defined for k € U¢, can be interpolated by
an analytic function

Lp(fuaX) € ﬁf7

which we call the Mazur-Kitagawa p-adic L-function of (f*,x). More precisely, up
to shrinking Uy if necessary, there exist for every k € U;l non-zero p-adic periods

AL AL €Qp, with AT =1,

such that
(40)

: __ ysign(x) P* " x(p) P21 x(p) "
Ly(f*,x)(k) = A : (1 - W) (1 —er(p) - ap(k))'L(fkaXvk/2)alga

where e;(p) = 0 if k = 2 (ie. if f is p-new) and e;(p) = 1 otherwise (i.e. if f} is
p-old).

Remark 3.2. — 1. The p-adic L-function L,(f*, x) is the restriction to the central
critical line s = k/2 of a two-variable p-adic L-function

LY(£1x) = LY®(f%,X) (k. §) € Op&0.yc

of the weight variable k € Uy and cyclotomic variable j (cf. [BSV20, Section 7.1]).
For every classical point k € de one has

LMR(F5 ) (R, 5) = X000 Ly (F5,%) (),

where L, (f},X) = Lp(ff, X)(J) € Oeye is the cyclotomic p-adic L-function of fi®@x (cf.
[MTT86]) defined as the Mellin transform of a measure on Z; x (Z/c,Z)* associated
to the sign(x)-modular symbol attached to f/. In order to construct Lg/IK(f”, X) one
interpolates these modular symbols, and the p-adic periods )\f are the error terms

arising from the p-adic interpolation.
2. If k=2 and

x(p) = ap(2)
(with ap(2) = ap(A) = 1), the Euler factor 1 — A

ap (k)
(40) vanishes. In this ezceptional zero situation (cf. [MTT86]) L,(f*, x) vanishes at
k = 2 independently of whether the complex L-series L(f,x,s) vanishes at s = 1 or

not.

2—1
?) which appears in Equation

3.2. Hida—Rankin p-adic L-functions attached to quadratic fields. — Let
K/Q be a quadratic field of discriminant coprime to N;p, satisfying the Heegner
hypothesis given in Assumption 1.1(1). To lighten notations, assume in the real
quadratic case that N ;= 1 (so that one works with forms on GL3).

The Hida—Rankin p-adic L-function attached to the pair (f*,0) (0 = ¢ or 1)
introduced in [BD07] and [BD09] is an analytic function

Lp(fu/K7 Q) € ﬁf
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satisfying the following interpolation property. For every classical point k € U}l

ph—2 2
A L0 = 002 (1 L) LUK 0 k2

where the algebraic part of L(f}/K,o,k/2) is defined by

(/2 —1)12. dlE=1/2
(2mi)=2 - Qoo (ff, 0)
Here L(f}/K,0,5) = L(fi ® ¥,,s) is the Rankin-Selberg convolution of f; and
the weight-one theta series ¢, associated to o, and the complex and p-adic periods

Qoo (ff, 0) and Q,(f}, o) are defined as follows.
When K is real quadratic, then

sign 2 sign 2
Qoo (F7:0) = (o (FI=@), Q(ffr0) = (F9)%,
When K/Q is imaginary quadratic, one sets
Qoo(f]iv Q) = (flgv f]:)prT(k) ’

where r(k) =1 if k = 2 and r(k) = 0 otherwise.
We finally recall the definition of the p-adic periods Q,(ff, ¢) in the imaginary case.
With the notations of Assumption 1.1 let B,q be the definite quaternion algebra with

discriminant N oo. As explained in Section 2 of [BD07] the form f} gives rise, via

(42) L(fi/K,0,k/2)ag = L(f}/K, 0,k/2) € L.

the Jacquet-Langlands correspondence, to a weight-k eigenform ¢ on B* of level
So(pN*t,N™) C B*, having the same system of Hecke eigenvalues as fi. This form
is unique up to multiplication by a non-zero scalar. As in loc. cit., for every k > 2
(resp., k = 2) normalise ¢y by requiring that its Petersson norm is equal to 1 (resp.,
that it takes values in Z). This characterises ¢ up to sign for £ > 2. According
to Theorem 2.5 of loc. cit. (up to shrinking Uy if necessary) there exists an Op-adic
family ¢ of eigenforms on B* whose specialisation at a classical point k € U is
equal to Ag(k) - ¢y, for some

Ap(k) € L™ with Ap(2)=1
(see Section 2 of loc. cit. for the details). The definition of L, (f*/K) given in Section 3
of loc. cit. depends on ¢o, and one sets Q,(ff, 0) = Ag(k). In particular Q,(f, o) = 1.
3.3. Proof of Theorem 3.1. — The decomposition of Galois representations
Vig)@r V(h) = Indg(yg) 1 Indg(yh) = Indg(ga) &) Indg(w)
yields for every k € U;l a factorisation of complex L-functions
(43) L(fi ® g@h,s) = L(fi,/K, ¢, s) - L(f;,/ K1), 5).

The imaginary case. Assume that K/Q is imaginary quadratic and let k be a
classical point in U;l N Zs5. Then the complex period Qo (ff,0) is equal to the
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Petersson norm (f}, f’i>pr’"(k)7 hence Equations (42), (43) and [BSV 20, (133)], give
(44)

D 1,1) LU @g@h k) 2%iootedn
2alhID) w22 (fT fI3, i

With notations as in [BSV20, Section 6], one finds from Equations (1) and (2)
2 2

ph/2-1 ph/2-1 P2 2
15 EfLgL R :(1_ ) (1+ ) :(1_ ) .
o g anlF) () a2
Since Q,(f{, 0) is equal to the quaternionic period A (k) for both o = ¢ and o = ¢ (cf.

the discussion following Equation (41)), Equations (42), (41), (44), (45) and [BSV 20,
(132), (135)] yield

(46) Ly(f*.93,h3) (k) = o5 5 - - Ly (£ K, ) (k) - Ly(£*/ K, 9) (k)

for every k € U;l N Z~5, where one writes

L(fli/K7 L) k/2)a1g'L(fli/K7 v, k/2)alg'

1 22k—4—o¢(k:,171)
and o =—"7———"H+

Ne(k)2 - &) - &(F7) ¢ e
Since Loc, is a non-zero constant in Q* for every v|N, and p does not divide dg, the

values @70 € Q* for k € UJ‘ZI are interpolated by a unit in 05. Equation (46) then
reduces the proof of Theorem 3.1 to the following statement.

Ik = Loc,.

v|N

Lemma 3.3. — There exists a bounded analytic function o/ € Of salisfying the
following properties.

1. (k) = g 1 for infinitely many classical points k € UJ‘il.

2. o/ (2) is a non-zero element in Q*.

We defer the proof of Lemma 3.3 to Section 3.4 below.

The real case. Assume that K is real quadratic and let k € U;l N Z~5. Define the
quantity
_ 1

Ao Ay o) - E(fr)
By a similar argument as in the imaginary case, one reduces the proof of Theorem
3.1 to the following statement.

(47) D1k

Lemma 3.4. — There exists a bounded analytic function g, € Of satisfying the
following properties.

1. “ar, (k) = dau, k for infinitely many classical points k € U}l.

2. gL, (2) is a non-zero element in Q*.

3.4. Proofs of Lemma 3.3 and Lemma 3.4. — According to Proposition 5.2 of
[BDO7] there exists an analytic function @& € @ (denoted 7 in loc. cit.) such
that, for every k € U;l NZso

(k) Ao,k

= and @4, (2) € Q™.

dB (k) =
ar, (k) AoAL Dby
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In particular, after shrinking Uy if necessary, the analytic function ,Qigb is a unit in
Of. This implies that Lemma 3.3 follows from Lemma 3.4, hence to conclude the
proof of Theorem 3.1 it is sufficient to prove the latter.

To prove Lemma 3.4 we consider triple product p-adic L-functions associated to
f* and two weight one Eisenstein series attached to the characters which appear in
the following lemma.

Lemma 83.5. — There exists two Dirichlet characters x and v satisfying the follow-
1ng properties.

1. The conductors ¢, and cy of x and v are coprime to each other and coprime to
pr.

2. x is even and x(p) is different from £1.

3. ¢ is odd and ¢¥(p) = —a,(f).
4. Both L(f,x,s) and L(f,,s) do not vanish at s = 1.

Proof. — Let £ be a prime which does not divide N¢p. According to the main result
of [Roh84] there exists n, € N such that L(f,x,1) # 0 for every primitive Dirichlet
character x of Gal(Q(uen)t/Q) = (Z/¢"Z)*/{£1} with n > n,, where Q(ue)" is
the maximal totally real subfield of the ¢"-th cyclotomic extension of Q. If n > n, is
such that ¢" { p* — 1, this shows that there exists a character y such that

(a) the conductor ¢, = ¢™ of x is coprime to Nyp.

(b) x(=1) = +1 and x(p) # +1.

(¢) L(f,x,s) does not vanish at s = 1.

Let ¢ be a fixed prime which divides N; exactly, whose existence is guaranteed by
Assumption 1.1. For every quadratic character o denote by sign(f ® o) the sign at
s = 1 in the functional equation satisfied by the Hecke L-function L(f,o,s). Choose
any quadratic Dirichlet character 1; satisfying the following properties.

(d) The conductor c(¢1) of ¥ is coprime with £ - Ngp.

(e) ¢1(—1) = +1 and 11 (t) = +1 for every prime ¢ which divides Ny /q.

(f) ¥1(p) = —ap(f) and ¢1(q) = ap(f) - sign(f).
One has (cf. Theorem 3.66 of [Shi71])

sign(f ® 1) = sign(f) - 1 (=Nyp) = —1,

hence the main result of [BFH90] shows that there exists a quadratic Dirichlet char-
acter 1 such that
(g9) the conductor of 1 is coprime to £ - ¢(v2) - Nyp.
(h) ¥2(—1) = —1 and 2(t) = +1 for every prime divisor ¢ of Nyp.
(i) L(f,41 -2, s) does not vanish at s = 1.
According to (a)—(¢) the characters x and ¢ = 1 - 19 satisfy the required properties.
O

Fix two characters x and 1 satisfying the conclusions of the previous lemma, and
set N = Nyc,cy and

E=x"1y7h
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Since x, ¥ and & are non-trivial and ¢ is odd, one can consider the weight one Eisen-
stein series

E(x,¢) =Y ol ¥)(n) - ¢" € My(N, &)
n=1
and
2 =506 ="8Y 4 0.9 ¢" c a(v.0)

n>1
where o(a, 8)(n) = }_,,, a(n/d)- B(d) for every Dirichlet characters o and 3, and 1 is

the trivial character. Following Section 3 of [BD14], for every classical point k € U]'il
define

(fis eora (A>T E(€) x E(x,))) v,
(f]ﬁ?f,lg)Np ’

where E(¢) = E(&)P € My (N,€) and E(x,v) = E(x, )P € My(N,£71) are the
p-depletions of E(£) and E(x,v) (cf. [BSV20, Section 3.1]). The article [BD14]
shows that the function which to k € UJEI associates L, (fi, E(x,v)) extends to an
analytic function

(48) Lp(fi, E(x,¥)) =

Ly(f*. E(x,¥)) € 0.
(The notation is justified by the following lemma, cf. Remark 3.7.) For all k € de
define
—iNy
Cy (k) = .
) = S o) ey - (V) T (V)]
For - = x,% Section 3.1 associates to (f*,-) the Mazur-Kitagawa p-adic L-function
Ly(f',) € 6.
Lemma 3.6. — 1. Let Q(x, ) be the field generated over Q by the values of x and
. Then
Lp(f 5 E(x,1))(2) = (p+1) - Oy (2) - Lp(F*,X)(2) - Ly (£, ¥)(2) € Qx, ¥)"
In particular the p-adic L-function L,(f*, E(x,)) does not vanish at k = 2.
2. (¢f. [BD14]) For every classical point k € UJEI (strictly) greater than 2 one has
(49)  Lp(f*, E(x, ¥))(k) = avyk - Cxp(k) - Lp(£7, x) (k) - Ly (5, 0) (k)

Proof. — 1. Write for simplicity ¢ = E(§) and h = E(x,%), and consider the p-
stabilisations

9al(q) = g(q) —&(p) - 9(d”), 98(q) = g(q) —g(¢”) and ha(q) = h(q) — ¥(p) - h(q").

Then f (resp., ga, 98, ha) is an eigenvector for the Up-operator with eigenvalue
ay = ap(2) = £1 (resp., 1, £(p), x(p)), hence Lemma 3.5 and the same computations
as in the proof of [DR14, Lemma 4.10] show that

2- (f,95- ha)Np =1 =x(P)/ap(2)) - (f 9o ha)Np'
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As &(p) # 1 by Lemma 3.5, one can write ¢ = (9o — &£(p) - 93)/(1 — &(p)), which
together with the previous equation and a direct computation gives the identity
L X(p)) ' (fs9" ha)n,

ap(2) (fs Fp

The L-series of the forms f and h, admit Euler product expansions, hence the Rankin
method (see the argument leading to Equation (18) of [BD14|, or [Shi76, Theorem
2 and Lemma 1]) gives

(51) (f:9 ha)np = —i8(E)Nyp - L(f @ ha, 1),

where g(-) is the Gauf sum of the character -. (Note that (-,-)y, equals 872 times
the Petersson product defined in Equation 9 of [BD14].) Since the characters x and
1) have opposite parity, one has

(52) QOO(f7X) ' QOO(.ﬂw) = (fu f)pr = [Fl(Nf) : Fl(N)]_l : (f?f)NP'

Moreover a direct comparison of Euler factors (cf. [Shi76, Lemma 1]|) and Lemma
3.5 give

59 2o = (1- 20 o ny = (1+1) sy 2s0.)

(50) Lo(f* B 0))(2) = 2 (

As 9(6) = a(x) - 8(61) - X Hew )i (ey) (since (eyscy) = 1), the statement is a
direct consequence of Equations (39)-(40), Equations (50)—(53) and Lemma 3.5.

2. This is proved in Proposition 3.3 of [BD14]. Since the setting of loc. cit. is
slightly different from ours, for the convenience of the reader we briefly review the
argument. Equations (35) and (41) and Proposition 3.2 of [BD14], together with
Proposition 4.6 of [DR14], show that for every classical point k£ > 2 one has
E(fi ) (Fi, 0" P7TE(E) - E(x,¥)) 5

B ARG (i fi)w ’

Lp(f* E(x, ) (k)

where

F/21 My(N, ) — M2, (N, €)
is the (k/2 — 1)-th iterate of the Shimura—Maaf derivative operator. Here & (f}) and
E1(f}) are as in Equation [BSV20, (135)], and

k/2-1 k/2—1c k/2—1 2
et = (1- LX) ((PTN (2
ap(k) ap(k) ap (k)
(Recall that 1 = ¢! is a quadratic character, cf. Lemma 3.5, and that &(f}) is

non-zero for k > 2.) The Rankin method (see Equations (18) and (19) of [BD14])
yields

(1,827 B(€) - Blw)y = gy g LUz b/2) - LU, /2)

As in the proof of Part 1 the statement follows easily from the definitions and the
previous three equations. O
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Since the analytic functions L, (f*, E(x,v)), L, (f*, x) and L,(f*, ) do not vanish
at k = 2 by Lemma 3.6(1), and since C, (k) is clearly an invertible element of
O, Lemma 3.6(2) implies that the values /Gy, x, defined for k € U N Z,, are
interpolated by an analytic function @1, (k) which does not vanish at k = 2. In
addition, the explicit formula for the value of L,(f*, E(x,v)) at k = 2 displayed in
Lemma 3.6(1) gives

AL, (2) =p+1.
This concludes the proof of Lemma 3.4, and with it the proofs of Lemma 3.3 and
Theorem 3.1.

Remark 3.7. — 1. The previous lemma (or better its proof) shows that
L,(f*,E(x,%)) can be though of as a p-adic Rankin-Selberg convolution, which
interpolates the critical values L(f} ® E(x,v),k/2) of the convolution of f! with
E(x,%). One can also think of L,(f*, E(x,v)) = %,(f*, E(£), E(x, %)) as a square-
root triple-product p-adic L-function (cf. Equations (48) and [BSV 20, (55)]), whose
square interpolates the complex central values L(f} @ E(£) ® E(x,v), k/2).

2. Note that the Euler factor & (ff) =1 — % vanishes at k = 2, as a manifes-
p

tation of the presence of an exceptional zero for L,(f*,s) and L,(f*, ¢}, h}) in the
sense of [MTT86] (cf. Remark 3.2(2)).
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