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Abstract. — A conjecture of Perrin-Riou relating Heegner cycles to Beilinson–Kato
elements is proved, by relating both objects to p-adic families of Beilinson–Flach
elements in the higher Chow groups of products of two modular curves.
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1. Introduction

Let A be an elliptic curve over the field Q of rational numbers, having semistable
reduction at an odd prime p. Denote by

ζKato
A ∈ H1(Q, Vp(A))

the global p-adic Beilinson–Kato element associated in [Kat04] to (a fixed modular
parametrisation of) A (cf. Section 1.1 below). It lies at the “bottom layer” of Kato’s
Euler system arising from p-adic families of Beilinson elements in the second K-group
of a modular curve, associated to pairs of Eisenstein series. The relevance of this global
class to the Birch and Swinnerton-Dyer conjecture stems from the close relationship
it enjoys with the Hasse–Weil L-function L(A/Q, s) of A and its p-adic avatars. More
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precisely, Kato’s reciprocity law stated in equation (1) below implies that the image
of resp

(
ζKato
A

)
∈ H1(Qp, Vp(A)) by the Bloch–Kato dual exponential is a non-zero

multiple of the central critical value L(A/Q, 1). Of primary interest for this paper is
the scenario where L(A/Q, 1) = 0, in which ζKato

A belongs to the p-adic Bloch–Kato
Selmer group of A and therefore defines a local point in A(Qp) ⊗ Qp. In [PR93]
Perrin-Riou predicts that this local point is a prescribed element in the natural image
of the group of rational points A(Q) ⊗Qp. The main goal of this article is to prove
the following theorem, which settles Perrin-Riou’s conjecture.

Theorem A. — Let A be an elliptic curve over the field Q of rational numbers,
having semistable reduction at an odd prime p. If the Hasse–Weil complex L-function
L(A/Q, s) of A vanishes at s = 1, then there exists a global point P in A(Q) satisfying
the following properties.

1. The point P has infinite order if and only if L(A/Q, s) has a simple zero at
s = 1.

2. The following equality holds in Qp up to multiplication by a non-zero rational
number:

logωA
(
resp

(
ζKato
A

))
= log2

ωA(P ).

Here ωA is the Néron differential of a global minimal Weierstraß equation for
A and logωA : A(Qp) −→ Qp is the corresponding p-adic Lie group logarithm.

The reader is referred to Section 1.3 for a discussion of previous partial results and
of related work.

In a more general setting, Theorem B below proves a natural generalisation of
Perrin-Riou’s conjecture for p-semistable elliptic newforms f of even weight ko > 2
and trivial Nebentype, which recasts Theorem A when f is the newform of weight
two associated with A by the modularity theorem.

1.1. Statement of the main result. — Fix a positive integer Nf , an odd prime
p not dividing Nf , algebraic closures Q̄ and Q̄p of Q and Qp respectively and field
embeddings i∞ : Q̄ ↪−→ C and ip : Q̄ ↪−→ Q̄p. Denote by ordp the p-adic valuation
on Q̄∗p satisfying ordp(p) = 1 and by |·|p the corresponding p-adic absolute value.

Let f =
∑
n>1 an(f) · qn be a newform of even weight ko > 2 and level Γ0(Nfp

r)
for some r 6 1. Let L be the finite extension of Qp generated by µNfpr and the
(images under ip) of the Fourier coefficients an(f) of f . Let α = αf and β = βf be
the roots of the Hecke polynomial X2 − ap(f) · X + 1pr (p) · pko−1, ordered in such
a way that ordp(α) 6 ordp(β). (Here 1m is the trivial Hecke character modulo m.)
We assume that the form f is p-regular, viz. the roots α and β are distinct. Let
fα = f(q)− βf · f(qp) be the p-stabilisation of f with Up-eigenvalue α and let

Lp(fα) = Lα(f, s) ∈ O(W)

be the cyclotomic p-adic L-function associated with fα and the choice of complex
Deligne periods Ω±f , where O(W) is the ring of analytic functions on the p-adic weight
space W = Homcont(Z

∗
p,C

∗
p) over Qp. We normalise Lp(fα) as in Theorem 16.2 of
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[Kat04], so that Lp(fα, s− µ) is an explicit multiple of the algebraic number

L(f, µ, s)/(−2πi)s−1Ω±f

for each integer 1 6 s 6 ko−1 and each finite order character µ : Z∗p −→ Q̄∗p satisfying
(−1)s−1µ(−1) = ±1. (We use the additive notation for the product of characters in
W(Q̄p), so that s−µ is a shorthand for the continuous character κs ·µ−1 : Z∗p −→ Q̄∗p
with κ the inclusion of Z∗p in Q̄∗p.)

According to the work of Kato [Kat04] (see in particular Theorem 16.6 and Part
2 of Theorem 12.4) there exists a unique global Iwasawa cohomology class

ζKato
f ∈ H1

Iw(Q(µp∞), V (f))

satisfying the explicit reciprocity law

(1)
〈
Logf

(
resp

(
ζKato
f

))
, ηαf
〉

= Lp(fα, 1 + s),

where the notations are as follows. Let Y = Y1(Nfp
r) be the affine modular curve

of level Γ1(Nfp
r) over Q. Assume for simplicity Nfpr > 4, so that Y represents the

functor sending a Q-scheme S to the set of isomorphism classes of elliptic curves over
S with a point of exact order Nfpr. Consider the p-adic sheaves

Lko−2 = TSymko−2R1(E −→ Y )∗Zp(1) and Sko−2 = Symmko−2R1(E −→ Y )∗Zp

on Y , where E −→ Y is the universal elliptic curve, and TSymi· and Symmi· denote
respectively the submodule of symmetric tensors and the symmetric quotient of the
i-th tensor power of ·. Set YQ̄ = Y ⊗Q Q̄ and define

H1
ét(YQ̄,Lko−2)(1)⊗Zp L −� V (f)

to be the maximal L-quotient on which the dual Hecke operator T ′n acts as multipli-
cation by an(f) for each n > 1. Dually define

V ∗(f) ↪−→ H1
ét,c(YQ̄,Sko−2)⊗Zp L

to be the maximal L-submodule on which Tn acts as multiplication by an(f) for each
positive integer n. (See [Kat04, Section 2] or [BSV21b, Section 2] for detailed defini-
tions.) The GQ-representation V ∗(f) is the Deligne representation of f and Poincaré
duality identifies V (f) with the dual of V ∗(f). The group H1

Iw(Q(µp∞), V (f)) is the
global cyclotomic Iwasawa cohomology of V (f), viz. the Qp-linear extension of the
inverse limit of the groups H1(Q(µpn), V(f)), for any GQ-invariant OL-lattice V(f) in
V (f). The map resp is restriction from the global Iwasawa cohomology to the similarly
defined local Iwasawa cohomology H1

Iw(Qp(µp∞), V (f)). To define the Perrin-Riou
logarithm Logf and the de Rham class ηαf , we distinguish two cases.

Assume first that p does not divide the conductor of f , so that V ·(f) (where ·
denotes either ∅ of ∗) is crystalline at p. Then

Logf : H1
Iw(Qp(µp∞), V (f)) −→ O(W)⊗Qp Vcris(f)

is the Perrin-Riou logarithm associated in [PR94] with the restriction (via ip) of V (f)
to the decomposition group GQp

. Here V ·
cris(f) is the crystalline Dieudonné module
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H0(Qp, Bcris ⊗Qp
V ·(f)) of V ·(f). The pairing

〈·, ·〉 : Vcris(f)⊗L V ∗cris(f) −→ L

is the one induced by Poincaré duality and we use again the same symbol for its
O(W)-linear extension. The Faltings comparison isomorphism between the étale and
the de Rham cohomology of YQp

yields a canonical isomorphism between Fil0Vcris(f)
and the f -isotypic component of the space of weight-ko modular forms of level Γ1(Nf )
defined over L. (See for example [BSV21b, Section 2.5] for more details.) The form
f then corresponds to a canonical generator ωf of Fil0Vcris(f), and one defines ηαf to
be the unique element of V ∗cris(f) such that ϕ(ηαf ) = α·ηαf and 〈ωf , ηαf 〉 = 1, where ϕ is
the crystalline Frobenius. Here we use the assumptions α 6= β and ordp(α) 6 ordp(β)
to guarantee the existence of ηαf .

Assume now that p divides the conductor Nfp of f . The representations V ·(f)
(with · = ∅, ∗) are semi-stable at p and one defines as above the classes ωf in
Fil0Vst(f) and ηαf in V ∗st(f)ϕ=α satisfying 〈ωf , ηαf 〉 = 1, where V ·

st(f) is a shorthand
for H0(Qp, V

·(f)⊗Qp
Bst) and the pairing 〈·, ·〉 is induced by Poincaré duality. The

maximal quotient V (f)− of V (f) on which the inertia subgroup IQp
of GQp

acts
trivially is free of rank one over L and a Frobenius acts on it via multiplication by α.
Set Vcris(f)− = H0(Qp, V (f)− ⊗Qp

Bcris). Then the linear form

〈·, ηαf 〉 : Vst(f) −→ L

factors through Vst(f) −→ Vcris(f)−, and one defines 〈Logf (·), ηαf 〉 by the composition

H1
Iw(Qp(µp∞), V (f)) −→ H1

Iw(Qp(µp∞), V (f)−) −→ Vcris(f)−⊗Qp
O(W) −→ O(W),

where the first arrow is the natural one, the second is the Perrin-Riou logarithm
associated in [PR94] with the p-adic representation V (f)− and the third arises from
the linear form 〈·, ηαf 〉 on the semi-stable module Vst(f).

Set G∞ = Gal(Q(µp∞)/Q) and Λ∞ = Zp[[G∞]]. The Shapiro isomorphism identi-
fies H1

Iw(Q(µp∞), V (f)) with H1(Q, V (f)⊗ZpΛ∞(ε−1)), where ε : GQ −→ Λ∗∞ is the
tautological character. The morphism of Zp-algebras χ

k0/2−1
cyc : Λ∞ −→ Zp arising

from the (ko/2 − 1)-th power of the p-adic cyclotomic character χcyc : GQ −→ Z∗p
then induces a morphism (denoted by the same symbol) from H1

Iw(Q(µp∞), V (f)) to
the cohomology H1(Q,V(f)) of the central critical twist V(f) = V (f)(1 − ko/2) of
V (f). Define the p-adic Beilinson–Kato element of f by

ζKato
f = χko/2−1

cyc (ζKato
f ) ∈ H1(Q,V(f)).

In the statement of Theorem A, one defines ζKato
A = π∗(ζ

Kato
fA

) in H1(Qp, Vp(A)) to be
the image of ζKato

fA
under the isomorphism V (fA) −→ Vp(A) = H1

ét(A ⊗Q Q̄,Qp(1))
induced by a modular parametrisation π : Y −→ A. Here fA is the weight two
newform associated with A by the modularity theorem of Wiles, Taylor–Wiles et alii.

LetK be a quadratic imaginary field of odd discriminant dK , satisfying the Heegner
hypothesis relative to pNf , viz. each prime divisor of pNf splits inK/Q. As explained
in Section 4.4 below, the p-adic Abel–Jacobi image of the Heegner cycle associated
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with f and K (cf. [Nek92, BDP13]) yields a class

zK(f) ∈ Sel(K,V(f))−εf

in the Selmer group of V(f) over K, on which complex conjugation acts as minus
the sign εf in the functional equation satisfied by L(f, s). If ko is equal to 2 then
prf : Tap(J) ⊗Zp L −� V(f) is naturally isomorphic to the maximal quotient of the
p-adic Tate module of the Jacobian J of X1(Nfp

r) on which T ′n = an(f) for each
n > 1. In this case zK(f) = TraceH/K

(
prf∗(zK)

)
, where H is the Hilbert class field

of K and zK in H1(H,Tap(J)) is the image under the global p-adic Kummer map of
a Heegner divisor with trivial conductor in J(H).

Theorem B. — Assume that L(f, s) vanishes at s = ko/2. Then ζKato
f belongs to

the Bloch–Kato Selmer group Sel(Q,V(f)) and the equality

L(f, εK , ko/2)alg · logωf
(
resp

(
ζKato
f

))
= log2

ωf

(
resp

(
zK(f)

))
holds in L up to multiplication by a non-zero scalar in the number field K((an(fα))n>1).

In the statement we denoted by L(f, εK , ko/2)alg the algebraic part of the cen-
tral critical value of the Hecke L-function L(f, εK , s) of f twisted by the quadratic
character εK of K. It is defined by

L(f, εK , ko/2)alg =
(ko/2− 1)! ·

√
dK

(−2πi)ko/2−1 · Ω−f
· L(f, εK , ko/2)

and belongs to the number field Q(an(f), n > 1). Moreover we denoted by logωf
the linear form 〈logp(·), ωf 〉 on the finite subspace of H1(Qp,V(f)), where logp is the
inverse of the Bloch–Kato exponential and ωf in Fil1V ∗dR(f) is the class attached to
f by the Faltings comparison isomorphism.

Theorem A follows from Theorem B, the Gross–Zagier formula [GZ86] and Wald-
spurger’s theorem on non-vanishing of quadratic twist (cf. Théorème 5 of [Wal84]).

1.2. Outline of the proof. — For simplicity we place ourselves in the setting of
Theorem A, in which f is a newform of weight 2 with rational Fourier coefficients. The
proof of Theorem A ultimately realises P as a Heegner point PK ∈ A(Q) associated
to the imaginary quadratic field K introduced in Section 1.1.

The comparison between the Beilinson–Kato element ζKato
A and the Heegner point

PK proceeds in two stages, in which the Beilinson-Flach elements defined in Sec-
tion 2 play the role of a bridge between the two invariants. Roughly speaking, the
Beilinson–Flach elements germane to our setting are obtained by replacing one of the
families of Eisenstein series underlying the construction of Kato’s Euler system with
a family of theta-series attached to K. This family specialises in weight one to the
Eisenstein series Eis1(εK), whose p-adic Galois representation is equal to the sum of
the trivial representation and its twist by the Dirichlet character εK associated with
the extension K/Q (see Section 4.2 for details). This fact suggests a relation between
the Beilinson–Flach elements and the Beilinson–Kato elements attached to the family
of Eisenstein series passing through Eis1(εK), formalised in Theorem 4.2 below as an
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equality of global classes in Iwasawa cohomology (and not just of their bottom layers
over Q).

The second key comparison relates the Heegner point PK to the Beilinson–Flach
elements. It is achieved in Theorem 4.3 by combining the 3-variable reciprocity law
for the Beilinson–Flach elements of Kings–Loeffler–Zerbes [KLZ17, LZ16] with the
main result of [BDP13], which describes the square of the formal group logarithm
of PK as a value of a Hida–Rankin p-adic L-function outside the range of classical
interpolation.

The comparison between the Beilinson–Kato element ζKato
A and the Heegner point

PK is carried out in Section 4 in the case where p is not a prime of split multiplica-
tive reduction for A, while a discussion of the split multiplicative case is postponed
to Section 5. The equality arising from our two-stage comparison of global classes
involves the appearance of a ratio of p-adic periods, which is a priori a purely p-adic
quantity. In order to show that this quantity is in fact a non-zero rational number,
we reduce to the validity of Perrin-Riou’s conjecture for elliptic curves A with com-
plex multiplication by K. This special setting is treated separately in Section 3, by
exploiting the relation between Kato’s Euler system and the Euler system of elliptic
units.

1.3. Remarks and relations with previous work on Theorem A. —
• When A has complex multiplication and p is a prime of good ordinary reduction,
Theorem A follows from the work of Perrin-Riou, Rubin and Bertrand [PR93,
PR87, Rub92, Ber77]. Here Perrin-Riou’s p-adic Gross–Zagier formula and
Bertrand’s proof of the non-triviality of the canonical p-adic height for CM
elliptic curves play a fundamental role.

Section 3 below (cf. Theorem 3.1) presents a different proof of Theorem A
in this setting, which generalises to the CM abelian varieties of GL2-type asso-
ciated with p-ordinary canonical Hecke characters (for which the non-triviality
of the p-adic height is not known). This proof is based on two main ingre-
dients: the comparison between the Euler system of Beilinson–Kato elements
and that of elliptic units, studied by Kato in [Kat04, Section 12.5], and the
p-adic Gross–Zagier formula proved by the first two authors and Prasanna in
[BDP13, BDP12], which links the Euler system of elliptic units and that of
Heegner points. The proof of Theorem 3.1 is a simpler variant in the CM setting
of that of Theorem B (cf. Section 1.2).

• When A has good supersingular reduction at p, Theorem A is equivalent to the
main result of [Kob13]. More precisely, in this setting (cf. the CM case) the
canonical cyclotomic p-adic heights on A(Q) are non-trivial, hence the results
of [PR93] show that the p-adic Gross–Zagier formula proved by Kobayashi in
[Kob13] implies Theorem A and that, vice versa, the main result of [Kob13]
is a consequence of Theorem A when ζKato

A is non-zero. On the other hand, the
recent work of Skinner, Urban, X. Wan, W. Zhang et alii on the cyclotomic Main
Conjecture and on the p-converses to the theorem of Gross–Zagier–Kolyvagin
prove that the vanishing at s = 1 of the first derivative of L(A/Q, s) forces that
of the first derivatives of the cyclotomic p-adic L-functions associated with A.
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In particular, in the special case ko = 2, our main result Theorem B gives a
different proof of the main result of [Kob13].

• Theorem A in the exceptional case (viz. when A has split multiplicative reduc-
tion at p) is proved in [Ven16] using the main result of [BD07] as a crucial
ingredient. Once again, the non-triviality of a suitable (central critical) p-adic
height pairing is used in [Ven16] to deduce Theorem A from the p-adic Gross–
Zagier formula of [BD07]. When ko = 2, our argument gives a different proof
of the main results of [Ven16] which does not use (and indeed easily recovers)
the p-adic Gross–Zagier formula of [BD07].

• Our proof treats the supersingular and exceptional cases on the same footing
as the good ordinary case. A central role is played by the p-adic Gross–Zagier
formula proved in [BDP13]. This formula relates the special value of an an-
ticyclotomic Rankin–Selberg p-adic L-function outside the range of classical
interpolation to the p-adic logarithm of a Heegner point, which in the ordinary
case is a much simpler invariant than its cyclotomic p-adic height (cf. [PR87]).
Not surprisingly, the exceptional case is particularly intriguing and our argu-
ment requires a more delicate analysis in this setting.

• With the notations of Section 1.1, assume that f is p-old, let γ denote either α or
β, and let fγ be the p-stabilisation of f with Up-eigenvalue γ. When fγ has non-
critical slope (i.e., ordp(γ) < ko− 1), S. Kobayashi [Kob21] announced a proof
of the p-adic Gross–Zagier formula for fγ , relating the derivative of Lp(fγ) at ko
to hp,γ(zK(f)), where hp,γ is the the cyclotomic p-adic height on Sel(Q,V(f))

attached to the γ-splitting Vcris(f) = Fil0Vcris(f) ⊕ Vcris(f)ϕ=γ·p−ko/2 of the
Hodge filtration on Vcris(f) (cf. [Nek93]). When zK(f) is non-zero, such a
formula is a direct consequence of Theorem B and the p-adic height formalism
developed by Nekovář and Benois (cf. the Rubin-style formula proved in Section
11.5.10 of [Nek06], which readily generalises to the non-ordinary setting con-
sidered in [Ben21]). Theorem B (and loc. cit.) applies more generally when
fγ is not θ-critical. The non-triviality of zK(f) is needed to guarantee that
the p-adic logarithm of ζKato

f (which appears in the aforementioned Rubin’s
formula) is non-zero. Thanks to the results of Cornut and Vatsal [CV07], this
assumption can be removed by a slight extension of the results of Section 4 be-
low (viz. by “enlarging” the Hida family g in order to include weight-one theta
series associated with non-trivial ring class characters of K among its classical
specialisations).

Grounding on Kobayashi’s announcement, the article [BPS21] by Büyükbo-
duk, Pollack and Sasaki also proves the p-adic Gross–Zagier (p-GZ) formula for
fγ . More precisely, it extends Kobayashi’s announced result to non-θ-critical
newforms via a p-adic variation argument, using the fact that the quantities
in the p-GZ formula (for small slope newforms) are known to vary in Coleman
families. When f is the weight-two newform associated with a rational elliptic
curve with good ordinary reduction at p and the relevant Heegner point is as-
sumed to be non-trivial, it then deduces Perrin-Riou’s conjecture from the p-GZ
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formulas for fα and fβ , combined with previous computations of Perrin-Riou
(cf. [PR93]).

Organisation of the paper. — Section 2 develops the needed facts on Rankin–Selberg
convolutions and the Euler system of Beilinson–Flach elements. The reader may skip
this section at a first reading and come back to it only when needed. Section 3 proves
Theorem B in the special case of a weight-two theta series arising from a p-ordinary
canonical Hecke character of a quadratic imaginary field. Section 4 proves Theorem
B in the generic case, using Section 3 to handle a rationality question. Section 5
sketches the proof of Theorem B in the exceptional case.

2. Rankin–Selberg convolutions and Beilinson–Flach elements

2.1. Coleman families. — Let f and g be two Coleman families of tame levels Nf
and Ng and tame characters χf and χg, parametrised by connected affinoid discs Uf
and Ug centred at integers ko > 1 and lo > 1 in the weight spaceWL =W×Qp

L over a
finite extension L of Qp. Let ξ denote either f or g. By definition ξ =

∑
n>1 an(ξ)·qn

is a formal q-expansion with coefficients in the ring Oξ = O(Uξ) of analytic functions
on Uξ, such that the weight-u specialisation ξu =

∑
n>1 an(ξ)(u) · qn in L[[q]] is the

q-expansion of a p-stabilised newform of weight u, level Γ1(Nξ)∩Γ0(p) and character
χξ : (Z/NξZ)∗ −→ L∗ for all integers u in a cofinite subset U cl

ξ of Uξ ∩ Z>uo (with
uo = ko, lo). If ξu is old at p, it is a p-stabilisation of a newform ξu of level Γ1(Nξ).
If ξu is new at p, set ξu = ξu.

2.2. Deligne representations. — Let u > 2 be a classical point in U cl
ξ . Define

the representations V (ξu), V ∗(ξu), V (ξu) and V ∗(ξu) similarly as V (f) and V ∗(f)
in Section 1.1. For example, the Deligne representation V ∗(ξu) of ξu is the maximal
L-submodule of H1

ét,c(Y1(Nξ, p) ⊗Q Q̄,Su−2) ⊗Zp L on which the Hecke operator
Tn acts as multiplication by an(ξu) = an(ξ)(u) for each n > 1. Here Y1(Nξ, p) is
the affine modular curve of level Γ1(Nξ) ∩ Γ0(p) over Q and Su−2 is the (u − 2)-th
symmetric power of the relative first p-adic cohomology R1(E −→ Y (Nξ, p))∗Zp of
the universal elliptic curve E −→ Y1(Nξ, p). Here we assume for simplicity that Nξ+p
is at most 5, so that Y1(Nξ, p) represents the appropriate moduli functor (cf. Section
2.1 of [Kat04]). Similarly, when working with Y1(Nξ), we implicitly assume Nξ > 4.
The interested reader should have no difficulty in extending the constructions and the
arguments below to the case of eigenforms of small level.

For h = ξu, ξu, the morphism Lu−2 ⊗Su−2 −→ Zp arising from the relative Weil
pairing and Poincaré duality yield a perfect duality

〈·, ·〉h : V (h)⊗L V ∗(h) −→ L.

Write pr1 and prp for the degeneracy maps Y1(Nξ, p) −→ Y1(Nξ) sending an ellip-
tic curve (E,P,C) with Γ1(Nξ) ∩ Γ0(p)-level structure to (E,P ) and (E/C,P + C)
respectively. If ξu is p-old, the map

Πξu∗ = pr1∗ − χξ(p) · ap(ξu)−1 · prp∗ : H1
ét(Y1(Nξ, p),Lu−2) −→ H1

ét(Y1(Nξ),Lu−2)
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induces an isomorphism between V (ξu) and V (ξu). Its adjoint

Π∗ξu = pr∗1 − χξ(p) · ap(ξu)−1 · pr∗p

with respect to the Poincaré dualities 〈·, ·〉ξu and 〈·, ·〉ξu yields an isomorphism between
V ∗(ξu) and V ∗(ξu). When p divides the conductor of ξu, so that by definition ξu = ξu,
we define Πξu∗ to be the identity on V (ξu).

For • = cris, st,dR, · = ∅, ∗ and h = ξu, ξu set

V ·
• (h) = H0(Qp, V

·(h)⊗Qp
B•).

Since V ·(h) is semistable at p, we often identify V ·
st(h) and V ·

dR(h), which equips the
latter with the action a semistable Frobenius ϕ. We denote again by

〈·, ·〉h : V•(h)⊗L V ∗• (h) −→ L

the perfect pairing induced by the Poincaré duality in étale cohomology. Assuming
that L contains a primitive Nξ-th root of unit, the Faltings–Tsuji comparison isomor-
phism identifies canonically Fil0VdR(h) (resp., Fil1V ∗dR(h)) with the hw-isotypic (resp.,
h-isotypic) component of Su(Γ1(Nξpr ), L). Here r = 1 if h = ξu, r = 0 if ξu is p-old
and h = ξu, and hw = wNξpr (h) is the image of h under the Atkin–Lehner operator
wNξpr . (We refer to Section 2.5 of [BSV21b] and the references therein for more de-
tails.) Write ωhw (resp., ωh) for the canonical basis of Fil0VdR(h) (resp., Fil1V ∗dR(h))
corresponding to hw (resp., h) and define ηh in V ∗dR(h)/Fil1 by the identity

〈ωhw , ηh〉h = 1.

One says that a classical point u > 2 in U cl
ξ is good if p does not divide the conductor

of ξu, the p-th Hecke polynomial X2− ap(ξu) ·X +χξ(p)p
u−1 of ξu has distinct roots

and ξu is not θ-critical (viz. is not the image of an overconvergent modular form of
weight 2− u and tame level Nξ under the (u− 1)-th power of Serre’s theta operator
θ = q ddq , cf. [Bel12]). The p-adic valuation of ap(ξ) is constant on Uξ, equal to the
slope λξ in Q>0 of ξ, and each classical point u in U cl

ξ satisfying 2λξ < u − 1 is
good. For each good point u and h = ξu, ξu, the de Rham module V ∗dR(h) = V ∗cris(h)

is the direct sum of Fil1V ∗dR(h) and the ϕ-eigenspace VdR(h)ϕ=αh with eigenvalue
αh = ap(ξu). In this case one defines

ηαh ∈ V ∗dR(h)ϕ=αh

to be the unique element which lifts ηh.
Being semistable, the restriction to GQp

of the representations V ·(h) are triangu-
line, for h = ξu, ξu. Precisely, set RL = R ⊗Qp

L, where R = B†rig,Qp
is the Robba

ring over Qp, equipped with its natural Frobenius endomorphism ϕ and its natu-
ral continuous action of the group Γ = Gal(Qp(µp∞)/Qp). According to results of
Fontaine, Cherbonnier–Colmez, Kedlaya et alii there is a fully faithful exact functor
D†rig,L from the category of L-adic representations of GQp to that of (ϕ,Γ)-modules
over RL, whose essential image is the category of étale (ϕ,Γ)-modules. (We refer to
[Pot13, Section 2] and the references quoted there for detailed definitions.) If

D(h) = D†rig,L(V (h)),
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then there exists a short exact sequence

(2) 0 −→ D(h)+
α −→ D(h) −→ D(h)−α −→ 0

of (ϕ,Γ)-modules over RL, with D(h)±α isomorphic to the (ϕ,Γ)-modules RL(δ±h,α)

associated with the characters δ±h,α : Q∗p −→ L∗ defined by the formulae

δ+
h,α(prt) = χξ(p)

−r · αrh · tu−1 and δ−h,α(prt) = α−rh

for each r in Z and t in Z∗p. The (ϕ,Γ)-module D(h)+
α is étale precisely if λξ = 0, i.e.

if αh = ap(ξu) is a p-adic unit. Similarly

D∗(h) = D†rig,L(V ∗(h))

admits a triangulation

0 −→ D∗(h)+
α −→ D∗(h) −→ D∗(h)−α −→ 0,

with D∗(h)±α isomorphic to the (ϕ,Γ)-modules RL(γ±h,α) associated with the charac-
ters γ±h,α : Q∗p −→ L∗ defined for each r in Z and t in Z∗p by the formulae

γ+
h,α(prt) = αrh and γ−h,α(prt) = χξ(p)

r · α−rh · t
1−u.

The perfect Poincaré duality 〈·, ·〉h induces a perfect duality

〈·, ·〉h : D(h)⊗RL
D∗(h) −→ RL,

which entails perfect dualities between D(h)±α and D∗(h)∓α .

2.3. Big Galois representations. — Let Uξ ↪−→ WL be a connected open disc
centred at uo. Assume that Uξ is contained in an affinoid disc in WL, and that Uξ
is contained in Uξ. Denote by Λξ the ring of bounded analytic functions on Uξ. Set
Γξ = Γ1(Nξ) ∩ Γ0(p) and let

Lξ = D′Uξ,m[1/p]

be the Λξ[Γξ]-module of locally m-analytic distributions on T′ = pZp×Z∗p associated
in [BSV21b, Section 4.1] with Uξ and a fixed sufficiently large integer m = m(Uξ).
(See also [GS93] and [AIS15], where slight variants of these distributions spaces
were introduced.) The cohomology group H1(Γξ,Lξ) and its compactly supported
counterpart H1

c (Γ,Lξ) (viz. the space of Γξ-invariant Lξ-valued modular symbols)
carry natural commuting actions of the Galois group GQ and of a Hecke algebra
generated by the dual Hecke operators T ′n for n > 1 (cf. loco citato). Denote by
H1

par(Γξ,Lξ) the image of H1
c (Γξ,Lξ) in H1(Γξ,Lξ), and define

H1
par(Γξ,Lξ)(1)⊗Λξ Oξ −� V (ξ)

to be the maximal Oξ-quotient on which the dual Hecke operator T ′n acts as multi-
plication by an(ξ) for each positive integer n. Dually define

V ∗(ξ) ↪−→ H1
par(Γξ,Sξ)(−κξ)⊗Λξ Oξ

to be the maximal Oξ-submodule on which the Hecke operator Tn acts as multiplica-
tion by an(ξ) for each n > 1, where Sξ = DUξ,m[1/p] is the Λξ[Γξ]-module of locally
m-analytic distributions on T = Z∗p × Zp introduced in [BSV21b, Section 4.1], and
where κξ : GQ −→ Λ∗ξ is the composition of the p-adic cyclotomic character and
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the universal character Z∗p −→ Λ∗ξ. In the rest of this section we make the follow-
ing crucial assumption. One says that a normalised eigenform ξ =

∑
n>0 an(ξ)qn

of weight u, level Γ1(Nξ) and character χξ is p-regular if its p-th Hecke polynomial
T 2 − ap(ξ)T + pu−1χξ(p) has distinct roots. One says that ξ has p-split real multipli-
cation if it is the weight-one theta series attached to a ray class character of a real
quadratic field in which p splits.

Assumption 2.1. — Let ξ denote either f or g, and let uo > 1 be the centre of the
affinoid disc Uξ. Then one of the following statements E1–E3 is satisfied.

E1. uo > 2 and ξuo is a non-critical p-regular eigenform.
E2. uo = 1 and ξ1 is a p-stabilisation of a classical, p-regular cuspidal weight one

newform of level Nξ without p-split real multiplication.
E3. uo = 1 and ξ1 is the p-stabilisation of a p-irregular weight one Eisenstein

series of conductor Nξ.

Assumption 2.1 guarantees that the eigenform ξuo is an étale point of the cuspidal
part κcusp : C cusp(Nξ) −→ WL of the Coleman–Mazur–Buzzard p-adic eigencurve
κ : C (Nξ) −→WL of tame level Nξ. More precisely, in case E1 the work of Hida and
Coleman imply that κ is étale at ξuo (cf. Proposition 2.11 of [Bel12]). In case E2

the main result of [BD16] proves that κ is étale at ξ1. Finally in case E3 Theorem
A of [BDP21] proves that the map κcusp is étale at the cuspidal-overconvergent
p-stabilised Eisenstein series ξ1.

Let V ·(ξ) denote either V (ξ) or V ∗(ξ). The étaleness of κcusp at ξuo implies that
V ·(ξ) is a free Oξ-module of rank two (cf. Sections 4.3 and 5 of [BSV21b]). For each
good point u in U cl

ξ there are canonical specialisation isomorphisms

ρu : V ·(ξ)⊗u L ∼= V ·(ξu),

where · ⊗u L denotes base change along evaluation at u on Oξ. We refer to Section 5
of [BSV21b] for the definition of ρu and to [BSV21b, Proposition 4.2] and [PS13,
Theorems 1.1 and 1.2] for the proof that they are isomorphisms at good points. There
exists a perfect GQ-equivariant pairing (cf. [BSV21b, Section 5])

〈·, ·〉ξ : V (ξ)⊗Oξ V
∗(ξ) −→ Oξ,

compatible with the dualities 〈·, ·〉ξu under the specialisation maps ρu at good points.

2.3.1. Weight-one specialisations. — Assume in this subsection uo = 1, so that ei-
ther condition E2 or condition E3 in Assumption 2.1 is satisfied. Set

V ∗(ξ1) = V ∗(ξ)⊗1 L and V (ξ1) = V (ξ)⊗1 L,

where · ⊗1 L denotes the base change along evaluation at 1 on Oξ, and denote by
ρ1 : V ·(ξ) −→ V ·(ξ1) the projection (also called specialisation) map. The weight-one
specialisation of the pairing 〈·, ·〉ξ yields a canonical perfect duality

(3) 〈·, ·〉ξ1 : V (ξ1)⊗L V ∗(ξ1) −→ L.

The following proposition will be crucial for the proof of the main result of this paper.
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Proposition 2.2. — V ∗(ξ1) and V (ξ1) afford the Deligne–Serre Artin representa-
tion of GQ associated with ξ1 and its dual respectively.

Proof. — It is sufficient to prove the statement for V (ξ1) (cf. Equation (3)). Accord-
ing to the results recalled above, for each prime ` not dividing pNξ, a Frobenius at `
in GQ acts on V (ξ1) with trace a`(ξ1). It follows that the semi-simplification V (ξ1)ss

of V (ξ1) is isomorphic to the dual of the Deligne–Serre representation of ξ1. We have
to show that V (ξ1) = V (ξ1)ss is semi-simple.

If condition E2 is satisfied, then ξ1 is a cuspidal eigenform, hence V (ξ1)ss is irre-
ducible. The equality V (ξ1) = V (ξ1)ss follows in this case.

Assume that condition E3 is satisfied, so that V (ξ1)ss = L⊕L(χ) is the direct sum
of the trivial representation L of GQ and its twist L(χ) by an odd Dirichlet character
of conductor coprime to pNξ such that χ(p) = 1. In this case V (ξ1) represents an
element of H1(Q, L(ψ)) with ψ = χ or ψ = χ−1, and we have to show that this
element is trivial. Since (H1(Q, L(ψ)) is 1-dimensional and) the restriction at p map
H1(Q, L(ψ)) −→ H1(Qp, L(ψ)) is injective (cf. Sections 3.1 and 3.2 of [BD16]), it is
sufficient to prove that GQp acts trivially on V (ξ1), namely

(4) V (ξ1) ' L2 as GQp -modules.

We prove this statement using the results of [Oht00] and [BDP21].
Set V = H1(Γξ,Lξ)60(1)⊗ΛξOξ and Vpar = H1

par(Γξ,Lξ)60(1)⊗ΛξOξ, where 6 0
refers to the slope zero part for the action of the dual Hecke operator U ′p (cf. Section
4.1.4 of [BSV21b]). Denote by V + the maximal submodule of V on which the inertia
subgroup of GQp acts via the character χu−1

cyc : GQp −→ O∗ξ whose composition with
evaluation at u in Uξ ∩Z is the u-th power of the p-adic cyclotomic character. Define
similarly V +

par and set V − = V /V + and V −par = Vpar/V
+

par. The article [Oht00]
(together with Section 4.3 of [BSV21b]) proves the following facts.
O1. The modules V ± and V ±par are free of finite rank over Oξ, and V + = V +

par.
O2. The Galois group GQp acts on V − via the unramified character sending an

arithmetic Frobenius to the dual Hecke operator U ′p.
O3. Let M = Mord

Uξ
(Nξ) be the module of Oξ-adic Hida families of tame level Nξ

and let S = Sord
Uξ

(Nξ) be its cuspidal subspace (cf. Section 5 of [BSV21b]).
There are canonical isomorphisms of Oξ-modules(

V −par⊗̂QpQ̂
nr
p

)GQp ' S and
(
V −⊗̂QpQ̂

nr
p

)GQp 'M

(compatible with the inclusions S ↪−→ M and Vpar ↪−→ V and) intertwining
the actions of the n-th Hecke operator Tn on the left hand sides with those of
the dual Hecke operator T ′n on the right hand sides, for each integer n > 1.

Define V (ξ)· (resp., Ṽ (ξ)·) to be the maximal quotient of V ·
par (resp., V

·) on which
the dual Hecke operator U ′n acts as multiplication by an(ξ), for each positive integer
n. The étaleness of κcusp at ξ1 (cf. the discussion following Assumption 2.1), Property
O2 and the identity χ(p) = 1 yield isomorphisms of Oξ[GQp

]-modules

(5) V (ξ)+ ' Oξ(χ
u−1
cyc · ǎp(ξ)−1) and V (ξ)− ' Oξ(ǎp(ξ)),
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where ǎp(ξ) : GQp
−→ O∗ξ is the unramified character sending an arithmetic Frobenius

to ap(ξ), and χu−1
cyc : GQp

−→ O∗ξ satisfies χu−1
cyc (σ)(u) = χcyc(σ)u−1 for each σ in

GQp
and each integer u in Uξ. One has the following exact and commutative diagram

of Oξ[GQp ]-modules, where i·par : V (ξ)· −→ Ṽ (ξ)· (for · in {∅,+,−}) are the maps
induced on the ξ-isotypic quotients by the inclusion of Vpar into V .

(6) 0 // V (ξ)+ // V (ξ) //
� _

ipar
��

V (ξ)− //
� _

i−par
��

0

0 // Ṽ (ξ)+ // Ṽ (ξ) // Ṽ (ξ)− // 0

Indeed, the exactness of the first row follows from the freeness of V (ξ)−, and Property
O1 gives the equality V (ξ)+ = Ṽ (ξ)+. Since ξ is cuspidal, for each u in U ∩Z>3 the
base change of ipar along evaluation at u is an isomorphism, hence rankOξ Ṽ (ξ) = 2

and rankOξ Ṽ (ξ)± = 1. Because Ṽ (ξ)+ (resp., V (ξ)) is free over Oξ, one deduces that
the second row is exact (resp., ipar and i−par are injective). In particular the projection
Ṽ (ξ) −→ Ṽ (ξ)− induces an isomorphism of Oξ[GQp ]-modules

Ṽ (ξ)/V (ξ) ' Ṽ (ξ)−/V (ξ)−,

where we identify V (ξ)· with a submodule of Ṽ (ξ)· under the injective map i·par.
Set V (ξ1)· = V (ξ)· ⊗1 L and Ṽ (ξ1)· = Ṽ (ξ)· ⊗1 L. Applying · ⊗1 L to Diagram

(6) yields the following exact and commutative diagram of L[GQp ]-module, where m1

is the ideal of functions in Oξ which vanish at u = 1.

(7) Ṽ (ξ)−/V (ξ)−[m1]

δ

��
0 // V (ξ1)+ // V (ξ1) //

ipar⊗1L

��

V (ξ1)− //

i−par⊗1L

��

0

Ṽ (ξ1)+ // Ṽ (ξ1) // Ṽ (ξ1)− // 0

We claim that the map i−par takes values in m1 · Ṽ (ξ)−, i.e.

(8) i−par ⊗1 L = 0.

Assuming the claim, we conclude the proof as follows. As ap(ξ)− 1 = ap(ξ)− ap(ξ1)
belongs to m1, PropertyO2 and Equation (5) imply thatGQp

acts trivially on V (ξ1)+,
V (ξ1)− and Ṽ (ξ)−/V (ξ)−[m1]. Fix an L-basis {v+, v−} of V (ξ1) with v+ in the image
of V (ξ1)+ ↪−→ V (ξ1). By Equation (8) and Diagram (7) v− − q · v+ belongs to the
image of δ for some q in L, hence GQp

acts trivially on v−, thus proving (4).
We now prove the claim (8). Define S(ξ) and M(ξ) to be the maximal quotients

of S and M respectively on which the n-th Hecke operator acts as multiplication by
an(ξ), for each integer n > 1. According to Property O3, it is sufficient to prove
that the image of the map S(ξ) −→M(ξ) (induced by the inclusion S ↪−→M) takes
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values in m1 ·M(ξ). Shrinking Uξ if necessary, Theorem A.(i) of [BDP21] shows that
S(ξ) = Oξ ·ξ is the free rank-one Oξ-module generated by ξ. We are then reduced to
prove that the image of ξ under the projection [·] : M −→M(ξ) belongs to m1 ·M(ξ):

(9) [ξ] belongs to m1 ·M(ξ).

Let E be the normalised Eisenstein eigenfamily in M specialising to ξ1 in weight one
and having T`-eigenvalues 1 + χ(`) · `u−1 for each prime ` different from p. Define

e =
ξ −E
π

,

where π is a fixed generator of m1. One has (Up − ap(ξ)) · e = a′p(ξ) · E with
π · a′p(ξ) = ap(ξ)− 1. Propositions 2.6 and 5.7 of [BDP21] prove that a′p(g) does not
vanish at u = 1. Shrinking the disc Uξ further if necessary, we can then assume that
a′p(ξ) is a unit in Oξ, hence [E] = 0 and [ξ] = π · [e] in M(ξ). This proves the claim
(9) and concludes the proof of the proposition.

2.3.2. Triangulations. — Set Rξ = R⊗̂Qp
Oξ. A construction of Berger and Colmez

[BC08] associates with the restriction of V ·(ξ) to GQp
a (ϕ,Γ)-module

D·(ξ) = D†rig,Oξ(V
·(ξ))

over Rξ, together with specialisation isomorphisms

(10) ρu : D·(ξ)⊗u L ∼= D·(ξu)

for each good point u in U cl
ξ . (See [Pot13, Theorem 2.2] and the references therein

for the definition of the functor D†rig,· with · an affinoid L-algebra.)
There are exact sequences

(11) 0 −→ D·(ξ)+ −→ D·(ξ) −→ D·(ξ)− −→ 0

of (ϕ,Γ)-modules over Rξ, which recast the triangulations on D·(ξu) described in
Section 2.2 after base change along evaluation at a good point u in U cl

ξ . If condition
E1 (cf. Assumption 2.1) is satisfied, this follows from the results of Kisin and Liu
[Kis03, Liu15]. If either condition E2 or condition E3 is satisfied, then ξ is ordinary
and the restriction of V (ξ) to GQp

is nearly-ordinary: there exists a short exact
sequence of Oξ[GQp

]-modules ∆ξ : V (ξ)+ ↪−→ V (ξ) −� V (ξ)−, where V (ξ)+ is the
submodule on which GQp

acts via the character χξ · χu−1
cyc · ǎp(ξ)−1 : GQp

−→ O∗ξ
(see the proof of Proposition 2.2 for the notation), and V (ξ)− = V (ξ)/V (ξ)+ is
unramified. The étaleness of the cuspidal eigencurve C cusp(Nξ) −→ WL at ξ1 (cf.
the discussion following Assumption 2.1) guarantees that the GQp -modules V (ξ)± are
free of rank one over Oξ. The sought for triangulation (11) is obtained by applying
the Berger–Colmez functor D†rig,Oξ to the short exact sequence ∆ξ.

The duality 〈·, ·〉ξ between V (ξ) and V ∗(ξ) induces a perfect duality

〈·, ·〉ξ : D(ξ)⊗Rξ D
∗(ξ) −→ Rξ
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on the associated (ϕ,Γ)-modules, which in turn induces perfect dualities (denoted
again by 〈·, ·〉ξ) between D(ξ)± and D∗(ξ)∓. The base change of 〈·, ·〉ξ along evalu-
ation at a good point u corresponds to the pairing 〈·, ·〉ξu defined in Section 2.2 via
the specialisation isomorphism ρu.

2.3.3. Overconvergent Eichler–Shimura isomorphisms. — Let µξ : Z∗p −→ O∗ξ be
the character sending t in Z∗p to the analytic function µξ(t) which on x in Uξ takes
the value x(t) · t−1. Then the rank-one (ϕ,Γ)-modules D∗(ξ)+ and D∗(ξ)−(µξ) are
unramified, and the Oξ-modules

Fil1V ∗dR(ξ) =
(
D∗(ξ)−(µξ)

)Γ=1 and gr∗dR(ξ) =
(
D∗(ξ)+

)Γ=1

are free of rank one. For each good point u in U cl
ξ , the specialisation map ρu induces

natural isomorphisms of L-vector spaces

Fil1V ∗dR(ξ)⊗u L ∼= Fil1V ∗dR(ξu) and gr∗dR(ξ)⊗u L ∼= V ∗dR(ξu)/Fil1,

thus justifying the notation. The overconvergent Eichler–Shimura isomorphisms men-
tioned in the title of this subsection yield canonical generators

ωξ ∈ Fil1V ∗dR(ξ) and ηξ ∈ gr∗dR(ξ),

which specialise to ωξu and ηξu respectively at each good classical point u in U cl
ξ .

When condition E1 in Assumption 2.1 is satisfied, this follows from the main result
of [AIS15] (cf. [LZ16, Section 6.4]). When either condition E2 or condition E3 is
satisfied, this follows from Ohta’s Eichler–Shimura isomorphism [Oht00] (cf. Property
O3 in the proof of Proposition 2.2) and its compatibility with the Faltings–Tsuji
comparison isomorphism proved in Theorem 9.5.2 of [KLZ17]. We refer the reader
to Section 5 of [BSV21b] for more details in the ordinary setting.

Similarly one defines

Fil0VdR(ξ) =
(
D(ξ)−

)Γ=1 and tgdR(ξ) =
(
D(ξ)+(µ−1

ξ )
)Γ=1

,

which are in perfect duality with gr∗dR(ξ) and Fil1V ∗dR(ξ) respectively under 〈·, ·〉ξ.
2.3.3.1. Weight-one differentials. — If uo = 1, i.e. if either E1 or E2 in Assumption
2.1 is satisfied, we define ωξ1 and ηξ1 in V ∗dR(ξ1) = DdR(V ∗(ξ1)) to be the weight-one
specialisations of ωξ and ηξ respectively. In this case we set ηαξ1 = ηξ1 .

2.4. Perrin-Riou logarithms. — For · = ∅, ∗ set
V ·(f , g) = V ·(f)⊗̂LV ·(g) and Ofg = Of ⊗̂LOg.

Denote by
D·(f , g) = D†rig,Ofg (V ·(f , g))

the (ϕ,Γ)-module over Rfg = R⊗̂QpOfg associated by Berger–Colmez with the
restriction of V ·(f , g) to GQp . This is naturally isomorphic to D·(f)⊗̂RL

D·(g) and
for each symbol a and b in {∅,+,−} one writes F abD·(f , g) for the completed tensor
product over RL of D·(f)a and D·(g)b, where D·(ξ)∅ = D·(ξ). Define

H1
Iw,bal(Qp(µp∞), V (f , g)) ↪−→ H1

Iw(Qp(µp∞), V (f , g))⊗Λ∞ O(W)
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to be the submodule of classes which map to zero under the morphism

H1
Iw(Qp(µp∞), V (f , g))⊗Λ∞ O(W) = H1

Iw(Qp(µp∞), D(f , g))

��
H1

Iw(Qp(µ
∞
p ),F−−D(f , g))

induced by the projection D(f , g) −→ F−−D(f , g). Here H1
Iw(Qp(µp∞), V (f , g))

is defined as in Section 1.1. One equips O(W) with the structure of Λ∞-algebra
via the continuous character [·] : G∞ −→ O(W)∗ defined by [g](x) = x(χcyc(g)) for
g in G∞ and x in W. For each affinoid Qp-algebra B and each (ϕ,Γ)-module D
over RB = R⊗̂QpB, one writes H1

Iw(Qp(µ), D) = Dψ=1 for the analytic Iwasawa
cohomology of D, which is canonically isomorphic to H1

Iw(Qp(µp∞), V )⊗Λ∞ O(W) if
D = D†rig,B(V ) arises from a B-adic representation V of GQp

via the Berger–Colmez
functor. (We refer to [KPX14] for more details on the analytic Iwasawa cohomology.)

Since the map induced by the inclusion F−+D(f , g) −→ F−∅D(f , g) in Iwasawa
cohomology is injective, the projection

p−f : D(f , g) −→ F−∅D(f , g)

induces a morphism of Ofg⊗̂Qp
O(W)-modules (denoted by the same symbol)

p−f : H1
Iw,bal(Qp(µp∞), V (f , g)) −→ H1

Iw(Qp(µp∞),F−+D(f , g)).

Similarly one defines a morphism

p−g : H1
Iw,bal(Qp(µp∞), V (f , g)) −→ H1

Iw(Qp(µp∞),F+−D(f , g)).

As explained in Theorem 7.1.4 of [LZ16], the work of Nakamura [Nak14] yields a
Perrin-Riou logarithm map

L−+ : H1
Iw(Qp(µp∞),F−+D(f , g)) −→ Fil0VdR(f)⊗̂LtgdR(g)⊗̂Qp

O(W),

which is an injective morphism of O(Uf ⊗ Ug ×W)-modules. (We refer to Sections
6 and 7 of [LZ16] for the precise definition and the interpolation property which
characterises L−+, denoted L there.) Define

Lf =
〈
L−+ ◦ p−f (·), ηf ⊗ ωg

〉
fg

: H1
Iw,bal(Qp(µp∞), V (f , g)) −→ Ofg⊗̂QpO(W).

Switching the roles of f and g, one similarly defines

Lg =
〈
L+− ◦ p−g (·), ωf ⊗ ηg

〉
fg

: H1
Iw,bal(Qp(µp∞), V (f , g)) −→ Ofg⊗̂Qp

O(W).

2.5. Beilinson–Flach elements and reciprocity laws. — The proof of the main
result of this paper grounds on the following result, which extends and refines the
explicit reciprocity laws for Beilinson–Flach elements of Bertolini–Darmon–Rotger
and Kings–Loeffler–Zerbes [BDR15, KLZ17, LZ16] to the case where one of the
Coleman families f and g specialises to a p-irregular weight-one Eisenstein series (i.e.,
satisfies condition E3 in Assumption 2.1). Denote by

Lp(f , g) = Lp(f , g, s) and Lp(g,f) = Lp(g,f , s)
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the three-variable p-adic Rankin–Selberg convolutions associated by Hida, Pan-
chishkin and Urban to the ordered pairs of Coleman families (f , g) and (g,f)
respectively. We refer to [Urb14] and [AI21, Appendix II] by Urban for the
construction of these p-adic L-functions. (See also Theorem 2.7.4 of [KLZ17] for a
description of the interpolation properties which characterise them.) Let

H1
Iw,bal(Q(µp∞), V (f , g)) ↪−→ H1

Iw(Q(µp∞), V (f , g))⊗Λ∞ O(W)

be the submodule of global Iwasawa classes whose restriction at p belong to the
balanced local condition H1

Iw,bal(Qp(µp∞), V (f , g)) and which are unramified at each
rational prime not dividing pN , where N is the least common multiple of Nf and Ng.

Proposition 2.3. — Assume that the following conditions are satisfied.
1. The family f satisfies condition E1 in Assumption 2.1.
2. The family g satisfies condition E3 in Assumption 2.1.

Then, for each integer c > 2 coprime to 6Np, there exists a Beilinson–Flach element

cBF(f ⊗ g) ∈ H1
Iw,bal(Q(µp∞), V (f , g))

satisfying the explicit reciprocity laws

Lξ

(
resp

(
cBF(f ⊗ g)

))
= Nξ,c · Lp(ξ, ξ′, 1 + s).

Here (ξ, ξ′) is equal to either (f , g) or (g,f) and

Nξ,c = (−1)1+s · wξ ·
(
c2 − c2s−k−+4 · χf (c)−1χg(c)−1

)
,

where wξ a unit in O∗ξ satisfying wξ(u)2 = (−Nξ)2−u for each u in Uξ.

Proof. — Shrinking Uf if necessary, assume that the composition of ap(f) with the
p-adic valuation (normalised by ordp(p) = 1) is constant with value λ = λξ > 0. Let
(ξ, λξ) denote one of the pairs (f , λ) or (g, 0). For each integer s > 3, let Y1(s) be
the affine modular curve of level Γ1(s) over Z[1/sp], and let πs : E1(s) −→ Y1(s) be
the universal elliptic curve over it. For each u > λξ in Uξ ∩ Z>2 set

V (u)6λξ = H1
par(Yξ,Lu−2)6λξ ⊗Zp L(1),

where Yξ = Y1(Nξp)⊗Z[1/Nξp] Q̄, Lu−2 = TSymu−2R1πNξpZp(1), H1
par = H1

ét,par and
·6λξ is the subspace of · on which the dual Hecke operator U ′p acts with slope less or
equal to λξ. Moreover, with the notation introduced in Section 2.3, set

V (Uξ)
6λξ = H1

par(Γξ,Lξ)6λξ(1)⊗Λξ Oξ,

where 6 λξ refers to the slope decomposition with respect to U ′p (cf. Proposition 4.2
of [BSV21b]). By construction there is a natural ξ-isotypic projection

prξ : V (Uξ)
6λξ −� V (ξ).

Evaluation at u on Oξ then induces natural isomorphisms of L[GQ]-modules

(12) ρu : V (Uξ)
6λξ ⊗u L ' V (u)6λξ and ρu : V (ξ)⊗u L ' V (ξu),
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where prξu : V (u)6hξ −� V (ξu) is the maximal quotient on which T ′n acts as mul-
tiplication by an(ξu) = an(ξ)(u) for each n > 1. (See Sections 4.1.3 and 4.1.4 of
[BSV21b] for more details.) Define similarly

prξ : Ṽ (Uξ)
6λξ −� Ṽ (ξ) and prξu : Ṽ (u)6λξ −� Ṽ (ξu)

after replacing the parabolic cohomology groups H1
par(Γξ, ·) and H1

par(Yξ, ·) with the
full cohomology groups H1(Γξ, ·) and H1(Yξ, ·) in the definitions of V (Uξ)

6λξ and
V (u)6λξ respectively. The specialisation maps ρu extend to isomorphisms

(13) ρu : Ṽ (Uξ)
6λξ ⊗u L ' Ṽ (u)6λξ and ρu : Ṽ (ξ)⊗u L ' Ṽ (ξu).

By assumption 1 in the statement, the inclusion V (Uf )6λ ↪−→ Ṽ (Uf )6λ induces on
the f -isotypic quotients an isomorphism of Of [GQ]-modules

(14) V (f) ' Ṽ (f),

which we consider as equality. As ξu (for ξ and u as above) is cuspidal, the inclusion
V (u)6λξ ↪−→ Ṽ (u)6λξ similarly yields an isomorphism of L[GQ]-modules

(15) V (ξu) ' Ṽ (ξu).

Let X geom be the set of triples of integers (k, l,m) in Uf × Ug ×W such that

k > 2, l > 3 and 0 6 m 6 min{k − 2, l − 2}.

For each x = (k, l,m) in X geom and each positive integer r > 0, denote by

Eis(x) ∈ H3(Y (pr, Npr+1)2,Lk−2 �Ll−2(2−m))

the pull-black of the étale Rankin–Eisenstein class Eis
[k,l,m]
ét,1,Npr+1 introduced in

[KLZ17, Definition 3.3.1] to the affine modular curve Y (pr, Npr+1) over Z[1/Np] clas-
sifying elliptic curves E with embeddings iE : Z/prZ× Z/Npr+1Z ↪−→ E. Following
Kato [Kat04, Equation (5.1.2)], denote by tr : Y (pr, Npr+1) −→ Y1(Np) ⊗Z Z[µpr ]
the map sending (E, iE) to

(
(E/Z ·P,Q+Z ·P ), 〈P,Np ·Q〉E[pr]), where P = iE(1, 0),

Q = iE(0, 1) and 〈·, ·〉E[pr] is the Weil pairing on E[pr]. The push-forward of Eis(x)

along tr × tr, together with the Hochschild–Serre spectral sequence, the Künneth de-
composition and the natural projection Y1(Np)2 −→ Yf×Yg (sending (E,P )×(E′, P ′)
to (E, (N/Nf ) · P )× (E′, (N/Ng) · P ′)), yields a Beilinson–Flach element

B̃Fr(x) ∈ H1(Gr, Ṽ (k)6λ ⊗Qp
Ṽ (l)60(−m)),

where Gr = GQ(µpr ),Np is the Galois group of the maximal algebraic extension of
Q(µpr ) unramified outside Np∞. For each integer c > 2 coprime to 6Np set

cB̃Fr(x) =
(
c2 − c2m−k−l+4 · 〈c〉f⊗〈c〉g

)
· B̃Fr(x),

where 〈c〉ξ is the diamond operator acting on Ṽ (u)6λξ .
Let m > 0 be a nonnegative integer and let X geom

m be the set of triples in X geom

having m as third component. The work of Kings–Loeffler–Zerbes yields a class

cB̃Fm,r(f ⊗ Ug) ∈ H1(Gr, V (f)⊗̂Qp
Ṽ (Ug)60(−m))
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such that, for each triple x = (k, l,m) in X geom
m , one has

(16)
(
k − 2

m

)(
l − 2

m

)
· %k,l

(
cB̃Fm,r(f ⊗ Ug)

)
= cB̃Fr(fk, l,m),

where %k,l is the morphism induced by %k⊗̂%l (cf. Equations (12) and (13)) and

cB̃Fr(fk, l,m) = (prfk ⊗ id)
(
cB̃Fr(x)

)
∈ H1(Gr, V (fk)⊗ Ṽ (l)60(−m))

is the image of cB̃Fr(x) under the map induced in cohomology by the fk-isotypic
projection prfk : Ṽ (k)6λ −� Ṽ (fk) ' V (fk) (cf. Equation (14)). With the notations
of [LZ16, Section 5.3] (and identifying V (f) with Ṽ (f)) one has

(prf ⊗ pr60)∗
(
cBF

[Uf ,Ug,m]
pr,Nf ,Ng,1

)
=

(
∇f
m

)(
∇g
m

)
· cB̃Fm,r(f ⊗ Ug),

where (∇f and ∇g are the functions denoted by ∇1 and ∇2 in loc. cit. and)

pr60 : H1(Γg,Lg)(1)⊗Λg Og −→ Ṽ (Ug)60

is the projection onto the ordinary part. (Cf. [LZ16, Proposition 5.3.4]).
The proof of the proposition rests on the following

Lemma 2.4. — The class cB̃Fm,r(f ⊗ Ug) admits a unique lift

cBFm,r(f ⊗ Ug) ∈ H1(GQ(µpr ),N , V (f)⊗̂LV (Ug)60(−m)).

Proof. — Set E = Ṽ (Ug)60/V (Ug)60. It is a free Og-module of finite rank (cf.
[Oht00]), and the absolute Galois group GK of the cyclotomic field K = Q(µNp)
acts trivially on it. Indeed its base change El = E ⊗l L along evaluation at l in
Ug ∩ Z>3 is isomorphic to the ordinary part of H0(Cg ⊗Q Q̄,Qp), where Cg is the
set of cusps of Xg = X1(Ngp)Q. (Cf. [Sch90, Theorem 1.2.1] and the discussion
preceding it.) Since Cg is the union of a finite number of Q(µNgp)-rational points of
Xg, it follows that GK acts trivially on El for each l in Ug ∩ Z>2. As E is free over
Og, this implies that GK acts trivially on E. One deduces the equalities

Hi(Gr, V (f)⊗̂LE(−m)) =
(
Hi(GK,r, V (f)(−m))⊗̂LE

)Gal(K(µpr )/Q(µpr ))

for i > 0, where GK,r is the Galois group of the maximal algebraic extension ofK(µpr )
unramified outside Np∞. Because V (fko)(−m) = V (f)(−m) ⊗ko L has no nontriv-
ial GK,r-invariant, the modules H0(GK,r, V (f)(−m)) and H1(GK,r, V (f)(−m))[mko ]
vanish, where mko is the kernel of evaluation at ko on Of and ·[mko ] is the mko-torsion
submodule of ·. Shrinking Uf if necessary, one deduces by the previous equation that
H1(Gr, V (f)⊗̂E(−m)) is a torsion-free Ofg-module and that the natural map

H1(Gr, V (f)⊗̂V (Ug)60(−m)) −→ H1(Gr, V (f)⊗̂Ṽ (Ug)60(−m))

is injective. To prove the lemma it is then sufficient to show that

%k,l(cB̃Fm,r(f ⊗ Ug))

belongs to the image of

H1(Gr, V (fk)⊗Qp
V (l)60(−m)) −→ H1(Gr, V (fk)⊗ Ṽ (l)60(−m))
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for each triple x = (k, l,m) in the Zariski-dense subset X geom
m of Uf × Ug × {m}. In

light of Equation (16), this follows from Section 9 of [BC16] and Theorem 1.2.1 of
[Sch90], which prove that the Beilinson–Flach element

B̃Fr(x) ∈ H1(Q(µpr ), Ṽ (k)6λ ⊗Qp Ṽ (l)60(−m))

admits a (canonical) lift to H1(Q(µpr ), V (k)6λ ⊗Qp V (l)60(−m)).

Resuming the proof of the proposition, for each m > 0 and r > 1 define

cBFm,r(f ⊗ g) ∈ H1(Gr, V (f , g)(−m))

to be the image of cBFm,r(f ⊗ Ug) under the map induced in cohomology by the
projection prg : V (Ug)60 −→ V (g) onto the g-isotypic component. The proof of
Theorem 5.4.2 of [LZ16] shows that there exists a unique Iwasawa class

cBF(f ⊗ g) ∈ H1
Iw(Q(µp∞), V (f , g))⊗Λ∞ O(W)

interpolating the elements (ap(f) · ap(g))−r ·m!−1 · cBFm,r(f ⊗ g) for all m > 0 and
r > 1. Moreover, for each x = (k, l,m) in X geom one has the equality

%x
(
cBF(f ⊗ g)

)
=

1

m!
(
k−2
m

)(
l−2
m

) (1− pm

ap(fk) · ap(gl)

)
· cBF(fk, gl,m)

in H1(Q, V (fk, gl)(−m)), where the specialisation map

%x : H1
Iw(Q(µp∞), V (f , g))⊗Λ∞ O(W) −→ H1(Q, V (fk, gl)(−m))

arises from %k⊗̂%l : V (f , g) −→ V (fk, gl) and evaluation at m on O(W), and where

cBF(fk, gl,m) ∈ H1(Q, V (fk, gl)(−m))

is the image of cB̃F0(x) under the map induced by the projection (cf. Equation (15))

prfk ⊗ prgl : Ṽ (k)6h ⊗ Ṽ (l)60 −→ Ṽ (fk)⊗ Ṽ (gl) ' V (fk, gl)

onto the fk⊗gl-isotypic component. The proofs of Theorems 7.12 and 7.15 of [LZ16]
show respectively that the Beilinson–Flach element cBF(f ⊗ g) belongs to the bal-
anced Selmer group H1

Iw,bal(Q(µp∞), V (f , g)) and satisfies the reciprocity laws

Lξ(resp(cBF(f ⊗ g))) = Nξ,c · Lp(ξ, ξ′, 1 + s)

for (ξ, ξ′) = (f , g) and (ξ, ξ′) = (g,f), concluding the proof of the proposition.

3. Proof of Theorem B: p-ordinary canonical Hecke characters

Let K be a quadratic imaginary extension of Q with discriminant dK congruent
to five modulo eight:

dK ≡ 5 (mod 8).

Let χ be a canonical Hecke character of K in the sense of [Roh80], viz. χ·χc = N, the
values of χ on principal ideals lie in K and the conductor of χ is equal to

√
dK ·OK .

Here χc is the conjugate of χ by the non-trivial element c of Gal(K /Q) and N = NK

is the norm character (so that χc(a) = χ(c(a)) and N(a) = |OK /a| for each non-zero
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ideal a of OK ). The Hecke L-function L(χ, s) of χ is equal to that L(ϑχ, s) of the
weight-two newform

ϑχ =
∑
a

χ(a) · qNa ∈ S2(Γ0(d 2
K ))

(where a runs over the non-zero ideals of OK coprime to dK ). The congruence
condition imposed on dK implies that L(ϑχ, s) has sign −1 in its functional equation.
Lying deeper, Theorem 1.1 of [MY00] yields

(17) ords=1L(ϑχ, s) = 1.

Let Aχ be the modular abelian variety of GL2-type associated with ϑχ, viz. the quo-
tient of the Jacobian of X1(d 2

K ) on which the Hecke operator Tn acts as multiplication
by an(ϑχ) for each positive integer n. It is an abelian variety defined over Q of di-
mension the class number hK of K . The totally real number field

Fχ = Q(χ(a) + χ(ā); a non-zero ideal of OK )

generated by the Fourier coefficients of ϑχ has degree hK and the endomorphism ring
EndQ(Aχ) is naturally isomorphic to an order Oχ in Fχ. In particular, the Mordell–
Weil group Aχ(Q) ⊗Z Q is equipped with a natural structure of Fχ-vector space.
Equation (17) and the theorem of Gross–Zagier–Kolyvagin imply that Aχ(Q) ⊗Z Q
has dimension one over Fχ and that the Shafarevich–Tate group of Aχ over Q is
finite.

The p-adic representation V (Aχ) = Tap(Aχ) ⊗Oχ⊗ZZp L (where L = ip(Fχ) ·Qp)
is canonically isomorphic to V (ϑχ), hence the p-adic Beilinson–Kato element ζKato

ϑχ

associated with ϑχ yields an element

ζKato
Aχ ∈ H1(Q, V (Aχ)).

Write logωχ as a shothand for 〈logp(·), ωϑχ〉, where logp is the Bloch–Kato p-adic
logarithm on the finite subspace of H1(Qp, V (Aχ)). For each global point P in
Aχ(Q) ⊗Z Q denote by logωχ(P ) the value of logωχ at the image of ip(P ) under
the composition Aχ(Qp)⊗̂ZpQp −→ H1(Qp, Vp(Aχ)) −→ H1(Qp, V (Aχ)). Here
Vp(Aχ) = Tap(Aχ) ⊗Zp Qp is the p-adic Tate module of Aχ with Qp-coefficients,
the first arrow is the local Kummer map and the second arrow is induced by the
natural projection of GQ-modules Vp(Aχ) −→ V (Aχ). Set finally Eχ = K · Fχ.

The following result verifies Theorem B for f = ϑχ, under the assumption that p
splits in K . Its proof heavily relies on the work of Kato, Perrin-Riou and Bertolini–
Darmon–Prasanna [Kat04, PR93, BDP12].

Theorem 3.1. — Assume that p splits in K /Q. Then the Beilinson–Kato element
ζKato
Aχ

belongs to the Selmer group Sel(Q, V (Aχ)) and there exists a generator Pχ of
the Eχ-vector space Aχ(Q)⊗Z K such that

logωχ
(
resp

(
ζKato
Aχ

))
= log2

ωχ(Pχ).

In particular the Selmer group Sel(Q, V (Aχ)) is generated over L by the Beilinson–
Kato element ζKato

Aχ
.
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The proof of Theorem 3.1 occupies the rest of this section. Write p·OK = ℘·℘̄ with
(℘ 6= ℘̄ and) ℘ the prime corresponding to the fixed embedding ip. Set f = ϑχ, so that
the p-th Hecke polynomial of f has roots αf = χ(℘̄) in O∗L and βf = χ(℘) = p/αf .
Let fα = ϑχ(q)− χ(℘) · ϑχ(qp) be the ordinary p-stabilisation of f .

Recall that the global Iwasawa class ζKato
f (and then ζKato

Aχ
) depends on the choice of

complex Shimura periods Ω±f . In the present weight-two CM setting we can, and will,
assume that Ω+

f and Ω−f are both equal to the complex CM period Ω(χc) associated
with the Hecke character χc in Section 2C of [BDP12].

3.1. — Let L℘(K ) = L℘,
√
dK ·OK

(K , ·) be the Katz p-adic L-function associated
with (K,℘,

√
dK · OK ) and normalised as in Theorem 3.1 of [BDP12] (where it is

denoted by Lp,
√
dK ·OK

.) It is an element of the completed group ring Ẑun
p [[G(fp∞)]],

where Ẑun
p is the ring of Witt vectors of F̄p, f =

√
dK · OK and G(fp∞) is the Galois

group of the union of the ray class fields of K of conductors fpn for n > 1. For
χ· = χ, χc and σ in W define

L℘(χ·, σ) = L℘(K , χ̂·σK),

where σK is the restriction to GK of σ ◦ χcyc and χ̂· is the p-adic character of GK
corresponding to χ· via class field theory. Then L℘(χ·) = L(χ·, ·) is a bounded
analytic function in O(W)⊗̂Qp

Q̂nr
p , where Q̂nr

p is the maximal unramified extension
of Qp. Since Lp(fα) is also a bounded analytic function on W, a direct comparison
between the interpolation formulae satisfied by L℘(χ) and Lp(fα, 1+s) at finite order
characters yields the identity

aχ · Lp(fα, 1 + s) = Ωp(χ
c)−1 · L℘(χ)

for a non-zero algebraic constant aχ in E∗χ, where Ωp(χ
c) in Ẑnr

p is the non-zero p-adic
period associated with χc in Section 2D of [BDP12]. The main result of [Roh84]
implies that L℘(χ) is non-zero.

The previous equation and Kato’s explicit reciprocity law Equation (1) yield

(18) aχ ·
〈
Logf

(
resp

(
ζKato
f

))
, ηαf
〉
f

= Ωp(χ
c)−1 · L℘(χ).

3.2. — A direct comparison between Beilinson–Kato elements and the Euler system
of elliptic units, carried out by Kato in [Kat04, Section 12.5] and further exploited
by Lei et al. in [LLZ13], gives

(19) bχ ·
〈
Logf

(
resp

(
ζKato
f

))
, ωf

〉
f

= Ωp(χ
c) · `o · L℘(χc).

for a non-zero algebraic constant bχ in E∗χ, where `o(σ) = logp(σ(1 + p))/ logp(1 + p)
for each σ in W. The rest of this section explains how to deduce Equation (19) above
from the results of [LLZ13] and [Kat04, Section 15].

Denote by VEχ(f) the maximal Eχ-quotient of the Betti chomology group
H1(Y1(d 2

K )(C),Z)⊗ZEχ on which the dual Hecke operator T ′n acts as multiplication
by an(f) for each positive integer n. The comparison isomorphism between Betti
and étale cohomology gives a natural isomorphism VEχ(f) ⊗Eχ,ip L ∼= V (f), under
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which we consider VEχ(f) as an Eχ-structure on V (f). Theorem 3.2 of [LLZ13] (cf.
[Kat04, Section 15.16]) proves that the identity

(20) Logf
(
resp

(
ζKato
f

))
= L℘(χ) · 1⊗ ξ + `o · L℘(χc) · t−1 ⊗ c(ξ)

holds in Q̂nr
p ⊗Qp

Vcris(f)⊗Qp
O(W) for an element ξ in VEχ(f) satisfying the identity

g(ξ) = χc(g) · ξ for each g in GK . Note that the elements 1 ⊗ ξ and t−1 ⊗ c(ξ)
of Bcris ⊗Qp

V (f) = Bcris ⊗Qp
Vcris(f) are invariant under the action of the inertia

subgroup IQp
of GQp

, hence can naturally be viewed as elements of Q̂nr
p ⊗Qp

Vcris(f).

Remark 3.2. — The statement of Theorem 3.2 of [LLZ13], which applies more
generally to CM modular forms ϑψ associated with Hecke characters ψ of infinity
type (k − 1, 0) with k > 2, requires the choice of isomorphisms between the Betti, de
Rham and p-adic étale realisations of the motives of ϑψ and ψ (cf. Lemma 2.26 of loco
citato). For k > 3, these motives are not known to be isomorphic and it is unclear
how to choose the isomorphisms compatibly with the comparison isomorphisms. By
contrast, when k = 2, the motives of f and χ are naturally isomorphic (cf. [Sch88,
Chapter V]), making Equation (20) a direct consequence of [LLZ13, Theorem 3.2].
Here the crucial point is to guarantee that the element ξ, satisfying Equation (20)
and g(ξ) = χc(g) · ξ for each g in GK , belongs to the Betti Eχ-structure VEχ(f) on
the p-adic étale realisation V (f) of the motive of f .

In the present weight-two setting, V (f) is equal to V ∗(f)(1) and the elements
ωf (1) = ωf ⊗ t−1 ⊗ ζp∞ and ηαf (1) = ηαf ⊗ t−1 ⊗ ζp∞ give the dual basis of ηαf and
−ωf under the duality 〈·, ·〉f (cf. Section 2.2). Write

1⊗ ξ = fp ⊗ ωf (1) and t−1 ⊗ c(ξ) = Ωp ⊗ ηαf (1)

with fp and Ωp in Q̂nr
p . Because (as recalled above) L℘(χ) is non-zero, Equations

(18) and (20) give
fp ∼E∗χ Ωp(χ

c)−1,

where ∼E∗χ denotes equality up to multiplication by a non-zero element of Eχ. More-
over by construction

fp · Ωp ∼E∗χ 1⊗ 〈c(ξ), ξ(−1)〉f
in Bcris ⊗Qp L, with ξ = ξ(−1)⊗ ζp∞ (and 〈·, ·〉f the Poincaré duality pairing). As ξ
belongs to the Eχ-structure VEχ(f) of V (f), so do c(ξ) and ξ(−1). Since 〈·, ·〉f maps
VEχ(f)⊗2 into Eχ, the previous two equations yield

Ωp ∼E∗χ Ωp(χ
c).

Together with Equation (20), this yields Equation (19).

3.3. — We conclude the proof of Theorem 3.1. To ease notation set

Lf = Logf
(
resp

(
ζKato
f

))
.

The point s = 0 lies in the interpolation domain of L℘(χ), hence

L℘(χ, 0) = L℘(K , χ)
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is a non-zero multiple of the complex value L(χ−1, 0) = L(ϑχ, 1). Equations (17) and
(18) then imply that ζKato

Aχ
is crystalline at p, hence belongs to the Bloch–Kato Selmer

group Sel(Q, V (Aχ)). Proposition 2.2.2 of [PR93] then yields

logωχ
(
resp

(
ζKato
Aχ

))
=
(
1− p−1χ(℘)−1

) (
1− χ(℘)−1

)−1 ·
〈
L′f (0), ωf

〉
f
.

On the other hand, Equation (19) (and the identities `o(0) = 0 and ` ′o(0) = 1) give

bχ ·
〈
L′f (0), ωf

〉
f

= Ωp(χ
c) · L℘(χc, 0).

Finally, according to Theorem 2 of [BDP12, Theorem 2] one has

Ωp(χ
c) · L℘(χc, 0) = dχ · log2

ωχ(Pχ)

for a non-zero algebraic constant dχ in E∗χ and a generator Pχ of the Eχ-vector space
Aχ(Q)⊗Z K . Theorem 3.1 is a direct consequence of the previous three equations.

4. Proof of Theorem B: the p-non-exceptional case

Let f and K/Q be as in Section 1.1. This section proves Theorem B stated in
loc. cit. under the assumption that f is not p-exceptional (cf. [MTT86]), viz. its p-th
Fourier coefficient ap(f) is different from pko/2−1.

4.1. The Coleman family f = fα. — The assumptions ordp(α) < ko − 1 and
α 6= β guarantee that fα is an étale point of the Coleman–Mazur eigencurve (cf. the
discussion following Assumption 2.1). As a consequence, if Uf is a sufficiently small
connected affinoid disc inWL centred at ko, there exists a unique (up to conjugation)
Coleman family f =

∑
n>1 an(f) ·qn in Of [[q]] of tame level Nf , trivial tame character

and slope λf = ordp(α) which specialises to fko = fα at weight ko.
The formal q-expansion f⊗εK =

∑
n>1 εK(n)an(f)·qn in Of [[q]] defines a primitive

Coleman family of tame level Nfd2
K , trivial tame character and slope λf .

4.2. Theta series and the Hida family g. — To prove Theorem B, we apply
the results described in Section 2 to a pair of Coleman families (f , g), where f = fα
is the Coleman family introduced in Section 4.1 and g is an auxiliary ordinary CM
family associated with K. This section defines g and discusses its main properties.

Consider the weight-one Eisenstein series

Eis1(εK) =
1

2
L(εK , 0) +

∑
n>1

qn
∑
d|n

εK(d) ∈M1(−dK , εK).

of level Γ1(−dK) and character εK . Because p splits in K/Q, the eigenform Eis1(εK)
is p-irregular, viz. its p-th Hecke polynomial X2−ap(Eis1(εK)) ·X+εK(p) = (X−1)2

has a double root (cf. Assumption 2.1.3). Define

g = Eis1(εK)(q)− Eis1(εK)(qp) ∈M1(−pdK , εK)

to be its unique p-stabilisation. As recalled in Section 2.3, the article [BDP21] proves
that g is an étale point of the cuspidal Coleman–Mazur eigencurve. In particular, if
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the local field L is large enough and Ug is a sufficiently small connected affinoid disc
in WL centred at lo = 1, there exists a unique (up to conjugation) Hida family

g =
∑
n>1

an(g) · qn ∈ Og[[q]]

of tame level −dK and tame character χg = εK which specialises to g1 = g at weight
one, and thus satisfies condition E3 in Assumption 2.1. In the present setting the
family g has complex multiplication by K and can be explicitly described as follows.

Write p · OK = p · p̄ with p the prime of OK of norm p corresponding to the
embedding ip : Q̄ ↪−→ Q̄p fixed at the outset. Let A∗K be the group of idèles of K
and set Up = K∗ ·C∗ ·

∏
q 6=pO∗q ·µp, where Oq is the ring of integers of the completion

of K at the prime ideal q and µp = µp−1 is the torsion subgroup of O∗p. The kernel
of the ideal map Gp = A∗K/Up −→ Pic(OK) is equal to the group 1 + pOp = 1 + pZp
of principal units of Kp ↪−→ Q̄∗p. Fix an extension

ϕp : A∗K/K
∗ −� Gp −→ Q̄∗p

of the character 1 + pOp −→ Q̄∗p sending the principal unit u to its inverse u−1. By
construction ϕp is an algebraic p-adic Hecke character of weights (1, 0), conductor p
and central character the Teichmüller lift ω : F∗p ' µp−1. The character

ψp : A∗K/K
∗ −→ C∗

which on the class of the idèle x = (xv)v takes the value

ψp(x) = i∞ ◦ i−1
p

(
ϕp(x) · xp

)
· x−1
∞

(where i∞ : Q̄ ↪−→ C and ip : Q̄ ↪−→ Q̄p are the field embeddings fixed at the outset)
is then an algebraic Hecke character of infinity type (1, 0) and conductor p. Let IK
(resp., IK(p)) be the group of fractional ideals of K (resp., coprime with p). With a
slight abuse of notation, we denote again by ψp : IK(p) −→ Q̄∗ the character sending
a to (the image under i−1

∞ of)
∏

q|a ψp(πq)ordq(a), where πq is a uniformiser of the
completion of K at the prime q. Enlarging L if necessary, assume it contains the
values of (the composition of ip with) ψp and write 〈ψp〉 for the composition of ψp

with projection onto the group of principal units of OL. For Ug as above, let

ψ : IK(p) −→ O∗g

be the unique character satisfying ψ(a)(l) = 〈ψp〉 (a)l−1 for each a in IK and each l
in Ug ∩ Z>1. The sought for Hida family g is then given by

g =
∑

ψ(a) · qNa,

where the sum is over the non-zero ideals a of OK coprime to p and Na = |OK/a|. In
particular, for m in (p− 1) · Z>1, extend the m-th power of ψp to a Hecke character

(21) ψm : IK −→ Q̄∗
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of weights (m, 0) and trivial conductor by setting ψm(p) = ψp(p̄)−m · pm, so that the
theta series (cf. Theorem 4.8.3 of [Miy89])

ϑ(ψm) =
∑

a non-zero ideal ofOK

ψm(a) · qNa ∈ Sm+1(−dK , εK)

is a cuspidal primitive form of weight m+ 1, level Γ1(−dK) and character εK . Then
for each integer l in Ug ∩ Z>1 which is congruent to one modulo qL − 1, with qL the
cardinality of the residue field of L, the weight-l specialisation of g is equal to the
ordinary p-stabilisation of ϑ(ψl−1), viz. gl = ϑ(ψl−1)(q)− ψl−1(p) · ϑ(ψl−1)(qp).

For each m in (p − 1) · Z write ϕm : GK −→ Q̄∗p for the p-adic Galois character
corresponding to ψm by global class field theory, so that the dual Deligne representa-
tion V (ϑ(ψm)) associated with ϑ(ψm) (cf. Section 2.2) is isomorphic to the induced
IndQ

Kϕm from GK to GQ of L(ϕm). As above, there exists a unique character

ϕ : GK −→ O∗g

specialising to ϕl−1 at each integer l in Ug which is congruent to one modulo qL − 1.
Denote by IndQ

Kϕ the induced from GK to GQ of ϕ, viz. the free rank-two Og-module
of maps ξ : GQ −→ Og satisfying ξ(τσ) = ϕ(τ) · ξ(σ) for each τ in GK and each σ in
GQ, equipped with the GQ-action defined by (σ · ξ)(σ′) = ξ(σ′σ) for each σ and σ′ in
GQ. The Og-adic representations V (g) (cf. Section 2.3) and IndQ

Kϕ are irreducible and
unramified outside dKp. Moreover, for each prime ` not dividing dKp, an arithmetic
Frobenius at ` acts on them with trace a`(g). It follows that V (g) and IndQ

Kϕ become
isomorphic after base change to the fraction field of Og. Shrinking Ug if necessary
this implies the existence of an isomorphism of Og[π−1][GQ]-modules

(22) V (g)[π−1] ' IndQ
Kϕ[π−1],

where π is a generator of the ideal of functions in Og which vanish at = 1. Actually
one has the following consequence of Proposition 2.2.

Proposition 4.1. — The Og[GQ]-modules V (g) and IndQ
Kϕ are isomorphic.

Proof. — Let c in GQ denote complex conjugation, and let ϕc be the conjugate of ϕ
by c (so that ϕc(σ) = ϕ(c · σ · c) for each σ in GK).

It is sufficient to prove that the restriction of V (g) to GK is isomorphic to the direct
sum of Og(ϕ) and Og(ϕc). (Indeed, if this the case, c maps V (g)GK=ϕ isomorphically
onto V (g)GK=ϕc , i.e. V (g) = Og ·v⊕Og ·c(v) for any Og-basis v of V (g)GK=ϕ.) This
in turn follows from the existence of an isomorphism of Og[GQp

]-modules between
V (g) and V (g)+ ⊕ V (g)−. Indeed, assume that V (g) is equal to Og · v+ ⊕ Og · v−,
with GQp

acting on v+ and v− via the characters χ−1
cyc ·ǎp(g)−1 and ǎp(g) respectively

(cf. Equation (5)). For each integer l > 3 in Ug congruent to 1 modulo qL − 1, the
weight-l specialisation of Og · v− is the maximal GQp -unramified quotient of the
representation V (gl), which is isomorphic to IndQ

Kϕl as an L[GQ]-module. It follows
that the specialisation at l of Og · v− is isomorphic to the GK-invariant line L(ϕcl )

of IndQ
Kϕl. As a consequence Og · v− is a GK-invariant direct summand of V (g)
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isomorphic to Og(ϕc). Similarly one shows that Og ·v+ is a GK-invariant submodule
of V (g) isomorphic to Og(ϕ).

For · = ∅,±, set W · = V (g)· ⊗Og HomOg (V (g)−,Og), so that W− is naturally
isomorphic to Og. The short exact sequence V (g)+ ↪−→ V (g) −� V (g)− yields a
short exact sequence W+ ↪−→W −� Og, which corresponds to an element

w ∈ H1(Qp,W
+)[π∞]

by Equation (22), where ·[π∞] is the set of elements of the Og-module · which are
killed by a power of π. We have to prove that w is zero.

Set W+
1 = W+ ⊗1 L and consider the composition

∂ : W+
1 = H0(Qp,W

+
1 ) ' H1(Qp,W

+)[π] −→ H1(Qp,Qp)⊗Qp
W+

1 ,

where the isomorphism is the connecting morphism arising from multiplication by
π on W+ and the arrow is induced by specialisation at weight one (i.e. reduction
modulo π). Identify H1(Qp,Qp) with the group of continuous Qp-valued morphisms
on Q∗p via the local Artin map sending p−1 to an arithmetic Frobenius. A direct
computation shows that for each x in W+

1 , the restriction of ∂(x) to Z∗p is equal to
logp⊗x. In particular the map ∂ is non-zero, so that

H1(Qp,W
+)[π∞] = H1(Qp,W

+)[π] 'W+
1

is killed by π, and w is zero precisely if its weight one specialisation w(1) in
H1(Qp,W

+
1 ) is. On the other hand, Proposition 2.2 proves that GQp

acts trivially on
W ⊗1 L ' V (g), i.e. w(1) is zero, thus concluding the proof of the proposition.

Fix an isomorphism of Og[GQ]-modules

(23) γ : V (g) ∼= IndQ
Kϕ.

Since p splits in K, the restrictions of IndQ
Kϕ to GK and GQp

both decompose as the
direct sum of ϕ and its complex conjugate ϕc, with ϕc|GQp

unramified and mapping
an arithmetic Frobenius to the p-th Fourier coefficient ap(g) = ψ(p̄) of g. Accordingly
the restriction of V (g) to GQp decomposes as the direct sum (cf. the previous proof)

V (g) = V (g)+ ⊕ V (g)−, with γ(V (g)+) = ϕ|GQp
and γ(V (g)−) = ϕc|GQp

.

With the notations of Section 2.3, the rank-one (ϕ,Γ)-modules D(g)± over the ring
Rg = R⊗̂Qp

Og are the images of the Og-adic representations V (g)± under the
Berger–Colmez functor D†rig,Og .

Write V (g) = V (g)⊗1 Qp for the base change of V (g) along evaluation at = 1 on
Og. Similarly define the GQp

-submodules

V (g)+ = V (g)+ ⊗1 Qp and V (g)− = V (g)− ⊗1 Qp

of V (g) = V (g)+ ⊕ V (g)−. The isomorphism (23) specialises to an isomorphism of
GQ-modules (denoted by the same symbol)

γ : V (g) ∼=
(
1⊕ εK

)
⊗Q L,

where 1 and εK are shorthands for the trivial GQ-representation Q and its twist by
εK respectively. Let v+ and v− be the canonical Og-bases of the GK-submodules ϕ
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and ϕc of IndQ
Kϕ, viz. maps v± : GQ −→ Og defined by (v+(1),v+(c)) = (1, 0) and

(v−(1),v−(c)) = (0, 1), where c is complex conjugation. Set v±g = γ−1(v±) in V (g)±,
let v±g in V (g)± be their weight-one specialisations and define

(24) vg,1 = v+
g + v−g and vg,εK = v+

g − v−g .

By construction c exchanges the vectors v+ and v−, hence the elements γ(vg,1) and
γ(vg,εK ) give Q-bases of the GQ-representations 1 and εK respectively.

4.3. Comparison between Beilinson–Kato and Beilinson–Flach elements.
— Let

ζKato
f ∈ H1

Iw(Q(µp∞), V (f)) and ζKato
f⊗εK ∈ H

1
Iw(Q(µp∞), V (f ⊗ εK))

be the global Beilinson–Kato elements associated with f and its twist by εK respec-
tively. They are characterised by Kato’s explicit reciprocity law (1) and its analogue
for f ⊗ εK respectively (with (f ⊗ εK)α = fα⊗ εK). Note that the global representa-
tion V (f ⊗ εK) is isomorphic to the twist V (f)⊗ εK of V (f) by εK . Since p splits in
K/Q, the restriction to GQp of V (f)⊗εK is equal to that of V (f). An isomorphism of
L[GQ]-modules ı : V (f ⊗ εK) −→ V (f)⊗ εK then induces an isomorphism of filtered
ϕ-modules between VdR(f⊗εK) = Vst(f⊗εK) and VdR(f), which maps the canonical
generator ω(f⊗εK)w of Fil0VdR(f⊗εK) to a non-zero multiple uı ·ωfw of the generator
ωfw of Fil0VdR(f) (cf. Section 2.2). Set

ζKato
f,εK = u−1

ı · ı∗
(
ζKato
f⊗εK

)
,

where
ı∗ : H1

Iw(Q(µp∞), V (f ⊗ εK)) −→ H1
Iw(Q(µp∞), V (f)⊗ εK)

is the isomorphism induced by ı, set V (f, g) = V (f)⊗L V (g) and define

BKα
f⊗g = Lp(fα ⊗ εK , 1 + s) · ζKato

f ⊗ vg,1 + Lp(fα, 1 + s) · ζKato
f,εK ⊗ vg,εK

in H1
Iw(K(µp∞), V (f, g)) ⊗Λ∞ O(W). Since complex conjugation acts trivially on

BKα
f⊗g, it descends to a class in H1

Iw(Q(µp∞), V (f, g))⊗Λ∞ O(W).
Define the balanced Iwasawa Selmer group

H1
Iw,bal(Q(µp∞), V (f, g)) ↪−→ H1

Iw(Q(µp∞), V (f, g))⊗Λ∞ O(W)

as in Section 2.4, after replacing V (f , g) and F abD(f , g) with V (f, g) and
F abD(f, g) = D(f)aα ⊗L V (g)b respectively in the definition of the local condi-
tion H1

Iw,bal(Qp(µp∞), V (f , g)) (with D(f)∅α = D(f) and V (g)∅ = V (g)). Write

% = %f,g : V (f , g) −→ V (f, g)

for the composition of the specialisation isomorphism (cf. Section 2.3)

ρko⊗̂ρ1 : V (f , g)⊗ko,1 L −→ V (fα, g)

and the p-stabilisation isomorphism (cf. Section 2.2)

Πfα∗ : V (fα) −→ V (f).

This induces a specialisation map

%∗ : H1
Iw,bal(Q(µp∞), V (f , g)) −→ H1

Iw,bal(Q(µp∞), V (f, g)).
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For each integer c > 2 coprime to 6NfdKp, one defines the global Selmer class

cBFαf⊗g ∈ H1
Iw,bal(Q(µp∞), V (f, g))

by the identity (cf. Proposition 2.3)

%∗
(
cBF(f ⊗ g)

)
= α(p− 1)

(
1− 1pr (p) · pko−2

α2

)(
1− 1pr (p) · pko−3

α2

)
· cBFαf⊗g.

Define finally the non-zero p-adic number Ωg,γ in L∗ (depending on the isomorphism
γ fixed in Equation (23)) by the identity (cf. Equation (3))

(25) Ωg,γ = 2 ·
〈
v+
g , ωg

〉
g
.

The aim of this section is to prove the following result.

Theorem 4.2. — The equality

Ωg,γ · cBFαf⊗g = Ac ·BKα
f⊗g

holds in the balanced Iwasawa Selmer group H1
Iw,bal(Q(µp∞), V (f, g)) for an explicit

element Ac = Ac,fα,K in O(W) such that Ac(j) belongs to K(α)∗ for each integer j.

Proof. — If χ denotes either εK or the trivial Dirichler character 1 and one sets
ζKato
f,1 = ζKato

f , Kato’s explicit reciprocity law (1) yields

(26)
〈
Logf

(
resp

(
ζKato
f,χ

))
, ηαf
〉
f

= Lp(fα ⊗ χ, 1 + s).

By definition (cf. Equation (24)) the image of resp(BKα
f⊗g) under the map

H1
Iw(Qp(µp∞), V (f, g))⊗Λ∞ O(W) −→ H1

Iw(Qp(µp∞), V (f)⊗L V (g)−)⊗Λ∞ O(W)

induced by the projection V (g) −→ V (g)− is equal to the product of v−g and

Lp(fα ⊗ εK , 1 + s) · resp
(
ζKato
f

)
− Lp(fα, 1 + s) · resp

(
ζKato
f,εK

)
,

which according to Equation (26) belongs to the kernel of the composition〈
Logf , η

α
f

〉
f

: H1
Iw(Qp(µp∞), V (f))⊗Λ∞ O(W) −→ O(W)

of the Perrin-Riou logarithm Logf and the O(W)-linear extension of the functional
〈·, ηαf 〉 on Vst(f). This composition factors through the morphism induced in coho-
mology by the projection D(f) −→ D(f)−α , and the resulting map

Log−f : H1
Iw(Qp(µp∞), D(f)−α ) −→ O(W)

is injective under the non-exceptionality assumption ap(f) 6= pko/2−1. (Indeed the
kernel of Log−f equals the submodule of D(f)−α on which ϕ acts as multiplication by
α−1
f , which is zero unless αf is a power of p. When p does not divide the conductor

of f , this possibility is excluded by the Ramanujan–Petersson conjecture; when f is
new at p one has αf = ap(f) = ±pko/2−1, hence αf = −pko/2−1 by assumption.) As
a consequence the image of resp(BKα

f⊗g) in H1
Iw(Qp(µp∞), D(f)−α )⊗L V (g)− is zero.

In other words (cf. Equation (24))

p−f,α
(
resp

(
BKα

f⊗g
))
∈ H1

Iw(Qp(µp∞), D(f)−α )⊗L V (g)+
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is equal to

p−α

(
Lp(fα ⊗ εK , 1 + s) · resp

(
ζKato
f

)
+ Lp(fα, 1 + s) · resp

(
ζKato
f,εK

))
⊗ v+

g ,(27)

where p−f,α and p−α are the maps induced by the projectionsD(f, g) −→ D(f)−α⊗LV (g)

and D(f) −→ D(f)−α respectively. (Note that, since GQp
acts trivially on V (g), the

(ϕ,Γ)-module D(f, g) = D(f)⊗RL
D(g) is canonically isomorphic to D(f)⊗L V (g).)

Let
Log−+

f⊗g : H1
Iw(Qp(µp∞), D(f)−α )⊗L V (g)+ −→ O(W)

be the morphism defined by the formulae

Log−+
f⊗g(z ⊗ v) = 〈v, ωg〉g · Log−f (z)

for each z in H1
Iw(Qp(µp∞), D(f)−α ) and v in V (g)+. Equations (26) and (27) yield

(28) Log−+
f⊗g ◦ p

−
f,α ◦ resp

(
BKα

f⊗g
)

= Ωg,γ · Lp(fα, 1 + s) · Lp(fα ⊗ εK , 1 + s).

As above denote by

%∗ : H1
Iw(Qp(µp∞),F−+D(f , g)) −→ H1

Iw(Qp(µp∞),F−+D(f, g))

the map induced by the specialisation map ρko⊗̂ρ1 and the p-stabilisation isomor-
phism Πfα∗. Lemma 8.4 of [BSV21b] and a direct comparison of the interpolation
properties satisfied by Logf and L−+ (cf. Section 2.4) show that the map

Log−+
f⊗g ◦ %∗ : H1

Iw(Qp(µp∞),F−+D(f , g)) −→ O(W)

is equal to

(p− 1)α

(
1− 1pr (p)p

ko−2

α2

)(
1− 1pr (p)p

ko−3

α2

)
· evko,1 ◦

〈
L−+, ηf ⊗ ωg

〉
fg
,

where evko,1 is evaluation at weights (ko, 1) on Ofg. (Recall thatNfpr is the conductor
of f and note that the Euler factors in the previous equation are non-zero.) The
explicit reciprocity law Proposition 2.3 then gives

(29) Log−+
f⊗g ◦ p

−
f,α ◦ resp

(
cBFαf⊗g

)
= Mf,c · Lp(fα, g, 1 + s),

where Lp(fα, g) is the specialisation of Lp(f , g) at weights (ko, 1) and

±Mf,c = N
1−ko/2
f ·

(
c2 − c2s−ko+3 · εK(c)

)
.

(Since ko is even, Mf,c(j) is a non-zero rational number for each integer j.)
We claim that one has the factorisation

(30) Lp(fα, g) = A · Lp(fα) · Lp(fα ⊗ εK)

in O(W), where A = Afα,K is an explicit unit in O(W)∗ such that A (j) belongs
to K(α)∗ for each j in Z. Indeed, for χ equal to either 1 or εK , let Lp(f ⊗ χ) in
O(Uf ×W) be the two-variable Mazur–Kitagawa p-adic L-function attached to f (cf.
[Bel12]). For each good classical point k in Uf , each j in Z>0 and each finite order
character σ : Z∗p −→ Q̄∗, one has Lp(f ⊗ χ)(k, σ + j) = λ±k · Lp(fk ⊗ χ)(σ + j)

with χσ(−1) = ±1, where λ±k are non-zero elements in L∗ such that λ±ko = 1. These
properties characterise Lp(f ⊗ χ) up to multiplication by a unit in O(Uf ) taking the
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value one at k = ko. Define Lp(f , g) to be the restriction of Lp(f , g) to the plane
= 1. Then the set X of pairs (k, j) in U cl

f ×Z with k good and 1 6 j 6 k−1 is dense
in Uf ×W and contained in the interpolation domains of Lp(f , g) and Lp(f ⊗χ). For
each (k, j) in X one has

Lp(f , g)(k, j) =
aK(k, j)

λ+
k λ
−
k

(
1− βk

αk

)(
1− βk

pαk

) · L(f)(k, j) · L(f ⊗ εK)(k, j),

where aK is a simple explicit unit in O(Uf ×W)∗ with aK(x) in K∗ for x in U cl
f ×Z

and where one sets αk = ap(fk) and βk = pko−1/αk. According to Theorem 3.4 of
[BD14] and Section 5 of [BSV21a], the p-adic periods

Perp(k) = λ+
k λ
−
k (1− βk/αk)(1− βk/pαk)

are interpolated by a unit in O(Uf )∗, whose value at ko is equal to Perp(ko), re-
spectively belongs to Q∗, if p does not divide the conductor of f , respectively f is
p-new. (In loco citato f is assumed to be ordinary, but the arguments readily gen-
eralise to the present setting.) One deduces that Lp(f , g) factors as the product of
Lp(f)·Lp(f⊗εK) and an explicit unit which takes values inK(α)∗ on classical points.
The weight-ko specialisation of this factorisation yields Equation (30).

Set Ac = A ·Mf,c. Equations (28)–(30) show that the difference between the classes
Ωg,γ ·cBFαf⊗g and Ac ·BKα

f⊗g is killed by the linear form Log−+
f⊗g ◦p

−
f,α◦resp, hence by

p−f,α ◦ resp (since as observed above Log−f , and then Log−+
f⊗g, is injective in the present

non-exceptional setting). In other words this difference defines an element of the trian-
guline Selmer group SelIw(K(µp∞), V (f)) of classes in H1

Iw(K(µp∞), V (f))⊗Λ∞O(W)
which are unramified at each prime different from p and which map to zero in the
semi-local cohomology group H1

Iw(Kp(µp∞), D(f)−α ). For each finite order character
µ of G∞, the base change of the finite torsion-free module SelIw(K(µp∞), V (f)) along
the morphism µ ·χ1−ko/2

cyc : Λ∞ −→ Qp(µ) is isomorphic to a submodule of the Bloch–
Kato Selmer group Sel(K,V(f ⊗µ−1)) of V(f ⊗µ−1) = V (f)(1−ko/2)⊗µ−1 over K.
According to the main results of [Roh84, Roh88], for each 0 6 i 6 p−1 there exists
µ such that the complex L-values L(f ⊗ µ, ko/2) and L(f ⊗ µεK , ko/2) are non-zero
and µ|F∗p = ωi, where we identify G∞ with Z∗p via χcyc and ω : F∗p −→ Z∗p is the Teich-
müller character. For such characters, Kato’s theorem [Kat04, Introduction] implies
that the Bloch–Kato Selmer group Sel(K,V(f ⊗ µ−1)) vanishes. As a consequence
SelIw(K(µp∞), V (f)) is trivial, thus concluding the proof of the theorem.

4.4. Heegner classes. — Let n > 4 be an integer such that (K,n) satisfies the
Heegner condition, let n be an ideal of K of norm n and let H be the Hilbert class
field of K. Fix an elliptic curve E over H with complex multiplication by the maximal
order OK of K and good reduction at the prime of H associated with the embedding
ip : Q̄ ↪−→ Q̄p fixed at the outset. We identifyOK with EndH(E) via the isomorphism
[·] satisfying [λ]∗ω = λ · ω for each ω in Γ(E,Ω1

E/H). Choose a generator tn of the
n-torsion subgroup En of E. Then the isomorphism class of the pair (E, tn) defines a
closed point iE : Spec(F ) −→ Y1(n)F of the modular curve Y1(n)F = Y1(n)⊗Z[1/n] F
of level Γ1(n) over a finite abelian extension F of H.
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For each positive integer r define the p-adic étale sheaves

Sr = Symmr
ZpR

1(E1(n) −→ Y1(n))∗Zp and Hr(E) = Symmr
ZpH

1
ét(EQ̄,Zp)

on Y1(n) and Spec(H) respectively, where E1(n) −→ Y1(n) is the universal elliptic
curve. Then (the restriction to Spec(F ) of) Hr(E) is canonically isomorphic to the
pull-back i∗E(Sr) of (the restriction to Y1(n)F of) Sr along the closed immersion iE .
This yields a push-forward

iE∗ : H0
ét

(
F,H2r(E)(r)

)
−→ H2

ét

(
Y1(n)F ,S2r(r + 1)

)
.

The p-adic Tate module Tp(E) = H1
ét(EQ̄,Zp(1)) of E decomposes as the direct

sum of the one-dimensional p-adic representations χE and χ̄E for a Hecke character
χE : GH −→ Z∗p. Let xE and yE be any generators of the lines χE(−1) and χ̄E(−1)
of H1(E) respectively, which pair to one under the Weil pairing. Then

H0
ét(H,Hr(E)(r)) = Zp · xrEyrE ,

where the canonical invariant xrEy
r
E is the image of x⊗rE ⊗ y

⊗r
E in H1(E)⊗2r in the

symmetric quotient Hr(E).
Let ξ =

∑
n>1 an(ξ) · qn in S2r+2(Γ0(n))L be a normalised cuspidal eigenform

of weight 2r + 2, level Γ0(n) and Fourier coefficients in L. Recall the p-adic sheaf
Li = Tsymi(E1(n) −→ Y1(n))∗Zp(1), so that the dual Deligne representation V (ξ)
of ξ is the maximal L-quotient of H1

ét(Y1(n)Q̄,L2r(1))⊗Zp L on which the dual Hecke
operator T ′` acts as a`(ξ) for each prime ` (cf. Section 2.2). As explained in [BSV21b,
Section 3], there is a natural isomorphism si between the Qp-linear extension of Si(i)
and that of Li and one writes

prξ : H1
ét(Y1(n)Q̄,S2r(r + 1))Qp

−→ V (ξ)⊗ χ−rcyc = V(ξ)

for the composition of the ξ-isotypic projection with the map induced by s2r. Define

zE(ξ) = prξ∗ ◦ HSét ◦ iE∗(xrEyrE) ∈ Sel(H,V(ξ))

to be the image of the invariant xrEy
r
E under the composition prξ∗ ◦ HSét ◦ iE∗, where

prξ∗ is the map induced in GF -cohomology by prξ and

HSét : H2
ét(Y1(n)F ,S2r(r + 1)) −→ H1(GF , H

1
ét(Y1(n)Q̄,S2r)(r + 1))

is the morphism arising from the Hochschild–Serre spectral sequence. The fact
that zE(ξ) belongs to the Bloch–Kato Selmer group Sel(F,V(ξ)) is a consequence
of [NN16, Theorem 5.9]. Moreover, because ξ is a form of level Γ0(n) and the iso-
morphism class of the pair (E,Z ·tn) defines an H-rational point of the modular curve
Y0(n), the class zE(ξ) is fixed by the action of Gal(F/H) on Sel(F,V(ξ)), hence can
naturally be viewed as an element of the Selmer group of V(ξ) over the Hilbert class
field H of K. Define finally the Heegner class of (ξ,K) by

zK(ξ) = TraceH/K
(
zE(ξ)

)
∈ Sel(K,V(ξ)).
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4.5. Comparison between Beilinson–Flach and Heegner classes. — Set
V(f, g) = V (f, g)(1 − ko/2). As explained in Section 1.1, evaluation at an integer i
in W induces a morphism χicyc from H1

Iw,bal(Q(µp∞), V (f, g)) to H1(Q, V (f, g)(−j))
(cf. the definition of the character [·] : G∞ −→ O(W)∗ in Section 2.4). Recall the
balanced Iwasawa class cBFαf⊗g introduced in Section 4.3 and define

cBFαf⊗g = χko/2−1
cyc

(
cBFαf⊗g

)
∈ H1(Q,V(f, g)).

Let up in OK [1/p]∗ be a generator of phK , with hK the class number of K.

Theorem 4.3. — Assume that the complex Hecke L-series L(f, s) vanishes at the
central critical point s = ko/2. Then the class cBFαf⊗g belongs to the Bloch–Kato
Selmer group Sel(Q,V(f, g)) and the equality

logp(up)·
〈

logp
(
resp

(
cBFαf⊗g

))
, ωf ⊗ ηg

〉
fg

= log2
ωf

(
resp

(
zK(f)

))
.

holds in L up to multiplication by an explicit non-zero constant in the number field
K(an(fα); n > 1).

The proof of Theorem 4.3 occupies the rest of this section.

4.5.1. — This subsection briefly describes the main result of [BDP13]. With the
notations of Section 4.4, set n = Nf , ξ = f and write Nf = n.

Denote by Lp(f) the square-root anticyclotomic p-adic L-function associated in
Section 5 of [BDP13] to the level-Γ0(Nfp

r) newform f , the prime p of K and the
data (Nf , E, ωE), where ωE is a non-zero invariant differential in Γ(E,Ω1

E/H). It is
a continuous Cp-valued function defined on a suitable p-adic completion Σ̂cc(f) of
the set Σcc(f) of algebraic Hecke characters of K with conductor dividing Nf , trivial
central character and infinity type (ko + a,−a) with a in Z. For each character χ
in Σcc(f) of infinity type (ko + j,−j) with j > 0, the square Lp(f, χ)2 of the value
of Lp(f) at χ is a non-zero explicit multiple of the central critical value L(f, χ̄−1, 0)
of the Rankin–Selberg convolution of f and the theta series of weight ko + 1 + 2j
associated with Nko+j ·χ̄−1. We refer to loc. cit. for the precise interpolation property
satisfied by Lp(f), whose square is denoted there by Lp(f). (Note that Section 5 of
[BDP13] assumes that p does not divide the conductor of f , but the constructions
and results readily generalise to the present semistable setting. More generally, one
can easily define aCp-valued continuous function Lp(f) on Uf×Σ̂cc(f) which restricts
to Lp(fk) at each classical point k in U cl

f .)
Note that the character Nko/2 does not belong to the interpolation domain of

Lp(f). The main result Theorem 5.13 of [BDP13] and its extension [Cas18, Theo-
rem 2.11] to the p-semistable setting yield the identity

(31) (ko/2− 1)! ·Lp(f,Nko/2) =

(
1− α

pko/2

)(
1− β

pko/2

)
· logωf

(
resp(zK(f))

)
.

Recall that α and β are the roots of the p-th Hecke polynomial of f , ordered in such
a way that ordp(α) 6 ordp(β). In particular β is zero if f is p-new (i.e. if r = 1) and
the Euler factors which appear in the previous equation are non-zero.
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4.5.2. — The aim of this subsection is to prove the following

Lemma 4.4. — One has the equality

logp(up) · Lp(g,f)(ko, 1, ko/2) = B ·Lp(f,Nko/2)2,

where B = B(f,K) is an explicit non-zero element of K(an(f); n > 1).

Proof. — In the proof write U cl
g for the set of integers in Ug which are congruent to

one modulo qL − 1 (where qL is the cardinality of the residue field of L, cf. Section
4.2). Set X cl = {ko} × U cl

g and let X cl
∞ be the set of pairs (ko, l) in X cl such that

l > ko/2 + 1. For each x = (ko, l) in X cl set (cf. Equation (21))

νx = Nko/2−l+1 · ψ2l−2 : IK −→ C∗.

Note that νx has infinity type (ko + jx,−jx) with jx = l − (ko/2 + 1), so that jx > 0
precisely if x belongs to X cl

∞.
For each x = (ko, l) in X cl

∞ the character νx belongs to the interpolation domain of
Lp(fk). According to [BDP13, Section 5] (and the functional equation satisfied by
Rankin L-series) one has

Lp(f, νx)2 = C1(l)

(
Ωp
Ω∞

)4l−4

π2l−3Γ(l − ko/2)Γ(ko/2 + l − 1) ·

·
(

1− α

νx(p̄)

)2(
1− β

νx(p̄)

)2

L
(
f ⊗ ϑ(ψ2l−2), ko/2 + l − 1

)
.(32)

Here Ωp = Ωp(E,ωE) in C∗p and Ω∞ = Ω∞(E,ωE) in C∗ are the p-adic and complex
periods associated in [BDP13] with the fixed pair (E,ωE) and C1 = C1(f,K) is a
unit in Og such that, for each l in Ug∩Z, the value C1(l) is a non-zero explicit element
of the number field K(an(f); n > 1).

If x = (ko, l) belongs to X cl
∞, then the classical triple

κ = (ko, 2l − 1, ko/2 + l − 1)

belongs to the interpolation domain of Lp(g,f), and (cf. [KLZ17, Theorem 2.7.4])

Lp(g,f)(κ) =
Γ(l − ko/2)Γ(ko/2 + l − 1)

π2l−1(−i)2l−1−ko24l−3

(
1− α

νx(p̄)

)2 (
1− β

νx(p̄)

)2

(
1− µl(p)p−1

)(
1− µl(p̄)−1

) ·
·
L
(
f ⊗ ϑ(ψ2l−2), ko/2 + l − 1

)〈
ϑ(ψ2l−2), ϑ(ψ2l−2)

〉
−dK

,(33)

where µl denotes the inverse of the algebraic Hecke character ψc4l−4 · N1−2l. After
setting C2(l) = C1(l) · (−i)2l−1−ko · 24l−3, Equations (32) and (33) yield the identity

C2(l)−1 ·Lp(f, νx)2 = Lp(g,f)(κ) ·(34)

·
(
π · Ωp
Ω∞

)4l−4 (
1− µl(p)p−1

)(
1− µl(p̄)−1

)〈
ϑ(ψ2l−2), ϑ(ψ2l−2)

〉
−dK

.

Let Lp(K) be the Katz p-adic L-function associated to (K, p) in [Kat76]. It is a
continuous Cp-valued function on a suitable p-adic completion Σ̂K of the set ΣK of
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algebraic Hecke characters of K of trivial conductor and infinity type (a, b) with a > 1
and b 6 0. The value of Lp(K) at χ in ΣK is an explicit multiple of the algebraic
part of the complex special value L(χ−1, 0). We refer to Section 3.2 of [DLR15] for
a description of the interpolation property which characterises Lp(K). In particular,
Lemmas 3.7 and 3.8 of loc. cit. yield the formula(
π · Ωp
Ω∞

)4l−4 (
1−µl(p)p−1

)(
1−µl(p̄)−1

)〈
ϑ(ψ2l−2), ϑ(ψ2l−2)

〉
−dK

= C3(l) ·Lp(K,µl),

where C3 = C3(K) is a unit in Og such that C3(l) is an elementary explicit scalar in
K∗ for each l in U cl ∩ Z. For x = (ko, l) in X cl

∞ and κ = (ko, 2l − 1, ko/2 + l − 1),
Equation (34) can then be rewritten as

C (l) ·Lp(f, νx)2 = Lp(K,µl) · Lp(g,f)(κ),

where the unit C = C (f,K) in Og is defined to be the product of the inverses of the
units C2 and C3.

Define B = B(f,K) in K(an(f); n > 1)∗ by the formula (p−1)·B = 2p·C (1). Let
xn = (ko, ln) be any sequence in X cl

∞ which converges to (ko, 1) in the p-adic topology
(e.g. ln = 1 + (qL − 1)pc(n) with limn→∞ c(n) = +∞ in the archimedean topology).
Then κn = (ko, 2ln − 1, ko/2 + ln − 1) (resp., νxn , µln) is a sequence of classical
points in the interpolation domain of Lp(g,f) (resp., Lp(f), Lp(K)) converging to
(ko, 1, ko/2) (resp., Nko/2, N). Taking x = xn in the previous displayed equation and
then taking the limit for n tending to infinity yields

2
(
1− p−1

)−1 · Lp(K,N) · Lp(g,f)(ko, 1, ko/2) = B ·Lp(f,Nko/2)2.

Together with Katz’s p-adic analogue of the Kronecker limit formula:

2
(
1− p−1

)−1 · Lp(K,N) = logp(up)

(cf. [Kat76, Sections 10.4 and 10.5]) this concludes the proof of the lemma.

4.5.3. — Assume from now on that the Hecke L-series L(f, s) vanishes at s = ko/2.

Lemma 4.5. — The Beilinson–Flach element cBFαf⊗g belongs to the Bloch–Kato
Selmer group Sel(Q,V(f, g)), and one has the identity

Lp(g,f)(ko, 1, ko/2) = C ·
〈

logp(resp(cBFαf⊗g)), ωf ⊗ ηg
〉
fg

for an explicit non-zero constant C in the number field Q(α).

Proof. — Set

V(fα, g) = V(fα)⊗L V (g) and D(fα, g) = D†rig,L(V(fα, g)).

For a and b in {∅,+,−} define F abD(fα, g) as in Section 2.4, using the triangulations
on D(fα) and D(g) = RL ⊗L V (g) defined in Equation (2). Denote by

cBF(fα ⊗ g) ∈ H1(Q,V(fα, g))

the specialisation of cBF(f ⊗ g) at the classical triple

ς = (ko, 1, ko/2− 1).



36 BERTOLINI, DARMON & VENERUCCI

As the Beilinson–Flach element cBF(f ⊗ g) belongs to the balanced Selmer group
H1

Iw,bal(Q(µp∞), V (f , g)), its image in H1
Iw(Qp(µp∞),F ∅−D(f , g)) under the com-

position p−g ◦ resp (cf. Section 2.4) arises from a unique element

cBF(f ⊗ g)+− ∈ H1
Iw(Qp(µp∞),F+−V (f , g)).

Denote by

cBF(fα ⊗ g)+− ∈ H1(Qp,F
+−D(fα, g))

the specialisation of cBF(f ⊗ g)+− at ς. Exchanging the roles of f and g in the
previous discussion one defines similarly the local cohomology class

cBF(fα ⊗ g)−+ ∈ H1(Qp,F
−+D(fα, g)).

Evaluating both sides of the explicit reciprocity laws (cf. Proposition 2.3)

Lg(resp(cBF(f ⊗ g))) = Ng,c · Lp(g,f , 1 + s)

and
Lf (resp(cBF(f ⊗ g))) = Nf ,c · Lp(f , g, 1 + s)

at the classical triple ς = (ko, 1, ko/2− 1) yields respectively the formulae

Lp(g,f)(ko, 1, ko/2) = E ·
〈

logp(cBF(fα ⊗ g)+−), ωfα ⊗ ηg
〉
fαg

(35)

and

Lp(f , g)(ko, 1, ko/2) = E ′ ·
〈

exp∗p(cBF(fα ⊗ g)−+), ηfα ⊗ ωg
〉
fαg

(36)

where

E =

(
1− α

pko/2

)
(

1− pko/2−1

α

)
Ng,c(ς)(ko/2− 1)!

and E ′ =
(ko/2− 1)!

(
1− pko/2−1

α

)
Nf ,c(ς)

(
1− α

pko/2

) .

(Note that Nf ,c(ς), Ng,c(ς) and the four Euler factors in the previous equation are
all non-zero under the current non-exceptionality assumption ap(f) 6= pko/2−1.) The
value of Lp(f , g) at the classical triple (ko, 1, ko/2) is a multiple of the complex L-value
L(f ⊗ g, ko/2), which in turn is a multiple of L(f, ko/2). By assumption L(f, ko/2)
is zero, hence so is cBF(fα ⊗ g)−+ by Equation (36). Since cBF(fα ⊗ g)−− is zero
(because cBF(f⊗g) is a balanced class), this implies that the global class cBF(fα⊗g)
belongs to the Selmer group Sel(Q,V(fα, g)), hence
(37)〈

logp(cBF(fα ⊗ g)+−), ωfα ⊗ ηg
〉
fαg

=
〈

logp
(
resp

(
cBF(fα ⊗ g)

))
, ωfα ⊗ ηg

〉
fαg

.

By definition the class cBFαf⊗g is an explicit non-zero multiple of the im-
age of cBF(fα ⊗ g) under the map induced by the p-stabilisation isomorphism
Πfα∗ : V (fα) −→ V (f). The lemma then follows from Equations (35) and (37).

4.5.4. — Theorem 4.3 is a direct consequence of the Bertolini–Darmon–Prasanna
p-adic Gross–Zagier formula (31), Lemma 4.4 and Lemma 4.5.
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4.6. Conclusion of the proof. — This section concludes the proof of Theorem B
(when f is not p-exceptional).

Recall the non-zero p-adic number Ωg,γ introduced in Equation (25) and set

fg,γ = 2 ·
〈
v−g , ηg

〉
g

and L(g) = Ωg,γ/fg,γ .

Then L(g) is a non-zero element of L∗ and is independent of the choice of the isomor-
phism γ made in Equation (23). Since f is not p-exceptional and p splits in K/Q, the
twist f⊗εK is not p-exceptional, hence Lp(fα⊗εK , ko/2) is equal to L(f, εK , ko/2)alg

(cf. Section 1.1) up to multiplication by non-zero explicit scalar in Q(α). As by as-
sumption L(f, s), and hence Lp(fα), vanishes at s = ko/2, Theorems 4.2 and 4.3
prove that the identity

(38) L(f, εK , ko/2)alg · logωf
(
resp

(
ζKato
f

))
=
L(g)

logp(up)
· log2

ωf

(
resp

(
zK(f)

))
holds in L up to multiplication by a non-zero explicit scalar in the number field
K(an(fα); n > 1). Theorem B is a consequence of the the previous equation and the

Lemma 4.6. — The ratio between L(g) and logp(up) belongs to Q∗.

Proof. — We give an indirect proof of Lemma 4.6 which uses Equation (38) and
Theorem 3.1. Consider the set SK of negative integers D satisfying the following
properties.

1. D is a square-free negative integer congruent to 5 modulo 8.
2. Each prime divisor of D splits in K and p splits in Q(

√
D).

3. There exists a canonical Hecke character χD of Q(
√
D) such that L(χD · εK , s)

does not vanish at s = 1.
The set SK is infinite. Indeed, the first two conditions are easily seen to be satisfied by
infinitely many negative integers D. Moreover a theorem of Rohlrich [Roh80, Page
551] guarantees that the subtler condition 3 is satisfied by each square-free negative
integer D congruent to 5 modulo 8 such that −D is sufficiently large relative to dK .
(Recall from Section 3 that L(χD, s) has sign −1 in its functional equation, hence
L(χD · εK , s) has sign +1.)

For each D in SK write fχD for the weight-two theta series of level Γ0(D2) as-
sociated with a canonical Hecke character χD satisfying the above condition 3. Let
AχD and ωχD be as in Section 3. Since L(χD · εK , s) is equal to L(fχD , εK , s), condi-
tion 2 implies that L(fχD , εK , ko/2)alg is a non-zero element of the number field EχD
generated by the values of χD, hence Equation (38) gives

logωχD

(
resp

(
ζKato
AχD

))
= cχD ·

L(g)

logp(up)
· log2

ωχD
(zK(fχD ))

for a non-zero algebraic constant cχD in EχD . The GQ-representation V (fχD ) is
canonically isomorphic to V (AχD ) and by construction zK(fχD ) is the image under
the global Kummer map of the trace fromH toK of a Heegner point in AχD (H)⊗ZQ.
In addition, since L(fχD , s) = L(χD, s) has sign −1 in its functional equation, this
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Heegner point is rational over Q. In summary, we can rewrite the previous equation
as

logωχD

(
resp

(
ζKato
AχD

))
=
L(g)

logp(up)
· log2

ωχD
(PχD )

for a global rational point PχD in AχD (Q)⊗Z Q(
√
D). On the other hand Theorem

3.1 yields the identity

logωχD

(
resp

(
ζKato
AχD

))
= log2

ωχD

(
PχD

)
for a generator PχD of the EχD -vector space AχD (Q)⊗Z Q(

√
D). The previous two

equations imply that the ratio between L(g) and logp(up) belongs to E∗χD . Assume
that |D| is prime. The definition of χD shows that the intersection of the fields EχσD
over the Galois orbit of χD is equal to K, so that

Q =
⋂

D inSK

ED

and Lemma 4.6 follows.

5. Proof of Theorem B: the p-exceptional case

This section contains the proof of Theorem B in the p-exceptional case, viz. when
f = fα is new at p and its p-th Fourier coefficient ap(f) = α is equal to pko/2−1.

Throughout this section f = fα and g denote the Coleman families introduced
respectively in Sections 4.1 and 4.2. One fixes an integer c > 2 coprime to pdKNf
and denotes by BF(f ⊗ g) the Beilinson–Flach element cBF(f ⊗ g) constructed in
Proposition 2.3. (As in the previous section the choice of c is not relevant.)

5.1. Comparison between Beilinson–Flach and Beilinson–Kato elements.
— Denote by

BF(f ⊗ g) = χko/2−1
cyc

(
BF(f ⊗ g)

)
∈ H1(Q, V (f , g)(1− ko/2))

the image of BF(f ⊗g) under the morphism induced in cohomology by evaluation at
ko/2− 1 on O(W). Proposition 5.3.4 and Theorem 5.4.2 of [LZ16] give

(39) BF(f ⊗ g) =

(
1− pko/2−1

ap(f)ap(g)

)
· BF(f ⊗ g)

for a canonical improved Beilinson–Flach class

BF(f ⊗ g) ∈ H1(Q, V (f , g)(1− ko/2))

unramified outside p. Define

BF(f ⊗ g) = ρko,1
(
BF(f ⊗ g)

)
∈ H1(Q,V(f, g))

to be the specialisation of BF(f ⊗ g) at weights (ko, 1).
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Theorem 5.1. — Assume that L(f, s) vanishes at s = ko/2 and let L(g) in L∗ be as
in Section 4.6. Then BF(f ⊗g) and ζKato

f belong to the Selmer groups Sel(Q,V(f, g))

and Sel(Q,V(f)) respectively and the equality

L(g) ·
〈

logp
(
resp

(
BF(f ⊗ g)

))
, ωf ⊗ ηg

〉
fg

= L(f, εK , ko/2)alg · logωf
(
resp

(
ζKato
f

))
holds in L up to multiplication by an explicit non-zero constant in the number field
K(an(f); n > 1).

Proof. — Using the techniques of [BSV21b] one can construct, for χ = 1, εK , an
element

ζKato
f ,χ ∈ H1

Iw(Q(µp∞), V (f)⊗ χ)

which specialise to λk · ζKato
fk,χ

at each classical weight k in U cl
f , where λk is a non-zero

element of L with λko = 1. Here the classes ζKato
fk,χ

in H1
Iw(Q(µp∞), V (fk) ⊗ χ) are

defined as in Section 4.3 and one identifies V (fk) with V (fk) via the p-stabilisation
isomorphism Πfk∗. (We remark that when f is p-ordinary, the existence of ζKato

f ,χ is
proved in [Och06].)

The restriction of the Mazur–Kitagawa p-adic L-function Lp(f ⊗ χ) (cf. Section
4.3) to the line s = ko/2− 1 factors in Of as the product of the analytic Euler factor
1− pko/2−1

ap(f) and the improved p-adic L-function Lp(f ⊗ χ) (cf. [GS93, Bel12]). If

BF(f ⊗ g) = (id⊗ ρ1)∗(BF(f ⊗ g)) ∈ H1(Q, V (f , g)(1− ko/2))

is the image of BF(f ⊗ g) under the map induced in cohomology by

id⊗ ρ1 : V (f , g) −→ V (f , g) = V (f)⊗L V (g),

then one has

C−1 · Ωg,γ · BF(f ⊗ g) = Lp(f ⊗ εK) · ζKato
f ⊗ vg,1 + Lp(f) · ζKato

f ,εK ⊗ vg,εK
for a unit C in Of with C (ko) a non-zero explicit element of K(an(f); n > 1). Since
H1(Q, V (f , g)(1 − ko/2)) is torsion free, this follows by applying Theorem 4.2 to fk
(in place of f) for each good classical point k in U cl

f .
Since Lp(f ⊗ χ)(ko) is equal to the product of L(f, χ, ko/2)alg and a non-zero

explicit constant in Q(α), evaluating the previous equation at k = ko and using the
assumption L(f, ko/2) = 0 one gets the identity

Ωg,γ · BF(f ⊗ g) = cK · L(f, εK , ko/2)alg · ζKato
f ⊗ vg,1

for an explicit cK in K(an(f); n > 1)∗. Finally, the assumption L(f, ko/2) = 0 and
Kato’s explicit reciprocity law imply that ζKato

f is a Selmer class (cf. the proof of
Theorem 16.6 of [Kat04]). The statement follows.

5.2. Comparison between Beilinson–Flach and Heegner classes. — In the
the present exceptional zero scenario, Theorem 4.3 admits the following variant.

Theorem 5.2. — Assume that L(f, s) vanishes at s = ko/2, so that BF(f ⊗ g) is a
Selmer class. Then the equality

logp(up)·
〈

logp
(
resp

(
BF(f ⊗ g)

))
, ωf ⊗ ηg

〉
fg

= log2
ωf

(
resp

(
zK(f)

))
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holds in L up to multiplication by an explicit non-zero constant in the number field
K(an(fα); n > 1).

Proof. — Equations (31) and Lemma 4.4 hold also in the present exceptional-zero
setting. Moreover BF(f ⊗ g) is crystalline at p by Theorem 5.1. As in the proof of
Theorem 4.3, one is then reduced to show that the equality

(40) Lg

(
resp

(
BF(f ⊗ g)

))
(ko, 1, ko/2− 1) =

〈
logp

(
resp

(
BF(f ⊗ g)

))
, ωf ⊗ ηg

〉
fg

holds up to multiplication by an explicit non-zero element of K(an(f); n > 1).
Let % : O(Uf × Ug ×W) −→ O(Uf × Ug) be the morphism sending the analytic

function F (k, , s) to its restriction F (k, ,k− ko/2− 1) to the plane s = k− ko/2− 1.
Let V%(f , g) be the base change of V (f , g)⊗̂QpO(W)(ε−1

∞ ) along % and let BF%(f⊗g)
be the image of BF(f ⊗ g) under the morphism induced by %. Using the techniques
of [BSV21b, Section 8.3] one proves that

(41) BF%(f ⊗ g) =

(
1− ap(g) · pko/2−1

ap(f)

)
· BF%(f ⊗ g)

for a canonical improved class BF%(f ⊗g) in H1(Q, V%(f , g)). This improved class is
unramified outside p and belongs to the kernel of the composition

H1(Q, V%(f , g))→ H1(Qp, V%(f , g)) ' H1(Qp, D%(f , g))→ H1(Qp,F
−−D%(f , g)),

where F ··D%(f , g) is the base change of F ··D(f , g) along %, the first arrow is restric-
tion at p and the second is induced by the projection D%(f , g) −→ F−−D%(f , g). It
follows that the image of resp

(
BF%(f ⊗ g)

)
in H1(Qp,F ∅−D%(f , g)) arises from a

unique element BF%(f ⊗ g)+− in H1(Qp,F+−D%(f , g)). Define

BF%(f ⊗ g) ∈ H1(Q,V(g, h)) and BF%(f ⊗ g)+− ∈ H1(Qp,F
+−D(f, g))

to be the specialisations of BF%(f ⊗ g) and BF%(f ⊗ g)+− respectively at weights
(ko, 1, ko/2 − 1). Equation (41) and the interpolation formula satisfied by Lg (cf.
Theorem 7.1.4 of [LZ16]) show that

Lg

(
resp

(
BF(f ⊗ g)

))
(ko, 1, ko/2− 1)

is equal to

(−1)ko/2−1
(
1− p−1

)
(ko/2− 1)!

·
〈

logp
(
BF%(f ⊗ g)+−), ωf ⊗ ηg〉fg .

Comparing the two factorisations of the restriction ofBF(f⊗g) to the line (k, , s) =
(ko, , ko/2− 1) arising from Equations (39) and (41) yields the identity

BF(f ⊗ g) = −BF%(f ⊗ g)

in H1(Q,V(f, g)). In particular BF%(f ⊗ g) is crystalline at p, and Equation (40)
(and then the statement) follows from the previous two equations.

5.3. Conclusion of the proof. — In the present p-exceptional setting, Theorem
B is a direct consequence of Theorem 5.1, Theorem 5.2 and Lemma 4.6.
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