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Abstract. — Let A be an elliptic curve over the rationals with multiplicative re-
duction at a prime p, and let K be a quadratic field in which p is inert. Under a
generalised Heegner assumption, our previous contribution [BSV20] to this volume
attaches to (A, p,K) balanced diagonal classes in the Selmer groups of the p-adic
Tate module of A over certain ring class fields of K. These classes are obtained as
p-adic limits of geometric classes in the cohomology of higher-dimensional Kuga–Sato
varieties. The main result of this paper relates these diagonal classes to p-adic loga-
rithms of Heegner or Stark–Heegner points, depending on whether K is complex or
real respectively.

To Bernadette Perrin-Riou on her 65th birthday

Contents

1. Description and statement of results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Derivatives of big logarithms II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3. Factorisations of p-adic L-functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1. Description and statement of results

Let (f , gα,hα) be a triple of p-adic Hida families of common tame level N . Assume
that f interpolates the weight 2 cusp form attached to an elliptic curve A/Q with
multiplicative reduction at p, and that gα and hα respectively specialise in weight 1 to
(p-stabilised) theta-series gα and hα associated to the same quadratic extension K/Q,
having good reduction at p and inverse characters. Let κ(f , gα,hα) be the diagonal
class constructed in our previous contribution [BSV20] to this volume. This article
builds on the main results of loc. cit. to relate (a component of) the Bloch–Kato
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logarithm of the specialisation at (2, 1, 1) of κ(f , gα,hα) to the product of the formal
group logarithms of two Heegner points, respectively Stark–Heegner points when K is
imaginary, respectively real. See Theorem A below for the precise statement, holding
under Assumption 1.1.

Our strategy goes along the following lines. Let L f
p (f , gα, hα) denote the restric-

tion to the line (k, 1, 1) of the triple product p-adic L-function L f
p (f , gα,hα) defined

in loc. cit.. Section 3 shows that L f
p (f , gα, hα)2 factors as a product of two Hida-

Rankin p-adic L-functions attached to A/K. A suitable extension of main result of
[BD07], resp. [BD09] for K imaginary quadratic, resp. real quadratic shows that the
second derivative at k = 2 of the above mentioned Hida–Rankin p-adic L-functions
is equal to the square of the formal group logarithm of a Heegner point, resp. Stark–
Heegner point. Theorem A of [BSV20] describes L f

p (f , gα, hα) as the image by
a branch of the Perrin–Riou logarithm of the restriction of κ(f , gα,hα) to the line
(k, 1, 1). Theorem A of this paper then follows from Proposition 2.2, which extends
results of [Ven16] to obtain a formula for the second derivative of the Perrin-Riou
logarithm of the above class at k = 2.

More precisely, let A/Q be an elliptic curve of conductor Nfp, having multiplicative
reduction at a prime p > 3 (hence p - Nf ). Let K/Q be a quadratic extension of
discriminant dK coprime with Nfp and quadratic character εK : (Z/dKZ)∗ → µ2.
Let

f =
∑
n>1

an(A) · qn ∈ S2(Nfp,Z)new

be the weight-two newform associated with A by the modularity theorem of Wiles,
Taylor–Wiles et al., and let

νg : GK −→ Q̄∗ and νh : GK −→ Q̄∗

be two ray class characters of K. Write Nf = N+
f ·N

−
f , where N−f is the product of

the prime divisors of Nf which are inert in K/Q. We make the following

Assumption 1.1. —
1. (Heegner hypothesis) p is inert in K/Q, N−f is square-free and εK(−N−f ) = +1.
2. (Modularity) When K/Q is real, both νg and νh have mixed signature.
3. (Cuspidality) The characters νg and νh are not induced by Dirichlet characters.
4. (Self-duality) The central characters of νg and νh are inverse to each other.
5. (Local signs) The conductors of νg and νh are coprime to p · dK ·Nf .
6. (Residual irreducibility) The Fp[GQ]-module Ap(Q̄) of p-torsion points of A is

irreducible.

Let νξ denote either νg or νh and let L/Qp be a finite extension containing the
Fourier coefficients of f and the values of νξ. In light of Assumption 1.1, the two-
dimensional L-representation IndKQ(νξ) of GQ induced by νξ : GK −→ L∗ is odd and
irreducible. Thanks to the work of Hecke [Miy06, Section 4.8], it arises from the
cuspidal weight-one theta series

ξ =
∑
a

νξ(a) · qNa ∈ S1(Nξ, χξ).
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Here the sum runs over the ideals a of OK which are coprime to the conductor fξ of νξ,
Na denotes the norm of a, Nξ = dK ·Nfξ and χξ = εK ·νcen

ξ , where νcen
ξ : GQ −→ Q̄∗

is the central character of νξ. The form ξ is primitive of conductor Nξ and the dual
of its Deligne–Serre L-representation is isomorphic to IndKQ(νξ).

Since p is inert in K/Q, one has ap(ξ) = 0 so that the p-th Hecke polynomial of ξ
is equal to

X2 + χξ(p).

Let αξ ∈ O∗ be a fixed square root of −χξ(p), and write

(1) ξα = ξ(q)− βξ · ξ(qp) ∈ S1(Nξp, χξ), with βξ =
χξ(p)

αξ
= −αξ

for the corresponding p-stabilisation. (Here we assume that L contains αξ.) Since
χg · χh is the trivial character, without loss of generality we may assume that the
roots αg, βg, αh, βh are ordered in such a way that

(2) αg · αh = βg · βh = ap(A) = ±1.

As explained in Section 5 of our contribution [BSV20], the work of Hida and Wiles
implies the existence of a unique triple (f ], g]α,h

]

α) of L-rational primitive Hida fami-
lies of tame conductors (Nf , Ng, Nh) and tame characters (χf , χg, χh) which specialises
to the triple (f, gα, hα) at wo. Note that the triple (f ], g],h]) satisfies Assumptions
1.1 and 1.2 stated in Section 1 of [BSV20] (cf. Equation (1) and Assumption 1.1.3),
and that wo = (2, 1, 1) is exceptional in the sense of Section 1.2 of loc. cit. (cf.
Equation (2)).

With notations as in Section 1.1 of loc. cit., denote by N the least common multiple
ofNf , Ng andNh, by V (f , gα,hα) the big Galois representation attached to any choice
of level-N test vector for (f ], g]α,h

]

α) (cf. Remark 1.3(3) of loc. cit.), and by

κ(f , gα,hα) ∈ H1
bal(Q, V (f , gα,hα))

the corresponding diagonal class. In [Hsi20] Hsieh constructs a distinguished level-N
test vector (f , gα,hα) (denoted (f?, g?α,h

?
α) in [BSV20, Section 6.1]) for (f ], g]α,h

]

α),
and computes explicitly the local constants which appear in the interpolation formulae
satisfied by the p-adic L-function L f

p (f , gα,hα) (cf. Sections 1.1 and 6.1 of loc. cit.).
Let Vp(A) = Tap(A) ⊗Z Q be the p-adic Tate module of A with Qp-coefficients,

let Y1(Nfp) be the open modular curve over Q of level Γ1(Nfp), and let V (f) be the
f -isotypic quotient of H1

ét(Y1(Nfp)Q̄,Qp(1)) (cf. Sections 2.1 and 2.4 of [BSV20]).
Fix a modular parametrisation

℘∞ : Y1(Nfp) −→ A.

This induces an isomorphism of GQ-modules

(3) ℘∞∗ : V (f) ∼= Vp(A)

which we often consider as an equality in what follows. Set

V (f, g, h) = Vp(A)⊗Qp
V (g)⊗L V (h),

where V (ξ) = V (ξα) is the canonical model of the dual of the Deligne–Serre represen-
tation of ξ = g, h arising from the specialisation of V (ξα) at weight one (cf. Section 5
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of [BSV20]). The fixed test vector (f , gα,hα) and modular parametrisation ℘∞ de-
termine a projection V (f2, gα1,hα1) −� V (f, g, h) (denoted $? in Section 2 below),
mapping the specialisation at wo of κ(f , gα,hα) to a global class

καα(f, g, h) ∈ H1(Q, V (f, g, h)).

Let c be the non-trivial element of Gal(K/Q) and let νcξ : GK → L∗ be the
conjugate of νξ by c. By Assumption 1.1(4) the characters

ϕ = νg · νh and ψ = νg · νch
are ring class characters of K (i.e., ϕc = ϕ−1 and ψc = ψ−1). Note the factorisation
of GQ-representations

(4) V (f, g, h) ∼= Vp(A)⊗ IndKQ(ϕ)⊕ Vp(A)⊗ IndKQ(ψ).

In particular the Bloch–Kato Selmer group Sel(Q, V (f, g, h)) decomposes as

(5) Sel(Q, V (f, g, h)) ∼= Sel(Kϕ, Vp(A))ϕ ⊕ Sel(Kψ, Vp(A))ψ,

where K·/K denotes the ring class field having the same conductor as · and
Sel(K·, Vp(A))· is the submodule of the Selmer group Sel(K·, Vp(A)) ⊗Qp

L of
Vp(A)⊗Qp

L over K· on which Gal(K·/K) acts via the inverse of ·.
It follows from Equation (4) and the Artin formalism that the Garrett triple prod-

uct L-function L(f ⊗ g⊗ h, s) = L(V (f, g, h), s) factors as the product of the Rankin
L-functions L(A/K,ϕ, s) and L(A/K,ψ, s), which have both sign −1 in their func-
tional equation by Assumption 1.1.1. In particular L(f⊗g⊗h, s) vanishes to order at
least two at s = 1. Theorem B of [BSV20] in the exceptional case then proves that
the diagonal class καα(f, g, h) is crystalline at p, hence belongs to the Bloch–Kato
Selmer group Sel(Q, V (f, g, h)) of the representation V (f, g, h) of GQ:

καα(f, g, h) ∈ Sel(Q, V (f, g, h)).

Write % for either ϕ or ψ. The articles [BD07] and [BD09] (see also [GSS16])
associate to f and % a p-adic L-function

Lp(f/K, %) ∈ Of ,

interpolating the central values of the L-series L(fk/K, %, s) of the base change of fk
to K twisted by %. Their definition, which depends only on the primitive family f ],
is recalled in Section 3.2 below.

Write Kp for the completion of K at the inert prime p. Noting that p splits
completely in K%/K, let Frobp in Gal(K%/Q) be the Frobenius element determined
by the fixed embedding of Q̄ into Q̄p, mapping K% to Kp. Denote by

logωf : A(Kp)L = A(Kp)⊗̂L −→ Kp ⊗Qp
L

the L-linear extension of the composition

A(Kp)⊗̂Qp
∼= H1

fin(Kp, V (f))
logp−→ tanKp(f) ∼= Kp,

where H1
fin is the finite subspace of H1, tanKp(f) is the tangent space of the de Rham

module H0(Kp, V (f)⊗Qp
BdR), the first isomorphism arises from the map ℘∞∗ and

Kummer theory, logp is the Bloch–Kato logarithm and the second isomorphism is
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evaluation at the canonical differential ωf in the dual of tanKp(f) associated with
f (see Section 2.5 of [BSV20], in particular Equations (29), (30) and (32)). Under
our running assumptions, the p-adic L-function Lp(f/K, %) vanishes at k = 2 to
order at least two. An extension of the main results of [BD07] and [BD09] in
the imaginary quadratic and real quadratic setting respectively – see in particular
[GSS16, LMH20, LV14, Mok11] – prove the existence of a non-zero algebraic
constant Q ∈ Q̄∗ such that

(6) c2f ·
d2

dk2Lp(f/K, %)k=2 = Q · log2
ωf

(P ε% ),

where cf = cf (℘∞) ∈ K∗p is an explicit non-zero p-adic constant (depending on ℘∞)
introduced in Section 2.2 below (see also Remark 1.2), and the point P ε% in A(Kp)L
are defined as follows.

If K is imaginary quadratic, choose a primitive Heegner point P in A(K%) and let

P% =
∑

σ∈Gal(K%/K)

%(σ)−1 · Pσ and P ε% = P% + ε · PFrobp
% for ε = ap(A).

Note that the global point P ε% is viewed in Equation (6) as a local point via our fixed
embedding of Q̄ into Q̄p. When % is quadratic one checks that Frobp acts on P% via
a sign ε% (see for example the discussion in Section 4 of [BD07]).

If K is real quadratic, the local point P% in A(Kp) is defined as in the above
formula, by exploiting the action of Pic(O%) on a Stark–Heegner point P ∈ A(Kp)
attached to K%, where Pic(O%) ∼= Gal(K%/K) is the Picard group of the order O% of
K corresponding to K% via class field theory.

Remark 1.2. — The main results of [BD07, BD09] are stated in terms of the
logarithm

logA = logqA ◦ϕ
−1
Tate : A(Kp) −→ Kp,

where qA is the Tate period of AQp
, ϕTate : K∗p/q

Z
A
∼= A(Kp) is the Tate parametri-

sation and logqA : K∗p −→ Kp is the branch of the p-adic logarithm which vanishes
at qA (see Section 2.2 below for more details). The p-adic constant cf ∈ K∗p (de-
fined in Equation (14) below) accounts for the discrepancy between logA and the
logarithm logωf introduced above (cf. Lemma 2.1 below). The nontrivial element
of Gal(Kp/Qp) acts on cf as multiplication by ε = ap(A), hence c2f belongs to Q∗p.
Similarly log2

ωf
(P ε% ) belongs to L, so that the identity (6) takes place in L.

Denote by
L f
p (f , gα, hα) ∈ Of

the restriction of L f
p (f , gα,hα) to the line (k, 1, 1). Theorem 3.1 below shows the

factorisation formula

(7) L f
p (f , gα, hα)2 = A · Lp(f/K,ϕ) · Lp(f/K,ψ),

where A is a bounded analytic function on Uf such that A (2) is an element of Q̄∗.
Under the assumptions of this section, Proposition 2.2 gives a formula for the

second derivative of the Perrin-Riou big logarithm of a balanced class along the line
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(k, 1, 1) at the point k = 2. Combined with [BSV20, Theorem A], this gives the
equality

(8) c2f ·
d2

dk2 L f
p (f , gα, hα)k=2 = Q · logββ

(
resp(καα(f, g, h))

)
,

where Q is an explicit constant in Q∗ and logββ
(
resp(καα(f, g, h))

)
is the evaluation

of the p-adic Bloch–Kato logarithm of resp(καα(f, g, h)) at a canonical differential
ωf ⊗ ωgα ⊗ ωhα (see Section 2 for details).

Combining Equations (6), (7) and (8) yields

Theorem A. — For Q in Q̄∗ one has the equality

logββ
(
resp

(
καα(f, g, h)

))
= Q · logωf (P εϕ) · logωf (P εψ).

Recall that the complex L-function L(f ⊗ g ⊗ h, s) attached to V (f, g, h) vanishes
to order at least 2 at s = 1 by Assumption 1.1.

Corollary B. — Let K be imaginary quadratic. If % = ϕ or ψ is quadratic, assume
that ε = ε%. Then

d2

ds2
L(f ⊗ g ⊗ h, s)s=1 6= 0 ⇐⇒ logββ

(
resp

(
καα(f, g, h)

))
6= 0.

Proof. — Under the current assumptions P ε% is non-zero whenever P% is non-zero.
Corollary B then follows from Theorem A combined with S.-W. Zhang’s proof of the
Gross–Zagier formula for Shimura curves [Zha01].

Remark C. — Theorem A and a suitable converse to the Gross–Zagier–Kolyvagin
theorem show that the equivalent statements of Corollary B are also equivalent to the
equality

(9) Sel(Q, V (f, g, h)) = L · καα(f, g, h)⊕ L · κββ(f, g, h),

that is the Selmer group Sel(Q, V (f, g, h)) is generated by the global class καα(f, g, h)
and its counterpart κββ(f, g, h) defined by replacing the pair (gα,hα) with (gβ ,hβ)
(cf. Equation (2)).

To show that the equality (9) follows from the non-vanishing of the second deriva-
tive of L(f ⊗ g ⊗ h, s), one notes that this condition implies that Sel(Q, V (f, g, h))
is two-dimensional by the Gross–Zagier–Kolyvagin theorem. The classes καα(f, g, h)
and κββ(f, g, h) are both non-trivial by Corollary B, hence one is reduced to prove
that they are linearly independent. This follows again from Corollary B, noting that

logββ
(
resp(κββ(f, g, h))

)
= 0

since the Selmer class κββ(f, g, h) arises from the balanced class κ(f , gβ ,hβ).
Conversely, assume that the classes καα(f, g, h) and κββ(f, g, h) generate the

Selmer group Sel(Q, V (f, g, h)), so that

(10) dimL Sel(Q, V (f, g, h)) 6 2.

Granting a converse of the Gross–Zagier–Kolyvagin theorem of the form

(11) dimL Sel(K%, Vp(A))% 6 1 =⇒ ords=1L(f/K, %, s) = dimL Sel(K%, Vp(A))%
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for % equal to ϕ and ψ as above, one concludes readily as follows. Since the sign
of the functional equation of L(f/K, %, s) is −1, Equations (10) and (11) imply that
L(f/K, %, s) has a simple zero at s = 1 for % = ϕ and ψ, hence L(f ⊗ g ⊗ h, s)
has a double zero at s = 1. The above converse theorem may be approached by an
extension of the methods of the forthcoming work [BLV17], which prove Birch and
Swinnerton-Dyer formulae for general families of anticyclotomic characters of p-power
conductor and are suited to extend such formulae to arbitrary ring class characters.

In the real quadratic setting, the next result relates the (local) Stark–Heegner
points to the (global) Selmer group Sel(Q, V (f, g, h)).

Corollary D. — Assume that K is real quadratic. If the Stark–Heegner points P εϕ
and P εψ are both non-trivial, then dimL Sel(Q, V (f, g, h)) > 2.

Proof. — Theorem A implies that καα(f, g, h) and κββ(f, g, h) are non-zero. The
same argument as in Remark C shows that these classes are linearly independent.

Remark E. — Under the assumptions of Corollary D, the definition of καα(f, g, h)
and κββ(f, g, h) combined with Theorem A imply that the Stark–Heegner point P ε%
(% = ϕ,ψ) arises as the restriction at p of a Selmer class in Sel(K%, Vp(A))%. We
refer the reader to the contribution [DR20] by Darmon–Rotger to this volume for an
extensive discussion of this application (see in particular Theorem A of loc. cit.).

2. Derivatives of big logarithms II

This section should be regarded as a continuation of [BSV20, Section 6], where a
study of multivariable Perrin-Riou logarithms is undertaken. After the preliminary
Sections 2.1 and 2.2, Proposition 2.2 in Section 2.3 establishes a formula for the second
derivative of the Perrin-Riou big logarithm of a balanced class along the line (k, 1, 1)
at the point k = 2, which constitutes a crucial ingredient in the proof of Theorem A.

Let (f, g, h) and (f ], g]α,h
]

α) be as in Section 1. Denote by (f , gα,hα), or more
simply (f , g,h), any level-N test vector for (f ], g]α,h

]

α) (where N is as in Section
1). Throughout this section Assumption 1.1 is in force. In particular Assumption
6.3 of loc. cit. is satisfied (as Ap(Q̄) is p-distinguished by Tate’s theory, since p > 5,
cf. Section 2.2 below), hence one can consider the distinguished level-N test vector
(f?, g?α,h

?
α) introduced in Section 6.1 of loc. cit.. (To ease notations, the latter was

simply denoted (f , gα,hα) in Section 1).

2.1. The projection $fgh and the class καα(f, g, h). — Associated with the
choice of a test vector (f , g,h) = (f , gα,hα) we define a GQ-equivariant projection

(12) $fgh : V (f2, g1,h1) −→ V (f, gα, hα)

by the following recipe. Let ξ denote one of f , gα or hα. For each positive integer d
dividing N/Nξ denote by

vd : Y1(N, p) −→ Y1(Nξ, p)
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the degeneracy map corresponding to multiplication by d on H under the analytic
isomorphism defined in Equation (6) of loc. cit.. The Q-rational map vd induces
pull-backs v∗d : V ∗(ξ])· −→ V ∗(ξ)· (for · = ∅,±), which in turn induce morphisms
v∗d : D∗(ξ])± −→ D∗(ξ)± and v∗d : H1(Qp, V

∗(ξ])·) −→ H1(Qp, V
∗(ξ)·) between the

associated period rings and Galois cohomology groups. As d runs over the positive
divisors of N/Nξ, the images of D∗(ξ])± under the operators v∗d generate D∗(ξ)±

over Oξ. As a consequence, if ω·ξ and η·ξ (for · = ∅, ]) denote the Oξ-adic differentials
associated to ξ· in Equations (118) and (122) of loc. cit. respectively, one has

ηf = v∗f (η]f ), ωg = v∗g(ω]g) and ωh = v∗h(ω]h)

with Oξ-linear combinations v∗ξ of the operators v∗d. (See Section 5 of [BSV20],
especially Equation (95), Equations (117)–(123) and the discussion following them,
for more details.) Denote by vξ∗ : V (ξ) −→ V (ξ]) the dual of v∗ξ under the perfect
pairing (103) of loc. cit. and set

$fgh = vf∗ ⊗ vg∗ ⊗ vh∗ : V (f , g,h) −→ V (f ], g]α,h
]

α).

With a slight abuse of notation, the map (12) is defined as the base change of$fgh un-
der evaluation at wo = (2, 1, 1) on Ofgh (cf. Equations (106) and (107) of [BSV20]).

Recall the modular parametrisation

℘∞ : Y1(Nfp) −→ A

fixed in Section 1 (cf. Equation (3)) and set

$? = ℘∞∗ ⊗ id ◦$f?g?αh?α : V (f2, g1,h1) −→ V (f, gα, hα) ∼= V (f, g, h),

(where id denotes the identity on V (gα)⊗L V (hα) = V (g)⊗L V (h).) Then with the
notation of Section 1 (cf. Remark 1.3(3) and Theorem B of [BSV20])

καα(f, g, h) = $?(κ(f2, g1,h1)) ∈ Sel(Q, V (f, g, h)).

For each local crystalline class z in H1
fin(Qp, V (f, gα, hα)) define the ββ-component

of its p-adic logarithm by

logββ(z) =
〈

logp(z), ωf ⊗ ωgα ⊗ ωhα
〉
fgαhα

,

where ωf is the differential associated with f in Equation (30) of [BSV20], the weight-
one differentials ωgα and ωhα are the specialisations of ω]gα and ω]hα at weight one
(cf. Equation (129) of [BSV20]), and the pairing 〈·, ·〉fgαhα arises from the product
of perfect dualities 〈·, ·〉ξ introduced in Equations (31) and (128) of [BSV20], for
ξ = f, gα, hα. Finally for any global Selmer class κ in Sel(Q, V (f, g, h)) define (cf.
Equation (8))

logββ(resp(κ)) = logββ(κp),

where κp ∈ H1
fin(Qp, V (f, gα, hα)) is defined by ℘∞∗ ⊗ id(κp) = resp(κ).
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2.2. Tate’s theory and the constant cf . — The Tate parametrisation (cf. Chap-
ter V of [Sil94]) yields a rigid analytic isomorphism

ϕTate : EqA −→ AKp

between the Tate curve
EqA = Grig

m,Kp
/qZA

over Kp and the base change AKp of A to Kp. Here Grig
m,Kp

is the rigid multiplicative
group over Kp and qA ∈ pZp is the Tate period of AQp

(cf. loc. cit.).
Denote again by

ϕTate : Vp(EqA) ∼= Vp(A)

the isomorphism of GKp -modules induced by the Tate parametrisation on the p-adic
Tate modules with Qp-coefficients, and define

℘Tate = ϕ−1
Tate ◦ ℘∞∗ : V (f) ∼= Vp(EqA)

as the composition of its inverse with ℘∞∗ : V (f) ∼= Vp(A) (cf. Equation (3)). It
induces a morphism of filtered modules (denoted by the same symbol)

℘Tate : DdR,Kp(V (f)) ∼= DdR,Kp(Vp(EqA)),

where DdR,Kp(·) = H0(Kp, · ⊗Qp BdR) is Fontaine’s de Rham functor.
The projection Grig

m,Kp
−→ EqA gives rise to an exact sequence of GKp -modules

(13) 0 −→ Qp(1) −→ Vp(EqA) −→ Qp −→ 0.

Applying Fontaine’s de Rham functor DdR,Kp(·) = H0(Kp, ·⊗Qp
BdR) to the previous

exact sequence yields a morphism DdR,Kp(Vp(EqA)) −→ DdR,Kp(Qp) = Kp, which
restricts to an isomorphism Fil0DdR,Kp(Vp(EqA)) ∼= Kp. Define

1A ∈ Fil0DdR,Kp(Vp(EqA))

for the generator corresponding to the identity of Kp under this isomorphism. On the
other hand, the newform f corresponds (under Faltings’ comparison isomorphism) to
a canonical generator ωf of Fil0DdR,Kp(V (f)) = Fil1V ∗dR(f) ⊗Qp

Kp (cf. Equations
(29) and (30) of [BSV20], noting that V (f)(−1) = V ∗(f)). The non-zero p-adic
constant

cf ∈ K∗p
which appears in Equation (6) of Section 1 is defined by the identity

(14) ℘Tate(ωf ) = cf · 1A.

With the notations of Section 1, the following lemma shows that Equation (6) is a
restatement of the main results of [BD07, BD09] (cf. Remark 1.2).

Lemma 2.1. — Up to sign, one has the identity

logωf =
cf

deg(℘∞)
· logA .
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Proof. — Let u ∈ O∗Kp be a p-adic unit and let P = ϕTate(u) be its image in A(Kp)

under the Tate parametrisation, so that

(15) logA(P ) = logp(u),

where logp : K∗p −→ Kp is the p-adic logarithm.
For V equal to one of Qp(1), Vp(A), Vp(EqA) and V (f), denote by tangKp(V ) the

tangent space of DdR,Kp(V ) and by

logV : H1
fin(Kp, V ) −→ tangKp(V )

the Bloch–Kato logarithm (viz. the inverse of the Bloch–Kato exponential map for
V , which is an isomorphism). After identifying O∗Kp⊗̂Qp, resp. A(Kp)⊗̂Qp with the
finite subspace of H1(Kp,Qp(1)), resp. H1(Kp, Vp(A)) via Kummer theory, one has
(16)
logp(u) =

〈
logQp(1)(u), 1

〉
m

=
〈

logVp(EqA )(u),1A
〉
W

=
〈

logVp(A)(P ), ϕTate(1A)
〉
W
,

where

〈·, ·〉m : DdR,Kp(Qp(1))⊗Kp DdR,Kp(Qp) −→ DdR,Kp(Qp(1)) = Kp

is the pairing associated with the multiplication m : Qp(1) ⊗Qp
Qp −→ Qp(1), and

for A equal to either AKp or EqA , the morphism

〈·, ·〉W : tangKp(Vp(A))⊗Kp Fil0DdR,Kp(Vp(A)) −→ DdR,Kp(Qp(1)) = Kp

is the one induced by the Weil pairing W : Vp(A) ⊗Qp
Vp(A) −→ Qp(1). (The first

identity in Equation (16) is well known, while the others follow from the functoriality
of the Bloch–Kato logarithm and of the Weil pairing, after noting that the Weil pairing
on EqA and the multiplication map m are compatible via the exact sequence (13).)

Under the natural isomorphism between Vp(A) and H1
ét(AQ̄,Qp(1)), the Weil pair-

ing agrees (up to sign) with the cup-product pairing

H1
ét(AQ̄,Qp(1))⊗Qp

H1
ét(AQ̄,Qp(1)) −→ H2

ét(AQ̄,Qp(2)) ∼= Qp(1)

associated with the multiplication map Qp(1)⊗Qp Qp(1) −→ Qp(2), hence〈
logVp(A)(P ), ϕTate(1A)

〉
W

= deg(℘∞) ·
〈

logV (f)(℘
−1
∞∗(P )), ℘−1

∞∗ ◦ ϕTate(1A)
〉
f
.

By the definitions of logωf and cf , the right hand side of the previous equation equals

deg(℘∞)

cf
· logωf (P ).

Together with Equations (15)–(16), this prove that logωf (P ) and cf
deg(℘∞) · logA(P ) are

equal for each point P ∈ A(Kp) in the image of O∗Kp under the Tate parametrisation.
Since O∗Kp has finite index in EqA(Kp), this concludes the proof.
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2.3. An exceptional zero formula and Equation (8). — As above, denote by
(f , g,h) = (f , gα,hα) a level-N test vector for (f ], g]α,h

]

α). Let

Z ∈ H1
bal(Qp, V (f , g,h))

be a local balanced class such that

z
def
= ρwo(Z) ∈ H1

fin(Qp, V (f2, g1,h1)).

In other words we assume that the specialisation z of Z at wo = (2, 1, 1) belongs to the
Bloch–Kato Selmer finite subspace of H1(Qp, V (f2, g1,h1)). The aim of this section
is to prove the following exceptional zero formula for the analytic function

Lf (Z;k, 1, 1) = Log(f , g,h)(Z)|(k,l,m)=(k,1,1) ∈ Of ,

viz. the restriction to the line (k, 1, 1) of the image of Z under the Perrin-Riou loga-
rithm Lf = Log(f , g,h) (cf. [Ven16]). In light of Theorems A and B of our article
[BSV20], taking (f , g,h) = (f?, g?α,h

?
α) and Z = resp(κ(f , g,h)) in its statement

yields the key Equation (8) used in Section 1 to derive Theorem A.

Proposition 2.2. — One has ordk=2Lf (Z; k, 1, 1) > 2 and (up to sign)

c2f ·
d2

dk2 Lf (Z;k, 1, 1)k=2 =
deg(℘∞)

2ordp(qA)

(
1− 1

p

)−1

· logββ
(
$fgh(z)

)
.

We first prove a simple lemma. As in Section 1.1 of [BSV20], denote by Λf the
ring of analytic functions on Uf bounded by one, so that Of = Λf [1/p]. Let

Φ : GQp
−→ Λ∗f

be a continuous character such that Φ(·)k=2 is the trivial character, and let V be a
free Of -module of finite rank on which GQp

acts via Φ ·χcyc. Let V = V ⊗2 L be the
base change of V under evaluation at k = 2 on Of . Multiplication by k − 2 on V
gives rise to an exact sequence

(17) · · · −→ Hi(Qp,V )
k−2−→ Hi(Qp,V ) −→ Hi(Qp, V )

δ−→ Hi+1(Qp,V ) −→ · · · .

As Φ(·)k=2 is the trivial character of GQp
the representation V is the direct sum of a

finite number of copies of L(1), hence there are natural isomorphisms

H1(Qp, V ) ∼= Q∗p⊗̂V (−1) and H2(Qp, V ) ∼= V (−1)

arising from Kummer’s theory and the invariant map invp : H2(Qp,Qp(1)) ∼= Qp

respectively. One considers the previous isomorphisms as identities in the rest of this
section. Define

βV : Q∗p⊗̂V (−1)
δ−→ H2(Qp,V ) −→ H2(Qp,V )⊗2 L ∼= V (−1),

where the second map is the natural projection (and the isomorphism comes from
the exact sequence (17), since H3(Qp,V ) vanishes). Because Φ(·)k=2 is the trivial
character its derivative defines a morphism

d

dk
Φ(·)k=2 ∈ H1(Qp, L) ∼= Homcont(Q

∗
p, L),
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where the isomorphism is induced by the reciprocity map

recp : Q∗p⊗̂Qp
∼= Gab

Qp
⊗̂Qp

(normalised as in [BSV20, Section 9.2]). Taking the tensor product over L with
V (−1) this induces a morphism (denoted by the same symbol)

d

dk
Φ(·)k=2 : Q∗p⊗̂V (−1) −→ V (−1).

Lemma 2.3. — βV = d
dkΦ(·)k=2.

Proof. — Without loss of generality one can assume that V is equal to Of (Φ · χcyc),
hence V = L(1). Let x = q⊗̂v be an element of Q∗p⊗̂L and let cx : GQp

→ L(1) be
a 1-cocycle representing it. Let c̃x : GQp

→ Of (Φ · χcyc) be the 1-cochain defined
by viewing cx as a function with values in Of . Clearly c̃x(·)k=2 = cx. If d denotes
the differential in the complex C•cont(Qp,Of (Φ · χcyc)) of inhomogeneous continuous
cochains of GQp with values in Of (Φ · χcyc), then

dc̃x(σ, τ) = (Φ(σ)− 1) ·χcyc(σ) · cx(τ) =
d

dk
Φ(σ)k=2 ·

(
χcyc(σ) · cx(τ)

)
· (k− 2) + · · · ,

where the dots denote higher terms in the Taylor expansion at k = 2. This and local
class field theory yield

βV (x) = invp

( d

dk
Φ(·)k=2 ∪ cl(cx)

)
=

d

dk
Φ(q)k=2 · v,

where ∪ is the cup-product associated with the multiplication map L⊗LL(1) −→ L(1).
The lemma follows.

Proof of Proposition 2.2. — By assumption Z = ı∗(Y) is the image of a (unique)
cohomology class Y in H1(Qp,F 2V (f , g,h)) under the map induced by the inclusion
ı : F 2V (f , g,h)→ V (f , g,h). Set

y = ρwo∗(Y) ∈ H1(Qp,F
2V (f2, g1,h1)),

so that z = ρwo∗(Z) is the image of y under the natural map. By construction (cf.
[BSV20, Proposition 7.3])

(18) Lf (Z) = Lf (pf∗(Y)).

If • and ◦ denote either α or β, define as in Section 9.2 of loc. cit. (cf. the proof of
Proposition 9.3 of loc. cit.)

V (f2)·•◦ = V (f2)· ⊗L V (g1)• ⊗L V (h1)◦,

where · = ∅,± and V (ξ1)β = V (ξ1)+ and V (ξ1)α = V (ξ1)− for ξ = g,h. In
the present setting the form ξ1 is regular, viz. αξ1 and βξ1 = −αξ1 are distinct,
hence V (ξ1)• is equal to the subspace V (ξ1)Frobp=• of V (ξ1) on which an arithmetic
Frobenius Frobp acts as multiplication by •ξ1 (cf. Section 9.2 of loc. cit.). It follows
that for · = ∅ and · = ± there are canonical direct sum decompositions

(19) V (f2, g1,h1)· = V (f2)·αα ⊕ V (f2)·αβ ⊕ V (f2)·βα ⊕ V (f2)·ββ
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of L[GQp
]-modules. In particular V (f2, g1,h1)f = V (f2)−ββ is a direct summand of

V (f2, g1,h1)− (cf. Equation (191) of loc. cit.), hence

pf∗(y) = 0

since by assumption z is crystalline (cf. Section 9.1 of loc. cit., in particular Equation
(193)). As a consequence

(20) pf∗(Y) = (k − 2) ·Yk + (l− 1) ·Yl + (m− 1) ·Ym
for classes Y· in H1(Qp, V (f , g,h)f ) (cf. the proof of Proposition 7.3 of loc. cit. or
[Ven16, Lemma 5.6]). Set

yk = ρwo∗(Yk) ∈ H1(Qp, V (f2, g1,h1)f ).

Because Lf is Ofgh-linear, Equation (18), Proposition 9.3(1) of loco citato and The-
orem 3.14 of [GS93] give
(21)(

1− 1

p

)
· d

2

dk2 Lf (Z,k, 1, 1)k=2 = yk(p−1)f − Lan
f · yk(e(1))f =

−1

ordp(qA)
· yk(qA)f ,

where
−1

2
· Lan
f = dlogap(k)k=2

is the logarithmic derivative at k = 2 of the p-th Fourier coefficient ap(k) of f ]

(cf. Section 9.2 of [BSV20]). In particular this implies that the quantity yk(qA)f is
independent of the choice of Yk satisfying Equation (20).

As shown in the proof of Proposition 9.3 of loc. cit. the class of the extension

(22) 0 −→ V (f2)+
ββ −→ V (f2)ββ −→ V (f2)−ββ −→ 0

in
Ext1

L[GQp ](V (f2)−ββ , V (f2)+
ββ) ∼= Q∗p⊗̂QpHomL(V (f2)−ββ , V (f2)+

ββ(−1))

is equal to
qf2 = qA⊗̂δf2

for an isomorphism δf2 : V (f2)−ββ → V (f2)+
ββ(−1), and the connecting morphisms ∂if2

associated to (22) satisfy

(23) ∂0
f2

(v) = qA⊗̂δf2(v) = qf2∪v and ∂1
f2

(ϕ⊗v) = −ϕ(qA)·δf2(v) = −qf2∪(ϕ⊗v)

for all ϕ in Homcont(Q
∗
p, L) and v in V (f2)−ββ , where ∪ is the cup-product induced by

the evaluation map. Define

V (f)·ββ =
(
V (f)· ⊗Of

κ1−k/2
cyc

)
⊗L V (g1)+ ⊗L V (h1)+.

These are Of [GQp ]-modules, sitting in a short exact sequence

0 −→ V (f)+
ββ −→ V (f)ββ −→ V (f)−ββ −→ 0

which specialises to (22) under evaluation at k = 2 on Of . Identify the Of -module
V (f)ββ with the direct sum of V (f)+

ββ and V (f)−ββ under a fixed Of -splitting of the
previous exact sequence. There is then a continuous map

qf : GQp −→ HomOf
(V (f)−ββ , V (f)+

ββ)
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satisfying the following properties. For all v± ∈ V (f)±ββ and σ ∈ GQp
(cf. Equation

(101) of loc. cit.)

(24) σ(v+) =
ωcyc(σ) · κk/2cyc (σ)

ψfψg1ψh1
(σ)

·v+ and σ(v−) =
ψf (σ)κ

1−k/2
cyc (σ)

ψg1ψh1
(σ)

·v−+qf (σ,v−),

where ψf : Gnr
Qp
−→ Λ∗f is the unramified character of GQp which sends an arith-

metic Frobenius Frobp to ap(k), and similarly ψg1 , ψh1
: Gnr

Qp
−→ O∗ are defined by

ψg1(Frobp) = bp(1) and ψh1(Frobp) = cp(1) respectively. (Here one uses that both
χf and χg · χh are equal to the trivial character.) Moreover the specialisation

qf (·)k=2 : GQp
−→ Qp(1)⊗Qp

HomOf (V (f2)−ββ , V (f2)+
ββ(−1))

of qf at k = 2 (via HomOf
(V (f)−ββ , V (f)+

ββ) ⊗2 L ∼= HomL(V (f2)−ββ , V (f2)+
ββ)) is a

1-cocycle satisfying

(25) cl
(
qf (·)k=2

)
= qf2 .

For future reference denote by Φf : GQp −→ Λ∗f the character

(26) Φf = κk/2−1
cyc · ψ−1

f · ψ−1
g1
· ψ−1
h1
,

so that Φf (·)k=2 is the trivial character and GQp
acts on V (f)+

ββ via χcyc · Φf .
Denote by

Yββ ∈ H1(Qp, V (f)ββ) and Yk,ββ ∈ H1(Qp, V (f)−ββ)

the images of Y and Yk under the maps induced by the projections

F 2V (f , g,h) −� F 2V (f , g1,h1) −� V (f)ββ

and
V (f , g,h)f −� V (f , g1,h1)f = V (f)−ββ

respectively. (Here V (f , g1,h1) = V (f)· ⊗L V (g1)⊗L V (h1)(κ
1−k/2
cyc

)
. Note that the

discussion leading to Equation (19) yields a similar canonical decomposition of the
Of [GQ]-module V (f , g1,h1).) According to Equation (20) the cohomology class Yββ

is represented by a 1-cocycle of the form

Yββ = Y +
ββ ⊕ (k − 2) · Y −ββ : GQp −→ V (f)ββ ,

for 1-cochains Y ·ββ : GQp → V (f)·ββ . Using Equation (24) the cocycle relation for
Yββ gives

(27) dY +
ββ(σ, τ) = −(k − 2) · qf (σ, Y −ββ(τ)) and dY −ββ = 0.

In particular the specialisations y·ββ : GQp → V (f2)·ββ of Y ·ββ at k = 2 are both
1-cocycles and by construction

(28) i+∗ (y+
ββ) = yββ and (k − 2) · cl(Y −ββ) = (k − 2) ·Yk,ββ ,

where y±ββ = cl(y±ββ) ∈ H1(Qp, V (f2)±ββ) are the classes represented by y±ββ , the
map i+∗ is the one induced by the inclusion i+ : V (f2)+

ββ ↪−→ V (f2)ββ and yββ in
H1(Qp, V (f2)ββ) is the image of y under the map induced by the projection onto the
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direct summand V (f2)ββ of F 2V (f2, g1,h1). The second identity in Equation (28)
implies

yk(qA)f = y−ββ(qA)f

(cf. the remark after Equation (21)), hence Equation (21) can be rephrased as

(29)
(

1− 1

p

)
· d

2

dk2 Lf (Z,k, 1, 1)k=2 =
−1

ordp(qA)
· y−ββ(qA)f .

In light of Equations (24)–(26) and Lemma 2.3, the first equalities in Equations (27)
and (28) yield

−∂1
f2

(y−ββ) = invp
(
cl
(
qf2(σ, y−ββ(τ))

))
(30)

= −βV (f)+ββ
(y+
ββ) = − d

dk
Φf (y+

ββ)k=2 = −1

2
· logqA(y

+
ββ).

More precisely, the first equality follows from Equation (23), the second from Equa-
tions (25) and (27) and the definition of βV (f)+ββ

, and the third from Lemma 2.3.
Finally, for each unit u in Z∗p, one has (cf. Equation (26))

d

dk
Φf (u)k=2 =

d

dk
κk/2−1

cyc (recp(u))k=2 =
d

dk

(
uk/2−1

)
k=2

=
1

2
· logp(u)

and
d

dk
Φf (p)k=2 = αg · αh ·

d

dk
ap(k)k=2 = −1

2
· Lan
f ,

which in light of the identity Lan
f =

logp(qA)

ordp(qA) proved in [GS93, Theorem 3.14] yields
the last equality in Equation (30). (Here one denotes again by

logqA : Q∗p⊗̂V (f2)+
ββ(−1) −→ V (f2)+

ββ(−1) ∼= Dcris(V (f2)+
ββ)

the morphism induced by logqA = logp−
logp(qA)

ordp(qA) · ordp : Q∗p → Qp).
As the connecting morphisms ∂0

f2
and −∂1

f2
are adjoint to each other under the

cup-product induced by 〈·, ·〉f2g1h1
, Equations (23), (29) and (30) combine to give

(31)(
1− 1

p

)
· d

2

dk2 Lf (Z,k, 1, 1)k=2 =
1

2ordp(qA)
·
〈

logqA(y
+
ββ), δ−1

f2

(
ηf2⊗ωg1⊗ωh1

)〉
f2g1h1

.

Since f has trivial character, one has V ∗(f)· = V (f)·(−1) for · = ∅,± (cf. Sections
2.5 and 5 of [BSV20]). There are then natural Gal(Kp/Qp)-equivariant isomorphisms

Fil1DdR,Kp(V ∗(f)) ∼= Fil0DdR,Kp(V (f)) ∼= Dcris,Kp(V (f)−) = V (f)− ⊗Qp Kp,

under which we identify the differential (cf. Section 2.5 of loco citato)

ωf ∈ Fil1V ∗dR(f) = Fil1DdR,Kp(V ∗(f))Gal(Kp/Qp)

with an element of V (f)−. Lemma 2.4 below proves that

δf (ωf ⊗ ωgα ⊗ ωhα) = ±
c2f

deg(℘∞)
· ηf ⊗ ωgα ⊗ ωhα
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in V ∗(f)+
ββ = V (f)+(−1)⊗Qp

V ∗(g)− ⊗L V (h)−, hence by construction

(32) δ−1
f2

(
ηf2 ⊗ ωg1 ⊗ ωh1

)
= ±deg(℘∞)

c2f
·$∗fgh

(
ωf ⊗ ωgα ⊗ ωhα

)
,

where$∗fgh = v∗f⊗v∗g⊗v∗h is the adjoint of$fgh under the Poicaré dualities 〈·, ·〉fgαhα
and 〈·, ·〉f2g1h1

. Finally, the first identity in Equation (28) gives

(33) logqA(y
+
ββ) = πββ(logp(z)),

where πββ is the composition

DdR(V (f2, g1,h1))/Fil0 ∼= Dst(V (f2, g1,h1)+) −� Dcris(V (f2)+
ββ)

arising from Equations (191) and (192) of [BSV20] and Equation (19). Since by con-
struction the ββ-logarithm logββ factors through the projection πββ , the proposition
is a direct consequence of Equations (31)–(33).

Lemma 2.4. — Let
∂f : V (f)− −→ K∗p ⊗̂V (f)+(−1)

be the connecting morphism associated with the exact sequence of GKp-modules

0 −→ V (f)+ −→ V (f) −→ V (f)− −→ 0.

Then ∂f = qA⊗̂δf for an isomorphism

δf : V (f)− −→ V (f)+(−1)

satisfying, up to sign, the following identity in V (f)+(−1):

δf (ωf ) =
c2f

deg(℘∞)
· ηf .

Proof. — Consider the following diagram of Qp[GKp ]-modules with exact rows, in
which all the vertical maps are isomorphisms.

(34) 0 // Qp(1)

ϕ+
Tate

��

// Vp(EqA)

ϕTate

��

// Qp
//

ϕ−Tate

��

0

0 // Vp(A)+ // Vp(A) // Vp(A)− // 0

0 // V (f)+

℘+
∞∗

OO

// V (f) //

℘∞∗

OO

V (f)− //

℘−∞∗

OO

0

Here ϕTate is the map induced on the p-adic Tate modules by the Tate uniformisation
EqA

∼= AKp , and the first row is the short exact sequence induced by the natural
projection Grig

m,Kp
−→ EqA (cf. Introduction).

The class in

Ext1
Qp[GKp ](Qp,Qp(1)) = H1(Kp,Qp(1)) ∼= K∗p ⊗̂Qp
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represented by the first row equals qA⊗̂1, hence the associated connecting morphism

∂Tate : Qp −→ K∗p ⊗̂Qp

satisfies

(35) ∂Tate(1) = qA⊗̂1.

After setting

γqA =
−1

ordp(qA)
· ordp ∈ Homcont(K

∗
p ,Qp) ∼= H1(Kp,Qp),

this implies

(36) 〈γqA , ∂Tate(1)〉m = 1,

where
〈·, ·〉m : H1(Kp,Qp)⊗Qp

H1(Kp,Qp(1)) −→ Kp

is the local Tate pairing attached to the multiplication m : Qp⊗Qp Qp(1) −→ Qp(1).
Moreover, the Diagram (34) and Equation (35) imply that the connecting morphisms

∂A : Vp(A)− −→ K∗p ⊗̂Vp(A)+(−1) and ∂f : V (f)− −→ K∗p ⊗̂V (f)+(−1)

associated respectively to the second and third rows of Diagram (34) are of the form

(37) ∂A = qA ⊗ δA and ∂f = qA ⊗ δf
for isomorphisms δA : Vp(A)− −→ Vp(A)+(−1) and δf : V (f)− −→ V (f)+(−1).

Up to sign, one has the identities

〈ωf , δf (ωf )〉f = 〈γqA ⊗ ωf , ∂f (ωf )〉f

=
1

deg(℘∞)
·
〈
γqA ⊗ ℘−∞∗(ωf ), ∂A(℘−∞∗(ωf ))

〉
Weil

=
c2f

deg(℘∞)
·
〈
γqA ⊗ ϕ−Tate(1), ∂A(ϕ−Tate(1))

〉
Weil

(38)

=
c2f

deg(℘∞)
·
〈
γqA ⊗ ϕ−Tate(1), ϕ+

Tate(∂Tate(1))
〉

Weil

=
c2f

deg(℘∞)
· 〈γqA , ∂Tate(1)〉m ,

where 〈·, ·〉Weil : H1(Kp, Vp(A)+)⊗QpH
1(Kp, Vp(A)−) −→ Kp is the local Tate pairing

associated with the Weil paring on Vp(A). Indeed, the first equality follows from
Equation (37). The second equality follows (up to sign) from the functoriality of
Poincaré duality under finite morphisms of curves and its compatibility with the Weil
pairing on elliptic curves. The third equality follows from the definition of cf (cf.
Equation (14)). The fourth equality follows from Diagram (34). The fifth and last
equality follows from the functoriality of the Weil paring under isogenies, after noting
that the Kummer duality between Qp(1) and Qp induced by the Weil pairing on
Vp(EqA) is equal (up to sign) to the multiplication map m.

Since V (f)+(−1) = Dcris(V (f)+) is a one-dimensional Qp-vector space generated
by ηf and 〈ωf , ηf 〉f = 1, the lemma follows from Equations (36) and (38).
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3. Factorisations of p-adic L-functions

This section is devoted to the proof of Theorem 3.1 below, viz. the crucial factori-
sation formula (7) of Section 1, under the assumptions listed therein. In light of the
discussion of Section 1 (see Equations (7) and (8)) and of Section 2, this is the last
step in our proof of Theorem A.

The reader is cautioned that the notations for p-adic L-functions in force here are
consistent with those of [BSV20, Section 6] and differ slightly from those of Section
1. Thus Lp(f ], g],h]) denotes the square of the triple product square-root p-adic
L-function L f

p (f?, g?,h?) attached to our fixed choice of test vector (f?, g?,h?), and
the restriction of Lp(f ], g],h]) to the line (k, 1, 1) is denoted

Lp(f
], g]1,h

]

1) = Lp(f
], gα, hα)

(recall that g] and h] interpolate the chosen p-stabilisations gα and hα respectively).
Accordingly, the Hida–Rankin p-adic L-functions associated to the ring class charac-
ters ϕ and ψ are denoted by Lp(f ], ϕ) and Lp(f ], ψ) (as observed in Section 1, they
depend only on the primitive family f ]).

Theorem 3.1. — Up to shrinking Uf if necessary, there is a factorisation

Lp(f
], g]1,h

]

1) = A · Lp(f ]/K,ϕ) · Lp(f ]/K,ψ),

where A ∈ O∗f is a bounded analytic function on Uf such that

A (2) ∈ Q(g]1,h
]

1)∗,

Q(g]1,h
]

1) being the field generated by the Fourier coefficients of g]1 and h]1.

3.1. The Mazur–Kitagawa p-adic L-function. — Let χ be a Dirichlet character
of conductor coprime to Nfp. For every classical point k ∈ U cl

f let L(f ]k, χ, s) be the
Hecke L-series of f ]k ⊗ χ, defined as the analytic continuation of the Dirichlet series∑
n>1 χ(n)an(f ]k)·n−s converging absolutely for <(s) > (k+1)/2. A result of Shimura

gives complex periods Ω∞(f ]k)+ and Ω∞(f ]k)− inC∗ satisfying the following properties.
One has

Ω∞(f ]k)+ · Ω∞(f ]k)− = (f ]k, f
]

k)Nfpr(k) ,

where r(k) is equal to one if k = 2 and to zero otherwise. Upon setting

Ω∞(f ]k, χ) = Ω∞(f ]k)sign(χ)

(sign(χ) being the sign of χ(−1)) the quantity

(39) L(f ]k, χ, k/2)alg =
(k/2− 1)! · g(χ̄) · L(f ]k, χ, k/2)

(−2πi)k/2−1 · Ω∞(f ]k, χ)
∈ Q(f ]k, χ)

belongs to the number field Q(f ]k, χ) generated over Q by the Fourier coefficients
of f ]k and the values of χ. Here g(χ̄) =

∑
a∈(Z/cχZ)∗ χ̄(a) · ζacχ is the Gauß sum of

χ̄ = χ−1, where cχ is the conductor of χ and ζcχ = e2πi/cχ . One calls L(f ]k, χ, k/2)alg

the algebraic part of the central critical value L(f ]k, χ, k/2).
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According to a result of Mazur and Kitagawa (cf. [Kit94, GS93, BD07]) the
algebraic central values L(f ]k, χ, k/2)alg, defined for k ∈ U cl

f , can be interpolated by
an analytic function

Lp(f
], χ) ∈ Of ,

which we call the Mazur–Kitagawa p-adic L-function of (f ], χ). More precisely, up
to shrinking Uf if necessary, there exist for every k ∈ U cl

f non-zero p-adic periods

λ+
k , λ

−
k ∈ Q̄∗p, with λ±2 = 1,

such that
(40)

Lp(f
], χ)(k) = λ

sign(χ)
k ·

(
1− pk/2−1χ(p)

ap(k)

)
·
(

1− εk(p) · p
k/2−1χ̄(p)

ap(k)

)
·L(f ]k, χ, k/2)alg,

where εk(p) = 0 if k = 2 (i.e. if f ]k is p-new) and εk(p) = 1 otherwise (i.e. if f ]k is
p-old).

Remark 3.2. — 1. The p-adic L-function Lp(f ], χ) is the restriction to the central
critical line s = k/2 of a two-variable p-adic L-function

LMK
p (f ], χ) = LMK

p (f ], χ)(k, j) ∈ Of ⊗̂Ocyc

of the weight variable k ∈ Uf and cyclotomic variable j (cf. [BSV20, Section 7.1]).
For every classical point k ∈ U cl

f one has

LMK
p (f ], χ)(k, j) = λ

sign(χ)
k · Lp(f ]k, χ)(j),

where Lp(f ]k, χ) = Lp(f
]

k, χ)(j) ∈ Ocyc is the cyclotomic p-adic L-function of f ]k⊗χ (cf.
[MTT86]) defined as the Mellin transform of a measure on Z∗p× (Z/cχZ)∗ associated
to the sign(χ)-modular symbol attached to f ]k. In order to construct LMK

p (f ], χ) one
interpolates these modular symbols, and the p-adic periods λ±k are the error terms
arising from the p-adic interpolation.

2. If k = 2 and
χ(p) = ap(2)

(with ap(2) = ap(A) = ±1), the Euler factor 1− pk/2−1χ(p)
ap(k) which appears in Equation

(40) vanishes. In this exceptional zero situation (cf. [MTT86]) Lp(f ], χ) vanishes at
k = 2 independently of whether the complex L-series L(f, χ, s) vanishes at s = 1 or
not.

3.2. Hida–Rankin p-adic L-functions attached to quadratic fields. — Let
K/Q be a quadratic field of discriminant coprime to Nfp, satisfying the Heegner
hypothesis given in Assumption 1.1(1). To lighten notations, assume in the real
quadratic case that N−f = 1 (so that one works with forms on GL2).

The Hida–Rankin p-adic L-function attached to the pair (f ], %) (% = ϕ or ψ)
introduced in [BD07] and [BD09] is an analytic function

Lp(f
]/K, %) ∈ Of
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satisfying the following interpolation property. For every classical point k ∈ U cl
f

(41) Lp(f
]/K, %)(k) = Ωp(f

]

k, %)2

(
1− pk−2

ap(k)2

)2

L(f ]k/K, %, k/2)alg,

where the algebraic part of L(f ]k/K, %, k/2) is defined by

(42) L(f ]k/K, %, k/2)alg =
(k/2− 1)!2 · d(k−1)/2

K

(2πi)k−2 · Ω∞(f ]k, %)
· L(f ]k/K, %, k/2) ∈ L.

Here L(f ]k/K, %, s) = L(f ]k ⊗ ϑ%, s) is the Rankin–Selberg convolution of f ]k and
the weight-one theta series ϑ% associated to %, and the complex and p-adic periods
Ω∞(f ]k, %) and Ωp(f

]

k, %) are defined as follows.
When K is real quadratic, then

Ω∞(f ]k, %) =
(
Ω∞(f ]k)sign(%)

)2
, Ωp(f

]

k, %) =
(
λ

sign(%)
k

)2
.

When K/Q is imaginary quadratic, one sets

Ω∞(f ]k, %) = (f ]k, f
]

k)
Nfpr(k)

,

where r(k) = 1 if k = 2 and r(k) = 0 otherwise.
We finally recall the definition of the p-adic periods Ωp(f

]

k, %) in the imaginary case.
With the notations of Assumption 1.1 let B/Q be the definite quaternion algebra with
discriminant N−f ∞. As explained in Section 2 of [BD07] the form f ]k gives rise, via
the Jacquet–Langlands correspondence, to a weight-k eigenform φk on B̂∗ of level
Σ0(pN+, N−) ⊂ B̂∗, having the same system of Hecke eigenvalues as f ]k. This form
is unique up to multiplication by a non-zero scalar. As in loc. cit., for every k > 2
(resp., k = 2) normalise φk by requiring that its Petersson norm is equal to 1 (resp.,
that it takes values in Z). This characterises φk up to sign for k > 2. According
to Theorem 2.5 of loc. cit. (up to shrinking Uf if necessary) there exists an Of -adic
family φ∞ of eigenforms on B̂∗ whose specialisation at a classical point k ∈ U cl is
equal to λB(k) · φk, for some

λB(k) ∈ L∗ with λB(2) = 1

(see Section 2 of loc. cit. for the details). The definition of Lp(f ]/K) given in Section 3
of loc. cit. depends on φ∞, and one sets Ωp(f

]

k, %) = λB(k). In particular Ωp(f, %) = 1.

3.3. Proof of Theorem 3.1. — The decomposition of Galois representations

V (g)⊗L V (h) = IndKQ(νg)⊗L IndKQ(νh) = IndKQ(ϕ)⊕ IndKQ(ψ)

yields for every k ∈ U cl
f a factorisation of complex L-functions

(43) L(f ]k ⊗ g ⊗ h, s) = L(f ]k/K,ϕ, s) · L(f ]k/K,ψ, s).

The imaginary case. Assume that K/Q is imaginary quadratic and let k be a
classical point in U cl

f ∩ Z>2. Then the complex period Ω∞(f ]k, %) is equal to the
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Petersson norm 〈f ]k, f
]

k〉Nfpr(k) , hence Equations (42), (43) and [BSV20, (133)], give
(44)
Γ(k, 1, 1)

2α(k,1,1)
·
L(f ]k ⊗ g ⊗ h, k/2)

π2(k−2) · (f ]k, f
]

k)2
Nf

=
22k−4−α(k,1,1)

dk−1
K

·L(f ]k/K,ϕ, k/2)alg·L(f ]k/K,ψ, k/2)alg.

With notations as in [BSV20, Section 6], one finds from Equations (1) and (2)

(45) E(f ]k, g
]

1,h
]

1) =

(
1− pk/2−1

ap(k)

)2(
1 +

pk/2−1

ap(k)

)2

=

(
1− pk−2

ap(k)2

)2

.

Since Ωp(f
]

k, %) is equal to the quaternionic period λB(k) for both % = ϕ and % = ψ (cf.
the discussion following Equation (41)), Equations (42), (41), (44), (45) and [BSV20,
(132), (135)] yield

(46) Lp(f
], g]1,h

]

1)(k) = A 2
B,k ·A o

k · Lp(f
]/K,ϕ)(k) · Lp(f ]/K,ψ)(k)

for every k ∈ U cl
f ∩ Z>2, where one writes

AB,k =
1

λB(k)2 · E0(f ]k) · E1(f ]k)
and A o

k =
22k−4−α(k,1,1)

dk−1
K

∏
v|N

Locv.

Since Locv is a non-zero constant in Q∗ for every v|N , and p does not divide dK , the
values A o

k ∈ Q∗ for k ∈ U cl
f are interpolated by a unit in O∗f . Equation (46) then

reduces the proof of Theorem 3.1 to the following statement.

Lemma 3.3. — There exists a bounded analytic function AB ∈ Of satisfying the
following properties.

1. AB(k) = AB,k for infinitely many classical points k ∈ U cl
f .

2. AB(2) is a non-zero element in Q∗.

We defer the proof of Lemma 3.3 to Section 3.4 below.
The real case. Assume that K is real quadratic and let k ∈ U cl

f ∩ Z>2. Define the
quantity

(47) AGL2,k =
1

λ+
k · λ

−
k · E0(fk) · E1(fk)

.

By a similar argument as in the imaginary case, one reduces the proof of Theorem
3.1 to the following statement.

Lemma 3.4. — There exists a bounded analytic function AGL2
∈ Of satisfying the

following properties.
1. AGL2

(k) = AGL2,k for infinitely many classical points k ∈ U cl
f .

2. AGL2
(2) is a non-zero element in Q∗.

3.4. Proofs of Lemma 3.3 and Lemma 3.4. — According to Proposition 5.2 of
[BD07] there exists an analytic function A B

GL2
∈ Of (denoted η in loc. cit.) such

that, for every k ∈ U cl
f ∩ Z>2

A B
GL2

(k) =
λB(k)2

λ+
k · λ

−
k

=
AGL2,k

AB,k
and A B

GL2
(2) ∈ Q∗.
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In particular, after shrinking Uf if necessary, the analytic function A B
GL2

is a unit in
Of . This implies that Lemma 3.3 follows from Lemma 3.4, hence to conclude the
proof of Theorem 3.1 it is sufficient to prove the latter.

To prove Lemma 3.4 we consider triple product p-adic L-functions associated to
f ] and two weight one Eisenstein series attached to the characters which appear in
the following lemma.

Lemma 3.5. — There exists two Dirichlet characters χ and ψ satisfying the follow-
ing properties.

1. The conductors cχ and cψ of χ and ψ are coprime to each other and coprime to
Nfp.

2. χ is even and χ(p) is different from ±1.
3. ψ is odd and ψ(p) = −ap(f).
4. Both L(f, χ, s) and L(f, ψ, s) do not vanish at s = 1.

Proof. — Let ` be a prime which does not divide Nfp. According to the main result
of [Roh84] there exists no ∈ N such that L(f, χ, 1) 6= 0 for every primitive Dirichlet
character χ of Gal(Q(µ`n)+/Q) = (Z/`nZ)∗/{±1} with n > no, where Q(µ`n)+ is
the maximal totally real subfield of the `n-th cyclotomic extension of Q. If n > no is
such that `n - p4 − 1, this shows that there exists a character χ such that

(a) the conductor cχ = `n of χ is coprime to Nfp.
(b) χ(−1) = +1 and χ(p) 6= ±1.
(c) L(f, χ, s) does not vanish at s = 1.
Let q be a fixed prime which divides Nf exactly, whose existence is guaranteed by

Assumption 1.1. For every quadratic character σ denote by sign(f ⊗ σ) the sign at
s = 1 in the functional equation satisfied by the Hecke L-function L(f, σ, s). Choose
any quadratic Dirichlet character ψ1 satisfying the following properties.

(d) The conductor c(ψ1) of ψ1 is coprime with ` ·Nfp.
(e) ψ1(−1) = +1 and ψ1(t) = +1 for every prime t which divides Nf/q.
(f) ψ1(p) = −ap(f) and ψ1(q) = ap(f) · sign(f).

One has (cf. Theorem 3.66 of [Shi71])

sign(f ⊗ ψ1) = sign(f) · ψ1(−Nfp) = −1,

hence the main result of [BFH90] shows that there exists a quadratic Dirichlet char-
acter ψ2 such that

(g) the conductor of ψ2 is coprime to ` · c(ψ2) ·Nfp.
(h) ψ2(−1) = −1 and ψ2(t) = +1 for every prime divisor t of Nfp.
(i) L(f, ψ1 · ψ2, s) does not vanish at s = 1.

According to (a)–(i) the characters χ and ψ = ψ1 ·ψ2 satisfy the required properties.

Fix two characters χ and ψ satisfying the conclusions of the previous lemma, and
set N = Nfcχcψ and

ξ = χ−1 · ψ−1.
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Since χ, ψ and ξ are non-trivial and ξ is odd, one can consider the weight one Eisen-
stein series

E(χ, ψ) =

∞∑
n=1

σ(χ, ψ)(n) · qn ∈M1(N, ξ−1)

and

E(ξ) = E(1, ξ) =
L(ξ, 0)

2
+
∑
n>1

σ(1, ξ) · qn ∈M1(N, ξ),

where σ(α, β)(n) =
∑
d|n α(n/d) ·β(d) for every Dirichlet characters α and β, and 1 is

the trivial character. Following Section 3 of [BD14], for every classical point k ∈ U cl
f

define

(48) Lp(f
]

k, E(χ, ψ)) =

(
f ]k, eord

(
dk/2−1Ě(ξ)× Ě(χ, ψ)

))
Np

(f ]k,f
]

k)Np
,

where Ě(ξ) = E(ξ)[p] ∈ M1(N, ξ) and Ě(χ, ψ) = E(χ, ψ)[p] ∈ M1(N, ξ−1) are the
p-depletions of E(ξ) and E(χ, ψ) (cf. [BSV20, Section 3.1]). The article [BD14]
shows that the function which to k ∈ U cl

f associates Lp(f ]k, E(χ, ψ)) extends to an
analytic function

Lp(f
], E(χ, ψ)) ∈ Of .

(The notation is justified by the following lemma, cf. Remark 3.7.) For all k ∈ U cl
f

define

Cχ,ψ(k) =
−iNf

2k−2 · χ(cψ) · ψ(cχ) · [Γ1(Nf ) : Γ1(N)]
.

For · = χ, ψ Section 3.1 associates to (f ], ·) the Mazur–Kitagawa p-adic L-function
Lp(f

], ·) ∈ Of .

Lemma 3.6. — 1. Let Q(χ, ψ) be the field generated over Q by the values of χ and
ψ. Then

Lp(f
], E(χ, ψ))(2) = (p+ 1) · Cχ,ψ(2) · Lp(f ], χ)(2) · Lp(f ], ψ)(2) ∈ Q(χ, ψ)∗.

In particular the p-adic L-function Lp(f ], E(χ, ψ)) does not vanish at k = 2.
2. (cf. [BD14]) For every classical point k ∈ U cl

f (strictly) greater than 2 one has

(49) Lp(f
], E(χ, ψ))(k) = AGL2,k · Cχ,ψ(k) · Lp(f ], χ)(k) · Lp(f ], ψ)(k),

Proof. — 1. Write for simplicity g = E(ξ) and h = E(χ, ψ), and consider the p-
stabilisations

gα(q) = g(q)− ξ(p) · g(qp), gβ(q) = g(q)− g(qp) and hα(q) = h(q)− ψ(p) · h(qp).

Then f (resp., gα, gβ , hα) is an eigenvector for the Up-operator with eigenvalue
αf = ap(2) = ±1 (resp., 1, ξ(p), χ(p)), hence Lemma 3.5 and the same computations
as in the proof of [DR14, Lemma 4.10] show that

2 · (f, gβ · hα)Np = (1− χ(p)/ap(2)) · (f, gα · hα)Np .
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As ξ(p) 6= 1 by Lemma 3.5, one can write g = (gα − ξ(p) · gβ)/(1 − ξ(p)), which
together with the previous equation and a direct computation gives the identity

(50) Lp(f
], E(χ, ψ))(2) = 2

(
1− χ(p)

ap(2)

)
·

(f, g · hα)Np
(f, f)Np

.

The L-series of the forms f and hα admit Euler product expansions, hence the Rankin
method (see the argument leading to Equation (18) of [BD14], or [Shi76, Theorem
2 and Lemma 1]) gives

(51) (f, g · hα)Np = −ig(ξ)Nfp · L(f ⊗ hα, 1),

where g(·) is the Gauß sum of the character ·. (Note that (·, ·)Np equals 8π2 times
the Petersson product defined in Equation 9 of [BD14].) Since the characters χ and
ψ have opposite parity, one has

(52) Ω∞(f, χ) · Ω∞(f, ψ) = (f, f)Nfp = [Γ1(Nf ) : Γ1(N)]−1 · (f, f)Np.

Moreover a direct comparison of Euler factors (cf. [Shi76, Lemma 1]) and Lemma
3.5 give

(53) L(f ⊗ hα, 1) =

(
1− ap(2)ψ(p)

p

)
L(f ⊗ h, 1) =

(
1 +

1

p

)
L(f, χ, 1) · L(f, ψ, 1).

As g(ξ) = g(χ−1) · g(ψ−1) · χ−1(cψ)ψ−1(cχ) (since (cχ, cψ) = 1), the statement is a
direct consequence of Equations (39)–(40), Equations (50)–(53) and Lemma 3.5.

2. This is proved in Proposition 3.3 of [BD14]. Since the setting of loc. cit. is
slightly different from ours, for the convenience of the reader we briefly review the
argument. Equations (35) and (41) and Proposition 3.2 of [BD14], together with
Proposition 4.6 of [DR14], show that for every classical point k > 2 one has

Lp(f
], E(χ, ψ))(k) =

E(f ]k, χ, ψ)

E0(f ]k) · E1(f ]k)
·
(
f ]k, δ

k/2−1E(ξ) · E(χ, ψ)
)
N

(f ]k, f
]

k)
N

,

where
δk/2−1 : M1(N, ξ) −→Man

k−1(N, ξ)

is the (k/2− 1)-th iterate of the Shimura–Maaß derivative operator. Here E0(f ]k) and
E1(f ]k) are as in Equation [BSV20, (135)], and

E(f ]k, χ, ψ) =

(
1− pk/2−1χ(p)

ap(k)

)(
1− pk/2−1χ̄(p)

ap(k)

)(
1− pk/2−1ψ(p)

ap(k)

)2

.

(Recall that ψ = ψ−1 is a quadratic character, cf. Lemma 3.5, and that Ei(f ]k) is
non-zero for k > 2.) The Rankin method (see Equations (18) and (19) of [BD14])
yields(
f ]k, δ

k/2−1E(ξ) · E(χ, ψ)
)
N

=
−iNfg(ξ) · (k/2− 1)!2

2k−2 · (−2πi)k−2
· L(f ]k, χ, k/2) · L(f ]k, ψ, k/2).

As in the proof of Part 1 the statement follows easily from the definitions and the
previous three equations.
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Since the analytic functions Lp(f ], E(χ, ψ)), Lp(f ], χ) and Lp(f ], ψ) do not vanish
at k = 2 by Lemma 3.6(1), and since Cχ,ψ(k) is clearly an invertible element of
Of , Lemma 3.6(2) implies that the values AGL2,k, defined for k ∈ U cl ∩ Z>2, are
interpolated by an analytic function AGL2(k) which does not vanish at k = 2. In
addition, the explicit formula for the value of Lp(f ], E(χ, ψ)) at k = 2 displayed in
Lemma 3.6(1) gives

AGL2
(2) = p+ 1.

This concludes the proof of Lemma 3.4, and with it the proofs of Lemma 3.3 and
Theorem 3.1.

Remark 3.7. — 1. The previous lemma (or better its proof) shows that
Lp(f

], E(χ, ψ)) can be though of as a p-adic Rankin–Selberg convolution, which
interpolates the critical values L(f ]k ⊗ E(χ, ψ), k/2) of the convolution of f ]k with
E(χ, ψ). One can also think of Lp(f ], E(χ, ψ)) = Lp(f

], E(ξ), E(χ, ψ)) as a square-
root triple-product p-adic L-function (cf. Equations (48) and [BSV20, (55)]), whose
square interpolates the complex central values L(f ]k ⊗ E(ξ)⊗ E(χ, ψ), k/2).

2. Note that the Euler factor E1(f ]k) = 1− pk−2

ap(k)2 vanishes at k = 2, as a manifes-
tation of the presence of an exceptional zero for Lp(f ], s) and Lp(f

], g]1,h
]

1) in the
sense of [MTT86] (cf. Remark 3.2(2)).
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