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Abstract. — This article proves a case of the p-adic Birch and Swinnerton-Dyer
conjecture for Garrett p-adic L-functions of [BSV21c|, in the imaginary dihedral
exceptional zero setting of extended analytic rank 4.

1. Statement of the main result

Let A be an elliptic curve defined over the field Q of rational numbers, having
multiplicative reduction at a rational prime p > 3. Let K be a quadratic imaginary
field of discriminant dx coprime to the conductor N4 of A, and let

vg: Gk — Q" and v, : Gx — Q°

be finite order characters of the absolute Galois group G = Gal(Q/K) of K, where
Q is the field of algebraic complex numbers. Write N4 = N, - N, where each prime
divisor of N (resp., N ) splits (resp., is inert) in K. We make the following

Assumption 1.1. —
1. (Heegner assumption) The prime p is inert in K (id est divides Ny ) and N,
s a square-free product of an even number of primes.
2. (Self-duality) The central characters of vy and vy, are inverse to each other.
3. (Cuspidality) The characters vy and vy, are not induced by Dirichlet characters.
4. (Local signs) The conductors of vy and vy, are coprime to dg - Ny.

Let f=3,51an(f) - ¢" in S2(T'o(Ny)) be the newform of conductor Ny = Ny
attached to A by the modularity theorem. For ve = vy, v, let g : Gq — GL2(C)
be the odd irreducible (cf. Assumption 1.1.(3)) Artin representation of Gq induced
by v¢, corresponding by modularity to the cuspidal weight one theta series

€= > we(a)- g™ € Si(Ne, xe)-
(a,fe)=0OK
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Here a runs the set of non-zero ideals of Ok coprime to the conductor f¢ of vg,
Na =[Ok /a|, N¢ = di - Nf¢ and x¢ = ek - V", where ek : (Z/dxZ)* — po is the
quadratic character of K and v Gq — Q* is the central character of ve. Since p
is inert in K by Assumption 1.1.(1), the p-th Hecke polynomial of ¢ equals X2+ x¢(p)
(id est the p-th Fourier coefficient of £ is equal to zero). In addition x¢(p) is non-zero
by Assumption 1.1.(4), hence X2 + x¢(p) = (X — ) - (X — B¢) has distinct roots ag
and B¢ = —ag. According to Assumption 1.1.(2) one has ¢y - oy, = B4 - B, = £1 and
ag - Bn = By - an = —ag - ap, hence we can, and will, assume

(1) ap=ag-oap=P8¢-Br and —ay=p4-an=ay-F

by reordering the roots (g, B¢) of X2 + x¢(p) if necessary, where oy = a,(f) = 1.

Fix an algebraic closure Qp of Qp, an embedding i, : Q — Qp, and a finite
extension L of Q, containing (the images under i, of) the values of v¢ and a¢, for
& = g,h. Denote by £, in S1(pNe, x¢) the p-stabilisation of { with U,-eigenvalue .
According to [Hid86, BD16], there exist unique Hida families

F=Y anlf)-q" € Ola] and €,=) an(€n) ¢" € &,
n=1 n>1

specialising to f = f, and &, = §, ; in weights two and one respectively. Here 0% is
the ring of bounded analytic functions on a (small) connected open disc Us centred
at 2 in the weight space W = Homcom(Z;‘,, C;‘,) over Q,. For each k in Ur N Zy4, the
weight-k specialisation f;, of f is the ordinary p-stabilisation of a p-ordinary newform
fr of weight k and level I'g(Ny/p). Similarly &g is the ring of bounded analytic
functions on a connected open disc Ug  centred at 1 in W, = W ®q, L, and §,, ,, is
the p-stabilisation of a newform &, of weight u and level 'y (N¢ ) for each I in Ug NZ> 1,
with {1 = &. In order to lighten the notation, we write Ug = Ug_ and O¢ = Ok _.

Set 0 = 0y @ on and Opgn = OpRq, Og®1,0p. Under Assumption 1.1, Theorem A
of [Hsi21] associates with (f,g,,ha) a Garrett—Hida square root p-adic L-function

gpaa(A’ Q) = gp(-ﬁgaa hOé) € ﬁfgh
(denoted E{, in loc. cit., where F' = (f,g,,ha)), whose square

Lga(Aa Q) = Lp(fagonh'a) = Zp(f7ga7ha)2

interpolates the central critical values L(fx ® g1 @ b, (k+1+m —2)/2) of the Garrett
L-functions attached to (fx, gi, hm) for classical triples (k,l,m) in the f-unbalanced
region, viz. triples (k,I,m) in Uy x Ug X Up N Z:;l satisfying k > [ + m. The first
equality in (1) implies that L5 (A, ¢) has an exceptional zero in the sense of [MTT86]
at the “Birch and Swinnerton-Dyer point” w, = (2,1, 1) (cf. [BSV21d, Section 1.2]).

Fix a number field Q(g) containing the values of v4 and vy, and for £ = g, h fix a
Q(0)[Gql-module Vg, two-dimensional over Q(o), affording the Artin representation
ge. Define A(K,)? = HO(Gal(K,/Q). A(K,) Gz Vi), where Vy, = V, ©q(y Vi and
K, is the number field cut-out by ¢ = g4 ® g5. Following [MTT86] one exploits
Tate’s p-adic uniformisation to define an extended Mordell-Weil group

AT<KQ)Q = A(Kg)g @ Qp(Aa Q)a
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where Q,(4, ¢) is a two-dimensional Q(p)-vector space depending only on the base
change of A to Q, and on the restriction of Vg, to Gq, (cf. Section 2.1.3 below).
Moreover, Section 2 of [BSV21c] constructs a Garrett—Nekovdi* height-pairing

(- '>>fgahu P AT (K ,)® ®Q(o) AN(K,)? — /.72,

where .# is the kernel of evaluation at w, on Opgpn. It is a skew-symmetric bi-
linear form, arising from an application of Nekovai’s theory of Selmer complexes
to the big self-dual Galois representation associated with (f,g,,hqs). After setting
rt = dimgy) A(K,)?, Conjecture 1.1 of [BSV21c| predicts that Ly*(A, o) belongs to

o' — #7'+1 and that its image in (.#7 /.77 1) /Q(0)*2 is equal to the discriminant

RSQ(A, 0) = det («Pia Pj»fgaha )1@,3‘@1

of the p-adic height (-, .»fg h.» Where Pr,..., Pt is any Q(p)-basis of AT(K,)e.
The following theorem is the main result of this note.

Theorem. — Assume that Assumption 1.1 and Assumption 1.2 (stated below) are
satisfied. If L(f ® g ® h, s) has order of vanishing 2 at s =1, then

dimqy) AT(K,)? =4, L3%(A0) € o' —7°

and the equality
ao 5 ao
L3*(A, 0) (mod .#7) = R;*(A, 0)
holds in the quotient of #*/.7° by the multiplicative action of Q(0)*?.

In the present setting, the Garrett L-function L(f ® g® h, s) factors as the product
of the Rankin—Selberg L-functions L(A/K, ¢, s) and L(A/K,,s), where ¢ = v, - v,
and ¥ = v, - vy, and vy, is the conjugate of vy, by the nontrivial element of Gal(K/Q).
Note that ¢ and ¢ are dihedral by Assumption 1.1.(2), and that both L(A/K,p,s)
and L(A/K,1,s) have sign —1 in their functional equation by Assumption 1.1.(1).
In particular the assumptions of the Theorem imply that L(A/K, x,s) has a simple
zero at s = 1 for x = ¢ and x = ¢, hence A(K,)? is two-dimensional over Q(¢) and
generated by Heegner points by the Kolyvagin—Gross—Zagier—Zhang theorem.

If x = ¢,v is quadratic, Q**X) = Q(y/cdy, /cdy), where ¢, d; and dy are fun-
damental discriminants such that dg = dy - do. (We consider 1 as a fundamental
discriminant). In this case L(A/K, x,s) further factors as the product of the Hasse-
Weil L-functions L(A/Q, x1,s) and L(A/Q, x2, s) of the twists of A by the quadratic
characters y; of Q(v/cd;). By Assumptions 1.1.(1) and 1.1.(4), we can order x; and
X2 in such a way that sign(A4,x1) = —1 and sign(A4, x2) = +1, where sign(A4, x;) is
the sign in the functional equation satisfied by L(A4/Q, xi, S).

Assumption 1.2. — If x = ¢ or x =1 is quadratic, then x1(p) = ay.

Under the assumptions of the Theorem, the results of [BSV21d, BSV21a| imply
that Ly*(A, o) belongs to .#* — .#°. The actual contribution of this note is the proof
of the identity L5(A, o) (mod I5) = Ry (A, 0), which grounds on the results of loc.
cit. and an extension of the techniques of [Venl3, Venl6a, Venl6b].
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2. Proof of the main result
2.1. Preliminaries. —

2.1.1. Galois representations. — To lighten the notation, set (g, h) = (g, ho). For
& = f,g,h let V(&) be the big Galois representation attached to & (cf. Section 5
of [BSV21d]). Under the current assumptions, it is a free O¢-module of rank two,
equipped with a continuous O¢-linear action of Gq. For each u in U¢NZy ., evaluation
at u on Ug induces a natural specialisation isomorphism

where £ = Q, if £ = f and E = L if £ = g, h, where - ®,, E' denotes the base change
along evaluation at u on O, and where V(&,) is the homological p-adic Deligne
representation of £, with coefficients in E (cf. Section 2.4 of [BSV21d]).

When € = f and u = 2, the representation V(f) = V(f5) is equal to the f-isotypic
component of the cohomology group Hj (X1(Ny)q,Qp(1)), where X1(Ny)q is the

base change to Q of the compact modular curve X;(Ny) of level 'y (Ny) defined over
Q. Fix a modular parametrisation (viz. a non-constant morphism of Q-curves)

oo : Xl(Nf) — A,

which induces an isomorphism of Q,[Gq]-modules between V() and the p-adic Tate
module V,(A) = H} (Aq, Qp(1)) of A with Q,-coefficients.
When € = g, h and v = 1, the L[Gg]-module

V() =V(€) @ L

affords the dual of the Deligne—Serre representation of &, id est the induced from Gy
to Gq of the character v with coefficients in L. (Recall that &; = .. Here we favour
the lighter notation V' (§) for V(&) ®; L over the more consistent one V'(&,).)

There exists a perfect Gq-equivariant and skew-symmetric pairing

g - V(f) ®ﬁ§ V(s) — ﬁﬁ(X& : ng_cl)7
where xcyc : Gq — Zj, is the p-adic cyclotomic character and X4l Gq — ﬁ’g

cyc
satisfies x%." (0)(u) = Xeye(0)* ™! for each o in Gq and each u in Ug N Z. (With the
notations of [BSV21d, Section 5|, the pairing m¢ is the composition of the twist by
Xe - X% of the Og-adic Poincaré duality (., Vg V(E) ®o, VT(E) — O defined in
[BSV21d, Equation (103)] with idv(g)@)w;,&lp, where wyp ¢ V*(€) (xe - X% = V(€)
is the O¢-adic Atkin-Lehner isomorphism defined in [BSV21d, Equation (114)].) Up
to sign, the pairing 7y : V(f) ®q, V(f) — Q,(1) arising from the base change of 7
along evaluation at & = 2 on ¢ and the specialisation isomorphism ps is the one in-
duced on the f-isotypic components by the Poincaré duality on H}, (X (Ny)gq, Qp(1)).
If £ = g, h, the weight-one specialisation of ¢ yields a perfect skew-symmetric duality

me : V(§) @ V(§) — Lxe)-

Identify Gq, with a subgroup of Gq via the embedding i, : Q— Qp fixed at the
outset, and let a,(§) : Gq, — Of be the unramified character sending an arithmetic
Frobenius to the p-th Fourier coefficient a,(&) of £. In the present setting there is a
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natural short exact sequence of 0¢[Gq,]-modules V(&) < V(§) —» V (€)™, where
V(&)" and V(&)™ are free O¢-modules of rank one and Gq, acts on them via the
characters x¢ - %' - @,(€) " and a, (&) respectively (cf. Section 5 of [BSV21d]). If
& = f, the specialisation isomorphism ps : V(f) ®2Q, =~ V(f) identifies V(f)” ®2Q,
with the maximal p-unramified quotient of V(f) and V(&)" ®2 Q, with the kernel
V(f)* of the projection V(f) — V(f)~. If £ = g, h define

V(€ a=V(E) ® L and V(&)s=V(€)" @1 L,

so that V(§), (for v = «, §) is the submodule of V/(£) on which an arithmetic Frobe-
nius in Gq, acts as multiplication by ¢, and (as L[Gq,]-modules)

V(&) =V(§a®V(E)s
Define
V =V(f,g.h) =V (f)2q,V(9)&LV (h)(Etgn),

where Zg¢gp = x£§,§k7t7m)/2 1 Gq — Of,y, satisfies Eggn(0)(w) = chc(o)w

for each o in Gq and each w = (k,l,m) in Uy x Uy x Up, N Z3, and
V = V(f,9.h) = V(f) ®q, V(g) &1 V(h).
Evaluation at w, = (2,1,1) on Ofgp induces a specialisation isomorphism
Pwy t V @y, L2 V.

The product of the pairing m¢ for & = f, g, h yields a perfect, Gg-equivariant and
skew-symmetric duality (cf. Assumption 1.1.(2))

Tfgh : Vv ®(jfgh V — ﬁfgh(l),
whose base change along evaluation at w, on Opgp, recasts (via p,,, ) the perfect duality
Trgh VLV — L(1)

defined by the product of the perfect pairings m¢ for £ = f, g, h.

For £ = f,g,h let .Z*V(§) be the decreasing filtration on the Opgn[Gq,]-module
V(¢) defined by ZF1V (&) = V(&)F, FV(€) = V(€) for each i <0 and FV (&) =0
for each i > 2. Define the balanced submodule .#2V of V by

FV =] Y FV(f)Pq,F V() LFV(h)| Qep,n Egn,
a-+b+c=2
and the f-unbalanced submodule V' of V by
VT =V(f)T®q,V(9)&LV (h) @y, Efgh-

These are Gq,-invariant free Ofgp-submodules of V' of rank 4 = %rank@fghV, which
are maximal isotropic with respect to the skew-symmetric duality mrqn. After setting

Vo =V/VT and V;=V(f)"8q,V(9) &LV (h)T ®ay,, Ergn,
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one has a commutative diagram of Opgn[Gq,]-modules

(2) VT vy

T

‘/f C vf V-

with i and ¢ the natural inclusions and p™~ the natural projection. Note that p~oig
and iy have the same image, hence the morphism py is defined by the commutativity
of the diagram. One defines the balanced local subspace H,,(Q,, V) of HY(Q,, V)
to be the image of the morphism induced in cohomology by ¢g. This morphism is
injective (cf. Section 7.2 of [BSV21d]), hence gives a natural identification

(3) Hlial(QpaV) = Hl(QPag\Qv)

Set VE = V(f)jE ®q, V(g) ®1 V(h). For each pair (i,j) of elements of {a, 3}
define V;; = V(f) ®q, V(9)i ®L V(h);, where - is one of symbols @), + and —. Then
V' =V ® Vs ® Vi ® Vig

as L[Gq,]-modules, and Equation (1) implies
(4 HYQpV7)=Ve® Vs and H(Qp, VF(-1)) = Vi (—1) & Vgs(-1).
The specialisation isomorphism p,,, identifies v* ®@u, Ly, F2V @y, L and Vi ®y,, L

with V=+, #2V = Vag+ V;ﬁ + V;a and Vis respectively. In particular the base change
of the commutative diagram (2) along evaluation at w, on Ogp, is equal to

(5) FVC Ty

1

_ if _
Vﬁﬁ >V

with i and i; the natural inclusions and p~ the natural projection.

The Bloch-Kato finite subspace of H'(Q,, V) is equal to the kernel of the map
p~: HY(Q,,V) — H*(Q,, V™), cf. Section 9.1 of [BSV21d|. (With a slight abuse of
notation, we denote by the same symbol a morphism of Gq,-modules and the maps it
induces in cohomology.) By construction (cf. Equation (2) and (5)), the specialisation
K = pw, (k) in H(Q,,V) at w, of a local balanced class k in H! ;(Q,, V) belongs
to the kernel of the map H'(Qp, V) — H'(Q,,V;;) for ij = aa,af, fa. Then r is
crystalline precisely if it belongs to the kernel of H(Q,, V) — H'(Q,, Vﬁ_ﬁ), id est
if pr(k) in H'(Qp, V¥) (cf. Equation (3)) belongs to the kernel of the specialisation
map pu, : H'(Qp, V) — H'(Q,, V). Since the ideal .7 of Opgp is generated
by a regular sequence and H?(Q,, Vﬁ_ﬂ) = 0, the specialisation map p,,, induces an
isomorphism H'(Q,, V) ®u, L =~ H'(Qp, Vy3). We have proved the following

Lemma 2.1. — Let k be a local balanced class in H{,,(Qp, V) and set k = py,, (K)
in HY(Q,, V). Then k is crystalline if and only if ps(k) belongs to .7 - H (Qy, V7).
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2.1.2. p-adic periods. — Let Qgr be the p-adic completion of the maximal unramified
extension of Q,, let ¢ = ¢(x,4) be the conductor of x4, and for { = g, h define

G(X§) = (_c)ig . Z Xﬁ(a)_l ® e?ﬂ'ia/c € Dcris(X§)7
a€(Z/cZ)*

where iy = 0, i, = —1 and Deyis(xe) is a shorthand for H%(Q,, L(x¢) ®q, Q;r).

As explained in Section 3.1 of [BSV21c¢], for &€ = f,g,h the module D(§)~ of
Gq,-invariants of V(£)_®QPQ2r is free of rank one over O, and its base change
D(¢), = D(&)~ ®, L along evaluation at a classical weight u in Ug N Zx5 on O is
canonically isomorphic to the &,,-isotypic component L-&,, of S, (pNe, x¢) . Moreover
there exists an O¢-basis

we € D(&)i
whose image we  in D(§), corresponds to &, under the aforementioned isomorphism

for each win UgNZ 2. (We refer to loc. cit. and the references therein for the details.)
The weight-two specialisation of wy equals the de Rham class

wf € Deis(V(f)7) = Fil’Dar (V (f))

associated with f under the Faltings—Tsuji comparison isomorphism between the étale
and de Rham cohomology of X1(Ny)q,. (The isomorphism in the previous equation
arises from the projection V(f) — V(f)~.) Denote by

()5 Dar(V(f)) ®L Dar(V(f)) — L
the perfect duality induced by 7, and define ny in Dar(V(f))/ Fil® by the identity
<77f7 wf>f =1

For £ = g, h, the weight-one specialisation of wg yields a class

Weo € Deris(V(€)a) = Deris(V (€))7
(with ¢ the crystalline Frobenius). The pairing m¢ = m¢ ®1 L induces a perfect duality
()¢ : Deris(V(€)) ©L Deris(V(€)) — Deris(xe)
and one defines 1, in Desis (V(€)3) = Deris(V(€))?=¢ by the identity
(Me > wea)e = GXe)-

Along with wy, it is important to consider another p-adic period

4(f) € Dexis(V(f)~) = Fil’ Dar (V(f))

arising from the Tate uniformisation of Aq,, cf. Section 2 of [BSV21b]. Let K, be
the completion of K at p (namely the quadratic unramified extension of Q,). Tate’s
theory gives a rigid analytic uniformisation prate : fo K, — Ag,, unique up to
sign, with kernel the lattice generated by the Tate period g in pZ, of Aq,. One sets

6)  q(A) =p (prare(*Vaa)) € Vp(A)™ and q(f) = /iy - oo (a(A)),
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where »%/ga is any compatible system of p™-th roots of g4, poo : V(f)™ >~ Vp(A4)~
is the isomorphism arising from the fixed modular parametrisation o, m, = 1 if
oy =1 and my, = dg if ay = —1. As in loc. cit., define the generators

Jaa = q(f) ®wg, @wp, and qgg = q(f) @1y, @1,
of the subspaces V,, and Vj; respectively of H(Qp, V™) = Deyis(V7)P=1.

2.1.3. The Garrett—-NekovdF p-adic height pairing. — Section 2 of [BSV21c| con-
structs a canonical skew-symmetric p-adic height pairing

(s D pgn t HH Q. V) @L HI(Q,V) — 5/.5°

on the extended Selmer group H } (Q, V) associated with the Greenberg local condition
at p arising from the inclusion it : VT —— V. Let Sel(Q, V') denote the Bloch-Kato
Selmer group of V, which is equal to the kernel of H'(Q,V) — H*(Q,, V™) in the
present setting (cf. [BSV21d, Section 9.1]). One has a commutative exact diagram

(1) 00— HQ,, V") —

H}(Q,V) ——=Sel(Q,V) —=0

HY(Q,,V*) ——~ HY(Q,, V)

and there exists a unique section 1, : Sel(Q,V) «— fI}(Q, V) of 7 such that the

composition 2, (-)T takes values in the finite subspace H{ (Q,, V1) of H(Q,, V™)
(cf. Section 2.3 of [BSV21c|). As in loc. cit. we use the maps j and 4, to identify
Nekovai’s extended Selmer group H}(Q, V') with the naive extended Selmer group

Sel'(Q,V) = H°(Q,, V™) & Sel(Q, V).
Enlarging L if necessary, for £ = g, h fix an isomorphism of L[{Gg]-modules

(8) Ve : Ve @q(e) L = V(€) such that e (e (2) @ 7¢(y)) € Qleo)(xe)
for each x and y in V¢ (cf. Equation (4) of [BSV21c]). Set (cf. Equation (6))
(9) Qp(4,0) = H*(Qp, Q(0) - 4(A) ®qe) Van)-

The modular parametrisation po : X1 (Ny) — A fixed in Section 2.1.1, the global
Kummer map on A(K g)®Qp and the isomorphisms v, and 7, induce an embedding

(10) Yon : AT(K,)? — Sl (Q, V) = H{(Q, V),
and one defines the Garrett—Nekovar p-adic pairing (cf. Section 1)
(D pgn : AT(Ko)® ©qqp AT(Ko)* — 7/.57
to be the restriction of the canonical height (-, )¢, on ﬁ}(Q, V') along v4,. Note

that the discriminant R}®(A, o) of (-, ) 45, on AT(K,)? (cf. Section 1) is independent
of the choice of the modular parametrisation ., and the isomorphisms ~, and ;.
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2.1.4. Logarithms. — Let Var = Dgr(V') be the de Rham module of V- =V (f, g, h).
The duality 75 : V @1 V — L(1) induces a perfect pairing
<~, '>fgh Var ®r Var — L.

After identifying Var with Dar(V(f)) ®q, Deris(V(9)) ®L Deris(V(R)) and L with
Deris(Xg) ®1 Deris(X#) under the natural isomorphisms (cf. Assumption 1.1.(2)), the
pairing (-, ), agrees with the product of the pairings (-, ), for { = f, g, h.

The Bloch-Kato exponential map exp,, gives an isomorphism between the tan-
gent space Var/Fil” of V and the finite (viz. crystalline) subspace H} (Qp,V) of

H'(Q,, V). Denote by log, the inverse of exp, and define the aa-logarithm
108, = (log, ,wf @1y, @ nha>fgh cHE(Q,p, V) — L

to be the composition of log,, with evaluation at wy ® 1y, ® 1y, in Fil’Vyr under the
perfect duality (-, -) fgn- Similarly define the 58-logarithm

loggg = (log, ,ws @ wg, @wp, ) : Hi,(Qp, V) — L.

(Note that log;; factors through the projection Hi (Qp, V) — H'(Qy, Vii).)
Set tgar,x, (f) = HY(K,, V(f) ®q, Bqgr)/Fil” and consider the composition

log, ¢ A(Kp)®Qp = Hén(va Vp(A)) ~ Hén(Kp» V(f)) = tng,Kp(f)a
where the first isomorphism is the local Kummer map, the second is induced by the
fixed modular parametrisation po, : X1(Ny) — A (cf. Section 2.1.1), and the third
is the inverse of the Bloch—Kato exponential map. For x = ¢, (cf. Section 1) define
logwf = <10gA7p 7wf>f : A(KX) — K;m

where K, is the ring class field of K cut-out by x and A(K,) is viewed as a subgroup
of A(K,) via the embedding i, : Q — Q, fixed at the outset. (Recall that p is inert
in K and that x is dihedral, hence pOk splits completely in K, .)

2.2. Big logarithms and diagonal classes. — Let

Ly HY(Q,, Vi) — I
be the big logarithm map constructed in Proposition 7.3 of [BSV21d] using the work
of Coleman, Perrin-Riou et alii. (Note that the tame character xs of f is trivial in
the present setting and that the logarithm £ takes values in .# by the exceptional
zero condition af = ay - av,.) With a slight abuse of notation denote by

L Hy(Qp V) — I

also the composition £ o py (cf. Equation (3)).

Let H{,,(Q,V) be the group of global classes in H'(Q, V) whose restriction at
p belongs to the balanced local condition H{,,(Q,, V). According to Theorem A of
[BSV21d] (cf. [BSV21a, Section 2.1]) there exists a canonical big diagonal class

K/(fvgvh) = K’(fagonh(l) € Héal(Qa V)
such that

(11) gf(resp(’%(f7g7h’))) :"E/ﬂpaa(Av Q)
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Define the diagonal class

’%(f> Ja, ha) = Pw, (K(fmgav ha))

to be the image in H*(Q, V) of x(f,g,h) under the map induced in cohomology by
the specialisation isomorphism p,,, : V ®,, L >~ V. Since by assumption the complex
Garrett L-function L(A,9,s) = L(f ® g ® h,s) vanishes at s = 1, Theorem B of
[BSV21d] implies that k(f, ga, ha) is crystalline at p, hence a Selmer class:

(12) ([, 9ar ha) € Sel(Q, V).

Identify Ofgp with a subring of the power series ring L[k — 2,1 — 1, m — 1], where
k — 2 in Of is a uniformiser at the centre 2 of Uy, and I — 1 and m — 1 are defined
similarly. In light of Equation (12) and Lemma 2.1 there exist local classes Qw,
and 9, in H'(Q,, V}) satisfying the identity

(13) pr(resp(k(f, g, h Zﬁju (u— ).

Equation (11) gives

(14) LA fo V) - (u—u,) € 72

The following key lemma, proved in Part 1 of Proposition 9.3 of [BSV21d], gives an
explicit description of the linear term of Z¢(2).,) at w,. Identify the p-adic completion

of the Galois group of the maximal abelian extension of Q, with that of Q, via the

local Artin map, normalised in such a way that p~! corresponds to the arithmetic
Frobenius. This identifies H'(Q,, Q) with Homeont (Q}, Qp), hence (recalling that

Gq, acts trivially on Vj,, cf. Equation (4))

(15) HY(Q), Vi) = Homeont (@ Q) ®a, Vi,

and the Bloch-Kato dual exponential expy on H HQp, Vﬁ;ﬁ) satisfies
exp, (¢ ®v) = ¢(e(1)) - v

in Dms(VﬂB) Vﬁ,@ for each ¢ in Homcont(Qp, Q) and v in Vﬂﬁ, where

e(1) = (1 +p)®log,(1 +p)~" € Z;0Q,.
For z = ¢ ® v in H'(Q,, Vﬂ_ﬁ) (with ¢ and v as above) and ¢ in Q;®Qp, set
z(q) =¢(q)-v and x(q)s = (x(q),f ® Wy, @ Wh,) sy, -

If (&, u) denotes one of the pairs (f, k), (g,1) and (h, m), define
Dy : HY(Q,,Vy) — L

to be the linear map which on 9) in H'(Q,, V;) takes the value

(16) Du(D) = 2((1‘_”29) oY)y — €2 n(e(1))).



HEEGNER POINTS AND EXCEPTIONAL ZEROS OF GARRETT p-ADIC L-FUNCTIONS 11

Here y = p,,, (9) in H(Q,, Vip) is the wo-specialisation of ), u, = 2 if u = k and
u, =1if u=1m, and £¢"in L is the analytic £ -invariant of &, defined by

L' = —2 - dloga,(§)(uo)
(where dloga = a’/a for a in &F). We can finally state the aforementioned key lemma.

Lemma 2.2. — For each local class ) in H'(Q,, Vf) one has
Z#() (mod S#?) = ZD — Up).

For each pair (u,v) of distinct elements of {k,l,m}, define (cf. Equation (13))
Du,u(“(fvga h)) = Du(gju) and Du,v(“(fyga h)) = Du(gjv) + Dv(gju)

Equation (14) and Lemma 2.2 give the following lemma (which implies that the deriva-
tives D.(k(f,g,h)) are independent of the choice of the classes 9),, satisfying (13)).

Lemma 2.8. — One has the following equality in .#2/.73.
Z(A, ) (mod #?) = ZD“ o(K(f g, h)) - (U — 1) (v —v,)

2.3. An exceptional zero formula & la Rubin—Perrin-Riou. — For a positive
integer n and each 2n-tuple y = (y1,. .., ya2n,) of elements of H}(Q, V') denote by

'%;a(y) = Pf((«yz‘ayj»fgh)1gi,jg2n) € jn/fnJrl

the Pfaffian of the skew-symmetric 2n x 2n matrix whose ij-entry is (s, y;) fah’ and
define the extended Garrett—Nekovdi p-adic height pairing

hee :Sel(Q, V) @1, Sel(Q, V) — 52/ .73
to be the bilinear form which on y ® ¢ in Sel(Q, V)®? takes the value
he(y @ y') = 5 (daa 458, Y, Y')-
The aim of this section is to prove the following proposition.
Proposition 2.4. — Up to sign, one has the equality
Bgo‘(ﬁ(f, Jasha) @) = ca - log,, (resy(+)) - £ (A, 0) (mod I3)

mp‘(l p 1) -ord (qA)
deg(poo)

of 2%/ .73 -valued L-linear forms on Sel(Q, V), where cq =

We divide the proof of Proposition 2.4 in a series of lemmas. Define

ep(f) = (a(f), gy
in L* (cf. Section 2.1.2). Asin Section 2.2, identify H'(Q,, Q,) with Homeont (Q}, Qp)
via the local Artin map (sending p~! to an arithmetic Frobenius), and set
log, = log, —£¢" - ord, € H'(Q,, Q,) ®q, L,

where log, : Q5 — Q,, is the (branch of the) p-adic logarithm (vanishing at p) and
ord, : Qj — Z is the p-adic valuation normalised by ord,(p) = 1.
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Lemma 2.5. — For each Selmer class y in Sel(Q, V') one has
2 (455, 9] g = co(f) - 108aa(1e5,(y)) - (k — L —m)

and

2 - deg(poo o . o .
Sy g = () 5

Proof. — See Equations (17) and (27) of [BSV21b]. (Note that the p-adic logarithm
denoted by log,,, in [BSV21b] is equal to (log,,qss) rgn = —¢p(f) - 10844-) O

Let C2,,:(Qp, V™) be the complex of (inhomogeneous) continuous cochains of Gq,

with values in the quotient p~ : V. — V'~ of V' (cf. Section 2.1.1), and let
<'7 '>Tate : Hl(Qp7 V_) L Hl(Qpa V+) — L
the local Tate pairing arising from the perfect duality msgn : V@1V — L(1). Recall
the morphism - : H{(Q,V) — H'(Qp, V') introduced in Diagram (7).
Lemma 2.6. — There exist 1-cochains Xg, X; and X, in CL . (Qp, V™) such that
(17) p(res, (k(£, g, h))) = cl( 3 Xu-(u- uo)),
id est Y, Xu - (U —u,) is a 1-cocycle representing p~ (ves,(x(f, g, h))), and
«H(f, Ja, hoa), y>>fgh = Z <Fu» y+>Tate ! (’U, - uo)

u
for each extended Selmer class y in H}(Q7 V), where
tu = cl(puw, (Xu))
is the local class in H'(Q,,V ™) represented by the 1-cocycle py, (Xu)-

Proof. — This follows from Equations (30)—(37) in Section 3.4 of [BSV21c|. (The
paragraphs containing the aforementioned equations do not use the non-exceptionality
assumption [BSV21c, Equation (26)] imposed in [BSV21c, Section 3].) O

Fix in what follows 1-cochains X}, X; and X, satisfying the conclusions of Lemma
2.6. For i = aa, 88 let pr; : HY(Q,, V™) — H'(Q,,V;”) be the natural projection.

Lemma 2.7. — For u equal to one of k, I and m, one has
Plaa (Iu) = My - 1ng ®qaa
in HY(Qp, Vo) = HY(Qyp, Qp) ®Q, Vau for some ji, in L.

Proof. — Set koo = K(f,9a;ha). As explained in Section 3.3 of [BSV21b] (cf.
Equation (15) of loc. cit.) one has (cf. Diagram (7))

+ mp 5 *

in the direct summand
Hl(Q;m Vﬁ—%) = Hl(Qpa Q;D(l)) ®Qp Vﬁ—%(il)
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of H(Q,, V™), where ¢, in Vl;ﬁ(—l) is the dual basis of ¢,o under the pairing
Trgn(—1). It then follows from Lemma 2.6 and local class field theory that

<<Haa,q5ﬂ fgh — ZFU qA _uo)v

where the class 19 in H'(Q,, Q,) is defined by the identity

praa (Xu) = ;30‘ ® Jaa-

On the other hand, since log, (resy(kaa)) = 0 (because kqq is a balanced class, cf.
Section 9.1 of [BSV21d]), Lemma 2.5 and the skew-symmetry of (-, ")) s, vield

{(Faa qﬁﬂ»fgh = — (a8, “aa»fgh =0,

hence t;%(ga) = 0, id est tg,* is a multiple of log, ,. The lemma follows from this and
Theorem 3.18 of [GS93], according to which log, , equals logy. O

Lemma 2.8. — Assume that either £5" 7 £g% or £3" # L. Then the local classes
Ik, & and Iy, belong to the direct summand H'(Q,, Vgﬁ) of HY(Q,, V7).

Proof. — The proof uses the main properties of the Bockstein map
Brgn : H(Qp, V™) — HY(Q,, V™) ® 5.5

introduced in [BSV21b, Section 3.1.1]. As &(f, gas ha) = pw,(k(f,g,h)) is crys-
talline at p, Lemma 2.1 shows that there exist 3g, 3; and 3,, in Hl(Qp7 V}) such
that

(18) pr(resp(k(f,g,h 23"' — Up)-

Recall the specialisation isomorphism py, : Vi ®u, L > V5 arising from evaluation
at w, on Ogp (cf. Section 2.1.1), set o = pu, (3u) in H'(Qy, V) and define

Vf—Zju' 711,0

in H(Q,, Vig) ® F/F% Tt follows from Equations (17) and (18) and Lemma 3.2
of [BSV21b]| that the difference ), ru - (u — u,) — V¢ belongs to the image of the
Bockstein map B;gh. There exist then g and v in L such that

(19) D otu (u—uo) = Vi — v Bru(488) = 1 Brgn(daa)-

Equation (8) of [BSV21b] shows that 3}, (gss) belongs to H'(Q,, V) @1 S/ 52,
hence Lemma 2.7 and the previous equation give

20 Z Hau * Ing ®Q(1a : Z praa ;u : - uo) =u- praa(ﬂigh(QQa))

(where in the right-most term we write again pr,,, to denote the .# /.#%-base change
of the projection pr,, : H'(Q,, V™) — HY(Q,,V,,)). The computations carried
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out in Sections 3.3 and 3.4 of [BSV21b| (see in particular Equation (30) of loc. cit.
and the discussion preceding it) give the following equality in H(Q,, V., )®L.¥ /.7

2 pr@a(’B;gh(q“a)) = Z loge ®qaa - (U — uy),

where (&,u) = (f,k),(g,1), (h,m). Together with Equation (20) this implies
2 =, 2p - logy = p- logg and 2p, - logy = - logy,

thus 4 = ur = 1 = pm = 0 by the assumption on the analytic .Z-invariants made
in the statement. The lemma follows from this and Equation (19). O

Let (u,&) denote one of (k,f), (I,g) and (m,h). For each local class z in
H'(Q,, V™), denote by x5 = prgg(z) in Hl(QmVﬁ*ﬁ) its BB-component and (with
the notations introduced in Section 2.2) set

Cu(z) = (=1)" - (25(p™ ")y — L - wpp(e(1)))-
For each pair (u,v) of distinct elements of {k,l,m} define
15u7u = ly(tw) and ﬁu,v =Ly (tw) + Lo (tu)-
Lemma 2.9. — For each pair (u,v) of elements of {k,l,m} one has
2(1=p7") - Dun(k(f,9,h)) = Duo.

Proof. — We give the proof for (u,v) = (k,l) and (u,v) = (k, k), the other cases
being similar. We use the notations introduced in the proof of Lemma 2.8. Section 3
of [BSV21b] (see in particular Equations (8) and (30) of loc. cit.) gives the identities

2 Bran(ass) = 3 (—1)" - loge @qas - (w—1u,) and  prgs(Brgn(dan)) = 0.

u

Equation (19) (and the definition of derivatives D,, ,,) then yields

2(1—p ") Dra(r(f.9,h)— le(xr) —la(xe) = g (0 (loggy ®qpp) — ti(logs ©qss)) =0

and
_ ~ 12
2(1—p ") Diw(r(f.g,h) — le(tr) = —3 Ui (logy ®qpp) = 0,

quod erat demonstrandum. O

Lemma 2.10. — Assume that either £5" # £5" or £3 # £3%. Then one has

dp (
Cp(f) : <<QO¢aa n(fa Ja, ha)»fgh = mzegrpooqA Ze xu : - Uo)-

Proof. — Under the assumption in the statement p, belongs to H 1(Qp,Vﬁfﬁ) by

Lemma 2.8. Together with the equality £3" = iii”((l;A) (cf. [GS93]), this gives
1

(21) Ce(tu) = tu(p™ ')y — £F - rule(1)) s = “ordy(an) “tu(gqa)y-
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According to Equation (15) of [BSV21b], one has

+ My 5 *
Ao = . (qA®1 ® 433,
degp) A1) © 0o

where g5 in Vit is the dual basis of ggp under the perfect pairing msgp(—1). Lemma
2.6, the skew-symmetry of (-, -) ;.5 and local class field theory then give

<<Q(10u/€(fa goz;hoz)»fgh, = _<</€(f7 gaaha)7QQ¢a>>fgh deg poo ZI u—u0)7

where 57 in H'(Q,, Q,) is defined by r,, = t2” ® gss. The lemma follows from the
previous equation, Equation (21) and the identity r(qa); = r3°(qa) - ¢p(f), O

Lemma 2.11. — Assume that either £3" # Lg% or £3" # L3, so thal . belongs
to H(Q,, Vﬁ_ﬂ) foru=k,l,m by Lemma 2.8. Then

(k(f. gas ha)s >>fgh = IOgaa resp (- Z ru(e — Up)

as I | I ?-valued L-linear forms on the Bloch-Kato Selmer group Sel(Q, V).

Proof. — Let y be a Selmer class in Sel(Q, V), and let § = 1,,:(y) in f{}(Q,V) be
the corresponding class in the extended Selmer group (cf. Section 2.3 of [BSV21c]).
By construction §* belongs to the Bloch-Kato finite subspace of H'(Q,V*), and
res,(y) = i (g7) is its image under the map ¢ induced in cohomology by the inclusion
V*t <= V. Define g, in Z* ®z, L by the identity

Proa(") = faa ® (f ® wg, ® wh,),

in H (Qp, Vih) = H (Qp, L(1))®1 V.5, (—1) (where as usual H} (Q,, L(1)) is iden-
tified with Zy ®z, L via the local Kummer map). Then one has

lOgaa (resp(y)) = lng(g;La)
where log,, is the L-linear extension of the p-adic logarithm on Z;. Write similarly
Tu = Prpg(tu) = 1 ® (wr @ 1ng, @1n,)
in H(Q,, Vig) = HY(Q,, L) ®r Vi for some 15 in H(Q,, L), so that
<Fu7§+>Tate = _;Eﬁ(gia) = - logp(gga) ’ Fﬁﬁ(e(l)) = logaa (resp(y)) : Iu(e(l))f
by local class field theory. The statement then follows from Lemma 2.6. O

We can finally conclude the proof of Proposition 2.4.

Proof of Proposition 2.4. — To lighten the notation set koo = K(f, ga, ho). By defi-
nition the extended height hg® (ko ® y) is equal (up to sign) to

(daa: 488) pgn (Fac YD sgn—(daas Faa) pgn €488, YD pon (a8, Kaa) tgn (daa: YD sgn
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for each Selmer class y in Sel(Q, V). Since kaq is (the specialisation of) a bal-
anced class, one has log,, (resp(kaa)) = 0 (cf. Section 9.1 of [BSV21d]), hence
(a8ps Kaa) Fgh 18 equal to zero by Lemma 2.5. As a consequence

~ (qaas ass >>fgh, {(daas Faa >>fgh
(22) hy® (Koo ® y) = det
(as8:9) tgn (Kac, YD on
Assume first £3" = £0% = £, Then <<qamqﬁ,8>>fgh is equal to zero by Lemma
2.5, so that Equation (22) and Lemmas 2.5 and 2.10 yield the equality (up to sign)
Bga (Kaa ®Y) = (daas Kaa >>fgh - {aps; y>>fgh
my - ordp(ga)

— P
= m - log g (resy(y)) - (B —1 — Zﬁk Tu) - (U —uy,).
Moreover one has (by definition) £ = —f; = —{,, hence

k—l—m Zék Tw) - —uo):Z]Suyw(u—uo)(v—vo).

Proposition 2.4 follows from the previous two equations and Lemmas 2.3 and 2.9.
Assume from now on that the analytic .Z-invariants £3", £5" and £3" are not all
equal. Then Equation (22), Lemma 2.5, Lemma 2.10 and Lemma 2.11 yield

7 _ My - ordy(qa)

(23) B (e ) = G g (res, (9) - det ()
in .#2/.73 for each Selmer class y in Sel(Q, V'), where
(L5 L) - U=+ (&F - L5 -(m—1) =3 l(ra) - (uw—uo)
H=
l+m—k D Fule(1)s - (u—uo)

A direct computation gives

(24) det(H Z Duw - (U — ) (v — v,).
Proposition 2.4 follows from Equations (23) and (24) and Lemmas 2.3 and 2.9. O

2.4. Heegner points and diagonal classes. — Assume from now on
(25) ords—1 L(f®g®h,s) =2

and that Assumption 1.2 (stated in Section 1) is satisfied.

For each finite order character p: Gx — Q(o)*, let Indgu be the Q(p)-module
of functions ¢ : Gq — Q(p) satisfying c(ro) = p(7) - ¢(o) for each 7 in G and o
in Gq, equipped with the action of Gq defined by (¢’ - ¢)(o) = ¢(o0’) for each o and
o' in Gq. For £ = g, h, the Q(0)[Gq]-module Ind%z/g affords the representation o.
With the notations of Section 1 we can then take

Ve = IndQve.
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One has an isomorphism of Q(g)[Gq]-modules

(26) Vo = Vy @q(o) Vi =~ Ind 2 ® IndFep,

where ¢ = v, - 1, and ¢ = v, - v}, are dihedral characters of K (cf. Section 1). The
Artin formalism then yields the factorisation

(27) L(f@g@h,s) = LA/K, ¢,s) - L(A/K,1,s),

where L(A/K, x,s) = L(f ® ¥, s) is the Hasse-Weil L-function of the base change
of A to K twisted by x = ¢,9 (viz. the Rankin—Selberg convolution of f and the
weight-one theta series ¥, associated with x).

Let x denote either ¢ or 9, let K, be the ring class field of K cut out by x, and
let A(K, )X be the submodule of A(K,) ®z Q(g) on which Gal(K, /K) acts via x.
Fix a primitive Heegner point P in A(K, ) and set

Po= Y xlo) ' -o(P) € AKX,
oc€Gal(K, /K)
Equations (25) and (27) and Assumption 1.1.(1) imply that L(A/K, x, s) has a simple
zero at s = 1, hence the Gross—Zagier—Kolyvagin—Zhang theorem yields
(28) Py #0 and A(K,)*®q L = L- Py = Sel(K,,V,(A))X,

where Sel(K,,V,(A)) is the Bloch-Kato Selmer group of the restriction of V,(A) to
Gk, , one denotes by Sel(K,V,(A))X the submodule of Sel(K,,V,(4)) ®q, L on
which the Galois group of K, /K acts via the character x, and one considers A(K, )X
as a submodule of Sel(K,, V,(A4))X via the K, -rational Kummer map.

Let 0, in Gq — Gk be an arithmetic Frobenius at p. For { = g, h and each pair
(a,b) of elements of Q(p), denote by [a,b]¢ in V¢ the Q(o)-valued function on Gq
sending the identity to a and o, to b. Then G acts on the line L -[1,0]¢ via v¢, and
on the line L - [0,1]¢ via the conjugate vg of v¢ by the nontrivial element ¢ = o[
of Gal(K/Q). Moreover, since vg(o2) = Ve (p) = ex(p) - xe(p) = —xe(p) = 042 (cf.
Section 1), one has oy, - [a,ble = [b, o - a]¢ for each a and b in Q(g). Set

Ve = [1,a¢)e € V;"Za{ and wveg=[1,—age € V;p:’gg.

(recall that B¢ = —ag), and for each pair (i, j) of elements of {a, 3} set
Vij = Vgi ®Upj € Vgﬂp=z’g ®Q(e) Vhop:jh SN ‘/g(;lp:ig-jh,
A direct computation shows that the vectors
Vo = Vaa + Vap +Vga + Vg and vy = Vaa — Vag + Vga — V88
of Vg, are qual to 4 - [1,0]y ® [1,0], and 4ag - [1,0]4 ® [0, 1], respectively, hence G g
acts on them via ¢ = v, - v, and ¥ = v, - v}, respectively. For x = ¢, define
P(X) = 7gn (Px @ ap(vy) + 0p(Py) @ vy)

in Sel(Q, V') to be image of P, ® 0, (vy) +0p(Py) ®vy in A(K,)? under the embedding
Ygr introduced in Equation (10), so that (cf. Equations (26) and (28))

(29) Sel(Q,V) =L - P(g) ® L - P(v)).
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Write € = ay and for x equal to ¢ or 9 define
P =P +e-0,(Py).

The point P§ is non-zero. This follows from Equation (28) if x is not quadratic.
When x is quadratic, one has o, (Py) = x1(p) - Py, hence P is non-zero by Equation
(28) and Assumption 1.2. In order to lighten the notation, set kKoo = K(f, gas Pa)-
The main result Theorem A of [BSV21a] proves the identity

(30) loggg(resy (K(f, gas ha))) = log,,, (Pg) - log,, (P]) € L*/Q(o)".

Here log, @ A(Ky)®zL — L®q, K denotes the L-linear extension of the logarithm
log,,, on A(Ky) introduced in Section 2.1.4. (Note that the right hand side of the
previous identity is an element of L ®q, K), fixed by the action of 0, id est of L.)
Recall that the roots a¢ and B¢ = —ag of the p-th Hecke polynomial of { = g, h
are distinct, and that o - an, = ay = By - Bi (cf. Equation (1)). We can then replace
in the above constructions the Hida family § = £, with the one £ specialising to the
p-stabilisation {3(q) = £(q) — a¢ - £(¢P) at weight one, for £ = g, h. This produces a
diagonal class £(f, gs, hg) in the Selmer group Sel(Q, W) of the p-adic representation
W =V(f,gs,hp) @u, L. Fix an isomorphism of L[Gq]-modules y: W >~V and let

ks = p(k(f, g8, hg)) € Sel(Q, V)

be the image of k(f, g3, hg) under the isomorphism it induces in cohomology. The
analogue of Equation (30) proves that the aa-logarithm of xgg is non-zero:

(31) logaq (resp(rps)) € L.
Since by the definition of the balanced local condition (cf. Section 2.1.1) one has

(32) log,,q (resp (ko)) = logﬁﬁ(resp(ngg)) =0,

it follows that the diagonal classes Koo and rgg are linearly independent, hence

(33) Sel(Q,V) =L koo ® L - Kaga.

2.4.1. Conclusion of the proof. — Consider the L-basis (cf. Equations (6) and (8))
1

1
o Ve
of H%(Qy, V™), where v = Ye(ve,.) for £ = g, h and - = «, 5. It is the image of the
Q(o)-basis {g(A) ®Vg,qa QUh.a,q(A) Ry g Rvp g} of Qp(A, o) (cf. Equation (9)) under
the isomorphism Q,(A4, o), ~ H%(Q,,V) arising from the modular parametrisation
Poo fixed in Section 2.1.1 and the embeddings 7, and ~y;, fixed in Equation (8). Define
M and N in GLy(L) by the identities (cf. Equations (29) and (33))

(o) = (2 ema (foo) =w(2).

By the definition of the p-adic regulator R5“(A, o) and Proposition 2.4 one has

(
2 Sp (K
B B0 = R 10 (o
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in the quotient of .#4/.#% by the multiplicative action of Q(p)*?.
Set L =L ®q, Q" and for { = g, h denote by

e V(O @LV(E) ®q, Qi — L
the Qgr—base change of the perfect pairing m¢ introduced in Section 2.1.1. Since

g (9o @ Wgo) * n(1hhy @ why) = GXg) - Gxn) =1
(cf. Assumption 1.1.(2) and the definitions introduced in Section 2.1.2), one has

pe L (Tolvg ®ng.) Ta(vy @mn,) 0
VM 0 Ty (05 ® wy, ) - 7ATh(’Ug ® wh,)

(in H%(0p,, GLa(L)) = GLgy(L)), hence
(35) det(N) = my ! - 1y (v8 @02 -y (vf @ v)) € Qlo)*

by the normalisation imposed on the embeddings v, and v, (cf. Equation (8)).
According to Equations (30), (31) and (32) one has

IOgﬁﬁ(P(‘P)) log, o (P(¥))

logﬁﬂ(ﬂaa) IOgaa(Kﬂﬁ)
M=

loggs (P(¥)) log, o (P(¥))

loggg(Kaa) log, o (kps)

(where log;; : Sel(Q,V) — L, for i = «,f, is a shorthand for log;; ores,). After
retracing the definitions given in Section 2.4, a direct computation yields

l0g,q (P(X)) = € - log,, (PY) - 7tg(vg ®1g,) - Tn(vh ® 1n,,)
(in H%(oy, L) = L, where as usual y denotes either ¢ or ) and
logs3(P() = e - & - log,, (P2) - 7y (0 © g, ) - An(uf) @ wn),
where ¢, = 1 and €4, = —1. As a consequence

(36) logaa(&ﬁg) _9. Ingf (P:Z) ’ IOgqu (P;Z) )
det(M) logs(Kaa)
by Equation (30) and Equation (8).
Equations (34), (35) and (36) give the identity

Ly*(A, 0) (mod #°) = Ry*(4, o)

Tg(vy ® Ufj) ~mp (v ® v}f) € Q(o)*

in the quotient of .#*/.#5 by the multiplicative action of Q(g)*2. To conclude the
proof of the Theorem stated in Section 1, it remains to prove that both sides of
the previous identity are non-zero. This follows by combining Equation (30) with
[BSV21d, Theorem A] and [BSV21a, Proposition 2.2|, which prove the equality

2 cpaa
T ) = ) el=) ()

—1>1 loggs(Kaa)
ok? 2myord,(ga 8pp\Faa)-

p
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