HEEGNER POINTS AND EXCEPTIONAL ZEROS OF GARRETT *p*-ADIC *L*-FUNCTIONS

by

Massimo Bertolini, Marco Adamo Seveso & Rodolfo Venerucci

Abstract. — This article proves a case of the *p*-adic Birch and Swinnerton-Dyer conjecture for Garrett *p*-adic *L*-functions of [BSV21c], in the imaginary dihedral exceptional zero setting of extended analytic rank 4.

1. Statement of the main result

Let A be an elliptic curve defined over the field \mathbf{Q} of rational numbers, having multiplicative reduction at a rational prime p > 3. Let K be a quadratic imaginary field of discriminant d_K coprime to the conductor N_A of A, and let

 $\nu_g: G_K \longrightarrow \bar{\mathbf{Q}}^* \quad \text{and} \quad \nu_h: G_K \longrightarrow \bar{\mathbf{Q}}^*$

be finite order characters of the absolute Galois group $G_K = \text{Gal}(\bar{\mathbf{Q}}/K)$ of K, where $\bar{\mathbf{Q}}$ is the field of algebraic complex numbers. Write $N_A = N_A^+ \cdot N_A^-$, where each prime divisor of N_A^+ (resp., N_A^-) splits (resp., is inert) in K. We make the following

Assumption 1.1. —

- 1. (Heegner assumption) The prime p is inert in K (id est divides N_A^-) and N_A^- is a square-free product of an even number of primes.
- 2. (Self-duality) The central characters of ν_g and ν_h are inverse to each other.
- 3. (Cuspidality) The characters ν_g and ν_h are not induced by Dirichlet characters.
- 4. (Local signs) The conductors of ν_g and ν_h are coprime to $d_K \cdot N_A$.

Let $f = \sum_{n \ge 1} a_n(f) \cdot q^n$ in $S_2(\Gamma_0(N_f))$ be the newform of conductor $N_f = N_A$ attached to A by the modularity theorem. For $\nu_{\xi} = \nu_g, \nu_h$, let $\varrho_{\xi} : G_{\mathbf{Q}} \longrightarrow \operatorname{GL}_2(\mathbf{C})$ be the odd irreducible (cf. Assumption 1.1.(3)) Artin representation of $G_{\mathbf{Q}}$ induced by ν_{ξ} , corresponding by modularity to the cuspidal weight one theta series

$$\xi = \sum_{(\mathfrak{a},\mathfrak{f}_{\xi}) = \mathcal{O}_{K}} \nu_{\xi}(\mathfrak{a}) \cdot q^{\mathbf{N}\mathfrak{a}} \in S_{1}(N_{\xi}, \chi_{\xi}).$$

 $\mathbf{2}$

Here \mathfrak{a} runs the set of non-zero ideals of \mathcal{O}_K coprime to the conductor \mathfrak{f}_{ξ} of ν_{ξ} , $\mathbf{N}\mathfrak{a} = |\mathcal{O}_K/\mathfrak{a}|, N_{\xi} = d_K \cdot \mathbf{N}\mathfrak{f}_{\xi}$ and $\chi_{\xi} = \varepsilon_K \cdot \nu_{\xi}^{\text{cen}}$, where $\varepsilon_K : (\mathbf{Z}/d_K\mathbf{Z})^* \longrightarrow \mu_2$ is the quadratic character of K and $\nu_{\xi}^{\text{cen}} : G_{\mathbf{Q}} \longrightarrow \mathbf{Q}^*$ is the central character of ν_{ξ} . Since pis inert in K by Assumption 1.1.(1), the p-th Hecke polynomial of ξ equals $X^2 + \chi_{\xi}(p)$ (id est the p-th Fourier coefficient of ξ is equal to zero). In addition $\chi_{\xi}(p)$ is non-zero by Assumption 1.1.(4), hence $X^2 + \chi_{\xi}(p) = (X - \alpha_{\xi}) \cdot (X - \beta_{\xi})$ has distinct roots α_{ξ} and $\beta_{\xi} = -\alpha_{\xi}$. According to Assumption 1.1.(2) one has $\alpha_g \cdot \alpha_h = \beta_g \cdot \beta_h = \pm 1$ and $\alpha_g \cdot \beta_h = \beta_g \cdot \alpha_h = -\alpha_g \cdot \alpha_h$, hence we can, and will, assume

(1)
$$\alpha_f = \alpha_g \cdot \alpha_h = \beta_g \cdot \beta_h \text{ and } -\alpha_f = \beta_g \cdot \alpha_h = \alpha_g \cdot \beta_h$$

by reordering the roots $(\alpha_{\xi}, \beta_{\xi})$ of $X^2 + \chi_{\xi}(p)$ if necessary, where $\alpha_f = a_p(f) = \pm 1$.

Fix an algebraic closure $\bar{\mathbf{Q}}_p$ of \mathbf{Q}_p , an embedding $i_p : \bar{\mathbf{Q}} \hookrightarrow \bar{\mathbf{Q}}_p$, and a finite extension L of \mathbf{Q}_p containing (the images under i_p of) the values of ν_{ξ} and α_{ξ} , for $\xi = g, h$. Denote by ξ_{α} in $S_1(pN_{\xi}, \chi_{\xi})$ the *p*-stabilisation of ξ with U_p -eigenvalue α_{ξ} . According to [Hid86, BD16], there exist unique Hida families

$$oldsymbol{f} = \sum_{n \geqslant 1} a_n(oldsymbol{f}) \cdot q^n \in \mathscr{O}_{oldsymbol{f}}\llbracket q
rbrace$$
 and $oldsymbol{\xi}_lpha = \sum_{n \geqslant 1} a_n(oldsymbol{\xi}_lpha) \cdot q^n \in \mathscr{O}_{oldsymbol{\xi}}$

specialising to $f = f_2$ and $\xi_{\alpha} = \xi_{\alpha,1}$ in weights two and one respectively. Here $\mathscr{O}_{\mathbf{f}}$ is the ring of bounded analytic functions on a (small) connected open disc $U_{\mathbf{f}}$ centred at 2 in the weight space $\mathcal{W} = \operatorname{Hom}_{\operatorname{cont}}(\mathbf{Z}_p^*, \mathbf{C}_p^*)$ over \mathbf{Q}_p . For each k in $U_{\mathbf{f}} \cap \mathbf{Z}_{\geq 4}$, the weight-k specialisation \mathbf{f}_k of \mathbf{f} is the ordinary p-stabilisation of a p-ordinary newform f_k of weight k and level $\Gamma_0(N_f/p)$. Similarly $\mathscr{O}_{\boldsymbol{\xi}_{\alpha}}$ is the ring of bounded analytic functions on a connected open disc $U_{\boldsymbol{\xi}_{\alpha}}$ centred at 1 in $\mathcal{W}_L = \mathcal{W} \otimes_{\mathbf{Q}_p} L$, and $\boldsymbol{\xi}_{\alpha,u}$ is the p-stabilisation of a newform ξ_u of weight u and level $\Gamma_1(N_{\boldsymbol{\xi}})$ for each l in $U_{\boldsymbol{\xi}_{\alpha}} \cap \mathbf{Z}_{\geq 1}$, with $\xi_1 = \boldsymbol{\xi}$. In order to lighten the notation, we write $U_{\boldsymbol{\xi}} = U_{\boldsymbol{\xi}_{\alpha}}$ and $\mathscr{O}_{\boldsymbol{\xi}} = \mathscr{O}_{\boldsymbol{\xi}_{\alpha}}$.

Set $\varrho = \varrho_g \otimes \varrho_h$ and $\mathscr{O}_{fgh} = \mathscr{O}_f \hat{\otimes}_{\mathbf{Q}_p} \mathscr{O}_g \hat{\otimes}_L \mathscr{O}_h$. Under Assumption 1.1, Theorem A of [Hsi21] associates with (f, g_α, h_α) a Garrett–Hida square root *p*-adic *L*-function

$$\mathscr{L}_p^{lphalpha}(A,arrho)=\mathscr{L}_p(oldsymbol{f},oldsymbol{g}_lpha,oldsymbol{h}_lpha)\in\mathscr{O}_{oldsymbol{f}oldsymbol{g}oldsymbol{h}}$$

(denoted \mathcal{L}_{F}^{f} in loc. cit., where $F = (f, g_{\alpha}, h_{\alpha})$), whose square

$$L_p^{lphalpha}(A,arrho)=L_p(oldsymbol{f},oldsymbol{g}_lpha,oldsymbol{h}_lpha)=\mathscr{L}_p(oldsymbol{f},oldsymbol{g}_lpha,oldsymbol{h}_lpha)^2$$

interpolates the central critical values $L(f_k \otimes g_l \otimes h_m, (k+l+m-2)/2)$ of the Garrett *L*-functions attached to (f_k, g_l, h_m) for classical triples (k, l, m) in the *f*-unbalanced region, viz. triples (k, l, m) in $U_f \times U_g \times U_h \cap \mathbb{Z}^3_{\geq 1}$ satisfying $k \geq l+m$. The first equality in (1) implies that $L_p^{\alpha\alpha}(A, \varrho)$ has an exceptional zero in the sense of [MTT86] at the "Birch and Swinnerton-Dyer point" $w_o = (2, 1, 1)$ (cf. [BSV21d, Section 1.2]).

Fix a number field $\mathbf{Q}(\varrho)$ containing the values of ν_g and ν_h , and for $\xi = g, h$ fix a $\mathbf{Q}(\varrho)[G_{\mathbf{Q}}]$ -module V_{ξ} , two-dimensional over $\mathbf{Q}(\varrho)$, affording the Artin representation ϱ_{ξ} . Define $A(K_{\varrho})^{\varrho} = H^0(\operatorname{Gal}(K_{\varrho}/\mathbf{Q}), A(K_{\varrho}) \otimes_{\mathbf{Z}} V_{gh})$, where $V_{gh} = V_g \otimes_{\mathbf{Q}(\varrho)} V_h$ and K_{ϱ} is the number field cut-out by $\varrho = \varrho_g \otimes \varrho_h$. Following [MTT86] one exploits Tate's *p*-adic uniformisation to define an extended Mordell–Weil group

$$A^{\dagger}(K_{\varrho})^{\varrho} = A(K_{\varrho})^{\varrho} \oplus \mathcal{Q}_{p}(A, \varrho),$$

where $\mathcal{Q}_p(A, \varrho)$ is a two-dimensional $\mathbf{Q}(\varrho)$ -vector space depending only on the base change of A to \mathbf{Q}_p and on the restriction of V_{gh} to $G_{\mathbf{Q}_p}$ (cf. Section 2.1.3 below). Moreover, Section 2 of [BSV21c] constructs a Garrett-Nekovář height-pairing

$$\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}:A^{\dagger}(K_{\varrho})^{\varrho}\otimes_{\mathbf{Q}(\varrho)}A^{\dagger}(K_{\varrho})^{\varrho}\longrightarrow\mathscr{I}/\mathscr{I}^{2},$$

where \mathscr{I} is the kernel of evaluation at w_o on \mathscr{O}_{fgh} . It is a skew-symmetric bilinear form, arising from an application of Nekovář's theory of Selmer complexes to the big self-dual Galois representation associated with $(f, g_{\alpha}, h_{\alpha})$. After setting $r^{\dagger} = \dim_{\mathbf{Q}(\varrho)} A(K_{\varrho})^{\varrho}$, Conjecture 1.1 of [**BSV21c**] predicts that $L_{p}^{\alpha\alpha}(A, \varrho)$ belongs to $\mathscr{I}^{r^{\dagger}} - \mathscr{I}^{r^{\dagger}+1}$, and that its image in $(\mathscr{I}^{r^{\dagger}}/\mathscr{I}^{r^{\dagger}+1})/\mathbf{Q}(\varrho)^{*2}$ is equal to the discriminant

$$R_p^{\alpha\alpha}(A,\varrho) = \det\left(\left\langle\!\left\langle P_i, P_j\right\rangle\!\right\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}\right)_{1\leqslant i,j\leqslant r}$$

of the *p*-adic height $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fg_{\alpha}h_{\alpha}}$, where $P_1, \ldots, P_{r^{\dagger}}$ is any $\mathbf{Q}(\varrho)$ -basis of $A^{\dagger}(K_{\varrho})^{\varrho}$. The following theorem is the main result of this note.

Theorem. — Assume that Assumption 1.1 and Assumption 1.2 (stated below) are satisfied. If $L(f \otimes g \otimes h, s)$ has order of vanishing 2 at s = 1, then

$$\dim_{\mathbf{Q}(\varrho)} A^{\dagger}(K_{\varrho})^{\varrho} = 4, \quad L_{p}^{\alpha\alpha}(A, \varrho) \in \mathscr{I}^{4} - \mathscr{I}^{5}$$

and the equality

$$L_n^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^5} = R_n^{\alpha\alpha}(A,\varrho)$$

 $L_p^{\mathrm{acc}}(A,\varrho) \pmod{\mathscr{I}^5} = R_p^{\mathrm{acc}}(A,\varrho)$ holds in the quotient of $\mathscr{I}^4/\mathscr{I}^5$ by the multiplicative action of $\mathbf{Q}(\varrho)^{*2}$.

In the present setting, the Garrett L-function $L(f \otimes g \otimes h, s)$ factors as the product of the Rankin–Selberg L-functions $L(A/K, \varphi, s)$ and $L(A/K, \psi, s)$, where $\varphi = \nu_g \cdot \nu_h$ and $\psi = \nu_g \cdot \nu_h^c$, and ν_h^c is the conjugate of ν_h by the nontrivial element of $\operatorname{Gal}(K/\mathbf{Q})$. Note that φ and ψ are *dihedral* by Assumption 1.1.(2), and that both $L(A/K, \varphi, s)$ and $L(A/K, \psi, s)$ have sign -1 in their functional equation by Assumption 1.1.(1). In particular the assumptions of the Theorem imply that $L(A/K, \chi, s)$ has a simple zero at s = 1 for $\chi = \varphi$ and $\chi = \psi$, hence $A(K_{\varrho})^{\varrho}$ is two-dimensional over $\mathbf{Q}(\varrho)$ and generated by Heegner points by the Kolyvagin–Gross–Zagier–Zhang theorem.

If $\chi = \varphi, \psi$ is quadratic, $\bar{\mathbf{Q}}^{\ker(\chi)} = \mathbf{Q}(\sqrt{cd_1}, \sqrt{cd_2})$, where c, d_1 and d_2 are fundamental discriminants such that $d_K = d_1 \cdot d_2$. (We consider 1 as a fundamental discriminant). In this case $L(A/K, \chi, s)$ further factors as the product of the Hasse-Weil L-functions $L(A/\mathbf{Q}, \chi_1, s)$ and $L(A/\mathbf{Q}, \chi_2, s)$ of the twists of A by the quadratic characters χ_i of $\mathbf{Q}(\sqrt{cd_i})$. By Assumptions 1.1.(1) and 1.1.(4), we can order χ_1 and χ_2 in such a way that $\operatorname{sign}(A, \chi_1) = -1$ and $\operatorname{sign}(A, \chi_2) = +1$, where $\operatorname{sign}(A, \chi_i)$ is the sign in the functional equation satisfied by $L(A/\mathbf{Q}, \chi_i, s)$.

Assumption 1.2. — If $\chi = \varphi$ or $\chi = \psi$ is quadratic, then $\chi_1(p) = \alpha_f$.

Under the assumptions of the Theorem, the results of [BSV21d, BSV21a] imply that $L_p^{\alpha\alpha}(A,\varrho)$ belongs to $\mathscr{I}^4 - \mathscr{I}^5$. The actual contribution of this note is the proof of the identity $L_p^{\alpha\alpha}(A, \varrho) \pmod{\mathscr{I}^5} = R_p^{\alpha\alpha}(A, \varrho)$, which grounds on the results of loc. cit. and an extension of the techniques of [Ven13, Ven16a, Ven16b].

2. Proof of the main result

2.1. Preliminaries. –

2.1.1. Galois representations. — To lighten the notation, set $(\boldsymbol{g}, \boldsymbol{h}) = (\boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})$. For $\boldsymbol{\xi} = \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$ let $V(\boldsymbol{\xi})$ be the big Galois representation attached to $\boldsymbol{\xi}$ (cf. Section 5 of [BSV21d]). Under the current assumptions, it is a free $\mathscr{O}_{\boldsymbol{\xi}}$ -module of rank two, equipped with a continuous $\mathscr{O}_{\boldsymbol{\xi}}$ -linear action of $G_{\mathbf{Q}}$. For each u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 2}$, evaluation at u on $U_{\boldsymbol{\xi}}$ induces a natural specialisation isomorphism

$$\rho_u: V(\boldsymbol{\xi}) \otimes_u E \simeq V(\boldsymbol{\xi}_u),$$

where $E = \mathbf{Q}_p$ if $\boldsymbol{\xi} = \boldsymbol{f}$ and E = L if $\boldsymbol{\xi} = \boldsymbol{g}, \boldsymbol{h}$, where $\cdot \otimes_u E$ denotes the base change along evaluation at u on $\mathscr{O}_{\boldsymbol{\xi}}$, and where $V(\boldsymbol{\xi}_u)$ is the homological p-adic Deligne representation of $\boldsymbol{\xi}_u$ with coefficients in E (cf. Section 2.4 of [BSV21d]).

When $\boldsymbol{\xi} = \boldsymbol{f}$ and u = 2, the representation $V(f) = V(\boldsymbol{f}_2)$ is equal to the *f*-isotypic component of the cohomology group $H^1_{\text{ét}}(X_1(N_f)_{\bar{\mathbf{Q}}}, \mathbf{Q}_p(1))$, where $X_1(N_f)_{\bar{\mathbf{Q}}}$ is the base change to $\bar{\mathbf{Q}}$ of the compact modular curve $X_1(N_f)$ of level $\Gamma_1(N_f)$ defined over \mathbf{Q} . Fix a modular parametrisation (viz. a non-constant morphism of \mathbf{Q} -curves)

$$p_{\infty}: X_1(N_f) \longrightarrow A,$$

which induces an isomorphism of $\mathbf{Q}_p[G_{\mathbf{Q}}]$ -modules between V(f) and the *p*-adic Tate module $V_p(A) = H^1_{\text{ét}}(A_{\bar{\mathbf{Q}}}, \mathbf{Q}_p(1))$ of A with \mathbf{Q}_p -coefficients.

When $\boldsymbol{\xi} = \boldsymbol{g}, \boldsymbol{h}$ and u = 1, the $L[G_{\mathbf{Q}}]$ -module

$$V(\xi) = V(\xi) \otimes_1 L$$

affords the dual of the Deligne–Serre representation of ξ , id est the induced from G_K to $G_{\mathbf{Q}}$ of the character ν_{ξ} with coefficients in L. (Recall that $\boldsymbol{\xi}_1 = \xi_{\alpha}$. Here we favour the lighter notation $V(\xi)$ for $V(\boldsymbol{\xi}) \otimes_1 L$ over the more consistent one $V(\xi_{\alpha})$.)

There exists a perfect $G_{\mathbf{Q}}$ -equivariant and skew-symmetric pairing

$$\pi_{\boldsymbol{\xi}}: V(\boldsymbol{\xi}) \otimes_{\mathscr{O}_{\boldsymbol{\xi}}} V(\boldsymbol{\xi}) \longrightarrow \mathscr{O}_{\boldsymbol{\xi}}(\chi_{\boldsymbol{\xi}} \cdot \chi_{\mathrm{cyc}}^{\boldsymbol{u}-1}),$$

where $\chi_{\text{cyc}}: G_{\mathbf{Q}} \longrightarrow \mathbf{Z}_{p}^{*}$ is the *p*-adic cyclotomic character and $\chi_{\text{cyc}}^{u-1}: G_{\mathbf{Q}} \longrightarrow \mathscr{O}_{\boldsymbol{\xi}}^{*}$ satisfies $\chi_{\text{cyc}}^{u-1}(\sigma)(u) = \chi_{\text{cyc}}(\sigma)^{u-1}$ for each σ in $G_{\mathbf{Q}}$ and each u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}$. (With the notations of [**BSV21d**, Section 5], the pairing $\pi_{\boldsymbol{\xi}}$ is the composition of the twist by $\chi_{\boldsymbol{\xi}} \cdot \chi_{\text{cyc}}^{u-1}$ of the $\mathscr{O}_{\boldsymbol{\xi}}$ -adic Poincaré duality $\langle \cdot, \cdot \rangle_{\boldsymbol{f}}: V(\boldsymbol{\xi}) \otimes_{\mathscr{O}_{\boldsymbol{\xi}}} V^{*}(\boldsymbol{\xi}) \longrightarrow \mathscr{O}_{\boldsymbol{\xi}}$ defined in [**BSV21d**, Equation (103)] with $\mathrm{id}_{V(\boldsymbol{\xi})} \otimes w_{N_{\boldsymbol{\xi}}p}^{-1}$, where $w_{N_{\boldsymbol{\xi}}p}: V^{*}(\boldsymbol{\xi})(\chi_{\boldsymbol{\xi}} \cdot \chi_{\mathrm{cyc}}^{u-1}) \simeq V(\boldsymbol{\xi})$ is the $\mathscr{O}_{\boldsymbol{\xi}}$ -adic Atkin–Lehner isomorphism defined in [**BSV21d**, Equation (114)].) Up to sign, the pairing $\pi_{f}: V(f) \otimes_{\mathbf{Q}_{p}} V(f) \longrightarrow \mathbf{Q}_{p}(1)$ arising from the base change of π_{f} along evaluation at k = 2 on \mathscr{O}_{f} and the specialisation isomorphism ρ_{2} is the one induced on the f-isotypic components by the Poincaré duality on $H_{\mathrm{\acute{e}t}}^{1}(X_{1}(N_{f})\bar{\mathbf{Q}},\mathbf{Q}_{p}(1))$. If $\boldsymbol{\xi} = \boldsymbol{g}, \boldsymbol{h}$, the weight-one specialisation of $\pi_{\boldsymbol{\xi}}$ yields a perfect skew-symmetric duality

$$\pi_{\xi}: V(\xi) \otimes_L V(\xi) \longrightarrow L(\chi_{\xi}).$$

Identify $G_{\mathbf{Q}_p}$ with a subgroup of $G_{\mathbf{Q}}$ via the embedding $i_p : \mathbf{Q} \longrightarrow \mathbf{Q}_p$ fixed at the outset, and let $\check{a}_p(\boldsymbol{\xi}) : G_{\mathbf{Q}_p} \longrightarrow \mathscr{O}_{\boldsymbol{\xi}}^*$ be the unramified character sending an arithmetic Frobenius to the *p*-th Fourier coefficient $a_p(\boldsymbol{\xi})$ of $\boldsymbol{\xi}$. In the present setting there is a

4

natural short exact sequence of $\mathscr{O}_{\boldsymbol{\xi}}[G_{\mathbf{Q}_p}]$ -modules $V(\boldsymbol{\xi})^+ \longrightarrow V(\boldsymbol{\xi}) \longrightarrow V(\boldsymbol{\xi})^-$, where $V(\boldsymbol{\xi})^+$ and $V(\boldsymbol{\xi})^-$ are free $\mathscr{O}_{\boldsymbol{\xi}}$ -modules of rank one and $G_{\mathbf{Q}_p}$ acts on them via the characters $\chi_{\boldsymbol{\xi}} \cdot \chi_{\text{cyc}}^{\boldsymbol{u}-1} \cdot \check{a}_p(\boldsymbol{\xi})^{-1}$ and $\check{a}_p(\boldsymbol{\xi})$ respectively (cf. Section 5 of [**BSV21d**]). If $\boldsymbol{\xi} = \boldsymbol{f}$, the specialisation isomorphism $\rho_2 : V(\boldsymbol{f}) \otimes_2 \mathbf{Q}_p \simeq V(f)$ identifies $V(\boldsymbol{f})^- \otimes_2 \mathbf{Q}_p$ with the maximal *p*-unramified quotient of V(f) and $V(\boldsymbol{\xi})^+ \otimes_2 \mathbf{Q}_p$ with the kernel $V(f)^+$ of the projection $V(f) \longrightarrow V(f)^-$. If $\boldsymbol{\xi} = \boldsymbol{g}, \boldsymbol{h}$ define

$$V(\xi)_{\alpha} = V(\xi)^{-} \otimes_{1} L$$
 and $V(\xi)_{\beta} = V(\xi)^{+} \otimes_{1} L$,

so that $V(\xi)_{\gamma}$ (for $\gamma = \alpha, \beta$) is the submodule of $V(\xi)$ on which an arithmetic Frobenius in $G_{\mathbf{Q}_p}$ acts as multiplication by γ_{ξ} , and (as $L[G_{\mathbf{Q}_p}]$ -modules)

$$V(\xi) = V(\xi)_{\alpha} \oplus V(\xi)_{\beta}.$$

Define

$$V = V(f, g, h) = V(f) \hat{\otimes}_{\mathbf{Q}_p} V(g) \hat{\otimes}_L V(h)(\Xi_{fgh}),$$

where $\Xi_{fgh} = \chi_{cyc}^{(4-k-l-m)/2} : G_{\mathbf{Q}} \longrightarrow \mathscr{O}_{fgh}^*$ satisfies $\Xi_{fgh}(\sigma)(w) = \chi_{cyc}(\sigma)^{\frac{4-k-l-m}{2}}$ for each σ in $G_{\mathbf{Q}}$ and each w = (k, l, m) in $U_{\mathbf{f}} \times U_{\mathbf{g}} \times U_{\mathbf{h}} \cap \mathbf{Z}^3$, and

$$V = V(f, g, h) = V(f) \otimes_{\mathbf{Q}_p} V(g) \otimes_L V(h)$$

Evaluation at $w_o = (2, 1, 1)$ on \mathcal{O}_{fgh} induces a specialisation isomorphism

$$\rho_{w_o}: \boldsymbol{V} \otimes_{w_o} L \simeq V.$$

The product of the pairing $\pi_{\boldsymbol{\xi}}$ for $\boldsymbol{\xi} = \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$ yields a perfect, $G_{\mathbf{Q}}$ -equivariant and skew-symmetric duality (cf. Assumption 1.1.(2))

$$\pi_{fgh}: V \otimes_{\mathscr{O}_{fgh}} V \longrightarrow \mathscr{O}_{fgh}(1),$$

whose base change along evaluation at w_o on \mathcal{O}_{fgh} recasts (via ρ_{w_o}) the perfect duality

$$\pi_{fgh}: V \otimes_L V \longrightarrow L(1)$$

defined by the product of the perfect pairings π_{ξ} for $\xi = f, g, h$.

For $\boldsymbol{\xi} = \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$ let $\mathscr{F}^{\bullet}V(\boldsymbol{\xi})$ be the decreasing filtration on the $\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}[G_{\mathbf{Q}_p}]$ -module $V(\boldsymbol{\xi})$ defined by $\mathscr{F}^1V(\boldsymbol{\xi}) = V(\boldsymbol{\xi})^+$, $\mathscr{F}^iV(\boldsymbol{\xi}) = V(\boldsymbol{\xi})$ for each $i \leq 0$ and $\mathscr{F}^iV(\boldsymbol{\xi}) = 0$ for each $i \geq 2$. Define the *balanced* submodule $\mathscr{F}^2\boldsymbol{V}$ of \boldsymbol{V} by

$$\mathscr{F}^{2}\boldsymbol{V} = \left[\sum_{a+b+c=2} \mathscr{F}^{a}V(\boldsymbol{f})\hat{\otimes}_{\boldsymbol{Q}_{p}}\mathscr{F}^{b}V(\boldsymbol{g})\hat{\otimes}_{L}\mathscr{F}^{c}V(\boldsymbol{h})\right]\otimes_{\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}}\Xi_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}},$$

and the *f*-unbalanced submodule V^+ of V by

$$\boldsymbol{V}^{+} = V(\boldsymbol{f})^{+} \hat{\otimes}_{\mathbf{Q}_{p}} V(\boldsymbol{g}) \hat{\otimes}_{L} V(\boldsymbol{h}) \otimes_{\mathscr{O}_{\boldsymbol{fgh}}} \Xi_{\boldsymbol{fgh}}.$$

These are $G_{\mathbf{Q}_p}$ -invariant free \mathscr{O}_{fgh} -submodules of V of rank $4 = \frac{1}{2} \operatorname{rank}_{\mathscr{O}_{fgh}} V$, which are maximal isotropic with respect to the skew-symmetric duality π_{fgh} . After setting

$$V^- = V/V^+$$
 and $V_f = V(f)^- \hat{\otimes}_{\mathbf{Q}_p} V(g)^+ \hat{\otimes}_L V(h)^+ \otimes_{\mathscr{O}_{fgh}} \Xi_{fgh}$

one has a commutative diagram of $\mathcal{O}_{fgh}[G_{\mathbf{Q}_n}]$ -modules

(2)
$$\mathscr{F}^{2}V \xrightarrow{i_{\mathscr{F}}} V \\ \downarrow_{p_{f}} \\ \downarrow_{p_{f}}$$

with $i_{\mathscr{F}}$ and i_f the natural inclusions and p^- the natural projection. Note that $p^- \circ i_{\mathscr{F}}$ and i_f have the same image, hence the morphism p_f is defined by the commutativity of the diagram. One defines the *balanced local subspace* $H^1_{\text{bal}}(\mathbf{Q}_p, \mathbf{V})$ of $H^1(\mathbf{Q}_p, \mathbf{V})$ to be the image of the morphism induced in cohomology by $i_{\mathscr{F}}$. This morphism is injective (cf. Section 7.2 of [**BSV21d**]), hence gives a natural identification

(3)
$$H^1_{\text{bal}}(\mathbf{Q}_p, \mathbf{V}) = H^1(\mathbf{Q}_p, \mathscr{F}^2 \mathbf{V})$$

Set $V^{\pm} = V(f)^{\pm} \otimes_{\mathbf{Q}_p} V(g) \otimes_L V(h)$. For each pair (i, j) of elements of $\{\alpha, \beta\}$ define $V_{ij}^{\cdot} = V(f)^{\cdot} \otimes_{\mathbf{Q}_p} V(g)_i \otimes_L V(h)_j$, where \cdot is one of symbols \emptyset , + and -. Then

$$V^{\cdot} = V^{\cdot}_{lpha lpha} \oplus V^{\cdot}_{lpha eta} \oplus V^{\cdot}_{eta lpha} \oplus V^{\cdot}_{eta eta}$$

as $L[G_{\mathbf{Q}_p}]$ -modules, and Equation (1) implies

(4)
$$H^0(\mathbf{Q}_p, V^-) = V^-_{\alpha\alpha} \oplus V^-_{\beta\beta}$$
 and $H^0(\mathbf{Q}_p, V^+(-1)) = V^+_{\alpha\alpha}(-1) \oplus V^+_{\beta\beta}(-1).$

The specialisation isomorphism ρ_{w_o} identifies $V^{\pm} \otimes_{w_o} L$, $\mathscr{F}^2 V \otimes_{w_o} L$ and $V_f \otimes_{w_o} L$ with V^{\pm} , $\mathscr{F}^2 V = V_{\beta\beta} + V^+_{\alpha\beta} + V^+_{\beta\alpha}$ and $V^-_{\beta\beta}$ respectively. In particular the base change of the commutative diagram (2) along evaluation at w_o on \mathscr{O}_{fgh} is equal to

(5)
$$\begin{array}{ccc} \mathscr{F}^2 V & \stackrel{i_{\mathscr{F}}}{\longrightarrow} V \\ p_f & & & \downarrow p \\ V_{\beta\beta}^- & \stackrel{i_f}{\longrightarrow} V^- \end{array}$$

with $i_{\mathscr{F}}$ and i_f the natural inclusions and p^- the natural projection.

The Bloch–Kato finite subspace of $H^1(\mathbf{Q}_p, V)$ is equal to the kernel of the map $p^-: H^1(\mathbf{Q}_p, V) \longrightarrow H^1(\mathbf{Q}_p, V^-)$, cf. Section 9.1 of [**BSV21d**]. (With a slight abuse of notation, we denote by the same symbol a morphism of $G_{\mathbf{Q}_p}$ -modules and the maps it induces in cohomology.) By construction (cf. Equation (2) and (5)), the specialisation $\kappa = \rho_{w_o}(\kappa)$ in $H^1(\mathbf{Q}_p, V)$ at w_o of a local balanced class κ in $H^1_{\text{bal}}(\mathbf{Q}_p, \mathbf{V})$ belongs to the kernel of the map $H^1(\mathbf{Q}_p, V) \longrightarrow H^1(\mathbf{Q}_p, V_{ij}^-)$ for $ij = \alpha \alpha, \alpha \beta, \beta \alpha$. Then κ is crystalline precisely if it belongs to the kernel of $H^1(\mathbf{Q}_p, V) \longrightarrow H^1(\mathbf{Q}_p, V_{\beta\beta})$, id est if $p_f(\kappa)$ in $H^1(\mathbf{Q}_p, \mathbf{V}_f)$ (cf. Equation (3)) belongs to the kernel of the specialisation map $\rho_{w_o}: H^1(\mathbf{Q}_p, \mathbf{V}_f) \longrightarrow H^1(\mathbf{Q}_p, V_{\beta\beta}^-)$. Since the ideal \mathscr{I} of \mathscr{O}_{fgh} is generated by a regular sequence and $H^2(\mathbf{Q}_p, V_{\beta\beta}^-) = 0$, the specialisation map ρ_{w_o} induces an isomorphism $H^1(\mathbf{Q}_p, \mathbf{V}_f) \otimes_{w_o} L \simeq H^1(\mathbf{Q}_p, V_{\beta\beta}^-)$. We have proved the following

Lemma 2.1. — Let $\boldsymbol{\kappa}$ be a local balanced class in $H^1_{\text{bal}}(\mathbf{Q}_p, \boldsymbol{V})$ and set $\boldsymbol{\kappa} = \rho_{w_o}(\boldsymbol{\kappa})$ in $H^1(\mathbf{Q}_p, \boldsymbol{V})$. Then $\boldsymbol{\kappa}$ is crystalline if and only if $p_f(\boldsymbol{\kappa})$ belongs to $\mathscr{I} \cdot H^1(\mathbf{Q}_p, \boldsymbol{V}_f)$. **2.1.2.** *p*-adic periods. — Let $\hat{\mathbf{Q}}_p^{\text{nr}}$ be the *p*-adic completion of the maximal unramified extension of \mathbf{Q}_p , let $c = c(\chi_g)$ be the conductor of χ_g , and for $\xi = g, h$ define

$$G(\chi_{\xi}) = (-c)^{i_{\xi}} \cdot \sum_{a \in (\mathbf{Z}/c\mathbf{Z})^*} \chi_{\xi}(a)^{-1} \otimes e^{2\pi i a/c} \in D_{\mathrm{cris}}(\chi_{\xi}),$$

where $i_g = 0$, $i_h = -1$ and $D_{cris}(\chi_{\xi})$ is a shorthand for $H^0(\mathbf{Q}_p, L(\chi_{\xi}) \otimes_{\mathbf{Q}_p} \hat{\mathbf{Q}}_p^{nr})$.

As explained in Section 3.1 of [**BSV21c**], for $\boldsymbol{\xi} = \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$ the module $D(\boldsymbol{\xi})^-$ of $G_{\mathbf{Q}_p}$ -invariants of $V(\boldsymbol{\xi})^- \otimes_{\mathbf{Q}_p} \hat{\mathbf{Q}}_p^{\mathrm{nr}}$ is free of rank one over $\mathscr{O}_{\boldsymbol{\xi}}$, and its base change $D(\boldsymbol{\xi})_u^- = D(\boldsymbol{\xi})^- \otimes_u L$ along evaluation at a classical weight u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 2}$ on $\mathscr{O}_{\boldsymbol{\xi}}$ is canonically isomorphic to the $\boldsymbol{\xi}_u$ -isotypic component $L \cdot \boldsymbol{\xi}_u$ of $S_u(pN_{\boldsymbol{\xi}}, \chi_{\boldsymbol{\xi}})_L$. Moreover there exists an $\mathscr{O}_{\boldsymbol{\xi}}$ -basis

$$\omega_{\boldsymbol{\xi}} \in D(\boldsymbol{\xi})^{-}$$

whose image $\omega_{\boldsymbol{\xi}_u}$ in $D(\boldsymbol{\xi})_u^-$ corresponds to $\boldsymbol{\xi}_u$ under the aforementioned isomorphism for each u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 2}$. (We refer to loc. cit. and the references therein for the details.) The weight-two specialisation of ω_f equals the de Rham class

$$\omega_f \in D_{\mathrm{cris}}(V(f)^-) \simeq \mathrm{Fil}^0 D_{\mathrm{dR}}(V(f))$$

associated with f under the Faltings–Tsuji comparison isomorphism between the étale and de Rham cohomology of $X_1(N_f)_{\mathbf{Q}_p}$. (The isomorphism in the previous equation arises from the projection $V(f) \longrightarrow V(f)^-$.) Denote by

$$\langle \cdot, \cdot \rangle_f : D_{\mathrm{dR}}(V(f)) \otimes_L D_{\mathrm{dR}}(V(f)) \longrightarrow L$$

the perfect duality induced by π_f , and define η_f in $D_{dR}(V(f))/\text{Fil}^0$ by the identity

$$\langle \eta_f, \omega_f \rangle_f = 1$$

For $\boldsymbol{\xi} = \boldsymbol{g}, \boldsymbol{h}$, the weight-one specialisation of $\omega_{\boldsymbol{\xi}}$ yields a class

$$\omega_{\xi_{\alpha}} \in D_{\mathrm{cris}}(V(\xi)_{\alpha}) = D_{\mathrm{cris}}(V(\xi))^{\varphi = \alpha_{\xi}^{-1}}$$

(with φ the crystalline Frobenius). The pairing $\pi_{\xi} = \pi_{\xi} \otimes_1 L$ induces a perfect duality

$$\langle \cdot, \cdot \rangle_{\xi} : D_{\operatorname{cris}}(V(\xi)) \otimes_L D_{\operatorname{cris}}(V(\xi)) \longrightarrow D_{\operatorname{cris}}(\chi_{\xi})$$

and one defines $\eta_{\xi_{\alpha}}$ in $D_{cris}(V(\xi)_{\beta}) = D_{cris}(V(\xi))^{\varphi = \beta_{\xi}^{-1}}$ by the identity

$$\langle \eta_{\xi_{\alpha}}, \omega_{\xi_{\alpha}} \rangle_{\xi} = G(\chi_{\xi}),$$

Along with ω_f , it is important to consider another *p*-adic period

$$q(f) \in D_{\operatorname{cris}}(V(f)^{-}) = \operatorname{Fil}^0 D_{\operatorname{dR}}(V(f))$$

arising from the Tate uniformisation of $A_{\mathbf{Q}_p}$, cf. Section 2 of [**BSV21b**]. Let K_p be the completion of K at p (namely the quadratic unramified extension of \mathbf{Q}_p). Tate's theory gives a rigid analytic uniformisation $\wp_{\text{Tate}} : \mathbf{G}_{m,K_p}^{\text{rig}} \longrightarrow A_{K_p}$, unique up to sign, with kernel the lattice generated by the Tate period q_A in $p\mathbf{Z}_p$ of $A_{\mathbf{Q}_p}$. One sets

(6)
$$q(A) = p^{-} \left(\wp_{\text{Tate}} \left({}^{p} \sqrt[\infty]{q_A} \right) \right) \in V_p(A)^{-} \text{ and } q(f) = \sqrt{m_p} \cdot \wp_{\infty}^{-1}(q(A)),$$

where ${}^{p}\sqrt[\infty]{q_A}$ is any compatible system of p^n -th roots of q_A , $\wp_{\infty} : V(f)^- \simeq V_p(A)^$ is the isomorphism arising from the fixed modular parametrisation \wp_{∞} , $m_p = 1$ if $\alpha_f = 1$ and $m_p = d_K$ if $\alpha_f = -1$. As in loc. cit., define the generators

$$q_{\alpha\alpha} = q(f) \otimes \omega_{g_{\alpha}} \otimes \omega_{h_{\alpha}}$$
 and $q_{\beta\beta} = q(f) \otimes \eta_{g_{\alpha}} \otimes \eta_{h_{\alpha}}$

of the subspaces $V_{\alpha\alpha}^-$ and $V_{\beta\beta}^-$ respectively of $H^0(\mathbf{Q}_p, V^-) = D_{\mathrm{cris}}(V^-)^{\varphi=1}$.

2.1.3. The Garrett–Nekovář p-adic height pairing. — Section 2 of [BSV21c] constructs a canonical skew-symmetric p-adic height pairing

$$\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fgh} : \tilde{H}^1_f(\mathbf{Q}, V) \otimes_L \tilde{H}^1_f(\mathbf{Q}, V) \longrightarrow \mathscr{I}/\mathscr{I}^2$$

on the extended Selmer group $\tilde{H}_{f}^{1}(\mathbf{Q}, V)$ associated with the Greenberg local condition at p arising from the inclusion $i^{+}: V^{+} \longrightarrow V$. Let $\operatorname{Sel}(\mathbf{Q}, V)$ denote the Bloch–Kato Selmer group of V, which is equal to the kernel of $H^{1}(\mathbf{Q}, V) \longrightarrow H^{1}(\mathbf{Q}_{p}, V^{-})$ in the present setting (cf. [BSV21d, Section 9.1]). One has a commutative exact diagram

and there exists a unique section i_{ur} : Sel $(\mathbf{Q}, V) \longrightarrow \tilde{H}^1_f(\mathbf{Q}, V)$ of π such that the composition $i_{ur}(\cdot)^+$ takes values in the finite subspace $H^1_{fin}(\mathbf{Q}_p, V^+)$ of $H^1(\mathbf{Q}_p, V^+)$ (cf. Section 2.3 of [**BSV21c**]). As in loc. cit. we use the maps j and i_{ur} to identify Nekovář's extended Selmer group $\tilde{H}^1_f(\mathbf{Q}, V)$ with the *naive* extended Selmer group

$$\operatorname{Sel}^{\dagger}(\mathbf{Q}, V) = H^{0}(\mathbf{Q}_{p}, V^{-}) \oplus \operatorname{Sel}(\mathbf{Q}, V).$$

Enlarging L if necessary, for $\xi = g, h$ fix an isomorphism of $L[G_{\mathbf{Q}}]$ -modules

(8)
$$\gamma_{\xi} : V_{\xi} \otimes_{\mathbf{Q}(\varrho)} L \simeq V(\xi)$$
 such that $\pi_{\xi}(\gamma_{\xi}(x) \otimes \gamma_{\xi}(y)) \in \mathbf{Q}(\varrho)(\chi_{\xi})$

for each x and y in V_{ξ} (cf. Equation (4) of [BSV21c]). Set (cf. Equation (6))

(9)
$$\mathcal{Q}_p(A,\varrho) = H^0(\mathbf{Q}_p, \mathbf{Q}(\varrho) \cdot q(A) \otimes_{\mathbf{Q}(\varrho)} V_{gh})$$

The modular parametrisation $\wp_{\infty} : X_1(N_f) \longrightarrow A$ fixed in Section 2.1.1, the global Kummer map on $A(K_{\varrho}) \hat{\otimes} \mathbf{Q}_p$ and the isomorphisms γ_g and γ_h induce an embedding

(10)
$$\gamma_{gh} : A^{\dagger}(K_{\varrho})^{\varrho} \longrightarrow \operatorname{Sel}^{\dagger}(\mathbf{Q}, V) = \tilde{H}_{f}^{1}(\mathbf{Q}, V)$$

and one defines the Garrett–Nekovář p-adic pairing (cf. Section 1)

$$\langle\!\langle \cdot, \cdot \rangle\!\rangle_{\boldsymbol{fgh}} : A^{\dagger}(K_{\varrho})^{\varrho} \otimes_{\mathbf{Q}(\varrho)} A^{\dagger}(K_{\varrho})^{\varrho} \longrightarrow \mathscr{I}/\mathscr{I}^{2}$$

to be the restriction of the canonical height $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fgh}$ on $\tilde{H}_{f}^{1}(\mathbf{Q}, V)$ along γ_{gh} . Note that the discriminant $R_{p}^{\alpha\alpha}(A, \varrho)$ of $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fgh}$ on $A^{\dagger}(K_{\varrho})^{\varrho}$ (cf. Section 1) is independent of the choice of the modular parametrisation \wp_{∞} and the isomorphisms γ_{g} and γ_{h} .

2.1.4. Logarithms. — Let $V_{dR} = D_{dR}(V)$ be the de Rham module of V = V(f, g, h). The duality $\pi_{fgh} : V \otimes_L V \longrightarrow L(1)$ induces a perfect pairing

$$\langle \cdot, \cdot \rangle_{fgh} : V_{\mathrm{dR}} \otimes_L V_{\mathrm{dR}} \longrightarrow L.$$

After identifying V_{dR} with $D_{dR}(V(f)) \otimes_{\mathbf{Q}_p} D_{cris}(V(g)) \otimes_L D_{cris}(V(h))$ and L with $D_{cris}(\chi_g) \otimes_L D_{cris}(\chi_h)$ under the natural isomorphisms (cf. Assumption 1.1.(2)), the pairing $\langle \cdot, \cdot \rangle_{fgh}$ agrees with the product of the pairings $\langle \cdot, \cdot \rangle_{\xi}$ for $\xi = f, g, h$.

The Bloch–Kato exponential map \exp_p gives an isomorphism between the tangent space V_{dR}/Fil^0 of V and the finite (viz. crystalline) subspace $H^1_{\text{fin}}(\mathbf{Q}_p, V)$ of $H^1(\mathbf{Q}_p, V)$. Denote by \log_p the inverse of \exp_p and define the $\alpha\alpha$ -logarithm

$$\log_{\alpha\alpha} = \left\langle \log_p, \omega_f \otimes \eta_{g_\alpha} \otimes \eta_{h_\alpha} \right\rangle_{fgh} : H^1_{\text{fin}}(\mathbf{Q}_p, V) \longrightarrow L$$

to be the composition of \log_p with evaluation at $\omega_f \otimes \eta_{g_\alpha} \otimes \eta_{h_\alpha}$ in Fil⁰ V_{dR} under the perfect duality $\langle \cdot, \cdot \rangle_{fab}$. Similarly define the $\beta\beta$ -logarithm

$$\log_{\beta\beta} = \left\langle \log_p, \omega_f \otimes \omega_{g_\alpha} \otimes \omega_{h_\alpha} \right\rangle \colon H^1_{\text{fin}}(\mathbf{Q}_p, V) \longrightarrow L.$$

(Note that \log_{ii} factors through the projection $H^1_{\text{fin}}(\mathbf{Q}_p, V) \longrightarrow H^1(\mathbf{Q}_p, V_{ii})$.) Set $\operatorname{tg}_{\mathrm{dR},K_p}(f) = H^0(K_p, V(f) \otimes_{\mathbf{Q}_p} B_{\mathrm{dR}})/\operatorname{Fil}^0$ and consider the composition

$$\log_{A,p} : A(K_p) \hat{\otimes} \mathbf{Q}_p \simeq H^1_{\mathrm{fin}}(K_p, V_p(A)) \simeq H^1_{\mathrm{fin}}(K_p, V(f)) \simeq \mathrm{tg}_{\mathrm{dR}, K_p}(f),$$

where the first isomorphism is the local Kummer map, the second is induced by the fixed modular parametrisation $\varphi_{\infty} : X_1(N_f) \longrightarrow A$ (cf. Section 2.1.1), and the third is the inverse of the Bloch-Kato exponential map. For $\chi = \varphi, \psi$ (cf. Section 1) define

$$\log_{\omega_f} = \langle \log_{A,p}, \omega_f \rangle_f : A(K_\chi) \longrightarrow K_p,$$

where K_{χ} is the ring class field of K cut-out by χ and $A(K_{\chi})$ is viewed as a subgroup of $A(K_p)$ via the embedding $i_p : \bar{\mathbf{Q}} \hookrightarrow \bar{\mathbf{Q}}_p$ fixed at the outset. (Recall that p is inert in K and that χ is dihedral, hence $p\mathcal{O}_K$ splits completely in K_{χ} .)

2.2. Big logarithms and diagonal classes. — Let

 $\mathscr{L}_{\boldsymbol{f}}: H^1(\mathbf{Q}_p, \boldsymbol{V}_f) \longrightarrow \mathscr{I}$

be the big logarithm map constructed in Proposition 7.3 of [BSV21d] using the work of Coleman, Perrin-Riou et alii. (Note that the tame character $\chi_{\mathbf{f}}$ of \mathbf{f} is trivial in the present setting and that the logarithm $\mathscr{L}_{\mathbf{f}}$ takes values in \mathscr{I} by the exceptional zero condition $\alpha_f = \alpha_g \cdot \alpha_h$.) With a slight abuse of notation denote by

$$\mathscr{L}_{\boldsymbol{f}}: H^1_{\mathrm{bal}}(\mathbf{Q}_p, \boldsymbol{V}) \longrightarrow \mathscr{I}$$

also the composition $\mathscr{L}_{\boldsymbol{f}} \circ p_f$ (cf. Equation (3)).

Let $H_{\text{bal}}^1(\mathbf{Q}, \mathbf{V})$ be the group of global classes in $H^1(\mathbf{Q}, \mathbf{V})$ whose restriction at p belongs to the balanced local condition $H_{\text{bal}}^1(\mathbf{Q}_p, \mathbf{V})$. According to Theorem A of [**BSV21d**] (cf. [**BSV21a**, Section 2.1]) there exists a canonical *big diagonal class*

$$\kappa(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) = \kappa(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}) \in H^{1}_{\mathrm{bal}}(\mathbf{Q}, \boldsymbol{V})$$

such that

(11)
$$\mathscr{L}_{\boldsymbol{f}}(\operatorname{res}_{p}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}))) = \mathscr{L}_{p}^{\alpha\alpha}(A,\varrho).$$

Define the diagonal class

$$\kappa(f, g_{\alpha}, h_{\alpha}) = \rho_{w_o}(\kappa(f, g_{\alpha}, h_{\alpha}))$$

to be the image in $H^1(\mathbf{Q}, V)$ of $\kappa(\mathbf{f}, \mathbf{g}, \mathbf{h})$ under the map induced in cohomology by the specialisation isomorphism $\rho_{w_o} : \mathbf{V} \otimes_{w_o} L \simeq V$. Since by assumption the complex Garrett *L*-function $L(A, \varrho, s) = L(f \otimes g \otimes h, s)$ vanishes at s = 1, Theorem B of [**BSV21d**] implies that $\kappa(f, g_\alpha, h_\alpha)$ is crystalline at p, hence a Selmer class:

(12)
$$\kappa(f, g_{\alpha}, h_{\alpha}) \in \operatorname{Sel}(\mathbf{Q}, V).$$

Identify \mathscr{O}_{fgh} with a subring of the power series ring L[[k-2, l-1, m-1]], where k-2 in \mathscr{O}_{f} is a uniformiser at the centre 2 of U_{f} , and l-1 and m-1 are defined similarly. In light of Equation (12) and Lemma 2.1 there exist local classes $\mathfrak{Y}_{k}, \mathfrak{Y}_{l}$ and \mathfrak{Y}_{m} in $H^{1}(\mathbf{Q}_{p}, \mathbf{V}_{f})$ satisfying the identity

(13)
$$p_f(\operatorname{res}_p(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}))) = \sum_{\boldsymbol{u}} \mathfrak{Y}_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_o).$$

Equation (11) gives

(14)
$$\mathscr{L}_{p}^{\alpha\alpha}(A,\varrho) = \sum_{\boldsymbol{u}} \mathscr{L}_{\boldsymbol{f}}(\mathfrak{Y}_{\boldsymbol{u}}) \cdot (\boldsymbol{u} - u_{o}) \in \mathscr{I}^{2}.$$

The following key lemma, proved in Part 1 of Proposition 9.3 of [**BSV21d**], gives an explicit description of the linear term of $\mathscr{L}_{f}(\mathfrak{Y}_{u})$ at w_{o} . Identify the *p*-adic completion of the Galois group of the maximal abelian extension of \mathbf{Q}_{p} with that of \mathbf{Q}_{p}^{*} via the local Artin map, normalised in such a way that p^{-1} corresponds to the arithmetic Frobenius. This identifies $H^{1}(\mathbf{Q}_{p}, \mathbf{Q}_{p})$ with $\operatorname{Hom}_{\operatorname{cont}}(\mathbf{Q}_{p}^{*}, \mathbf{Q}_{p})$, hence (recalling that $G_{\mathbf{Q}_{p}}$ acts trivially on $V_{\beta\beta}^{-}$, cf. Equation (4))

(15)
$$H^{1}(\mathbf{Q}_{p}, V_{\beta\beta}^{-}) = \operatorname{Hom}_{\operatorname{cont}}(\mathbf{Q}_{p}^{*}, \mathbf{Q}_{p}) \otimes_{\mathbf{Q}_{p}} V_{\beta\beta}^{-},$$

and the Bloch–Kato dual exponential \exp_p^* on $H^1(\mathbf{Q}_p, V_{\beta\beta}^-)$ satisfies

$$\exp_p^*(\varphi \otimes v) = \varphi(e(1)) \cdot v$$

in $D_{\text{cris}}(V_{\beta\beta}^{-}) = V_{\beta\beta}^{-}$ for each φ in $\text{Hom}_{\text{cont}}(\mathbf{Q}_{p}^{*}, \mathbf{Q}_{p})$ and v in $V_{\beta\beta}^{-}$, where

$$e(1) = (1+p)\hat{\otimes}\log_p(1+p)^{-1} \in \mathbf{Z}_p^*\hat{\otimes}\mathbf{Q}_p.$$

For $x = \varphi \otimes v$ in $H^1(\mathbf{Q}_p, V_{\beta\beta}^-)$ (with φ and v as above) and q in $\mathbf{Q}_p^* \hat{\otimes} \mathbf{Q}_p$, set

$$x(q) = \varphi(q) \cdot v$$
 and $x(q)_f = \langle x(q), \eta_f \otimes \omega_{g_\alpha} \otimes \omega_{h_\alpha} \rangle_{fgh}$.

If $(\boldsymbol{\xi}, \boldsymbol{u})$ denotes one of the pairs $(\boldsymbol{f}, \boldsymbol{k}), (\boldsymbol{g}, \boldsymbol{l})$ and $(\boldsymbol{h}, \boldsymbol{m})$, define

$$\tilde{D}_{\boldsymbol{u}}: H^1(\mathbf{Q}_p, \boldsymbol{V}_f) \longrightarrow L$$

to be the linear map which on \mathfrak{Y} in $H^1(\mathbf{Q}_p, \mathbf{V}_f)$ takes the value

(16)
$$\tilde{D}_{\boldsymbol{u}}(\mathfrak{Y}) = \frac{(-1)^{u_o}}{2(1-p^{-1})} \cdot \left(\mathfrak{y}(p^{-1})_f - \mathfrak{L}_{\boldsymbol{\xi}}^{\mathrm{an}} \cdot \mathfrak{y}(e(1))_f\right).$$

Here $\mathfrak{y} = \rho_{w_o}(\mathfrak{Y})$ in $H^1(\mathbf{Q}_p, V_{\beta\beta})$ is the w_o -specialisation of \mathfrak{Y} , $u_o = 2$ if $\boldsymbol{u} = \boldsymbol{k}$ and $u_o = 1$ if $\boldsymbol{u} = \boldsymbol{l}, \boldsymbol{m}$, and $\mathfrak{L}_{\boldsymbol{\xi}}^{\mathrm{an}}$ in L is the *analytic* \mathscr{L} -invariant of $\boldsymbol{\xi}$, defined by

$$\mathfrak{L}^{\mathrm{an}}_{\boldsymbol{\xi}} = -2 \cdot d \log a_p(\boldsymbol{\xi})(u_o)$$

(where $d\log a = a'/a$ for a in $\mathscr{O}_{\boldsymbol{\xi}}^*$). We can finally state the aforementioned key lemma.

Lemma 2.2. — For each local class \mathfrak{Y} in $H^1(\mathbf{Q}_p, \mathbf{V}_f)$ one has

$$\mathscr{L}_{\boldsymbol{f}}(\mathfrak{Y}) \pmod{\mathscr{I}^2} = \sum_{\boldsymbol{u}} \tilde{D}_{\boldsymbol{u}}(\mathfrak{Y}) \cdot (\boldsymbol{u} - u_o).$$

For each pair (u, v) of distinct elements of $\{k, l, m\}$, define (cf. Equation (13))

$$\hat{D}_{\boldsymbol{u},\boldsymbol{u}}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})) = \hat{D}_{\boldsymbol{u}}(\mathfrak{Y}_{\boldsymbol{u}}) \quad ext{and} \quad \hat{D}_{\boldsymbol{u},\boldsymbol{v}}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})) = \hat{D}_{\boldsymbol{u}}(\mathfrak{Y}_{\boldsymbol{v}}) + \hat{D}_{\boldsymbol{v}}(\mathfrak{Y}_{\boldsymbol{u}}).$$

Equation (14) and Lemma 2.2 give the following lemma (which implies that the *deriva*tives $\tilde{D}_{\cdot}(\kappa(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}))$ are independent of the choice of the classes $\mathfrak{Y}_{\boldsymbol{u}}$ satisfying (13)).

Lemma 2.3. — One has the following equality in $\mathcal{I}^2/\mathcal{I}^3$.

$$\mathscr{L}_p^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^3} = \sum_{\boldsymbol{u},\boldsymbol{v}} \tilde{D}_{\boldsymbol{u},\boldsymbol{v}}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})) \cdot (\boldsymbol{u}-u_o)(\boldsymbol{v}-v_o)$$

2.3. An exceptional zero formula à *la* Rubin–Perrin-Riou. — For a positive integer *n* and each 2*n*-tuple $\boldsymbol{y} = (y_1, \ldots, y_{2n})$ of elements of $\tilde{H}_f^1(\mathbf{Q}, V)$ denote by

the Pfaffian of the skew-symmetric $2n \times 2n$ matrix whose *ij*-entry is $\langle\!\langle y_i, y_j \rangle\!\rangle_{fgh}$, and define the *extended Garrett–Nekovář p-adic height pairing*

$$\tilde{h}_p^{\alpha\alpha} : \operatorname{Sel}(\mathbf{Q}, V) \otimes_L \operatorname{Sel}(\mathbf{Q}, V) \longrightarrow \mathscr{I}^2/\mathscr{I}^3$$

to be the bilinear form which on $y \otimes y'$ in $Sel(\mathbf{Q}, V)^{\otimes 2}$ takes the value

$$\tilde{h}_{p}^{\alpha\alpha}(y\otimes y') = \mathscr{R}_{p}^{\alpha\alpha}(q_{\alpha\alpha}, q_{\beta\beta}, y, y')$$

The aim of this section is to prove the following proposition.

Proposition 2.4. — Up to sign, one has the equality

$$\tilde{h}_p^{\alpha\alpha}(\kappa(f,g_\alpha,h_\alpha)\otimes \cdot) = c_A \cdot \log_{\alpha\alpha}(\operatorname{res}_p(\cdot)) \cdot \mathscr{L}_p^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^3}$$

of $\mathscr{I}^2/\mathscr{I}^3$ -valued L-linear forms on $\operatorname{Sel}(\mathbf{Q}, V)$, where $c_A = \frac{m_p \cdot (1-p^{-1}) \cdot \operatorname{ord}_p(q_A)}{\operatorname{deg}(\varphi_{\infty})}$.

We divide the proof of Proposition 2.4 in a series of lemmas. Define

$$c_p(f) = \langle q(f), \eta_f \rangle_f$$

in L^* (cf. Section 2.1.2). As in Section 2.2, identify $H^1(\mathbf{Q}_p, \mathbf{Q}_p)$ with $\operatorname{Hom}_{\operatorname{cont}}(\mathbf{Q}_p^*, \mathbf{Q}_p)$ via the local Artin map (sending p^{-1} to an arithmetic Frobenius), and set

$$\log_{\boldsymbol{\xi}} = \log_p - \mathfrak{L}_{\boldsymbol{\xi}}^{\mathrm{an}} \cdot \operatorname{ord}_p \in H^1(\mathbf{Q}_p, \mathbf{Q}_p) \otimes_{\mathbf{Q}_p} L,$$

where $\log_p : \mathbf{Q}_p^* \longrightarrow \mathbf{Q}_p$ is the (branch of the) *p*-adic logarithm (vanishing at *p*) and $\operatorname{ord}_p : \mathbf{Q}_p^* \longrightarrow \mathbf{Z}$ is the *p*-adic valuation normalised by $\operatorname{ord}_p(p) = 1$.

Lemma 2.5. — For each Selmer class y in $Sel(\mathbf{Q}, V)$ one has

$$2 \cdot \langle\!\langle q_{\beta\beta}, y \rangle\!\rangle_{\boldsymbol{fgh}} = c_p(f) \cdot \log_{\alpha\alpha}(\operatorname{res}_p(y)) \cdot (\boldsymbol{k} - \boldsymbol{l} - \boldsymbol{m})$$

and

$$-\frac{2 \cdot \deg(\wp_{\infty})}{m_p \cdot \operatorname{ord}_p(q_A)} \cdot \langle \! \langle q_{\beta\beta}, q_{\alpha\alpha} \rangle \! \rangle_{\boldsymbol{fgh}} = (\mathfrak{L}_{\boldsymbol{f}}^{\operatorname{an}} - \mathfrak{L}_{\boldsymbol{g}}^{\operatorname{an}}) \cdot (\boldsymbol{l} - 1) + (\mathfrak{L}_{\boldsymbol{f}}^{\operatorname{an}} - \mathfrak{L}_{\boldsymbol{h}}^{\operatorname{an}}) \cdot (\boldsymbol{m} - 1)$$

Proof. — See Equations (17) and (27) of [**BSV21b**]. (Note that the *p*-adic logarithm denoted by $\log_{\alpha\alpha}$ in [**BSV21b**] is equal to $\langle \log_p, q_{\beta\beta} \rangle_{fgh} = -c_p(f) \cdot \log_{\alpha\alpha}$.)

Let $C^{\bullet}_{\text{cont}}(\mathbf{Q}_p, \mathbf{V}^-)$ be the complex of (inhomogeneous) continuous cochains of $G_{\mathbf{Q}_p}$ with values in the quotient $p^-: \mathbf{V} \longrightarrow \mathbf{V}^-$ of \mathbf{V} (cf. Section 2.1.1), and let

$$\langle \cdot, \cdot \rangle_{\text{Tate}} : H^1(\mathbf{Q}_p, V^-) \otimes_L H^1(\mathbf{Q}_p, V^+) \longrightarrow L$$

the local Tate pairing arising from the perfect duality $\pi_{fgh} : V \otimes_L V \longrightarrow L(1)$. Recall the morphism $\cdot^+ : \tilde{H}^1_f(\mathbf{Q}, V) \longrightarrow H^1(\mathbf{Q}_p, V^+)$ introduced in Diagram (7).

Lemma 2.6. — There exist 1-cochains X_k, X_l and X_m in $C^1_{cont}(\mathbf{Q}_p, \mathbf{V}^-)$ such that

(17)
$$p^{-}(\operatorname{res}_{p}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}))) = \operatorname{cl}\left(\sum_{\boldsymbol{u}} X_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_{o})\right)$$

id est $\sum_{u} X_{u} \cdot (u - u_{o})$ is a 1-cocycle representing $p^{-}(\operatorname{res}_{p}(\kappa(f, g, h)))$, and

$$\langle\!\langle \kappa(f, g_{\alpha}, h_{\alpha}), y \rangle\!\rangle_{fgh} = \sum_{\boldsymbol{u}} \langle \mathfrak{x}_{\boldsymbol{u}}, y^+ \rangle_{\mathrm{Tate}} \cdot (\boldsymbol{u} - u_o)$$

for each extended Selmer class y in $\tilde{H}^1_f(\mathbf{Q}, V)$, where

$$\mathfrak{x}_{\boldsymbol{u}} = \operatorname{cl}(\rho_{w_o}(X_{\boldsymbol{u}}))$$

is the local class in $H^1(\mathbf{Q}_p, V^-)$ represented by the 1-cocycle $\rho_{w_o}(X_u)$.

Proof. — This follows from Equations (30)–(37) in Section 3.4 of [BSV21c]. (The paragraphs containing the aforementioned equations do not use the non-exceptionality assumption [BSV21c, Equation (26)] imposed in [BSV21c, Section 3].)

Fix in what follows 1-cochains X_k, X_l and X_m satisfying the conclusions of Lemma 2.6. For $i = \alpha \alpha, \beta \beta$ let $\operatorname{pr}_i : H^1(\mathbf{Q}_p, V^-) \longrightarrow H^1(\mathbf{Q}_p, V^-_i)$ be the natural projection.

Lemma 2.7. — For u equal to one of k, l and m, one has

$$\operatorname{pr}_{\alpha\alpha}(\mathfrak{x}_{\boldsymbol{u}}) = \mu_{\boldsymbol{u}} \cdot \log_{\boldsymbol{f}} \otimes q_{\alpha\alpha}$$

 $\inf_{\alpha\alpha} (\mathbf{y}_{u}) = \mu_{u} \quad \log f \otimes q_{\alpha\alpha}$ $in \ H^{1}(\mathbf{Q}_{p}, V_{\alpha\alpha}^{-}) = H^{1}(\mathbf{Q}_{p}, \mathbf{Q}_{p}) \otimes_{\mathbf{Q}_{p}} V_{\alpha\alpha}^{-} \text{ for some } \mu_{u} \text{ in } L.$

Proof. — Set $\kappa_{\alpha\alpha} = \kappa(f, g_{\alpha}, h_{\alpha})$. As explained in Section 3.3 of [**BSV21b**] (cf. Equation (15) of loc. cit.) one has (cf. Diagram (7))

$$q_{\beta\beta}^{+} = \frac{m_p}{\deg(\wp_{\infty})} \cdot (q_A \hat{\otimes} 1) \otimes q_{\alpha\alpha}^{*}$$

in the direct summand

$$H^1(\mathbf{Q}_p, V^+_{\beta\beta}) = H^1(\mathbf{Q}_p, \mathbf{Q}_p(1)) \otimes_{\mathbf{Q}_p} V^+_{\beta\beta}(-1)$$

of $H^1(\mathbf{Q}_p, V^+)$, where $q^*_{\alpha\alpha}$ in $V^+_{\beta\beta}(-1)$ is the dual basis of $q_{\alpha\alpha}$ under the pairing $\pi_{fgh}(-1)$. It then follows from Lemma 2.6 and local class field theory that

$$\langle\!\langle \kappa_{\alpha\alpha}, q_{\beta\beta} \rangle\!\rangle_{\boldsymbol{fgh}} = \sum_{\boldsymbol{u}} \mathfrak{x}_{\boldsymbol{u}}^{\alpha\alpha}(q_A) \cdot (\boldsymbol{u} - u_o),$$

where the class $\mathfrak{x}_{\boldsymbol{u}}^{\alpha\alpha}$ in $H^1(\mathbf{Q}_p, \mathbf{Q}_p)$ is defined by the identity

$$\mathrm{pr}_{\alpha\alpha}(\mathfrak{x}_{\boldsymbol{u}}) = \mathfrak{x}_{\boldsymbol{u}}^{\alpha\alpha} \otimes q_{\alpha\alpha}.$$

On the other hand, since $\log_{\alpha\alpha}(\operatorname{res}_p(\kappa_{\alpha\alpha})) = 0$ (because $\kappa_{\alpha\alpha}$ is a balanced class, cf. Section 9.1 of [**BSV21d**]), Lemma 2.5 and the skew-symmetry of $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fah}$ yield

$$\langle\!\langle \kappa_{\alpha\alpha}, q_{\beta\beta} \rangle\!\rangle_{\boldsymbol{fgh}} = - \langle\!\langle q_{\beta\beta}, \kappa_{\alpha\alpha} \rangle\!\rangle_{\boldsymbol{fgh}} = 0$$

hence $\mathfrak{r}_{\boldsymbol{u}}^{\alpha\alpha}(q_A) = 0$, id est $\mathfrak{r}_{\boldsymbol{u}}^{\alpha\alpha}$ is a multiple of \log_{q_A} . The lemma follows from this and Theorem 3.18 of **[GS93]**, according to which \log_{q_A} equals $\log_{\boldsymbol{f}}$.

Lemma 2.8. — Assume that either $\mathfrak{L}_{f}^{\mathrm{an}} \neq \mathfrak{L}_{g}^{\mathrm{an}}$ or $\mathfrak{L}_{f}^{\mathrm{an}} \neq \mathfrak{L}_{h}^{\mathrm{an}}$. Then the local classes \mathfrak{g}_{k} , \mathfrak{g}_{l} and \mathfrak{g}_{m} belong to the direct summand $H^{1}(\mathbf{Q}_{p}, V_{\beta\beta}^{-})$ of $H^{1}(\mathbf{Q}_{p}, V^{-})$.

Proof. — The proof uses the main properties of the Bockstein map

$$\beta_{fgh}^-: H^0(\mathbf{Q}_p, V^-) \longrightarrow H^1(\mathbf{Q}_p, V^-) \otimes_L \mathscr{I}/\mathscr{I}^2$$

introduced in [BSV21b, Section 3.1.1]. As $\kappa(f, g_{\alpha}, h_{\alpha}) = \rho_{w_o}(\kappa(f, g, h))$ is crystalline at p, Lemma 2.1 shows that there exist \mathfrak{Z}_k , \mathfrak{Z}_l and \mathfrak{Z}_m in $H^1(\mathbf{Q}_p, \mathbf{V}_f)$ such that

(18)
$$p_f(\operatorname{res}_p(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}))) = \sum_{\boldsymbol{u}} \mathfrak{Z}_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_o).$$

Recall the specialisation isomorphism $\rho_{w_o} : V_f \otimes_{w_o} L \simeq V_{\beta\beta}$ arising from evaluation at w_o on \mathscr{O}_{fgh} (cf. Section 2.1.1), set $\mathfrak{z}_u = \rho_{w_o}(\mathfrak{z}_u)$ in $H^1(\mathbf{Q}_p, V_{\beta\beta})$ and define

$$abla_f = \sum_{oldsymbol{u}} \mathfrak{z}_{oldsymbol{u}} \cdot (oldsymbol{u} - u_o)$$

in $H^1(\mathbf{Q}_p, V_{\beta\beta}) \otimes \mathscr{I}/\mathscr{I}^2$. It follows from Equations (17) and (18) and Lemma 3.2 of **[BSV21b]** that the difference $\sum_{\boldsymbol{u}} \mathfrak{x}_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_o) - \nabla_f$ belongs to the image of the Bockstein map $\beta_{\boldsymbol{f}\boldsymbol{a}\boldsymbol{h}}^-$. There exist then μ and ν in L such that

(19)
$$\sum_{\boldsymbol{u}} \mathfrak{x}_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_o) - \nabla_f - \nu \cdot \beta_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}^-(q_{\beta\beta}) = \mu \cdot \beta_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}^-(q_{\alpha\alpha}).$$

Equation (8) of **[BSV21b]** shows that $\beta^-_{fgh}(q_{\beta\beta})$ belongs to $H^1(\mathbf{Q}_p, V^-_{\beta\beta}) \otimes_L \mathscr{I}/\mathscr{I}^2$, hence Lemma 2.7 and the previous equation give

(20)
$$\sum_{\boldsymbol{u}} \mu_{\boldsymbol{u}} \cdot \log_{\boldsymbol{f}} \otimes q_{\alpha\alpha} \cdot (\boldsymbol{u} - u_o) = \sum_{\boldsymbol{u}} \operatorname{pr}_{\alpha\alpha}(\mathfrak{x}_{\boldsymbol{u}}) \cdot (\boldsymbol{u} - u_o) = \mu \cdot \operatorname{pr}_{\alpha\alpha}(\beta_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}^-(q_{\alpha\alpha}))$$

(where in the right-most term we write again $\operatorname{pr}_{\alpha\alpha}$ to denote the $\mathscr{I}/\mathscr{I}^2$ -base change of the projection $\operatorname{pr}_{\alpha\alpha}: H^1(\mathbf{Q}_p, V^-) \longrightarrow H^1(\mathbf{Q}_p, V^-_{\alpha\alpha})$). The computations carried out in Sections 3.3 and 3.4 of [BSV21b] (see in particular Equation (30) of loc. cit. and the discussion preceding it) give the following equality in $H^1(\mathbf{Q}_p, V_{\alpha\alpha}^-) \otimes_L \mathscr{I}/\mathscr{I}^2$:

$$2 \cdot \mathrm{pr}_{\alpha\alpha}(\beta_{\boldsymbol{fgh}}^{-}(q_{\alpha\alpha})) = \sum_{\boldsymbol{u}} \log_{\boldsymbol{\xi}} \otimes q_{\alpha\alpha} \cdot (\boldsymbol{u} - u_{o}),$$

where $(\boldsymbol{\xi}, \boldsymbol{u}) = (\boldsymbol{f}, \boldsymbol{k}), (\boldsymbol{g}, \boldsymbol{l}), (\boldsymbol{h}, \boldsymbol{m})$. Together with Equation (20) this implies

$$2\mu_{k} = \mu, \quad 2\mu_{l} \cdot \log_{f} = \mu \cdot \log_{g} \text{ and } 2\mu_{m} \cdot \log_{f} = \mu \cdot \log_{h}$$

thus $\mu = \mu_k = \mu_l = \mu_m = 0$ by the assumption on the analytic \mathscr{L} -invariants made in the statement. The lemma follows from this and Equation (19).

Let $(\boldsymbol{u}, \boldsymbol{\xi})$ denote one of $(\boldsymbol{k}, \boldsymbol{f})$, $(\boldsymbol{l}, \boldsymbol{g})$ and $(\boldsymbol{m}, \boldsymbol{h})$. For each local class x in $H^1(\mathbf{Q}_p, V^-)$, denote by $x_{\beta\beta} = \mathrm{pr}_{\beta\beta}(x)$ in $H^1(\mathbf{Q}_p, V^-_{\beta\beta})$ its $\beta\beta$ -component and (with the notations introduced in Section 2.2) set

$$\ell_{\boldsymbol{u}}(x) = (-1)^{u_o} \cdot \left(x_{\beta\beta}(p^{-1})_f - \mathfrak{L}^{\mathrm{an}}_{\boldsymbol{\xi}} \cdot x_{\beta\beta}(e(1))_f \right).$$

For each pair (u, v) of distinct elements of $\{k, l, m\}$ define

 $\tilde{\mathtt{D}}_{\boldsymbol{u},\boldsymbol{u}} = \ell_{\boldsymbol{u}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}) \quad \text{and} \quad \tilde{\mathtt{D}}_{\boldsymbol{u},\boldsymbol{v}} = \ell_{\boldsymbol{u}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{v}}) + \ell_{\boldsymbol{v}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}).$

Lemma 2.9. — For each pair (u, v) of elements of $\{k, l, m\}$ one has

 $2(1-p^{-1}) \cdot \tilde{D}_{\boldsymbol{u},\boldsymbol{v}}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})) = \tilde{D}_{\boldsymbol{u},\boldsymbol{v}}.$

Proof. — We give the proof for $(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{k}, \boldsymbol{l})$ and $(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{k}, \boldsymbol{k})$, the other cases being similar. We use the notations introduced in the proof of Lemma 2.8. Section 3 of **[BSV21b]** (see in particular Equations (8) and (30) of loc. cit.) gives the identities

$$2 \cdot \beta_{\boldsymbol{fgh}}^{-}(q_{\beta\beta}) = \sum_{\boldsymbol{u}} (-1)^{u_o} \cdot \log_{\boldsymbol{\xi}} \otimes q_{\beta\beta} \cdot (\boldsymbol{u} - u_o) \quad \text{and} \quad \mathrm{pr}_{\beta\beta}(\beta_{\boldsymbol{fgh}}^{-}(q_{\alpha\alpha})) = 0.$$

Equation (19) (and the definition of derivatives $D_{u,v}$) then yields

$$2\left(1-p^{-1}\right)\cdot\tilde{D}_{\boldsymbol{k},\boldsymbol{l}}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}))-\ell_{\boldsymbol{k}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{l}})-\ell_{\boldsymbol{l}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{k}})=\frac{\nu}{2}\left(\ell_{\boldsymbol{k}}(\log_{\boldsymbol{g}}\otimes q_{\beta\beta})-\ell_{\boldsymbol{l}}(\log_{\boldsymbol{f}}\otimes q_{\beta\beta})\right)=0$$
 and

$$2\left(1-p^{-1}\right)\cdot\tilde{D}_{\boldsymbol{k},\boldsymbol{k}}(\kappa(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}))-\ell_{\boldsymbol{k}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{k}})=-\frac{\nu}{2}\cdot\ell_{\boldsymbol{k}}(\log_{\boldsymbol{f}}\otimes q_{\beta\beta})=0,$$

quod erat demonstrandum.

Lemma 2.10. — Assume that either $\mathfrak{L}_{f}^{an} \neq \mathfrak{L}_{g}^{an}$ or $\mathfrak{L}_{f}^{an} \neq \mathfrak{L}_{h}^{an}$. Then one has

$$c_p(f) \cdot \langle\!\langle q_{\alpha\alpha}, \kappa(f, g_\alpha, h_\alpha) \rangle\!\rangle_{\boldsymbol{fgh}} = -\frac{m_p \cdot \operatorname{ord}_p(q_A)}{\deg(\wp_\infty)} \cdot \sum_{\boldsymbol{u}} \ell_{\boldsymbol{k}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}) \cdot (\boldsymbol{u} - u_o).$$

Proof. — Under the assumption in the statement $\mathfrak{x}_{\boldsymbol{u}}$ belongs to $H^1(\mathbf{Q}_p, V_{\beta\beta}^-)$ by Lemma 2.8. Together with the equality $\mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} = \frac{\log_p(q_A)}{\operatorname{ord}_p(q_A)}$ (cf. [GS93]), this gives

(21)
$$\ell_{\boldsymbol{k}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}) = \boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}(p^{-1})_f - \mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} \cdot \boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}(e(1))_f = -\frac{1}{\mathrm{ord}_p(q_A)} \cdot \boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}(q_A)_f.$$

According to Equation (15) of [BSV21b], one has

$$q_{\alpha\alpha}^{+} = \frac{m_p}{\deg(\wp_{\infty})} \cdot (q_A \hat{\otimes} 1) \otimes q_{\beta\beta}^*,$$

where $q_{\beta\beta}^*$ in $V_{\alpha\alpha}^+$ is the dual basis of $q_{\beta\beta}$ under the perfect pairing $\pi_{fgh}(-1)$. Lemma 2.6, the skew-symmetry of $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fgh}$ and local class field theory then give

$$\langle\!\langle q_{\alpha\alpha}, \kappa(f, g_{\alpha}, h_{\alpha}) \rangle\!\rangle_{\boldsymbol{fgh}} = -\langle\!\langle \kappa(f, g_{\alpha}, h_{\alpha}), q_{\alpha\alpha} \rangle\!\rangle_{\boldsymbol{fgh}} = \frac{m_p}{\deg(\wp_{\infty})} \cdot \sum_{\boldsymbol{u}} \mathfrak{x}_{\boldsymbol{u}}^{\beta\beta}(q_A) \cdot (\boldsymbol{u} - u_o),$$

where $\mathfrak{r}_{\boldsymbol{u}}^{\beta\beta}$ in $H^1(\mathbf{Q}_p, \mathbf{Q}_p)$ is defined by $\mathfrak{r}_{\boldsymbol{u}} = \mathfrak{r}_{\boldsymbol{u}}^{\beta\beta} \otimes q_{\beta\beta}$. The lemma follows from the previous equation, Equation (21) and the identity $\mathfrak{r}_{\boldsymbol{u}}(q_A)_f = \mathfrak{r}_{\boldsymbol{u}}^{\beta\beta}(q_A) \cdot c_p(f)$, \Box

Lemma 2.11. — Assume that either $\mathfrak{L}_{f}^{an} \neq \mathfrak{L}_{g}^{an}$ or $\mathfrak{L}_{f}^{an} \neq \mathfrak{L}_{h}^{an}$, so that \mathfrak{x}_{u} belongs to $H^{1}(\mathbf{Q}_{p}, V_{\beta\beta}^{-})$ for u = k, l, m by Lemma 2.8. Then

$$\langle\!\langle \kappa(f, g_{\alpha}, h_{\alpha}), \cdot \rangle\!\rangle_{fgh} = \log_{\alpha\alpha} (\operatorname{res}_{p}(\cdot)) \cdot \sum_{\boldsymbol{u}} \mathfrak{x}_{\boldsymbol{u}}(e(1))_{f} \cdot (\boldsymbol{u} - u_{o})$$

as $\mathscr{I}/\mathscr{I}^2$ -valued L-linear forms on the Bloch-Kato Selmer group $\mathrm{Sel}(\mathbf{Q}, V)$.

Proof. — Let y be a Selmer class in $\operatorname{Sel}(\mathbf{Q}, V)$, and let $\tilde{y} = i_{\operatorname{ur}}(y)$ in $\tilde{H}_{f}^{1}(\mathbf{Q}, V)$ be the corresponding class in the extended Selmer group (cf. Section 2.3 of $[\operatorname{BSV21c}]$). By construction \tilde{y}^{+} belongs to the Bloch–Kato finite subspace of $H^{1}(\mathbf{Q}, V^{+})$, and $\operatorname{res}_{p}(y) = i^{+}(\tilde{y}^{+})$ is its image under the map i^{+} induced in cohomology by the inclusion $V^{+} \longrightarrow V$. Define $\tilde{y}_{\alpha\alpha}^{+}$ in $\mathbf{Z}_{p}^{*} \otimes_{\mathbf{Z}_{p}} L$ by the identity

$$\operatorname{pr}_{\alpha\alpha}(\tilde{y}^+) = \tilde{y}^+_{\alpha\alpha} \otimes (\eta_f \otimes \omega_{g_\alpha} \otimes \omega_{h_\alpha}),$$

in $H^1_{\text{fin}}(\mathbf{Q}_p, V^+_{\alpha\alpha}) = H^1_{\text{fin}}(\mathbf{Q}_p, L(1)) \otimes_L V^+_{\alpha\alpha}(-1)$ (where as usual $H^1_{\text{fin}}(\mathbf{Q}_p, L(1))$ is identified with $\mathbf{Z}_p^* \otimes_{\mathbf{Z}_p} L$ via the local Kummer map). Then one has

$$\log_{\alpha\alpha}(\operatorname{res}_p(y)) = \log_p(\tilde{y}^+_{\alpha\alpha})$$

where \log_p is the *L*-linear extension of the *p*-adic logarithm on \mathbf{Z}_p^* . Write similarly

$$\mathfrak{x}_{\boldsymbol{u}} = \mathrm{pr}_{\beta\beta}(\mathfrak{x}_{\boldsymbol{u}}) = \mathfrak{x}_{\boldsymbol{u}}^{\beta\beta} \otimes (\omega_f \otimes \eta_{g_{\alpha}} \otimes \eta_{h_{\alpha}})$$

in $H^1(\mathbf{Q}_p, V_{\beta\beta}^-) = H^1(\mathbf{Q}_p, L) \otimes_L V_{\beta\beta}^-$ for some $\mathfrak{x}_{\boldsymbol{u}}^{\beta\beta}$ in $H^1(\mathbf{Q}_p, L)$, so that

$$\left\langle \mathfrak{x}_{\boldsymbol{u}}, \tilde{y}^{+} \right\rangle_{\text{Tate}} = -\mathfrak{x}_{\mathfrak{u}}^{\beta\beta}(\tilde{y}_{\alpha\alpha}^{+}) = -\log_{p}(\tilde{y}_{\alpha\alpha}^{+}) \cdot \mathfrak{x}_{\boldsymbol{u}}^{\beta\beta}(e(1)) = \log_{\alpha\alpha}(\operatorname{res}_{p}(y)) \cdot \mathfrak{x}_{\boldsymbol{u}}(e(1))_{f}$$

by local class field theory. The statement then follows from Lemma 2.6.

We can finally conclude the proof of Proposition 2.4.

Proof of Proposition 2.4. — To lighten the notation set $\kappa_{\alpha\alpha} = \kappa(f, g_{\alpha}, h_{\alpha})$. By definition the extended height $\tilde{h}_{p}^{\alpha\alpha}(\kappa_{\alpha\alpha} \otimes y)$ is equal (up to sign) to

$$\langle\!\langle q_{\alpha\alpha}, q_{\beta\beta} \rangle\!\rangle_{\boldsymbol{fgh}} \cdot \langle\!\langle \kappa_{\alpha\alpha}, y \rangle\!\rangle_{\boldsymbol{fgh}} - \langle\!\langle q_{\alpha\alpha}, \kappa_{\alpha\alpha} \rangle\!\rangle_{\boldsymbol{fgh}} \cdot \langle\!\langle q_{\beta\beta}, y \rangle\!\rangle_{\boldsymbol{fgh}} + \langle\!\langle q_{\beta\beta}, \kappa_{\alpha\alpha} \rangle\!\rangle_{\boldsymbol{fgh}} \cdot \langle\!\langle q_{\alpha\alpha}, y \rangle\!\rangle_{\boldsymbol{fgh}}$$

for each Selmer class y in Sel(\mathbf{Q}, V). Since $\kappa_{\alpha\alpha}$ is (the specialisation of) a balanced class, one has $\log_{\alpha\alpha}(\operatorname{res}_p(\kappa_{\alpha\alpha})) = 0$ (cf. Section 9.1 of [**BSV21d**]), hence $\langle \langle q_{\beta\beta}, \kappa_{\alpha\alpha} \rangle \rangle_{fah}$ is equal to zero by Lemma 2.5. As a consequence

(22)
$$\tilde{h}_{p}^{\alpha\alpha}(\kappa_{\alpha\alpha}\otimes y) = \det \begin{pmatrix} \langle\!\langle q_{\alpha\alpha}, q_{\beta\beta} \rangle\!\rangle_{\boldsymbol{fgh}} & \langle\!\langle q_{\alpha\alpha}, \kappa_{\alpha\alpha} \rangle\!\rangle_{\boldsymbol{fgh}} \\ & \langle\!\langle q_{\beta\beta}, y \rangle\!\rangle_{\boldsymbol{fgh}} & \langle\!\langle \kappa_{\alpha\alpha}, y \rangle\!\rangle_{\boldsymbol{fgh}} \end{pmatrix}$$

Assume first $\mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} = \mathfrak{L}_{\boldsymbol{g}}^{\mathrm{an}} = \mathfrak{L}_{\boldsymbol{h}}^{\mathrm{an}}$. Then $\langle\!\langle q_{\alpha\alpha}, q_{\beta\beta} \rangle\!\rangle_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}$ is equal to zero by Lemma 2.5, so that Equation (22) and Lemmas 2.5 and 2.10 yield the equality (up to sign)

$$\begin{split} \tilde{h}_{p}^{\alpha\alpha}(\kappa_{\alpha\alpha}\otimes y) &= \langle\!\langle q_{\alpha\alpha}, \kappa_{\alpha\alpha} \rangle\!\rangle_{\boldsymbol{fgh}} \cdot \langle\!\langle q_{\beta\beta}, y \rangle\!\rangle_{\boldsymbol{fgh}} \\ &= \frac{m_{p} \cdot \operatorname{ord}_{p}(q_{A})}{2 \cdot \deg(\wp_{\infty})} \cdot \log_{\alpha\alpha}(\operatorname{res}_{p}(y)) \cdot (\boldsymbol{k} - \boldsymbol{l} - \boldsymbol{m}) \cdot \sum_{\boldsymbol{u}} \ell_{\boldsymbol{k}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{u}}) \cdot (\boldsymbol{u} - u_{o}). \end{split}$$

Moreover one has (by definition) $\ell_{\mathbf{k}} = -\ell_{\mathbf{l}} = -\ell_{\mathbf{m}}$, hence

$$(\boldsymbol{k}-\boldsymbol{l}-\boldsymbol{m})\cdot\sum_{\boldsymbol{u}}\ell_{\boldsymbol{k}}(\boldsymbol{\mathfrak{x}}_{\boldsymbol{u}})\cdot(\boldsymbol{u}-u_{o})=\sum_{\boldsymbol{u},\boldsymbol{v}}\tilde{\mathsf{D}}_{\boldsymbol{u},\boldsymbol{v}}\cdot(\boldsymbol{u}-u_{o})(\boldsymbol{v}-v_{o}).$$

Proposition 2.4 follows from the previous two equations and Lemmas 2.3 and 2.9.

Assume from now on that the analytic \mathscr{L} -invariants $\mathfrak{L}_{\boldsymbol{f}}^{an}, \mathfrak{L}_{\boldsymbol{g}}^{an}$ and $\mathfrak{L}_{\boldsymbol{h}}^{an}$ are not all equal. Then Equation (22), Lemma 2.5, Lemma 2.10 and Lemma 2.11 yield

(23)
$$\tilde{h}_p^{\alpha\alpha}(\kappa_{\alpha\alpha}\otimes y) = \frac{m_p \cdot \operatorname{ord}_p(q_A)}{2 \cdot \operatorname{deg}(\wp_{\infty})} \cdot \log_{\alpha\alpha}(\operatorname{res}_p(y)) \cdot \operatorname{det}(\mathsf{H})$$

in $\mathscr{I}^2/\mathscr{I}^3$ for each Selmer class y in Sel(\mathbf{Q}, V), where

$$\mathbf{H} = \begin{pmatrix} (\mathfrak{L}_{f}^{\mathrm{an}} - \mathfrak{L}_{g}^{\mathrm{an}}) \cdot (\boldsymbol{l} - 1) + (\mathfrak{L}_{f}^{\mathrm{an}} - \mathfrak{L}_{h}^{\mathrm{an}}) \cdot (\boldsymbol{m} - 1) & -\sum_{\boldsymbol{u}} \ell_{\boldsymbol{k}}(\mathfrak{x}_{\boldsymbol{u}}) \cdot (\boldsymbol{u} - u_{o}) \\ \\ \boldsymbol{l} + \boldsymbol{m} - \boldsymbol{k} & \sum_{\boldsymbol{u}} \mathfrak{x}_{\boldsymbol{u}}(\boldsymbol{e}(1))_{f} \cdot (\boldsymbol{u} - u_{o}) \end{pmatrix}.$$

A direct computation gives

(24)
$$\det(\mathbf{H}) = -\sum_{\boldsymbol{u},\boldsymbol{v}} \tilde{\mathsf{D}}_{\boldsymbol{u},\boldsymbol{v}} \cdot (\boldsymbol{u} - u_o)(\boldsymbol{v} - v_o).$$

Proposition 2.4 follows from Equations (23) and (24) and Lemmas 2.3 and 2.9. \Box

2.4. Heegner points and diagonal classes. — Assume from now on

(25)
$$\operatorname{ord}_{s=1}L(f \otimes g \otimes h, s) = 2$$

and that Assumption 1.2 (stated in Section 1) is satisfied.

For each finite order character $\mu : G_K \longrightarrow \mathbf{Q}(\varrho)^*$, let $\operatorname{Ind}_K^{\mathbf{Q}}\mu$ be the $\mathbf{Q}(\varrho)$ -module of functions $c : G_{\mathbf{Q}} \longrightarrow \mathbf{Q}(\varrho)$ satisfying $c(\tau\sigma) = \mu(\tau) \cdot c(\sigma)$ for each τ in G_K and σ in $G_{\mathbf{Q}}$, equipped with the action of $G_{\mathbf{Q}}$ defined by $(\sigma' \cdot c)(\sigma) = c(\sigma\sigma')$ for each σ and σ' in $G_{\mathbf{Q}}$. For $\xi = g, h$, the $\mathbf{Q}(\varrho)[G_{\mathbf{Q}}]$ -module $\operatorname{Ind}_K^{\mathbf{Q}}\nu_{\xi}$ affords the representation ϱ_{ξ} . With the notations of Section 1 we can then take

$$V_{\xi} = \operatorname{Ind}_{K}^{\mathbf{Q}} \nu_{\xi}.$$

One has an isomorphism of $\mathbf{Q}(\varrho)[G_{\mathbf{Q}}]$ -modules

(26)
$$V_{gh} = V_g \otimes_{\mathbf{Q}(\varrho)} V_h \simeq \operatorname{Ind}_K^{\mathbf{Q}} \varphi \oplus \operatorname{Ind}_K^{\mathbf{Q}} \psi$$

where $\varphi = \nu_g \cdot \nu_h$ and $\psi = \nu_g \cdot \nu_h^c$ are dihedral characters of K (cf. Section 1). The Artin formalism then yields the factorisation

(27)
$$L(f \otimes g \otimes h, s) = L(A/K, \varphi, s) \cdot L(A/K, \psi, s),$$

where $L(A/K, \chi, s) = L(f \otimes \vartheta_{\chi}, s)$ is the Hasse–Weil *L*-function of the base change of *A* to *K* twisted by $\chi = \varphi, \psi$ (viz. the Rankin–Selberg convolution of *f* and the weight-one theta series ϑ_{χ} associated with χ).

Let χ denote either φ or ψ , let K_{χ} be the ring class field of K cut out by χ , and let $A(K_{\chi})^{\chi}$ be the submodule of $A(K_{\chi}) \otimes_{\mathbf{Z}} \mathbf{Q}(\varrho)$ on which $\operatorname{Gal}(K_{\chi}/K)$ acts via χ . Fix a primitive Heegner point P in $A(K_{\chi})$ and set

$$P_{\chi} = \sum_{\sigma \in \operatorname{Gal}(K_{\chi}/K)} \chi(\sigma)^{-1} \cdot \sigma(P) \in A(K_{\chi})^{\chi}.$$

Equations (25) and (27) and Assumption 1.1.(1) imply that $L(A/K, \chi, s)$ has a simple zero at s = 1, hence the Gross–Zagier–Kolyvagin–Zhang theorem yields

(28)
$$P_{\chi} \neq 0$$
 and $A(K_{\chi})^{\chi} \otimes_{\mathbf{Q}(\varrho)} L = L \cdot P_{\chi} = \operatorname{Sel}(K_{\chi}, V_p(A))^{\chi}$

where $\operatorname{Sel}(K_{\chi}, V_p(A))$ is the Bloch–Kato Selmer group of the restriction of $V_p(A)$ to $G_{K_{\chi}}$, one denotes by $\operatorname{Sel}(K_{\chi}, V_p(A))^{\chi}$ the submodule of $\operatorname{Sel}(K_{\chi}, V_p(A)) \otimes_{\mathbf{Q}_p} L$ on which the Galois group of K_{χ}/K acts via the character χ , and one considers $A(K_{\chi})^{\chi}$ as a submodule of $\operatorname{Sel}(K_{\chi}, V_p(A))^{\chi}$ via the K_{χ} -rational Kummer map.

Let σ_p in $G_{\mathbf{Q}} - G_K$ be an arithmetic Frobenius at p. For $\xi = g, h$ and each pair (a, b) of elements of $\mathbf{Q}(\varrho)$, denote by $[a, b]_{\xi}$ in V_{ξ} the $\mathbf{Q}(\varrho)$ -valued function on $G_{\mathbf{Q}}$ sending the identity to a and σ_p to b. Then G_K acts on the line $L \cdot [1, 0]_{\xi}$ via ν_{ξ} , and on the line $L \cdot [0, 1]_{\xi}$ via the conjugate ν_{ξ}^c of ν_{ξ} by the nontrivial element $c = \sigma_p|_K$ of $\operatorname{Gal}(K/\mathbf{Q})$. Moreover, since $\nu_{\xi}(\sigma_p^2) = \nu_{\xi}^{\operatorname{cen}}(p) = \varepsilon_K(p) \cdot \chi_{\xi}(p) = -\chi_{\xi}(p) = \alpha_{\xi}^2$ (cf. Section 1), one has $\sigma_p \cdot [a, b]_{\xi} = [b, \alpha_{\xi}^2 \cdot a]_{\xi}$ for each a and b in $\mathbf{Q}(\varrho)$. Set

$$v_{\xi,\alpha} = [1, \alpha_{\xi}]_{\xi} \in V_{\xi}^{\sigma_p = \alpha_{\xi}} \quad \text{and} \quad v_{\xi,\beta} = [1, -\alpha_{\xi}]_{\xi} \in V_{\xi}^{\sigma_p = \beta_{\xi}}$$

(recall that $\beta_{\xi} = -\alpha_{\xi}$), and for each pair (i, j) of elements of $\{\alpha, \beta\}$ set

$$v_{ij} = v_{g,i} \otimes v_{h,j} \in V_g^{\sigma_p = i_g} \otimes_{\mathbf{Q}(\varrho)} V_h^{\sigma_p = j_h} \longleftrightarrow V_{gh}^{\sigma_p = i_g \cdot j_h}$$

A direct computation shows that the vectors

 $v_{\varphi} = v_{\alpha\alpha} + v_{\alpha\beta} + v_{\beta\alpha} + v_{\beta\beta}$ and $v_{\psi} = v_{\alpha\alpha} - v_{\alpha\beta} + v_{\beta\alpha} - v_{\beta\beta}$

of V_{gh} are qual to $4 \cdot [1,0]_g \otimes [1,0]_h$ and $4\alpha_{\xi} \cdot [1,0]_g \otimes [0,1]_h$ respectively, hence G_K acts on them via $\varphi = \nu_g \cdot \nu_h$ and $\psi = \nu_g \cdot \nu_h^c$ respectively. For $\chi = \varphi, \psi$ define

$$P(\chi) = \gamma_{gh} \left(P_{\chi} \otimes \sigma_p(v_{\chi}) + \sigma_p(P_{\chi}) \otimes v_{\chi} \right)$$

in Sel(\mathbf{Q}, V) to be image of $P_{\chi} \otimes \sigma_p(v_{\chi}) + \sigma_p(P_{\chi}) \otimes v_{\chi}$ in $A(K_{\varrho})^{\varrho}$ under the embedding γ_{gh} introduced in Equation (10), so that (cf. Equations (26) and (28))

(29)
$$\operatorname{Sel}(\mathbf{Q}, V) = L \cdot P(\varphi) \oplus L \cdot P(\psi).$$

Write $\varepsilon = \alpha_f$ and for χ equal to φ or ψ define

$$P_{\chi}^{\varepsilon} = P_{\chi} + \varepsilon \cdot \sigma_p(P_{\chi}).$$

The point P_{χ}^{ε} is non-zero. This follows from Equation (28) if χ is not quadratic. When χ is quadratic, one has $\sigma_p(P_{\chi}) = \chi_1(p) \cdot P_{\chi}$, hence P_{χ}^{ε} is non-zero by Equation (28) and Assumption 1.2. In order to lighten the notation, set $\kappa_{\alpha\alpha} = \kappa(f, g_{\alpha}, h_{\alpha})$. The main result Theorem A of [**BSV21a**] proves the identity

(30)
$$\log_{\beta\beta}(\operatorname{res}_p(\kappa(f, g_\alpha, h_\alpha))) = \log_{\omega_f}(P_{\varphi}^{\varepsilon}) \cdot \log_{\omega_f}(P_{\psi}^{\varepsilon}) \in L^*/\mathbf{Q}(\varrho)^*.$$

Here $\log_{\omega_f} : A(K_{\chi}) \otimes_{\mathbf{Z}} L \longrightarrow L \otimes_{\mathbf{Q}_p} K_p$ denotes the *L*-linear extension of the logarithm \log_{ω_f} on $A(K_{\chi})$ introduced in Section 2.1.4. (Note that the right hand side of the previous identity is an element of $L \otimes_{\mathbf{Q}_p} K_p$ fixed by the action of σ_p , id est of *L*.)

Recall that the roots α_{ξ} and $\beta_{\xi} = -\alpha_{\xi}$ of the *p*-th Hecke polynomial of $\xi = g, h$ are distinct, and that $\alpha_g \cdot \alpha_h = \alpha_f = \beta_g \cdot \beta_h$ (cf. Equation (1)). We can then replace in the above constructions the Hida family $\boldsymbol{\xi} = \boldsymbol{\xi}_{\alpha}$ with the one $\boldsymbol{\xi}_{\beta}$ specialising to the *p*-stabilisation $\xi_{\beta}(q) = \xi(q) - \alpha_{\xi} \cdot \xi(q^p)$ at weight one, for $\xi = g, h$. This produces a diagonal class $\kappa(f, g_{\beta}, h_{\beta})$ in the Selmer group Sel(\mathbf{Q}, W) of the *p*-adic representation $W = V(\boldsymbol{f}, \boldsymbol{g}_{\beta}, \boldsymbol{h}_{\beta}) \otimes_{w_o} L$. Fix an isomorphism of $L[G_{\mathbf{Q}}]$ -modules $\mu : W \simeq V$, and let

$$\kappa_{\beta\beta} = \mu(\kappa(f, g_{\beta}, h_{\beta})) \in \operatorname{Sel}(\mathbf{Q}, V)$$

be the image of $\kappa(f, g_{\beta}, h_{\beta})$ under the isomorphism it induces in cohomology. The analogue of Equation (30) proves that the $\alpha\alpha$ -logarithm of $\kappa_{\beta\beta}$ is non-zero:

(31)
$$\log_{\alpha\alpha}(\operatorname{res}_p(\kappa_{\beta\beta})) \in L^*.$$

Since by the definition of the balanced local condition (cf. Section 2.1.1) one has

(32)
$$\log_{\alpha\alpha}(\operatorname{res}_p(\kappa_{\alpha\alpha})) = \log_{\beta\beta}(\operatorname{res}_p(\kappa_{\beta\beta})) = 0$$

it follows that the diagonal classes $\kappa_{\alpha\alpha}$ and $\kappa_{\beta\beta}$ are linearly independent, hence

(33)
$$\operatorname{Sel}(\mathbf{Q}, V) = L \cdot \kappa_{\alpha\alpha} \oplus L \cdot \kappa_{\beta\beta}.$$

2.4.1. Conclusion of the proof. — Consider the L-basis (cf. Equations (6) and (8))

$$q_{\flat} = \frac{1}{\sqrt{m_p}} \cdot q(f) \otimes v_g^{\alpha} \otimes v_h^{\alpha} \quad \text{and} \quad q_{\natural} = \frac{1}{\sqrt{m_p}} \cdot q(f) \otimes v_g^{\beta} \otimes v_h^{\beta}$$

of $H^0(\mathbf{Q}_p, V^-)$, where $v_{\xi} = \gamma_{\xi}(v_{\xi,\cdot})$ for $\xi = g, h$ and $\cdot = \alpha, \beta$. It is the image of the $\mathbf{Q}(\varrho)$ -basis $\{q(A) \otimes v_{g,\alpha} \otimes v_{h,\alpha}, q(A) \otimes v_{g,\beta} \otimes v_{h,\beta}\}$ of $\mathcal{Q}_p(A, \varrho)$ (cf. Equation (9)) under the isomorphism $\mathcal{Q}_p(A, \varrho)_L \simeq H^0(\mathbf{Q}_p, V)$ arising from the modular parametrisation \wp_{∞} fixed in Section 2.1.1 and the embeddings γ_g and γ_h fixed in Equation (8). Define M and N in $\mathrm{GL}_2(L)$ by the identities (cf. Equations (29) and (33))

$$\begin{pmatrix} \kappa_{\alpha\alpha} \\ \kappa_{\beta\beta} \end{pmatrix} = \mathbb{M} \begin{pmatrix} P(\chi) \\ P(\psi) \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} q_{\alpha\alpha} \\ q_{\beta\beta} \end{pmatrix} = \mathbb{N} \begin{pmatrix} q_b \\ q_{\sharp} \end{pmatrix}$$

By the definition of the *p*-adic regulator $R_p^{\alpha\alpha}(A, \varrho)$ and Proposition 2.4 one has

(34)
$$R_p^{\alpha\alpha}(A,\varrho) = \frac{\log_{\alpha\alpha}^2(\operatorname{res}_p(\kappa_{\beta\beta}))}{\det(\mathsf{M})^2 \cdot \det(\mathsf{N})^2} \cdot L_p^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^5}$$

in the quotient of $\mathscr{I}^4/\mathscr{I}^5$ by the multiplicative action of $\mathbf{Q}(\varrho)^{*2}$. Set $\hat{L} = L \otimes_{\mathbf{Q}_p} \hat{\mathbf{Q}}_p^{\mathrm{nr}}$ and for $\xi = g, h$ denote by

$$\hat{\pi}_{\xi}: V(\xi) \otimes_L V(\xi) \otimes_{\mathbf{Q}_p} \hat{\mathbf{Q}}_p^{\mathrm{nr}} \longrightarrow \hat{L}$$

the $\hat{\mathbf{Q}}_{p}^{\mathrm{nr}}$ -base change of the perfect pairing π_{ξ} introduced in Section 2.1.1. Since

$$\hat{\pi}_g(\eta_{g_\alpha} \otimes \omega_{g_\alpha}) \cdot \hat{\pi}_h(\eta_{h_\alpha} \otimes \omega_{h_\alpha}) = G(\chi_g) \cdot G(\chi_h) = 1$$

(cf. Assumption 1.1.(2) and the definitions introduced in Section 2.1.2), one has

$$\mathbb{N} = \frac{1}{\sqrt{m_p}} \cdot \begin{pmatrix} \hat{\pi}_g(v_g^{\alpha} \otimes \eta_{g_{\alpha}}) \cdot \hat{\pi}_h(v_h^{\alpha} \otimes \eta_{h_{\alpha}}) & 0\\ 0 & \hat{\pi}_g(v_g^{\beta} \otimes \omega_{g_{\alpha}}) \cdot \hat{\pi}_h(v_h^{\beta} \otimes \omega_{h_{\alpha}}) \end{pmatrix}$$

(in $H^0(\sigma_p, \operatorname{GL}_2(\hat{L})) = \operatorname{GL}_2(L)$), hence

(35)
$$\det(\mathbb{N}) = m_p^{-1} \cdot \pi_g(v_g^{\alpha} \otimes v_g^{\beta}) \cdot \pi_h(v_h^{\alpha} \otimes v_h^{\beta}) \in \mathbf{Q}(\varrho)^*$$

by the normalisation imposed on the embeddings γ_g and γ_h (cf. Equation (8)). According to Equations (30), (31) and (32) one has

$$\mathbf{M}^{-1} = \begin{pmatrix} \frac{\log_{\beta\beta}(P(\varphi))}{\log_{\beta\beta}(\kappa_{\alpha\alpha})} & \frac{\log_{\alpha\alpha}(P(\varphi))}{\log_{\alpha\alpha}(\kappa_{\beta\beta})} \\ & \\ \frac{\log_{\beta\beta}(P(\psi))}{\log_{\beta\beta}(\kappa_{\alpha\alpha})} & \frac{\log_{\alpha\alpha}(P(\psi))}{\log_{\alpha\alpha}(\kappa_{\beta\beta})} \end{pmatrix}$$

(where $\log_{ii} : \text{Sel}(\mathbf{Q}, V) \longrightarrow L$, for $i = \alpha, \beta$, is a shorthand for $\log_{ii} \circ \text{res}_p$). After retracing the definitions given in Section 2.4, a direct computation yields

$$\log_{\alpha\alpha}(P(\chi)) = \varepsilon \cdot \log_{\omega_f}(P_{\chi}^{\varepsilon}) \cdot \hat{\pi}_g(v_g^{\alpha} \otimes \eta_{g_{\alpha}}) \cdot \hat{\pi}_h(v_h^{\alpha} \otimes \eta_{h_{\alpha}})$$

(in $H^0(\sigma_p, \hat{L}) = L$, where as usual χ denotes either φ or ψ) and

$$\log_{\beta\beta}(P(\chi)) = \varepsilon_{\chi} \cdot \varepsilon \cdot \log_{\omega_f}(P_{\chi}^{\varepsilon}) \cdot \hat{\pi}_g(v_g^{\beta} \otimes \omega_{g_{\alpha}}) \cdot \hat{\pi}_h(v_h^{\beta} \otimes \omega_{h_{\alpha}}),$$

where $\varepsilon_{\varphi} = 1$ and $\varepsilon_{\psi} = -1$. As a consequence

(36)
$$\frac{\log_{\alpha\alpha}(\kappa_{\beta\beta})}{\det(\mathsf{M})} = 2 \cdot \frac{\log_{\omega_f}(P_{\varphi}^{\varepsilon}) \cdot \log_{\omega_f}(P_{\psi}^{\varepsilon})}{\log_{\beta\beta}(\kappa_{\alpha\alpha})} \cdot \pi_g(v_g^{\alpha} \otimes v_g^{\beta}) \cdot \pi_h(v_h^{\alpha} \otimes v_h^{\beta}) \in \mathbf{Q}(\varrho)^*$$

by Equation (30) and Equation (8).

Equations (34), (35) and (36) give the identity

$$L_p^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^5} = R_p^{\alpha\alpha}(A,\varrho)$$

in the quotient of $\mathscr{I}^4/\mathscr{I}^5$ by the multiplicative action of $\mathbf{Q}(\varrho)^{*2}$. To conclude the proof of the Theorem stated in Section 1, it remains to prove that both sides of the previous identity are non-zero. This follows by combining Equation (30) with **[BSV21d**, Theorem A] and **[BSV21a**, Proposition 2.2], which prove the equality

$$\frac{\partial^2 \mathscr{L}_p^{\alpha\alpha}(A,\varrho)}{\partial \boldsymbol{k}^2}(w_o) = c_p(f) \cdot \frac{\deg(\wp_{\infty})}{2m_p \operatorname{ord}_p(q_A)} \left(1 - \frac{1}{p}\right)^{-1} \cdot \log_{\beta\beta}(\kappa_{\alpha\alpha}).$$

References

- [BD16] Joël Bellaïche and Mladen Dimitrov. On the eigencurve at classical weight 1 points. Duke Math. J., 165(2):245–266, 2016. 2
- [BSV21a] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. Balanced diagonal classes and rational points on elliptic curves. *Astérisque*, to appear, 2021. 3, 9, 18, 19
- [BSV21b] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. On exceptional zeros of Garrett–Hida *p*-adic *L*-functions. *Preprint*, 2021. 7, 12, 13, 14, 15
- [BSV21c] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. On p-adic analogues of the Birch and Swinnerton-Dyer conjecture for Garrett L-functions. Preprint, 2021. 1, 3, 7, 8, 12, 15
- [BSV21d] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. Reciprocity laws for balanced diagonal classes. *Astérisque*, to appear, 2021. 2, 3, 4, 5, 6, 8, 9, 10, 13, 16, 19
- [GS93] Ralph Greenberg and Glenn Stevens. *p*-adic *L*-functions and *p*-adic periods of modular forms. *Invent. Math.*, 111(2):407–447, 1993. 13, 14
- [Hid86] Haruzo Hida. Galois representations into $GL_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms. Invent. Math., 85(3):545–613, 1986. 2
- [Hsi21] Ming-Lun Hsieh. Hida families and p-adic triple product L-functions. Amer. J. Math., 143(2):411–532, 2021. 2
- [MTT86] B. Mazur, J. Tate, and J. Teitelbaum. On *p*-adic analogues of the conjectures of Birch and Swinnerton-Dyer. *Invent. Math.*, 84(1):1–48, 1986. 2
- [Ven13] Rodolfo Venerucci. p-adic regulators and p-adic families of modular forms. Ph.D. Thesis, Universitá degli Studi di Milano, 2013. 3
- [Ven16a] Rodolfo Venerucci. Exceptional zero formulae and a conjecture of Perrin-Riou. Invent. Math., 203(3):923–972, 2016. 3
- [Ven16b] Rodolfo Venerucci. On the *p*-converse of the Kolyvagin–Gross–Zagier theorem. Comment. Math. Helv., 91(3):397–444, 2016. 3

Massimo Bertolini & Marco Adamo Seveso & Rodolfo Venerucci

 $\mathbf{20}$