ON *p*-ADIC ANALOGUES OF THE BIRCH AND SWINNERTON-DYER CONJECTURE FOR GARRETT *L*-FUNCTIONS

by

Massimo Bertolini, Marco Adamo Seveso & Rodolfo Venerucci

Contents

Introduction	1
1. The <i>p</i> -adic Birch and Swinnerton-Dyer conjecture	2
2. Garrett–Nekovář <i>p</i> -adic height pairings	9
3. Diagonal classes and rational points	15
References	25

Introduction

Let A be an elliptic curve over the field \mathbf{Q} of rational numbers and let ϱ_1, ϱ_2 be a pair of two-dimensional odd Artin representations of the absolute Galois group of \mathbf{Q} . Set $\varrho = \varrho_1 \otimes \varrho_2$ and denote by K_{ϱ} the extension of \mathbf{Q} cut out by ϱ . Assume the self-duality hypothesis det $(\varrho_1) = \det(\varrho_2)^{-1}$. The equivariant Birch and Swinnerton-Dyer conjecture aims at understanding the ϱ -component $A(K_{\varrho})^{\varrho}$ of the Mordell-Weil group of A/K_{ϱ} in terms of the complex *L*-function $L(A, \varrho, s)$ of *A* twisted by ϱ .

The purpose of this article is twofold. The first objective is to formulate a *p*-adic analogue of this equivariant Birch and Swinnerton-Dyer conjecture. Assume for simplicity (but see Section 1.1 for generalisations) that *p* is an ordinary prime for *A* and that ϱ_1 and ϱ_2 are irreducible. Let (f, g, h) be the triple of cuspidal modular forms associated to $(A, \varrho_1, \varrho_2)$ by the modularity theorems. Hida's theory associates to (f, g, h) a triple $(f, g_{\alpha}, h_{\alpha})$ of *p*-adic families of ordinary cuspidal modular forms, where *f* specialises in weight 2 to the unique ordinary *p*-stabilisation of *f*, while g_{α} and h_{α} specialise in weight 1 to a choice of *p*-stabilisations g_{α} and h_{α} of *g* and *h* respectively. Our conjecture replaces $L(A, \varrho, s)$ with a *p*-adic *L*-function $L_p^{\alpha\alpha}(A, \varrho)$ arising from the triple of *p*-adic families $(f, g_{\alpha}, h_{\alpha})$. The *L*-function $L_p^{\alpha\alpha}(A, \varrho)$ interpolates the central critical values of the complex *L*-functions of $f_k \otimes g_l \otimes h_m$ at triples of classical weights (k, l, m) such that $k \ge l + m$, where f_k, g_l and h_m denotes the specialisation of $\boldsymbol{f}, \boldsymbol{g}_{\alpha}$ and \boldsymbol{h}_{α} at k, l and m respectively. A *p*-adic avatar of the Birch and Swinnerton-Dyer conjecture suggests that the behaviour of $L_p^{\alpha\alpha}(A, \varrho)$ at the triple of weights (2, 1, 1) should reflect the arithmetic of A over K_{ϱ} . This is the content of our Conjecture 1.1, which states that the order of vanishing of $L_p^{\alpha\alpha}(A, \varrho)$ at (2, 1, 1) is equal to the rank of the ϱ -component $A^{\dagger}(K_{\varrho})^{\varrho}$ of the extended Mordell–Weil group of A/K_{ϱ} . Furthermore, it relates the leading term of $L_p^{\alpha\alpha}(A, \varrho)$ to the regulator $R_p^{\alpha\alpha}(A, \varrho)$ of a *p*-adic height pairing on this extended Mordell–Weil group, constructed in Section 2 by exploiting Nekovář's theory of Selmer complexes associated to Hida's deformation of the Galois representations of $(f, g_{\alpha}, h_{\alpha})$.

The second objective of this article is to understand the Elliptic Stark Conjectures of Darmon, Lauder and Rotger [**DLR15**, **DR16**] within the conceptual framework of the *p*-adic variants of the Birch and Swinnerton-Dyer conjecture. Under the assumption that the Mordell–Weil rank is equal to 2, the above mentioned works obtained experimentally a relation between an iterated *p*-adic integral associated to the triple $(f, g_{\alpha}, h_{\alpha})$ and certain combinations of *p*-adic logarithms of rational points in the *p*component of the Mordell–Weil group of *A*. Section 3 (see in particular Conjecture 3.4 and Remarks 3.5) shows that these conjectural relations are a consequence of Conjecture 1.1, combined with a formula à la Rubin–Perrin-Riou established in Theorem 3.2 for the derivatives of a *big* diagonal class encoding $L_p(f, g_{\alpha}, h_{\alpha})$ by an explicit reciprocity law.

1. The *p*-adic Birch and Swinnerton-Dyer conjecture

This section states the main conjecture of this paper, assuming the precise definition of the Garrett–Nekovář *p*-adic height pairings given in Section 2 below. To ease the exposition we state our conjecture for *p*-ordinary elliptic curves over \mathbf{Q} , i.e. *p*-stabilised ordinary weight-two newforms with trivial character and rational Fourier coefficients. See Section 1.1 below for possible generalisations.

Fix a rational prime p > 3, algebraic closures \mathbf{Q} and \mathbf{Q}_p of \mathbf{Q} and \mathbf{Q}_p respectively and an embedding of $\bar{\mathbf{Q}}$ into $\bar{\mathbf{Q}}_p$. For positive integers k and m, a Dirichlet character $\chi : (\mathbf{Z}/m\mathbf{Z})^* \longrightarrow \bar{\mathbf{Q}}^*$ and a subfield F of $\bar{\mathbf{Q}}_p$, denote by $M_k(m, \chi)_F$ the F-module of modular forms of weight k, level $\Gamma_1(m)$, character χ and Fourier coefficients contained in F, and by $S_k(m, \chi)_F$ its subspace of cuspidal modular forms. When χ is the trivial character, we omit it from the notation.

Let A be an elliptic curve defined over ${\bf Q}$ and let

$$\varrho = \varrho_1 \otimes \varrho_2$$

be the tensor product of two odd, two-dimensional Artin representations

$$\varrho_i : G_{\mathbf{Q}} \longrightarrow \operatorname{GL}(V_{\varrho_i}) \simeq \operatorname{GL}_2(\mathbf{Q}(\varrho))$$

of $G_{\mathbf{Q}} = \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ with coefficients in a number field $\mathbf{Q}(\varrho)$ (contained in $\bar{\mathbf{Q}}$), satisfying the *self-duality condition*

(1)
$$\det(\varrho_1) = \det(\varrho_2)^{-1}.$$

 $\mathbf{2}$

According to the modularity theorem of Wiles, Taylor–Wiles et al., the *p*-adic Tate module of A/\mathbf{Q} with \mathbf{Q}_p -coefficients is isomorphic to the dual of the *p*-adic Deligne representation of the weight-two cuspidal newform

$$f = \sum_{n \ge 1} a_n(f) \cdot q^n \in S_2(N_f)_{\mathbf{Q}},$$

where N_f is the conductor of A/\mathbf{Q} and $a_\ell(f) = 1 + \ell - |A(\mathbf{Z}/\ell\mathbf{Z})|$ for each prime $\ell \nmid N_f$. Similarly, the Serre conjecture, proved by Khare and Wintenberger, implies that ρ_1 and ρ_2 are isomorphic respectively to the duals of the Deligne–Serre representations associated with weight-one normalised Hecke eigenforms

$$g = \sum_{n \ge 0} a_n(g) \cdot q^n \in M_1(N_g, \chi_g)_{\mathbf{Q}(\varrho)}$$

and

$$h = \sum_{n \ge 0} a_n(h) \cdot q^n \in M_1(N_h, \chi_h)_{\mathbf{Q}(\varrho)}$$

of conductors N_g and N_h equal to those of ρ_1 and ρ_2 respectively and characters χ_g and $\chi_h = \chi_g^{-1}$ (cf. Equation (1)). The form g (resp., h) is cupidal precisely if the Artin representation ρ_1 (resp., ρ_2) is irreducible.

Assume that A has good ordinary or multiplicative reduction at p, so that N_f is of the form $M_f \cdot p^{r_f}$ with $r_f \leq 1$ and M_f coprime with p. The p-th Hecke polynomial $X^2 - a_p(f) \cdot X + 1_{N_f}(p) \cdot p$ of f has a unique root α_f which is a p-adic unit, the other root being $\beta_f = 1_{N_f}(p)p/\alpha_f$. (Here 1_{N_f} is the trivial character modulo N_f .) By Hida theory, the ordinary p-stabilisation

$$f_{\alpha}(q) = f(q) - \beta_f \cdot f(q^p) \in S_2(M_f p)_{\mathbf{Q}(\alpha_f)}$$

is the specialisation at weight two of a unique cuspidal Hida family

$$\boldsymbol{f} = \boldsymbol{f}_{\alpha} = \sum_{n \ge 1} a_n(\boldsymbol{f}) \cdot q^n \in \mathcal{O}(U_{\boldsymbol{f}})\llbracket q \rrbracket,$$

for a suitable connected open disc $U_{\mathbf{f}}$ centred at 2 in the weight space \mathcal{W} over \mathbf{Q}_p . Here $\mathcal{O}(U_{\mathbf{f}})$ is the ring of analytic functions on $U_{\mathbf{f}}$. For each classical weight k in $U_{\mathbf{f}} \cap \mathbf{Z}_{>2}$, the weight-k specialisation $\mathbf{f}_k = \sum_{n \ge 1} a_n(\mathbf{f})(k) \cdot q^n$ of \mathbf{f} is (the q-expansion of) the ordinary p-stabilisation of a p-ordinary newform f_k of weight k and level $\Gamma_0(M_f)$.

Let ξ denote either g or h, and let α_{ξ} and $\beta_{\xi} = \chi_{\xi}(p)/\alpha_{\xi}$ be the roots of its pth Hecke polynomial $X^2 - a_p(\xi) \cdot X + \chi_{\xi}(p)$. Fix a finite extension L of \mathbf{Q}_p which contains the Fourier coefficients of ξ , the roots α_f and α_{ξ} (for $\xi = g, h$), and the N-th roots of unity, where N is the least common multiple of N_f , N_g and N_h . We assume that p does not divide N_{ξ} and that ξ is *cuspidal* and p-regular (viz. the roots α_{ξ} and β_{ξ} are distinct). Moreover we assume that ξ is not the theta series associated with a ray class character of a *real* quadratic field in which p splits. Under these assumptions the p-stabilisation

$$\xi_{\alpha}(q) = \xi(q) - \beta_{\xi} \cdot \xi(q^p) \in S_1(N_{\xi}p, \chi_{\xi})_L$$

is the weight-one specialisation of a unique cuspidal Hida family

$$\boldsymbol{\xi}_{\alpha} = \sum_{n \geqslant 1} a_n(\boldsymbol{\xi}_{\alpha}) \cdot q^n \in \mathcal{O}(U_{\boldsymbol{\xi}})\llbracket q \rrbracket,$$

where $U_{\boldsymbol{\xi}}$ is a (small) connected open neighbourhood of 1 in $\mathcal{W} \otimes_{\mathbf{Q}_p} L$. For each classical weight u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 1}$, the weight-u specialisation $\boldsymbol{\xi}_{\alpha,u} = \sum_{n \geq 1} a_n(\boldsymbol{\xi})(u) \cdot q^n$ is the ordinary p-stabilisation of a p-ordinary newform $\boldsymbol{\xi}_u$ of weight u, level $\Gamma_1(N_{\boldsymbol{\xi}})$ and character $\chi_{\boldsymbol{\xi}}$. We refer the reader to [BSV20] (especially the discussion following Assumption 1.1, Remark 1.4 and Section 5) and the references therein for more details.

Let Σ^{cl} denote the set of classical triples, namely the intersection of $U_{\mathbf{f}} \times U_{\mathbf{g}} \times U_{\mathbf{h}}$ with $\mathbf{Z}_{\geq 1}^3$. Under the self-duality assumption (1), for each (k, l, m) in Σ^{cl} the complex Garrett *L*-function $L(f_k \otimes g_l \otimes h_m, s)$ admits an analytic continuation to all of \mathbf{C} and satisfies a functional equation with sign +1 or -1 relating its values at *s* and k+l+m-2-s. Assume from now on that the conductors N_g and N_h of *g* and *h* are coprime to the conductor N_f of the elliptic curve *A*:

$$(2) \qquad (N_q \cdot N_h, N_f) = 1.$$

Assumption (2) guarantees that the signs in the above functional equations are equal to +1 for all classical triples (k, l, m) in the *f*-unbalanced region, id est triples (k, l, m)in Σ^{cl} such that $k \ge l + m$. In particular the complex Garrett *L*-function

$$L(A, \varrho, s) = L(f \otimes g \otimes h, s)$$

vanishes to even order at the central critical point s = 1. Set $\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}} = \mathscr{O}_{\boldsymbol{f}} \hat{\otimes}_{\mathbf{Q}_p} \mathscr{O}_{\boldsymbol{g}} \hat{\otimes}_L \mathscr{O}_{\boldsymbol{h}}$, where \mathscr{O}_{\cdot} denotes the ring of bounded functions on U_{\cdot} . The article [Hsi20] associates to the triple of Hida families $(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})$ a square-root Garrett-Hida p-adic L-function

$$\mathscr{L}_p^{lphalpha}(A,\varrho) = \mathscr{L}_p(\boldsymbol{f}, \boldsymbol{g}_{lpha}, \boldsymbol{h}_{lpha}) \in \mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}},$$

whose square, the Garrett-Hida p-adic L-function of (A, ϱ) ,

$$L_p^{\alpha\alpha}(A,\varrho) = \mathscr{L}_p^{\alpha\alpha}(A,\varrho)^2$$

interpolates the central critical values

$$L\left(f_k\otimes g_l\otimes h_m, \frac{k+l+m-2}{2}\right)$$

of the complex Garrett *L*-functions $L(f_k \otimes g_l \otimes h_m, s)$ at classical triples (k, l, m) in the *f*-unbalanced region. We refer to [**BSV20**, Section 6.1] (where $L_p^{\alpha\alpha}(A, \varrho)$ is denoted by $L_p(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})$) for the precise interpolation property (see in particular Equation (132) of loc. cit.). The *L*-function $L_p^{\alpha\alpha}(A, \varrho)$ is symmetric in the families \boldsymbol{g}_{α} and \boldsymbol{h}_{α} .

Enlarging $\mathbf{Q}(\varrho)$ if necessary, we assume it contains α_{ξ} for ξ equal to f, g and h. The weight-one specialisation (cf. Section 2.1 below)

$$V(\xi) = V(\xi_{\alpha}) \otimes_1 L$$

of the Galois representation $V(\boldsymbol{\xi}_{\alpha})$ associated with $\boldsymbol{\xi}_{\alpha}$ affords the dual of the *p*-adic Deligne–Serre representation of $\boldsymbol{\xi}$ with coefficients in *L*. The $G_{\mathbf{Q}}$ -representation $V(\boldsymbol{\xi}_{\alpha})$ is a free rank-two $\mathscr{O}_{\boldsymbol{\xi}}$ -module and the tensor product $\cdot \otimes_1 L = \cdot \otimes_{\mathscr{O}_{\boldsymbol{\xi}},1} L$ is taken with respect to evaluation at 1 in $U_{\boldsymbol{\xi}}$. The global *p*-adic representation $V(\boldsymbol{\xi})$ is equipped with a canonical, $G_{\mathbf{Q}}$ -equivariant, perfect, skew-symmetric pairing

(3)
$$\pi_{\xi}: V(\xi) \otimes_L V(\xi) \longrightarrow L(\chi_{\xi}),$$

arising as the weight-one specialisation of a suitably twisted Poincaré duality on $V(\boldsymbol{\xi}_{\alpha})$ (cf. Section 2.1). Enlarging L if necessary, fix isomorphisms

(4)
$$\gamma_g : V_{\varrho_1} \otimes_{\mathbf{Q}(\varrho)} L \simeq V(g) \text{ and } \gamma_h : V_{\varrho_2} \otimes_{\mathbf{Q}(\varrho)} L \simeq V(h)$$

of $L[G_{\mathbf{Q}}]$ -modules such that the perfect dualities $\pi_g \circ \gamma_g \otimes \gamma_g$ and $\pi_h \circ \gamma_h \otimes \gamma_h$ map the $\mathbf{Q}(\varrho)$ -structures $V_{\varrho_1} \otimes_{\mathbf{Q}(\varrho)} V_{\varrho_1}$ and $V_{\varrho_2} \otimes_{\mathbf{Q}(\varrho)} V_{\varrho_2}$ into the $\mathbf{Q}(\varrho)$ -structures $\mathbf{Q}(\varrho)(\chi_g)$ and $\mathbf{Q}(\varrho)(\chi_h)$ of $L(\chi_g)$ and $L(\chi_h)$ respectively.

Let $V(f) = \operatorname{Ta}_p(A/\mathbf{Q}) \otimes_{\mathbf{Z}_p} L$ be the *p*-adic Tate module A/\mathbf{Q} with coefficients in *L*, and let $V(f)^-$ be the maximal unramified quotient of the restriction of V(f)to $G_{\mathbf{Q}_p}$. It is a 1-dimensional *L*-module, on which an arithmetic Frobenius in $G_{\mathbf{Q}_p}$ acts as multiplication by α_f . Set $V_{\varrho} = V_{\varrho_1} \otimes_{\mathbf{Q}(\varrho)} V_{\varrho_2}$, $V(f, \varrho) = V(f) \otimes_{\mathbf{Q}(\varrho)} V_{\varrho}$ and $V(f, \varrho)^- = V(f)^- \otimes_{\mathbf{Q}(\varrho)} V_{\varrho}$, so that $V(f, \varrho)^-$ is the maximal $G_{\mathbf{Q}_p}$ -unramified quotient of $V(f, \varrho)$, on which an arithmetic Frobenius acts with eigenvalues $\alpha_f \alpha_g \alpha_h$, $\alpha_f \beta_g \alpha_h$, $\alpha_f \alpha_g \beta_h$ and $\alpha_f \beta_g \beta_h$. Define the module of *p*-adic periods of (A, ϱ) :

$$\mathcal{Q}_p(A,\varrho)_L = H^0(\mathbf{Q}_p, V(f,\varrho)^-)$$

to be the space of $G_{\mathbf{Q}_p}$ -invariants of $V(f, \varrho)^-$. As suggested by the notation

$$\mathcal{Q}_p(A,\varrho)_L = \mathcal{Q}_p(A,\varrho) \otimes_{\mathbf{Q}(\varrho)} L$$

for a canonical $\mathbf{Q}(\varrho)$ -submodule $\mathcal{Q}_p(A, \varrho)$ defined as follows. Note first that $\mathcal{Q}_p(A, \varrho)_L$ is zero if A has good reduction at p. In this case set $\mathcal{Q}_p(A, \varrho) = 0$. If A has multiplicative reduction at p, Tate's theory gives a rigid analytic isomorphism

$$\wp_{\text{Tate}}: \mathbf{G}_{m,\mathbf{Q}_{p^2}}^{\text{an}}/q_A^{\mathbf{Z}} \simeq A_{\mathbf{Q}_{p^2}},$$

unique up to sign. Here $A_{\mathbf{Q}_{p^2}}$ is the base change of A to the quadratic unramified extension \mathbf{Q}_{p^2} of \mathbf{Q}_p and q_A in $p\mathbf{Z}_p$ is the Tate period of A. Taking the p-adic Tate modules \wp_{Tate} induces a (canonical up to sign) isomorphism of $G_{\mathbf{Q}_{p^2}}$ -modules $V(f)^- \simeq L$. Write q(A) in $V(f)^-$ for the element corresponding to the identity of Lunder this isomorphism and define

$$\mathcal{Q}_p(A,\varrho) = \left(\mathbf{Q}(\varrho) \cdot q(A) \otimes_{\mathbf{Q}(\varrho)} V_{\varrho}\right)^{\mathbf{G}_{\mathbf{Q}_p}}.$$

Let $X_1(N_f, p)$ be the compact modular curve of level $\Gamma_1(N_f, p) = \Gamma_1(N_f) \cap \Gamma_0(p)$ over **Q**. Fix a modular parametrisation (viz. a non-constant map of **Q**-schemes)

$$\wp_{\infty}: X_1(N_f, p) \longrightarrow A$$

Let K_{ϱ} be a finite Galois extension of **Q** such that ϱ_1 and ϱ_2 factor through $\operatorname{Gal}(K_{\varrho}/\mathbf{Q})$. Define the *p*-extended Mordell–Weil group of (A, ϱ) by

$$A^{\dagger}(K_{\varrho})^{\varrho} = \left(A(K_{\varrho}) \otimes_{\mathbf{Z}} V_{\varrho}\right)^{\operatorname{Gal}(K_{\varrho}/\mathbf{Q})} \oplus \mathcal{Q}_{p}(A, \varrho).$$

Section 2 below associates with the triple $(f, g_{\alpha}, h_{\alpha})$, the modular parametrisation \wp_{∞} , and the isomorphisms γ_g and γ_h a Garrett-Nekovář p-adic height pairing

(5) $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}: A^{\dagger}(K_{\varrho})^{\varrho} \times A^{\dagger}(K_{\varrho})^{\varrho} \longrightarrow \mathscr{I}/\mathscr{I}^{2},$

where \mathscr{I} is the ideal of analytic functions in \mathscr{O}_{fgh} vanishing at $w_o = (2, 1, 1)$. The pairing $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fg_{\alpha}h_{\alpha}}$ is skew-symmetric and associated by cohomological means to an appropriate self-dual twist of the representation $V(f) \hat{\otimes}_{\mathbf{Q}_p} V(g_{\alpha}) \hat{\otimes}_L V(h_{\alpha})$, viewed as a *p*-adic deformation of $V(f, g, h) = V(f) \otimes_L V(g) \otimes_L V(h)$. Its construction grounds on Nekovář's theory of Selmer complexes and generalised Poitou–Tate duality [Nek06]. More precisely, after identifying V(f) with the f_{α} -isotypic component of the cohomology group $H^1_{\acute{e}t}(X_1(N_f, p)_{\mathbf{Q}}, L(1))$ via the fixed modular parametrisation \wp_{∞} , Section 2 below defines a *canonical* Garrett–Nekovář *p*-adic height pairing

(6)
$$\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}} : \operatorname{Sel}^{\dagger}(\mathbf{Q},V(f,g,h)) \otimes_{L} \operatorname{Sel}^{\dagger}(\mathbf{Q},V(f,g,h)) \longrightarrow \mathscr{I}/\mathscr{I}^{2},$$

where the (naive) extended Selmer group

(7)
$$\operatorname{Sel}^{\dagger}(\mathbf{Q}, V(f, g, h)) = \operatorname{Sel}(\mathbf{Q}, V(f, g, h)) \oplus H^{0}(\mathbf{Q}_{p}, V(f, g, h)^{-})$$

is the direct sum of the Bloch–Kato Selmer group of V(f, g, h) over \mathbf{Q} and the module of $G_{\mathbf{Q}_p}$ -invariants of the maximal *p*-unramified quotient $V(f, g, h)^-$ of V(f, g, h). The global Kummer map $A(K_{\varrho}) \longrightarrow H^1(K_{\varrho}, V(f))$ and the fixed isomorphisms γ_g and γ_h give rise to an embedding $\gamma_{gh} : A^{\dagger}(K_{\varrho})^{\varrho} \longrightarrow \operatorname{Sel}^{\dagger}(\mathbf{Q}, V(f, g, h))$, and one defines (5) as the restriction of the canonical height pairing (6) along γ_{gh} .

Set

$$r^{\dagger}(A,\rho) = \dim_{\mathbf{Q}(\rho)} A^{\dagger}(K_{\rho})^{\varrho}$$

and define the Garrett-Nekovář regulator

$$R_p^{\alpha\alpha}(A,\varrho) \in \left(\mathscr{I}^{r^{\dagger}(A,\varrho)}/\mathscr{I}^{r^{\dagger}(A,\varrho)+1}\right)/\mathbf{Q}(\varrho)^{*2}$$

to be the discriminant of the Garrett–Nekovář p-adic height pairing:

$$R_p^{\alpha\alpha}(A,\varrho) = \det\left(\left\langle\!\left\langle P_i, P_j\right\rangle\!\right\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}\right)_{1 \leqslant i,j \leqslant r^{\dagger}(A,\varrho)},$$

where $P_1, \ldots, P_{r^{\dagger}(A,\varrho)}$ is a $\mathbf{Q}(\varrho)$ -basis of the *p*-extended Mordell–Weil group $A^{\dagger}(K_{\varrho})^{\varrho}$. In view of the normalisation of the isomorphisms γ_g and γ_h fixed in (4), the regulator $R_p^{\alpha\alpha}(A,\varrho)$ is independent of the choice of γ_g and γ_h . Moreover, it does not depend on the modular parametrisation \wp_{∞} .

If $\mathcal{Q}_p(A, \varrho)$ is non-zero –the *exceptional case*– assume that either

(8)
$$\mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} \neq \mathfrak{L}_{\boldsymbol{g}_{\alpha}}^{\mathrm{an}} \quad \mathrm{or} \quad \mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} \neq \mathfrak{L}_{\boldsymbol{h}_{\alpha}}^{\mathrm{an}}$$

where the *analytic* \mathscr{L} -invariants of f and $\xi_{\alpha} = g_{\alpha}$, h_{α} are defined respectively as the logarithmic derivatives

(9)
$$\mathcal{L}_{\boldsymbol{f}}^{\mathrm{an}} = -2 \cdot d \log(a_p(\boldsymbol{f}))_{\boldsymbol{k}=2} \text{ and } \mathcal{L}_{\boldsymbol{\xi}_{\alpha}}^{\mathrm{an}} = -2 \cdot d \log(a_p(\boldsymbol{\xi}_{\alpha}))_{\boldsymbol{u}=1}$$

of -2 times the *p*th Fourier coefficients of f and ξ_{α} at k = 2 and u = 1. Here \mathscr{O}_f and \mathscr{O}_{ξ} are identified with subrings of the power series rings L[[k-2]] and L[[u-1]], where k-2 and u-1 are uniformisers at the centres 2 and 1 of U_f and U_{ξ} respectively.

We say that a non-zero element F of \mathcal{O}_{fgh} has order of vanishing $r \in \mathbb{Z}_{\geq 0}$ at $w_o = (2, 1, 1)$ if it belongs to $\mathscr{I}^r - \mathscr{I}^{r+1}$, and denote by F^* its leading term in the Taylor expansion at w_o , namely its image in the quotient $\mathscr{I}^r/\mathscr{I}^{r+1}$.

Conjecture 1.1. — The Garrett-Hida p-adic L-function $L_p^{\alpha\alpha}(A, \varrho)$ has order of vanishing $r^{\dagger}(A, \varrho)$ at $w_o = (2, 1, 1)$, and the following equality holds in the quotient of $\mathscr{I}^{r^{\dagger}(A,\varrho)}/\mathscr{I}^{r^{\dagger}(A,\varrho)+1}$ by the multiplicative action of $\mathbf{Q}(\rho)^{*2}$.

$$L_p^{\alpha\alpha}(A,\varrho)^* = R_p^{\alpha\alpha}(A,\varrho)$$

In particular, the Garrett–Nekovář p-adic height pairing $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{fg_{\sim}h_{\alpha}}$ is non-degenerate.

Remarks 1.2. —

1. Under the current assumptions, the module $\mathcal{Q}_p(A, \varrho)$ is non-zero precisely if

$$\alpha_f = \alpha_g \cdot \alpha_h \quad \text{or} \quad \alpha_f = \beta_g \cdot \alpha_h,$$

in which case $\dim_{\mathbf{Q}(\varrho)} \mathcal{Q}_p(A, \varrho) = 2$ and one says that (A, ϱ) is exceptional at p. Since by assumption g is p-regular, only one of the displayed equalities can be satisfied. Moreover, as α_{ξ} and β_{ξ} are roots of unity for $\xi = g, h$, if (A, ϱ) is exceptional at p, then $\alpha_f^2 = 1$ and either $\alpha_g \cdot \alpha_h = \alpha_f = \beta_g \cdot \beta_h$ or $\alpha_g \cdot \beta_h = \alpha_f = \beta_g \cdot \alpha_h$ by the self-duality assumption (1).

2. The value of $L_p^{\alpha\alpha}(A, \varrho)$ at $w_0 = (2, 1, 1)$ is a non-zero complex multiple of

$$\left(1-\frac{\alpha_g\alpha_h}{\alpha_f}\right)^2 \left(1-\frac{\beta_g\alpha_h}{\alpha_f}\right)^2 \left(1-\frac{\alpha_g\beta_h}{\alpha_f}\right)^2 \left(1-\frac{\beta_g\beta_h}{\alpha_f}\right)^2 \cdot L(A,\varrho,1).$$

It follows that (A, ϱ) is exceptional at p precisely if $L_p^{\alpha\alpha}(A, \varrho)$ has an exceptional zero in the sense of [MTT86], viz. one of the Euler factors which appear in the previous expression is equal to zero. In this case $r^{\dagger}(A, \varrho) = \dim_{\mathbf{Q}(\varrho)} A(K_{\varrho})^{\varrho} + 2$, hence Conjecture 1.1 and the classical Birch and Swinnerton-Dyer conjecture predict that the order of vanishing of $L_p^{\alpha\alpha}(A, \varrho)$ at w_o equals $\operatorname{ord}_{s=1}L(A, \varrho, s)+2$.

- 3. Since $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fg_{\alpha}h_{\alpha}}$ is skew-symmetric, the regulator $R_{p}^{\alpha\alpha}(A, \varrho)$ vanishes if $r^{\dagger}(A, \varrho)$ is odd. On the other hand, the assumption (2) implies that the order of vanishing of $L(A, \rho, s)$ at s = 1 is even, hence $r^{\dagger}(A, \rho)$ should also be even by the classical Birch and Swinnerton-Dyer conjecture (and the first remark).
- 4. If $L(A, \rho, s)$ does not vanish at s = 1 and (A, ρ) is not exceptional at p, then $L_p^{\alpha\alpha}(A,\varrho)(w_o)$ is the square of a non-zero element of $\mathbf{Q}(\varrho)^*$. In this case Conjecture 1.1 is a consequence of the classical Birch and Swinnerton-Dyer conjecture.
- 5. Assume that (A, ϱ) is exceptional at p. The article [BSV21b] proves Conjecture 1.1 when $L(A, \rho, s)$ does not vanish at s = 1. It also shows the equality

$$\langle\!\langle q,q'\rangle\!\rangle_{\boldsymbol{f}\boldsymbol{g}_{\alpha}\boldsymbol{h}_{\alpha}} = (\mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} - \mathfrak{L}_{\boldsymbol{g}}^{\mathrm{an}}) \cdot (\boldsymbol{l}-1) + \varepsilon \cdot (\mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} - \mathfrak{L}_{\boldsymbol{h}}^{\mathrm{an}}) \cdot (\boldsymbol{m}-1)$$

in $(\mathscr{I}/\mathscr{I}^2)/\mathbf{Q}(\varrho)^*$ (cf. Equation (9)), where (q,q') is a $\mathbf{Q}(\varrho)$ -basis of $\mathcal{Q}_p(A,\varrho)$ and $\varepsilon = +1$ if $\alpha_f = \alpha_g \cdot \alpha_h$ while $\varepsilon = -1$ if $\alpha_f = \beta_g \cdot \alpha_h$. (Recall that $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{fg_{\alpha}h_{\alpha}}$ is skew-symmetric, and that by assumption either $\mathfrak{L}_{f}^{\mathrm{an}} \neq \mathfrak{L}_{g}^{\mathrm{an}}$ or $\mathfrak{L}_{\boldsymbol{f}}^{\mathrm{an}} \neq \mathfrak{L}_{\boldsymbol{h}}^{\mathrm{an}}$, hence $\langle\!\langle q, q' \rangle\!\rangle_{\boldsymbol{f}\boldsymbol{g}_{\alpha}\boldsymbol{h}_{\alpha}}$ is a non-zero square root of $R_{p}^{\alpha\alpha}(A, \varrho)$.) 6. Assume that (A, ϱ) is exceptional and that $L(A, \varrho, s)$ vanishes at s = 1. Let

(q,q') be a $\mathbf{Q}(\varrho)$ -basis of $\mathcal{Q}_p(A,\varrho)$. Conjecture 1.1 predicts the equality

$$\frac{\partial^2 \mathscr{L}_p^{\alpha\alpha}(A,\varrho)}{\partial k^2}(w_o) = \log_q(P) \cdot \log_{q'}(Q) - \log_{q'}(P) \cdot \log_q(Q)$$

in $L/\mathbf{Q}(\varrho)^*$ for two rational points P and Q in $A(K_\varrho)^\varrho$, where $\log_{q'}(\cdot)$ is the evaluation at q of the Bloch–Kato p-adic logarithm for q' = q, q'. The reader is referred to Section 2.2 of [**BSV21b**] for details.

1.1. Generalisations. —

1.1.1. The semi-stable case. — Assume that A has semi-stable reduction at p, and let α_f be a non-zero root of the p-th Hecke polynomial $h_{f,p} = X^2 - a_p(f) \cdot X + 1_{N_f}(p) \cdot p$ of f. If A has good ordinary reduction at p and α_f is the root of $h_{f,p}$ with positive p-adic valuation, assume in addition that A does not have complex multiplication. Under these assumptions, there exists a unique Coleman family (of slope $\operatorname{ord}_p(\alpha_f)$) which specialises to $f_{\alpha} = f(q) - \beta_f \cdot f(q^p)$ in weight 2, where $\beta_f \cdot \alpha_f = 1_{N_f}(p) \cdot p$. By combining the results of [Hsi20] and [AI20], one should be able to associate to the triple $(f_{\alpha}, g_{\alpha}, h_{\alpha})$ a canonical p-adic L-function $L_p^{\alpha\alpha}(f_{\alpha}, \varrho) = \mathscr{L}_p(f_{\alpha}, g_{\alpha}, h_{\alpha})^2$ (generalising the construction of $L_p^{\alpha\alpha}(A, \varrho) = L_p^{\alpha\alpha}(f_{\alpha}, \varrho)$ when A is p-ordinary and α_f is the unit root of $h_{f,p}$). On the algebraic side of the matter, (while not necessarily ordinary) the Galois representation $V(f_{\alpha})$ associated with f_{α} is trianguline at p. In light of the extension of Nekovář's theory to families of trianguline representations obtained in [Pot13], the construction of $\langle \langle \cdot, \cdot \rangle_{f_{\alpha}g_{\alpha}h_{\alpha}}$, given in Section 2 below when A is p-ordinary and α_f is the unit root of $h_{f,p}$, the unit root of $h_{f,p}$, easily generalises to the present setting. Conjecture 1.1 should then extend to the semi-stable setting.

1.1.2. The reducible case. — The formalism leading to the definition of the *p*-adic regulator $R_p^{\alpha\alpha}(A, \varrho)$ extends to the case in which one or both the Artin representations ϱ_1 and ϱ_2 is reducible and *p*-irregular, i.e. of the form $\chi \oplus \chi'$ for Dirichlet characters satisfying $\chi(p) = \chi'(p)$. Let $\xi = g$ or *h* be the associated weight-one Eisenstein series $\text{Eis}_1(\chi,\chi')$. According to the main result of [**BDP19**] there exists a unique cuspidal Hida family $\boldsymbol{\xi}_{\alpha}$ specialising in weight one to the (unique) *p*-stabilisation $\boldsymbol{\xi}_{\alpha}$ of $\boldsymbol{\xi}$. The construction of $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}$ given in Section 2 carries over to this setting, if $V(\boldsymbol{\xi}_{\alpha})$ is replaced by its parabolic counterpart. This guarantees the freeness of $V(\boldsymbol{\xi}_{\alpha})$ and of its maximal *p*-unramified quotient. Note that the *p*-regular reducible cases would involve the Hida–Rankin *p*-adic *L*-functions associated to \boldsymbol{f} and one or two families of Eisenstein series.

1.1.3. The higher-weight case. — One can formulate a higher-weight analogue of Conjecture 1.1, in which the weight-2 newform associated with A is replaced by a newform

$$f = \sum_{n \ge 1} a_n(f) \cdot q^n \in S_k(N_f)_L$$

of even weight $k \ge 2$ and trivial character. Assume for simplicity that p does not divide the conductor N_f of f, and that $a_p(f)$ is a p-adic unit (under the embedding $\bar{\mathbf{Q}} \longrightarrow \bar{\mathbf{Q}}_p$ fixed at the outset). Let $\mathbf{f} = \mathbf{f}_{\alpha}$ be the unique Hida family specialising to the ordinary p-stabilisation f_{α} of f at weight k. The article [Hsi20] associates to $(\mathbf{f}_{\alpha}, \mathbf{g}_{\alpha}, \mathbf{h}_{\alpha})$ a p-adic L-function $L_p^{\alpha\alpha}(f_{\alpha}, \varrho) = \mathscr{L}_p^f(\mathbf{f}, \mathbf{g}_{\alpha}, \mathbf{h}_{\alpha})^2$. Let \mathcal{E}^{k-2} be the (k-2)-fold fibre product of the universal generalised elliptic curve $\mathcal{E} \longrightarrow X_1(N_f)$

8

over the modular curve $X_1(N_f)$ of level $\Gamma_1(N_f)$ over **Q**. The self-dual twist V_f of the Deligne representation of f is a direct summand of $H_{\text{ét}}^{k-1}(\mathcal{E}^{k-2} \otimes_{\mathbf{Q}} \bar{\mathbf{Q}}, L(k/2))$, hence the *p*-adic Abel–Jacobi map yields a morphism (cf. [**NN16**])

$$r_{\text{\acute{e}t}}: \left(\operatorname{CH}^{k/2}(\mathcal{E}^{k-2} \otimes_{\mathbf{Q}} K_{\varrho})_{0} \otimes_{\mathbf{Q}} V_{\varrho} \right) \right)^{\operatorname{Gal}(K_{\varrho}/\mathbf{Q})} \longrightarrow \operatorname{Sel}(\mathbf{Q}, V_{f} \otimes_{\mathbf{Q}(\varrho)} V_{\varrho}),$$

where $\operatorname{CH}^{i}(\cdot)_{0}$ is the Chow group of homologically trivial codimension *i* cycles in \cdot with **Q**-coefficients, and $\operatorname{Sel}(\mathbf{Q}, \cdot)$ is the Bloch–Kato Selmer group of \cdot over **Q**. Define $A_{f}(K_{\rho})^{\varrho}$ to be the image of the Abel–Jacobi map $r_{\text{\acute{e}t}}$:

$$A_f(K_{\rho})^{\varrho} = \text{Image}(r_{\text{\acute{e}t}})$$

The constructions of Section 2 below readily generalise to give a pairing

$$\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}: A_f(K_{\varrho})^{\varrho} \otimes_{\mathbf{Q}(\varrho)} A_f(K_{\varrho})^{\varrho} \longrightarrow \mathscr{I}_k/\mathscr{I}_k^2,$$

where \mathscr{I}_k is the ideal of functions in $\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}$ which vanish at (k, 1, 1). The pairing $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\boldsymbol{f}\boldsymbol{g}_{\alpha}\boldsymbol{h}_{\alpha}}$ is skew-symmetric, and canonical up to the choice of the isomorphisms γ_g and γ_h fixed in (4). The Bloch–Kato conjecture predicts that $r_{\mathrm{\acute{e}t}}$ is injective, and that the dimension $r(f_{\alpha},\varrho)$ of $A_f(K_{\varrho})^{\varrho}$ over $\mathbf{Q}(\varrho)$ is finite. Generalising Conjecture 1.1, we expect that $L_p^{\alpha\alpha}(f_{\alpha},\varrho)$ belongs to $\mathscr{I}_k^{r(f_{\alpha},\varrho)} - \mathscr{I}_k^{r(f_{\alpha},\varrho)+1}$, and that its image in $(\mathscr{I}^{r(f_{\alpha},\varrho)}/\mathscr{I}^{r(f_{\alpha},\varrho)+1})/\mathbf{Q}(\varrho)^{*2}$ is equal to the discriminant of $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{\boldsymbol{f}\boldsymbol{g}_{\alpha}\boldsymbol{h}_{\alpha}}$, computed with respect to any $\mathbf{Q}(\varrho)$ -basis of $A_f(K_{\varrho})^{\varrho}$.

2. Garrett–Nekovář p-adic height pairings

Notation. In this section we set $(f, g, h) = (f, g_{\alpha}, h_{\alpha})$. We denote by G_{Np} the Galois group of the maximal algebraic extension of **Q** which is uramified at all the rational primes not dividing Np.

2.1. Galois representations (cf. [BSV20]). — Let $\boldsymbol{\xi}$ be one of $\boldsymbol{f}, \boldsymbol{g}$ and \boldsymbol{h} , and let $V(\boldsymbol{\xi})$ be the Galois representation introduced in [BSV20, Section 5]. Under the current assumptions it is a free $\mathscr{O}_{\boldsymbol{\xi}}$ -module of rank two, equipped with a linear action of G_{Np} . (Recall that $\mathscr{O}_{\boldsymbol{\xi}}$ denotes the ring of bounded functions on $U_{\boldsymbol{\xi}}$, cf. Section 1.) For each classical point u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 2}$, there is a natural specialisation isomorphism

$$\rho_u: V(\boldsymbol{\xi}) \otimes_u L \simeq V(\boldsymbol{\xi}_u)$$

between the base change of $V(\boldsymbol{\xi})$ along evaluation at u on $\mathscr{O}_{\boldsymbol{\xi}}$ and the homological Deligne representation $V(\boldsymbol{\xi}_u)$ of $\boldsymbol{\xi}_u$. (We refer to Equation (106) of loc. cit. for more details.) Moreover, if $\boldsymbol{\xi} = \boldsymbol{g}, \boldsymbol{h}$, the base change of $V(\boldsymbol{\xi})$ along evaluation at 1 on $U_{\boldsymbol{\xi}}$ yields a canonical model of the (homological) Deligne–Serre representation associated with the weight-one cuspidal eigenform $\boldsymbol{\xi}_1$. In this case we set (cf. Section 1) $V(\boldsymbol{\xi}) = V(\boldsymbol{\xi}_1) = V(\boldsymbol{\xi}) \otimes_1 L$ and denote by $\rho_1 : V(\boldsymbol{\xi}) \otimes_1 L \simeq V(\boldsymbol{\xi}_1)$ the identity.

The representation $V(\mathbf{f}_2)$ is the *f*-isotypic component of $H^1_{\text{ét}}(X_1(N_f, p), L(1))$ and the modular parametrisation $\wp_{\infty} : X_1(N_f, p) \longrightarrow A$ fixed in Section 1 induces an isomorphism $\wp_{\infty*} : V(\mathbf{f}_2) \simeq V(f)$. With a slight abuse of notation we write again

(10)
$$\rho_2: V(\boldsymbol{f}) \otimes_2 L \simeq V(f)$$

for the composition of $\varphi_{\infty*}$ with the specialisation isomorphism ρ_2 .

The restriction of $V(\boldsymbol{\xi})$ to $G_{\mathbf{Q}_p}$ is nearly-ordinary: let $\chi_{\text{cyc}}^{\boldsymbol{u}-1} : G_{\mathbf{Q}} \longrightarrow \mathscr{O}_{\boldsymbol{\xi}}^*$ be the character whose composition with evaluation at u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}$ is the (u-1)-th power of the p-adic cyclotomic character $\chi_{\text{cyc}} : G_{\mathbf{Q}} \longrightarrow \mathbf{Z}_p^*$, and let $\check{a}_p(\boldsymbol{\xi}) : G_{\mathbf{Q}_p} \longrightarrow \mathscr{O}_{\boldsymbol{\xi}}^*$ be the unramified character sending an arithmetic Frobenius to the p-th Fourier coefficient $a_p(\boldsymbol{\xi})$ of $\boldsymbol{\xi}$. Then there exists a natural short exact sequence of $\mathscr{O}_{\boldsymbol{\xi}}[G_{\mathbf{Q}_p}]$ -modules

$$0 \longrightarrow V(\boldsymbol{\xi})^+ \xrightarrow{i^+} V(\boldsymbol{\xi}) \xrightarrow{p^-} V(\boldsymbol{\xi})^- \longrightarrow 0$$

with

(11) $V(\boldsymbol{\xi})^+ \simeq \mathscr{O}_{\boldsymbol{\xi}}(\chi_{\text{cyc}}^{\boldsymbol{u}-1} \cdot \chi_{\boldsymbol{\xi}} \cdot \check{a}_p(\boldsymbol{\xi})^{-1}) \text{ and } V(\boldsymbol{\xi})^- \simeq \mathscr{O}_{\boldsymbol{\xi}}(\check{a}_p(\boldsymbol{\xi})).$

According to Equations (103) and (114) of [BSV20], there exists a natural skew-symmetric $G_{\mathbf{Q}}$ -equivariant perfect pairing

$$\pi_{\boldsymbol{\xi}}: V(\boldsymbol{\xi}) \otimes_{\mathscr{O}_{\boldsymbol{\xi}}} V(\boldsymbol{\xi}) \longrightarrow \mathscr{O}_{\boldsymbol{\xi}}(\chi_{\boldsymbol{\xi}} \cdot \chi_{\mathrm{cyc}}^{\boldsymbol{u}-1}).$$

For each u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 2}$, the base change of $\pi_{\boldsymbol{\xi}}$ along evaluation at u and the specialisation isomorphism ρ_u yield a perfect pairing $\pi_{\boldsymbol{\xi}_u} : V(\boldsymbol{\xi}_u) \otimes_E V(\boldsymbol{\xi}_u) \longrightarrow L(\chi_{\boldsymbol{\xi}} + u - 1)$. If $\boldsymbol{\xi} = \boldsymbol{f}$ and u = 2, then $\pi_{\boldsymbol{f}_2}$ is equal, up to sign, to the pairing arising from the Poincaré duality $H^1(X_1(N_f, p), \mathbf{Q}_p(1))^{\otimes 2} \longrightarrow \mathbf{Q}_p(1)$ (cf. loco citato), hence its composition

$$\pi_f: V(f) \otimes_L V(f) \longrightarrow L(1)$$

with the inverse of $\wp_{\infty*}^{\otimes 2}$ is a rational multiple of the Weil pairing. If $\boldsymbol{\xi}$ equals either \boldsymbol{g} or \boldsymbol{h} , then the base change of $\pi_{\boldsymbol{\xi}}$ along evaluation at u = 1 on $\mathscr{O}_{\boldsymbol{\xi}}$ yields the perfect pairing $\pi_{\boldsymbol{\xi}} : V(\boldsymbol{\xi}) \otimes_L V(\boldsymbol{\xi}) \longrightarrow L(\chi_{\boldsymbol{\xi}})$ introduced in Equation (3).

As in Section 1, set $\mathscr{O}_{fgh} = \mathscr{O}_{f} \hat{\otimes}_{\mathbf{Q}_{p}} \mathscr{O}_{g} \hat{\otimes}_{L} \mathscr{O}_{h}$ and define

$$V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) = V(\boldsymbol{f}) \hat{\otimes}_{\mathbf{Q}_p} V(\boldsymbol{g}) \hat{\otimes}_L V(\boldsymbol{h}) \otimes_{\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}} \Xi_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}},$$

where $\Xi_{fgh}: G_{\mathbf{Q}} \longrightarrow \mathscr{O}_{fgh}^*$ is the character satisfying

$$\Xi_{fgh}(g)(w) = \chi_{\text{cyc}}(g)^{(4-k-l-m)/2}$$

for each g in $G_{\mathbf{Q}}$ and w = (k, l, m) in $U_{\mathbf{f}} \times U_{\mathbf{g}} \times U_{\mathbf{h}} \cap \mathbf{Z}^3$. The $G_{\mathbf{Q}}$ -representation $V(\mathbf{f}, \mathbf{g}, \mathbf{h})$ is a free $\mathscr{O}_{\mathbf{f}g\mathbf{h}}$ -module of rank eight. Moreover $V(\mathbf{f}, \mathbf{g}, \mathbf{h})$ is Kummer selfdual: because $\chi_g = \chi_h^{-1}$ (cf. Equation (1)), the product of the perfect pairings $\pi_{\boldsymbol{\xi}}$ (for $\boldsymbol{\xi} = \mathbf{f}, \mathbf{g}, \mathbf{h}$) define a $G_{\mathbf{Q}}$ -equivariant and skew-symmetric perfect pairing

(12)
$$\pi_{\boldsymbol{fgh}}: V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) \otimes_{\mathscr{O}_{\boldsymbol{fgh}}} V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) \longrightarrow \mathscr{O}_{\boldsymbol{fgh}}(1).$$

Set $w_o = (2, 1, 1)$. Then the specialisation map (10) induces an isomorphism

(13)
$$\rho_{w_o}: V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) \otimes_{w_o} L \simeq V(f, g, \boldsymbol{h})$$

between the base change of V(f, g, h) along evaluation at w_o on \mathcal{O}_{fgh} and

$$V(f,g,h) = V(f) \otimes_L V(g) \otimes_L V(h).$$

The pairing π_{fgh} and ρ_{w_a} yield a $G_{\mathbf{Q}}$ -equivariant, skew-symmetric and perfect duality

$$\pi_{fgh}: V(f, g, h) \otimes_L V(f, g, h) \longrightarrow L(1),$$

which by construction equals the product of the dualities π_f , π_g and π_h .

2.2. Selmer complexes (cf. [Nek06]). — For $\boldsymbol{\xi} = \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$, denote by $\Lambda_{\boldsymbol{\xi}}$ the ring of analytic functions on $U_{\boldsymbol{\xi}}$ bounded by 1, and set $\Lambda_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}} = \Lambda_{\boldsymbol{f}} \hat{\otimes}_{\mathbf{Z}_p} \Lambda_{\boldsymbol{g}} \hat{\otimes}_{\mathcal{O}_L} \Lambda_{\boldsymbol{h}}$, so that $\mathcal{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}} = \Lambda_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}} [1/p]$. The \mathcal{O}_L -algebra $\Lambda_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}$ is isomorphic to a three-variable power series ring with coefficients in \mathcal{O}_L . In particular it is a regular local complete Noetherian ring with finite residue field. Let G denote either G_{Np} or $G_{\mathbf{Q}_\ell}$, for a rational prime ℓ dividing Np, and let (B, M) denote one of the pairs ($\mathcal{O}_L, \mathbb{V}(f, g, h)$) and ($\Lambda_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}, \mathbb{V}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$), where $\mathbb{V}(f, g, h)$ (resp., $\mathbb{V}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$) is an \mathcal{O}_L -lattice (resp., a $\Lambda_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}$ -lattice) in $\mathcal{V}(f, g, h)$ (resp., $\mathcal{V}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$) preserved by the action of G_{Np} . Equip G with the profinite topology and M with the $m_{\mathbb{B}}$ -adic topology, where $m_{\mathbb{B}}$ is the maximal ideal of B. Set $(B, M) = (\mathbb{B}[1/p], \mathbb{M}[1/p])$ and

$$C^{\bullet}_{\operatorname{cont}}(G, M) = C^{\bullet}_{\operatorname{cont}}(G, M) \otimes_{\mathsf{B}} B$$

where $C^{\bullet}_{\text{cont}}(G, \mathbb{M})$ is the complex of non-homogeneous continuous cochains of G with values in \mathbb{M} . If $G = G_{\mathbf{Q}_{\ell}}$, we also write $C^{\bullet}_{\text{cont}}(\mathbf{Q}_{\ell}, M)$ as a shorthand for $C^{\bullet}_{\text{cont}}(G_{\mathbf{Q}_{\ell}}, M)$. Recall the $\mathscr{O}_{\mathbf{f}}[G_{\mathbf{Q}_{p}}]$ -submodule $V(\mathbf{f})^{+}$ of $V(\mathbf{f})$ introduced in Section 2.1 and set

$$V(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})^+ = V(\boldsymbol{f})^+ \hat{\otimes}_{\mathbf{Q}_p} V(\boldsymbol{g}) \hat{\otimes}_L V(\boldsymbol{h}) \otimes_{\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}} \Xi_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}.$$

Define $V(f)^+$ to be the image of $V(f)^+ \otimes_2 L$ under the specialisation isomorphism $\rho_2 : V(f) \otimes_2 L \simeq V(f)$ (cf. Equation (10)), and set

$$V(f,g,h)^+ = V(f)^+ \otimes_L V(g) \otimes_L V(h).$$

Denote by $i^+ : M^+ \hookrightarrow M$ the natural inclusion, fix a $G_{\mathbf{Q}_p}$ -stable B-lattice \mathbb{M}^+ mapping into M under i^+ , and define $C^{\bullet}_{\text{cont}}(G_{\mathbf{Q}_p}, M^+) = C^{\bullet}_{\text{cont}}(\mathbf{Q}_p, M^+)$ to be the base change to B of the complex $C^{\bullet}_{\text{cont}}(G_{\mathbf{Q}_p}, \mathbb{M}^+)$ of continuous non-homogeneous cochains of $G_{\mathbf{Q}_p}$ with values in \mathbb{M}^+ . The inclusion i^+ induces a morphism of complexes

$$i^+ : \mathrm{C}^{\bullet}_{\mathrm{cont}}(\mathbf{Q}_p, M^+) \longrightarrow \mathrm{C}^{\bullet}_{\mathrm{cont}}(\mathbf{Q}_p, M),$$

which we call the *f*-Greenberg local condition on the $G_{\mathbf{Q}_p}$ -representation M.

The f-Nekovář Selmer complex

$$\tilde{C}^{\bullet}_{f}(G_{Np}, M)$$

of the G_{Np} -representation M is the complex of B-modules

$$\operatorname{Cone}\left(\operatorname{C}^{\bullet}_{\operatorname{cont}}(G_{Np},M) \oplus \operatorname{C}^{\bullet}_{\operatorname{cont}}(\mathbf{Q}_{p},M^{+}) \xrightarrow{\operatorname{res}_{Np}-i^{+}} \bigoplus_{\ell \mid Np} \operatorname{C}^{\bullet}_{\operatorname{cont}}(\mathbf{Q}_{\ell},M)\right) [-1],$$

where $\operatorname{res}_{Np} = \bigoplus_{\ell \mid Np} \operatorname{res}_{\ell}$ is the direct sum over the primes dividing Np of the restriction morphisms $\operatorname{res}_{\ell} : \mathbf{R}\Gamma_{\operatorname{cont}}(G_{Np}, M) \longrightarrow \mathbf{R}\Gamma_{\operatorname{cont}}(\mathbf{Q}_{\ell}, M)$ associated with fixed embeddings $i_{\ell} : \bar{\mathbf{Q}} \longrightarrow \bar{\mathbf{Q}}_{\ell}$ (with i_p the embedding fixed at the outset.) Denote by

$$\mathbf{R}\Gamma_f(\mathbf{Q}, M) \in \mathbf{D}^b_{\mathrm{ft}}(B)$$

the image of $\tilde{C}^{\bullet}_{f}(G_{Np}, M)$ in the derived category $D^{b}_{ft}(B)$ of bounded complexes of *B*-modules with cohomology of finite type over *B* and by

$$\tilde{H}_{f}^{\cdot}(\mathbf{Q},M) = H^{\cdot}(\mathbf{R}\tilde{\Gamma}_{f}(\mathbf{Q},M))$$

its cohomology. (The complex $\mathbf{R}\tilde{\Gamma}_f(\mathbf{Q}, M)$ is indeed a perfect complex of perfect amplitude contained in [0, 3], cf. [Nek06].) Similarly denote by

$$\mathbf{R}\Gamma_{\mathrm{cont}}(G_{Np}, M), \ \mathbf{R}\Gamma_{\mathrm{cont}}(\mathbf{Q}_{\ell}, M) \text{ and } \mathbf{R}\Gamma_{\mathrm{cont}}(\mathbf{Q}_{p}, M^{+})$$

the images in $\mathcal{D}_{\mathrm{ft}}^{b}(B)$ of $\mathcal{C}_{\mathrm{cont}}^{\bullet}(G_{Np}, M)$, $\mathcal{C}_{\mathrm{cont}}^{\bullet}(\mathbf{Q}_{\ell}, M)$ and $\mathcal{C}_{\mathrm{cont}}^{\bullet}(\mathbf{Q}_{p}, M^{+})$, and by

$$H^{\cdot}(G_{Np}, M), \quad H^{\cdot}(\mathbf{Q}_{\ell}, M) \text{ and } H^{\cdot}(\mathbf{Q}_{p}, M^{+})$$

their cohomology.

The specialisation isomorphism (13) induces isomorphisms in $D^b_{ft}(L)$:

(14)
$$\rho_{w_o} : \mathbf{R}\Gamma_{\text{cont}}(G, V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})) \otimes^{\mathbf{L}}_{\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}, w_o} L \simeq \mathbf{R}\Gamma_{\text{cont}}(G, V(f, g, h))$$

$$\rho_{w_o}: \mathbf{R}\Gamma_{\mathrm{cont}}(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})^+) \otimes^{\mathbf{L}}_{\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}, w_o} L \simeq \mathbf{R}\Gamma_{\mathrm{cont}}(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})^+),$$

which in turn induce on f-Selmer complexes an isomorphism

(15)
$$\rho_{w_o} : \mathbf{R}\Gamma_f(\mathbf{Q}, V(f, g, h)) \otimes_{\mathscr{O}_{fgh}, w_o}^{\mathbf{L}} L \simeq \mathbf{R}\Gamma_f(\mathbf{Q}, V(f, g, h)).$$

(This follows easily by the fact the kernel of evaluation at w_o on \mathcal{O}_{fgh} is generated by an \mathcal{O}_{fgh} -regular sequence.)

The local Tate duality implies that for each prime ℓ dividing N the complex $\mathbf{R}\Gamma_{\text{cont}}(\mathbf{Q}_{\ell}, V(f, g, h))$ is isomorphic to zero, hence so is $\mathbf{R}\Gamma_{\text{cont}}(\mathbf{Q}_{\ell}, V(f, g, h))$ by Equation (14). It then follows from the definition of the Selmer complex $\tilde{C}^{\bullet}_{f}(G_{Np}, M)$ that one has a distinguished triangle in $D^{b}_{\text{ft}}(R)$:

(16)
$$\mathbf{R}\widetilde{\Gamma}_{f}(\mathbf{Q},M) \longrightarrow \mathbf{R}\Gamma_{\mathrm{cont}}(G_{Np},M) \xrightarrow{p^{-}\mathrm{ores}_{p}} \mathbf{R}\Gamma_{\mathrm{cont}}(\mathbf{Q}_{p},M^{-}),$$

where M^- is the quotient of M by M^+ and p^- is the map induced on complexes by the the projection $p^-: M \longrightarrow M^-$.

2.3. The extended Selmer group. — The exact triangle (16) gives rise to a long exact cohomology sequence

(17)
$$\tilde{H}^i_f(\mathbf{Q}, M) \longrightarrow H^i(G_{Np}, M) \longrightarrow H^i(\mathbf{Q}_p, M^-) \xrightarrow{\jmath} \tilde{H}^{i+1}_f(\mathbf{Q}, M).$$

As easily checked

$$\operatorname{Sel}(\mathbf{Q}, V(f, g, h)) = \ker \left(H^1(G_{Np}, V(f, g, h)) \xrightarrow{p^- \operatorname{ores}_p} H^1(\mathbf{Q}_p, V(f, g, h)^-) \right),$$

hence one can extract from the previous sequence the short exact sequence

(18)
$$0 \longrightarrow H^0(\mathbf{Q}_p, V(f, g, h)^-) \longrightarrow \tilde{H}^1_f(\mathbf{Q}, V(f, g, h)) \longrightarrow \operatorname{Sel}(\mathbf{Q}, V(f, g, h)) \longrightarrow 0.$$

The projection in the previous equation has a natural splitting

(19)
$$\iota_{\mathrm{ur}} : \mathrm{Sel}(\mathbf{Q}, V(f, g, h)) \hookrightarrow H^1_f(\mathbf{Q}, V(f, g, h)),$$

characterised by the following property. Denote by

(20)
$$\cdot^+ : \tilde{H}^1_f(\mathbf{Q}, V(f, g, h)) \longrightarrow H^1(\mathbf{Q}_p, V(f, g, h)^+)$$

the morphism induced by the natural map of complexes (i.e. projection)

$$C^{\bullet}_{f}(G_{Np}, V(f, g, h)) \longrightarrow C^{\bullet}_{cont}(\mathbf{Q}_{p}, V(f, g, h)^{+}).$$

Then for any Selmer class \mathfrak{x} in $Sel(\mathbf{Q}, V(f, g, h))$ one has

 $\iota_{\mathrm{ur}}(\mathfrak{x})^+ \in H^1_{\mathrm{fin}}(\mathbf{Q}_p, V(f, g, h)^+).$

We often identify the Bloch–Kato Selmer group $\operatorname{Sel}(\mathbf{Q}, V(f, g, h))$ with a subgroup of the Nekovář extended Selmer group $\tilde{H}_{f}^{1}(\mathbf{Q}, V(f, g, h))$ via the splitting i_{nr} . In other words, we use the splitting i_{nr} to identify the Nekovář extended Selmer group $\tilde{H}_{f}^{1}(\mathbf{Q}, V(f, g, h))$ with the naive extended Selmer group $\operatorname{Sel}^{\dagger}(\mathbf{Q}, V(f, g, h))$ introduced in Equation (7):

(21)
$$\tilde{H}_{f}^{1}(\mathbf{Q}, V(f, g, h)) = \operatorname{Sel}(\mathbf{Q}, V(f, g, h)) \oplus H^{0}(\mathbf{Q}_{p}, V(f, g, h)^{-})$$

The Kummer map and the Shapiro isomorphism yield an injective morphism

$$(A(K_{\varrho}) \otimes_{\mathbf{Z}} V_{\varrho})^{\operatorname{Gal}(K_{\varrho}/\mathbf{Q})} \otimes_{\mathbf{Q}(\varrho)} L \longrightarrow \operatorname{Sel}(\mathbf{Q}, V(f) \otimes_{\mathbf{Q}(\varrho)} V_{\varrho}).$$

Together with the isomorphism of $L[G_{\mathbf{Q}}]$ -modules

 $\gamma_g \otimes \gamma_h : V_{\varrho} \otimes_{\mathbf{Q}(\varrho)} L \simeq V(g) \otimes_L V(h)$

(cf. Equation (4)), it entails an injective morphism of L-vector spaces

(22) $\gamma_{gh}: A^{\dagger}(K_{\varrho})^{\varrho} \otimes_{\mathbf{Q}(\varrho)} L \longrightarrow \tilde{H}^{1}_{f}(\mathbf{Q}, V(f, g, h)),$

which is an isomorphism precisely if the *p*-part of the *ρ*-isotypic component of the Shafarevich–Tate group of A over K_{ρ} is finite.

2.4. Generalised Poitou–Tate duality (cf. [Nek06]). — Section 6.3 of [Nek06] (see also Proposition 1.3.2) associates to the Kummer duality

$$T_{fgh}: V(f,g,h) \otimes_L V(f,g,h) \longrightarrow L(1)$$

(satisfying $\pi_{fgh}(V(f,g,h)^+ \otimes_L V(f,g,h)^+) = 0)$ a global cup-product pairing

$$\cup_{\mathrm{Nek}} = \cup_{\mathrm{Nek}} : \mathbf{R}\widetilde{\Gamma}_f(\mathbf{Q}, V(f, g, h)) \otimes_L^{\mathbf{L}} \mathbf{R}\widetilde{\Gamma}_f(\mathbf{Q}, V(f, g, h)) \longrightarrow \mathbf{R}\widetilde{\Gamma}_{\emptyset}(\mathbf{Q}, L(1)),$$

where $\mathbf{R}\tilde{\Gamma}_{\emptyset}(\mathbf{Q}, L(1))$ denotes the complex

$$\operatorname{Cone}\left(\mathbf{R}\Gamma_{\operatorname{cont}}(G_{Np},L(1)) \xrightarrow{\operatorname{res}_{Np}} \bigoplus_{\ell \mid Np} \mathbf{R}\Gamma_{\operatorname{cont}}(\mathbf{Q}_{\ell},L(1))\right) [-1].$$

Let $\tilde{H}_{\emptyset}(\mathbf{Q}, L(1))$ be the cohomology of $\mathbf{R}\tilde{\Gamma}_{\emptyset}(\mathbf{Q}, L(1))$. The fundamental exact sequence of global class field theory yields a canonical isomorphism

$$\operatorname{Tr}_{L}: \tilde{H}^{3}_{\emptyset}(\mathbf{Q}, L(1)) \simeq \bigoplus_{\ell \mid Np} H^{2}(\mathbf{Q}_{\ell}, L(1)) / \operatorname{res}_{Np} \left(H^{2}(G_{Np}, L(1)) \right) \simeq L,$$

arising from the sum of the invariant maps $\operatorname{inv}_{\ell} : H^2(\mathbf{Q}_{\ell}, L(1)) \simeq L$ of local class field theory, for ℓ dividing Np (cf. Equation (5.3.1.3.2) of [Nek06]). Define

(23)
$$\langle \cdot, \cdot \rangle_{\text{Nek}} : \tilde{H}_f^2(\mathbf{Q}, V(f, g, h)) \otimes_L \tilde{H}_f^1(\mathbf{Q}, V(f, g, h)) \longrightarrow \tilde{H}_{\emptyset}^3(\mathbf{Q}, L(1)) \simeq L.$$

to be the composition of the map $H^{2,1}(\cup_{\text{Nek}})$ induced on (2,1)-cohomology by Nekovář's global cup-product \cup_{Nek} with the trace isomorphism Tr_L .

2.5. The *p*-adic height pairing. — To lighten the notation, we abbreviate $V(f, g, h), V(f, g, h), \mathbf{R}\tilde{\Gamma}_f(\mathbf{Q}, \cdot)$ and $\tilde{H}(\mathbf{Q}, \cdot)$ with $V, \mathbf{V}, \mathbf{R}\tilde{\Gamma}_f(\cdot)$ and $\tilde{H}_f(\cdot)$ respectively.

Applying $\mathbf{R}\tilde{\Gamma}_f(\mathbf{V}) \otimes_{\mathscr{O}_{fah}}^{\mathbf{L}} \cdot$ to the exact triangle

(24)
$$\mathscr{I}/\mathscr{I}^2 \longrightarrow \mathscr{O}_{fgh}/\mathscr{I}^2 \longrightarrow L \xrightarrow{\delta} \mathscr{I}/\mathscr{I}^2[1]$$

arising from evaluation at w_o on \mathscr{O}_{fgh} , yields a morphism in $D^b_{ft}(\mathscr{O}_{fgh})$:

(25)
$$\mathbf{R}\widetilde{\Gamma}_{f}(\mathbf{V}) \otimes^{\mathbf{L}}_{\mathscr{O}_{fgh},w_{o}} L \longrightarrow \mathbf{R}\widetilde{\Gamma}_{f}(\mathbf{V}) \otimes^{\mathbf{L}}_{\mathscr{O}_{fgh}} \mathscr{I}/\mathscr{I}^{2}[1].$$

The specialisation map ρ_{w_o} gives rise to isomorphisms (cf. Equation (15))

$$\rho_{w_o}: \mathbf{R}\widetilde{\Gamma}_f(\mathbf{V}) \otimes^{\mathbf{L}}_{\mathscr{O}_{fgh}, w_o} L \simeq \mathbf{R}\widetilde{\Gamma}_f(V)$$

and

$$\rho_{w_o} \otimes \operatorname{id} : \mathbf{R} \widetilde{\Gamma}_f(V) \otimes^{\mathbf{L}}_{\mathscr{O}_{fgh}} \mathscr{I} / \mathscr{I}^2 \simeq \mathbf{R} \widetilde{\Gamma}_f(V) \otimes_L \mathscr{I} / \mathscr{I}^2,$$

which together with (25) induce a *derived Bockstein map*

$$\tilde{\boldsymbol{\beta}}_{\boldsymbol{fgh}}: \mathbf{R}\tilde{\Gamma}_{f}(\mathbf{Q}, V(f, g, h)) \longrightarrow \mathbf{R}\tilde{\Gamma}_{f}(\mathbf{Q}, V(f, g, h))[1] \otimes_{L} \mathscr{I}/\mathscr{I}^{2}.$$

The Garrett-Nekovář canonical p-adic height pairing

$$\langle\!\langle\cdot,\cdot
angle\!\rangle_{\boldsymbol{fgh}}: \tilde{H}^1_f(\mathbf{Q},V(f,g,h))\otimes_L \tilde{H}^1_f(\mathbf{Q},V(f,g,h)) \longrightarrow \mathscr{I}/\mathscr{I}^2$$

is the composition of the Nekovář cup-product pairing (cf. Equation (23))

$$\langle \cdot, \cdot \rangle_{\operatorname{Nek}} \otimes \mathscr{I}/\mathscr{I}^2 : \tilde{H}_f^2(V) \otimes_L \tilde{H}_f^1(V) \otimes_L \mathscr{I}/\mathscr{I}^2 \longrightarrow \mathscr{I}/\mathscr{I}^2$$

with the morphism

$$\tilde{\beta}_{\boldsymbol{fgh}} \otimes \operatorname{id} : \tilde{H}^1_f(V) \otimes_L \tilde{H}^1_f(V) \longrightarrow \tilde{H}^2_f(V) \otimes_L \tilde{H}^1_f(V) \otimes_L \mathscr{I}/\mathscr{I}^2$$

where the Bockstein map

(26)
$$\tilde{\beta}_{fgh} : \tilde{H}^1_f(\mathbf{Q}, V(f, g, h)) \longrightarrow \tilde{H}^2_f(\mathbf{Q}, V(f, g, h)) \otimes_L \mathscr{I}/\mathscr{I}/\mathscr{I}^2$$

is the map $H^1(\tilde{\beta}_{fgh})$ induced on the first cohomology groups by $\tilde{\beta}_{fgh}$.

Proposition 2.1. — The p-adic height $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fgh}$ is skew-symmetric.

Proof. — As explained in Section 2.1, the Kummer self-duality π_{fgh} on V(f, g, h) lifts (under ρ_{w_o}) to a skew-symmetric, $G_{\mathbf{Q}}$ -equivariant perfect pairing

$$\pi_{\boldsymbol{fgh}}: V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) \otimes_{\mathscr{O}_{\boldsymbol{fgh}}} V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) \longrightarrow \mathscr{O}_{\boldsymbol{fgh}}(1),$$

under which the $G_{\mathbf{Q}_p}$ -submodule $V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})^+$ of $V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ is its own orthogonal complement. The proposition then follows from the results of [Ven13, Appendix C]. \Box

The *p*-adic height pairing (cf. Equation (5))

$$\langle\!\!\langle\cdot,\cdot\rangle\!\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}:A^{\dagger}(K_{\varrho})^{\varrho}\otimes_{\mathbf{Q}(\varrho)}A^{\dagger}(K_{\varrho})^{\varrho}\longrightarrow\mathscr{I}/\mathscr{I}^{2}$$

which appears in Conjecture 1.1 is defined to be restriction of the canonical height pairing $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}} : \tilde{H}_{f}^{1}(\mathbf{Q}, V(f, g, h))^{\otimes 2} \longrightarrow \mathscr{I}/\mathscr{I}^{2}$ to the *p*-extended Mordell–Weil group $A^{\dagger}(K_{\varrho})^{\varrho}$ along the injective morphism γ_{gh} introduced in Equation (22).

3. Diagonal classes and rational points

As proved in [BSV20, Theorem A] and [DR20, Theorem 5.1], the square root p-adic *L*-function $\mathscr{L}_p^{\alpha\alpha}(A,\varrho)$ is the image of a big diagonal class $\kappa(\boldsymbol{f},\boldsymbol{g}_{\alpha},\boldsymbol{h}_{\alpha})$ in $H^1(\mathbf{Q}, V(\boldsymbol{f},\boldsymbol{g}_{\alpha},\boldsymbol{h}_{\alpha}))$ under an appropriate branch of the Perrin-Riou big logarithm. The leading term of $L_p^{\alpha\alpha}(A,\varrho)$ at $w_o = (2,1,1)$ is then intimately connected to the derivatives of the class $\kappa(\boldsymbol{f},\boldsymbol{g}_{\alpha},\boldsymbol{h}_{\alpha})$ at w_o . This section exploits this connection and its relation with Conjecture 1.1.

To simplify the exposition, we assume in this section that

(27)
$$\alpha_f \neq \alpha_g \cdot \alpha_h \quad \text{and} \quad \alpha_f \neq \beta_g \cdot \alpha_h.$$

This condition is equivalent to the vanishing of the module of *p*-adic periods $Q_p(A, \varrho)$ of (A, ϱ) (or equivalently of the module $H^0(\mathbf{Q}_p, V(f, g, h)^-)$), and is satisfied when Ahas good (ordinary) reduction at p (cf. Remark 1.2.1). In particular, in this section, the Nekovář extended Selmer group and the Bloch–Kato Selmer group of V(f, g, h)over \mathbf{Q} are equal to each other (cf. Equation (21)):

$$\hat{H}_{f}^{1}(\mathbf{Q}, V(f, g, h)) = \operatorname{Sel}(\mathbf{Q}, V(f, g, h)).$$

3.1. Differentials and logarithms. — Let $\boldsymbol{\xi}$ denote one of $\boldsymbol{f}, \boldsymbol{g}_{\alpha}$ or \boldsymbol{h}_{α} , and recall the short exact sequence of $\mathscr{O}_{\boldsymbol{\xi}}$ -modules $V(\boldsymbol{\xi})^+ \hookrightarrow V(\boldsymbol{\xi}) \longrightarrow V(\boldsymbol{\xi})^-$ (cf. Section 2.1). If $\boldsymbol{\xi} = \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}$ define

 $V(\xi)_{\alpha} = V(\xi)^{-} \otimes_{1} L$ and $V(\xi)_{\beta} = V(\xi)^{+} \otimes_{1} L.$

Equation (11) implies that $V(\xi)_{\alpha} = V(\xi)^{\operatorname{Frob}_p = \alpha_{\xi}}$ and $V(\xi)_{\beta} = V(\xi)^{\operatorname{Frob}_p = \beta_{\xi}}$ are the subspaces of $V(\xi)$ on which an arithmetic Frobenius Frob_p in $G_{\mathbf{Q}_p}$ acts as multiplication by α_{ξ} and β_{ξ} respectively. In particular one has the decomposition

$$V(\xi) = V(\xi)_{\alpha} \oplus V(\xi)_{\beta}$$

of $L[G_{\mathbf{Q}_p}]$ -modules. (Recall that by assumption the roots α_{ξ} and $\beta_{\xi} = \chi_{\xi}(p) \cdot \alpha_{\xi}^{-1}$ of the *p*-th Hecke polynomial of ξ are distinct, cf. Section 1.)

Set $D(\boldsymbol{\xi})^- = H^0(\mathbf{Q}_p, V(\boldsymbol{\xi})^- \hat{\otimes}_{\mathbf{Q}_p} \hat{\mathbf{Q}}_p^{\mathrm{nr}})$, where $\hat{\mathbf{Q}}_p^{\mathrm{nr}}$ is the *p*-adic completion of the maximal unramified extension of \mathbf{Q}_p (equipped with its natural $G_{\mathbf{Q}_p}$ -action). As explained in [**BSV20**, Section 5], the $\mathcal{O}_{\boldsymbol{\xi}}$ -module $D(\boldsymbol{\xi})^-$ is free of rank one, and its base change $D(\boldsymbol{\xi})_u^- = D(\boldsymbol{\xi})^- \otimes_u L$ along evaluation at a classical weight u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 2}$ on $\mathcal{O}_{\boldsymbol{\xi}}$ is canonically isomorphic to the $\boldsymbol{\xi}_u$ -isotypic component $L \cdot \boldsymbol{\xi}_u$ of $S_u(pN_{\boldsymbol{\xi}}, \chi_{\boldsymbol{\xi}})_L$. Moreover, there exists an $\mathcal{O}_{\boldsymbol{\xi}}$ -basis

$$\omega_{\boldsymbol{\xi}} \in D(\boldsymbol{\xi})^-$$

whose image $\omega_{\boldsymbol{\xi}_u}$ in $D(\boldsymbol{\xi})_u^-$ corresponds to $\boldsymbol{\xi}_u$ under the aforementioned isomorphism for each classical weight u in $U_{\boldsymbol{\xi}} \cap \mathbf{Z}_{\geq 2}$ (cf. Equations (117)–(119) of [**BSV20**]).

Remark 3.1. — We caution the reader that the notation used here differ from that of [**BSV20**]. Precisely, Section 5 of loc. cit. introduces a differential $\omega_{\boldsymbol{\xi}} = \omega_{\boldsymbol{\xi}}^{\text{BSV}}$ in a suitable dual $D^*(\boldsymbol{\xi})^-$ of $D(\boldsymbol{\xi})^-$. Here we denote by $\omega_{\boldsymbol{\xi}}$ the image of $\omega_{\boldsymbol{\xi}}^{\text{BSV}}$ under the isomorphism $w_{Np}^-: D^*(\boldsymbol{\xi})^- \simeq D(\boldsymbol{\xi})^-$ induced by the Atkin–Lehner isomorphism $w_{Np}^-: V^*(\boldsymbol{\xi})^-(1+\kappa_{U_f}) \simeq V(\boldsymbol{\xi})^-$ defined in [**BSV20**, Equation (114)]. Accordingly the canonical isomorphism $D(\boldsymbol{\xi})_u^- \simeq L \cdot \boldsymbol{\xi}_u$ mentioned above arises from the specialisation isomorphism $D^*(\boldsymbol{\xi})^- \otimes_u L \simeq \operatorname{Fil}^1 V_{\mathrm{dR}}^*(\boldsymbol{\xi}_u)$ defined in [BSV20, Equation (116)] and the Atkin–Lehner operator (cf. Equation (29) of loc. cit.).

If $\boldsymbol{\xi}$ is either \boldsymbol{g}_{α} or \boldsymbol{h}_{α} , the weight-one specialisation of $\omega_{\boldsymbol{\xi}}$ yields canonical elements

$$\omega_{\xi_{\alpha}} \in D(\boldsymbol{\xi})_1^- = D_{\operatorname{cris}}(V(\xi)_{\alpha}).$$

In this case, let $\eta_{\xi_{\alpha}}$ in $D_{cris}(V(\xi)_{\beta})$ be the class satisfying

$$\langle \eta_{\xi_{\alpha}}, \omega_{\xi_{\alpha}} \rangle_{\varepsilon} = 1,$$

where

$$\langle \cdot, \cdot \rangle_{\xi} : D_{\operatorname{cris}}(V(\xi)_{\alpha}) \otimes_L D_{\operatorname{cris}}(V(\xi)_{\beta}) \longrightarrow D_{\operatorname{cris}}(L(\chi_{\xi})) \simeq L$$

is the perfect pairing induced by the duality π_{ξ} introduced in Equation (3). (The crystalline module $D_{\text{cris}}(\chi_{\xi}) = H^0(\mathbf{Q}_p, L(\chi_{\xi}) \otimes_{\mathbf{Q}_p} B_{\text{cris}})$ of the one-dimensional representation $L(\chi_{\xi})$ is generated over L by the Gauß sum

$$G(\chi_{\xi}) = \sum_{a \in (\mathbf{Z}/c(\chi_{\xi})\mathbf{Z})^*} \chi_{\xi}(a) \otimes e^{2\pi i a/c(\chi_{\xi})}$$

in $L \otimes_{\mathbf{Q}_p} \mathbf{Q}_p(\mu_{N_{\xi}})$ of the primitive character $\chi_{\xi} : (\mathbf{Z}/c(\chi_{\xi})\mathbf{Z})^* \longrightarrow L^*$ associated with χ_{ξ} . Since by assumption L contains $\mathbf{Q}(\mu_{N_{\xi}})$, here we identify $G(\chi_{\xi})$ with the element $\sum_a \chi_{\xi}(a) \cdot e^{2\pi i a/c(\chi_{\xi})}$ of L, hence $D_{\mathrm{cris}}(\chi_{\xi})$ with L.)

Identify $V(f) = \operatorname{Ta}_p(A) \otimes_{\mathbf{Z}_p} L$ with the *f*-isotypic component of the étale cohomology group $H^1_{\acute{e}t}(X_1(N_f, p)_{\bar{\mathbf{Q}}}, \mathbf{Q}_p(1)) \otimes_{\mathbf{Q}_p} L$ under the modular parametrisation \wp_{∞} fixed in Section 1. The modular form *f* in Fil⁰ $H^1_{\mathrm{dR}}(X_1(N_f, p)_{\mathbf{Q}_p}, \mathbf{Q}_p(1))$ then defines (via the comparison isomorphism between étale and de Rham cohomology) a class

$$\omega_f \in \operatorname{Fil}^0 D_{\mathrm{dR}}(V(f))$$

(where $D_{dR}(\cdot) = H^0(\mathbf{Q}_p, \cdot \otimes_{\mathbf{Q}_p} B_{dR})$ is Fontaine's de Rham functor). Define η_f in $D_{dR}(V(f))/\text{Fil}^0$ to be the de Rham class satisfying

$$\langle \eta_f, \omega_f \rangle_f = 1,$$

where $\langle \cdot, \cdot \rangle_f : D_{dR}(V(f)) \otimes_L D_{dR}(V(f)) \longrightarrow L$ is the perfect pairing induced on the de Rham modules by the Weil pairing on V(f).

Set $V_{dR}(f,g,h) = D_{dR}(V(f,g,h))$. The Bloch–Kato exponential map gives an isomorphism between $V_{dR}(f,g,h)/\text{Fil}^0$ and the finite subspace $H^1_{\text{fin}}(\mathbf{Q}_p, V(f,g,h))$ of $H^1(\mathbf{Q}_p, V(f,g,h))$ (cf. Lemma [**BSV20**, 9.1]). Denote by

$$\log_p : H^1_{\text{fin}}(\mathbf{Q}_p, V(f, g, h)) \longrightarrow V_{dR}(f, g, h) / \text{Fil}^0$$

the inverse of the Bloch–Kato exponential. Under the self-duality assumption (1), the product of the pairings $\langle \cdot, \cdot \rangle_{\xi}$, for $\xi = f, g, h$, yields a perfect duality

$$\langle \cdot, \cdot \rangle_{fgh} : V_{\mathrm{dR}}(f, g, h) \otimes_L V_{\mathrm{dR}}(f, g, h) \longrightarrow D_{\mathrm{dR}}(\mathbf{Q}_p(1)) \otimes_{\mathbf{Q}_p} L = L.$$

(Here one identifies $V_{dR}(f, g, h)$ with the tensor product of $D_{dR}(V(f))$, $D_{cris}(V(g))$ and $D_{cris}(V(h))$ under the natural isomorphism.) Define the $\alpha\alpha$ -logarithm

$$\log_{\alpha\alpha} = \left\langle \log_p(\cdot), \omega_f \otimes \eta_{g_\alpha} \otimes \eta_{h_\alpha} \right\rangle_{fgh} : H^1_{\text{fin}}(\mathbf{Q}_p, V(f, g, h)) \longrightarrow L.$$

to be the composition of the Bloch–Kato *p*-adic logarithm with evaluation on the class $\omega_f \otimes \eta_{g_\alpha} \otimes \eta_{h_\alpha}$ in Fil⁰ $V_{dR}(f, g, h)$ under the duality $\langle \cdot, \cdot \rangle_{fgh}$. If κ is a global Selmer class in Sel($\mathbf{Q}, V(f, g, h)$), we often write $\log_{\alpha\alpha}(\kappa)$ as a shorthand for $\log_{\alpha\alpha}(\operatorname{res}_p(\kappa))$.

3.2. Diagonal classes. — Following [BSV20, Section 7.2] define (cf. Section 2.1)

$$\mathscr{F}^2 V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}) = \left[\sum_{p+q+r=2} \mathscr{F}^p V(\boldsymbol{f}) \hat{\otimes}_L \mathscr{F}^q V(\boldsymbol{g}_{\alpha}) \hat{\otimes}_L \mathscr{F}^r V(\boldsymbol{h}_{\alpha})\right] \otimes_{\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}} \Xi_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}},$$

where for $\boldsymbol{\xi} = \boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}$ one sets $\mathscr{F}^{i}V(\boldsymbol{\xi}) = V(\boldsymbol{\xi})$ for $i \leq 0, \mathscr{F}^{1}V(\boldsymbol{\xi}) = V(\boldsymbol{\xi})^{+}$ and $\mathscr{F}^{j}V(\boldsymbol{\xi}) = 0$ for $j \geq 2$. It is an $\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}[G_{\mathbf{Q}_{p}}]$ -submodule of $V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})$, free of rank four over $\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}$. We call the image of the injective natural map

$$H^1(\mathbf{Q}_p, \mathscr{F}^2V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)) \longrightarrow H^1(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha))$$

the balanced local condition, and denote it by $H^1_{\text{bal}}(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$. The balanced Selmer group $H^1_{\text{bal}}(\mathbf{Q}, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$ is the module of global cohomology classes in $H^1(\mathbf{Q}, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$ which are unramified at every prime $\ell \neq p$ and whose restriction at p belongs to the balanced local condition. For each classical triple w = (k, l, m) in $U_{\boldsymbol{f}} \times U_{\boldsymbol{g}} \times U_{\boldsymbol{h}} \cap \mathbf{Z}^3_{\geqslant 2}$, one defines similarly the balanced local condition $H^1_{\text{bal}}(\mathbf{Q}_p, V_w)$, where $V_w = V(\boldsymbol{f}_k, \boldsymbol{g}_{\alpha,l}, \boldsymbol{h}_{\alpha,m})$ is the self-dual Tate twist of the tensor product of the homological Deligne representations $V(\boldsymbol{\xi}_u)$ of $\boldsymbol{\xi}_u = \boldsymbol{f}_k, \boldsymbol{g}_{\alpha,l}, \boldsymbol{h}_{\alpha,m}$. If w is balanced (id est k < l + m, l < k + m and m < k + l), then $H^1_{\text{bal}}(\mathbf{Q}_p, V_w)$ equals the Bloch–Kato finite subspace of $H^1(\mathbf{Q}_p, V_w)$ (cf. [BSV20, Lemma 7.2]). The work of Perrin-Riou et alii yields a big logarithm map

$$\mathscr{L}_{\boldsymbol{f}}: H^1_{\mathrm{bal}}(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)) \longrightarrow \mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}},$$

satisfying the following interpolation property. Let \mathfrak{Z} be a local balanced class in $H^1_{\mathrm{bal}}(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$, and let w = (k, l, m) be a balanced classical triple. Denote by \mathfrak{Z}_w in $H^1_{\mathrm{bal}}(\mathbf{Q}_p, V_w)$ the image of \mathfrak{Z} under the map induced in cohomology by the specialisation isomorphism $\rho_w : V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}) \otimes_w L \simeq V_w$ (the latter being defined as the tensor product of the specialisation isomorphisms $\rho_u : V(\boldsymbol{\xi}) \otimes_u L \simeq V(\boldsymbol{\xi}_u)$, for $\boldsymbol{\xi}_u = \boldsymbol{f}_k, \boldsymbol{g}_{\alpha,l}, \boldsymbol{h}_{\alpha,m}$, cf. Section 2.1). Set $c_w = (k + l + m - 2)/2$, $\alpha_k = a_p(\boldsymbol{f})(k)$, $\alpha_l = a_p(\boldsymbol{g}_{\alpha})(l)$, $\alpha_m = a_p(\boldsymbol{h}_{\alpha})(m)$, and define $\beta_{\boldsymbol{\xi}}$ by the identities $\alpha_k \cdot \beta_k = p^{k-1}$, $\alpha_l \cdot \beta_l = \chi_g(p) \cdot p^{l-1}$ and $\alpha_m \cdot \beta_m = \chi_h(p) \cdot p^{m-1}$. Then one has

$$\mathscr{L}_{\boldsymbol{f}}(\mathfrak{Z})(w) = \frac{(-1)^{c_w-k}}{(c_w-k)!} \cdot \frac{\left(1-\frac{\beta_k\alpha_l\alpha_m}{p^{c_w}}\right)}{\left(1-\frac{\alpha_k\beta_l\beta_m}{p^{c_w}}\right)} \cdot \left\langle \log_p(\mathfrak{Z}_w), \mathfrak{V}_u \right\rangle_w,$$

where \log_p is the Bloch–Kato logarithm map, \mathcal{O}_w in $\operatorname{Fil}^0 D_{\mathrm{dR}}(V_w)$ denotes the differential $\eta_{f_k} \otimes \omega_{g_{\alpha,l}} \otimes \omega_{h_{\alpha,m}}$ (defined similarly as in Section 3.1), and the pairing $\langle \cdot, \cdot \rangle_w : D_{\mathrm{dR}}(V_w)/\operatorname{Fil}^0 \otimes_L \operatorname{Fil}^0 D_{\mathrm{dR}}(V_w) \longrightarrow L$ is the one induced by the specialisation at w_o of the perfect duality π_{fgh} (cf. Equation (12)). We refer to Proposition 7.3 of [BSV20] for a proof of the existence of \mathscr{L}_f .

Theorem A of [BSV20] constructs a canonical big balanced diagonal class

$$\kappa(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}) \in H^{1}_{\mathrm{bal}}(\mathbf{Q}, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$$

such that

(28)
$$\mathscr{L}_{\boldsymbol{f}}\left(\operatorname{res}_{p}\left(\kappa(\boldsymbol{f},\boldsymbol{g}_{\alpha},\boldsymbol{h}_{\alpha})\right)\right) = \mathscr{L}_{p}^{\alpha\alpha}(A,\varrho).$$

One defines the (balanced) diagonal class

 $\kappa(f, g_{\alpha}, h_{\alpha}) \in H^1(\mathbf{Q}, V(f, g, h))$

to be the image of $\kappa(\mathbf{f}, \mathbf{g}_{\alpha}, \mathbf{h}_{\alpha})$ under the map induced in cohomology by the specialisation isomorphism ρ_{w_o} defined in Equation (13). Note that w_o lies outside the balanced region, hence the class $\kappa(f, g_{\alpha}, h_{\alpha})$ is not necessarily crystalline at p. Indeed, under the current assumption (27), it follows from the explicit reciprocity law (28) and Perrin-Riou's reciprocity law for big dual exponentials that $\kappa(f, g_{\alpha}, h_{\alpha})$ is crystalline at p (hence a Selmer class) precisely if the the complex Garrett *L*-function $L(A, \varrho, s) = L(f \otimes g \otimes h, s)$ vanishes at the central point s = 1. (Cf. Theorem B of [**BSV20**], proved in the present setting in Section 9.1 of loco citato.) In this case

(29)
$$\log_{\alpha\alpha}(\kappa(f, g_{\alpha}, h_{\alpha})) = 0,$$

as follows from the fact that $\kappa(f, g_{\alpha}, h_{\alpha})$ is by construction (the specialisation at w_o of) a balanced class (cf. the discussion following Diagram (193) of [**BSV20**]).

When $L(f \otimes g \otimes h, s)$ vanishes at s = 1, the following proposition relates the linear form $\langle\!\langle \kappa(f, g_{\alpha}h_{\alpha}), \cdot \rangle\!\rangle_{fg_{\alpha}h_{\alpha}}$ on Sel $(\mathbf{Q}, V(f, g, h))$ and the derivative of $\mathscr{L}_{p}^{\alpha\alpha}(A, \varrho)$.

Theorem 3.2. — Assume that the complex Garrett L-function $L(A, \varrho, s)$ vanishes at s = 1, so that $\kappa(f, g_{\alpha}, h_{\alpha})$ is a Selmer class. Then

$$\frac{\left(1-\frac{\alpha_g \alpha_h}{\alpha_f}\right)}{\left(1-\frac{\alpha_f}{p \alpha_g \alpha_h}\right)} \cdot \left\langle\!\!\left\langle \kappa(f, g_\alpha, h_\alpha), \cdot \right\rangle\!\!\right\rangle_{\boldsymbol{fg}_\alpha \boldsymbol{h}_\alpha} = \log_{\alpha\alpha} \!\left(\operatorname{res}_p(\cdot)\right) \cdot \mathscr{L}_p^{\alpha\alpha}(A, \varrho) \pmod{\mathscr{I}^2}$$

as $\mathscr{I}/\mathscr{I}^2$ -valued linear maps on the Selmer group $\mathrm{Sel}(\mathbf{Q}, V(f, g, h))$.

Theorem 3.2 is proved in Section 3.4 below.

Remark 3.3. — The construction of the class $\kappa(\mathbf{f}, \mathbf{g}_{\alpha}, \mathbf{h}_{\alpha})$ and the proof of the reciprocity law (28) given in [**BSV20**] work also when the assumption (27) is not satisfied, id est if A has multiplicative reduction at p and α_f equals either $\alpha_g \cdot \alpha_h$ or $\beta_g \cdot \alpha_h$. (Since g is p-regular by an assumption of Section 1, one has $\alpha_g \cdot \alpha_h \neq \beta_g \cdot \alpha_h$.) Assume that $\alpha_f = \alpha_g \cdot \alpha_h$ and that $L(A, \varrho, s)$ vanishes at s = 1, so that $\kappa(f, g_\alpha, h_\alpha)$ is crystalline at p by Theorem B of [**BSV20**]. Let q and q' be generators of $\mathcal{Q}_p(A, \varrho)$. For Selmer classes x and y in Sel($\mathbf{Q}, V(f, g, h)$), denote by $\tilde{h}_p^{\alpha\alpha}(x \otimes y)$ the square-root of the discriminant of $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fg_\alpha h_\alpha}$ computed on the $\mathbf{Q}(\varrho)$ -submodule of $\tilde{H}_f^1(\mathbf{Q}, V(f, g, h))$ generated by x, y, q and q'. The article [**BSV21a**] proves the equality

$$h_p^{\alpha\alpha}\big(\kappa(f,g_\alpha,h_\alpha)\otimes y\big) = \log_{\alpha\alpha}\big(\operatorname{res}_p(y)\big) \cdot \mathscr{L}_p^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^3}$$

in $(\mathscr{I}^2/\mathscr{I}^3)/\mathbf{Q}(\varrho)^*$ for each Selmer class y.

3.3. Perrin-Riou conjecture for diagonal classes. — Recall the map

$$\gamma_{gh}: A(K_{\varrho})^{\varrho} \otimes_{\mathbf{Q}(\varrho)} L \hookrightarrow \operatorname{Sel}(\mathbf{Q}, V(f, g, h))$$

defined in Equation (22), arising from the Kummer map on $A(K_{\varrho})$ and the isomorphisms γ_g and γ_h fixed in (4). Assume that $A(K_{\varrho})^{\varrho}$ has dimension 2 over $\mathbf{Q}(\varrho)$. The classical Birch and Swinnerton-Dyer conjecture predicts that the Shafarevich–Tate group of A over K_{ϱ} is finite, hence that γ_{gh} is an isomorphism. In this case, if (P, Q) is a $\mathbf{Q}(\varrho)$ -basis of $A(K_{\varrho})^{\varrho}$, one has $\kappa(f, g_{\alpha}, h_{\alpha}) = a \cdot \gamma_{gh}(P) + b \cdot \gamma_{gh}(Q)$ with a and b in L. After setting

$$\mathscr{E} = \left(1 - \frac{\alpha_g \alpha_h}{\alpha_f}\right) \cdot \left(1 - \frac{\alpha_f}{p \alpha_g \alpha_h}\right)^{-1}$$

Theorem 3.2 and Proposition 2.1 yield the identities

$$\mathscr{E} \cdot a \cdot \langle\!\langle P, Q \rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}} = \log_{\alpha\alpha}(\gamma_{gh}(Q)) \cdot \mathscr{L}_{p}^{\alpha\alpha}(A, \varrho) \pmod{\mathscr{I}^{2}}$$

and

$$-\mathscr{E} \cdot b \cdot \langle\!\langle P, Q \rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}} = \log_{\alpha\alpha}(\gamma_{gh}(P)) \cdot \mathscr{L}_{p}^{\alpha\alpha}(A, \varrho) \pmod{\mathscr{I}^{2}}$$

Moreover, Conjecture 1.1 predicts that $\langle\!\langle P, Q \rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}$ and $\mathscr{L}_{p}^{\alpha\alpha}(A, \varrho) \pmod{\mathscr{I}^{2}}$ are non-zero, and equal up to multiplication by a non-zero algebraic scalar in $\mathbf{Q}(\varrho)^{*}$. To sum up, when $\dim_{\mathbf{Q}(\varrho)} A(K_{\varrho})^{\varrho} = 2$, one expects that $\kappa(f, g_{\alpha}, h_{\alpha})$ is equal to $\log_{\alpha\alpha}(\gamma_{gh}(Q)) \cdot \gamma_{gh}(P) - \log_{\alpha\alpha}(\gamma_{gh}(P)) \cdot \gamma_{gh}(Q)$ up to multiplication by a non-zero scalar in $\mathbf{Q}(\varrho)^{*}$. When $\dim_{\mathbf{Q}(\varrho)} A(K_{\varrho})^{\varrho} > 2$, Conjecture 1.1 predicts that $\mathscr{L}_{p}^{\alpha\alpha\alpha}(A, \varrho)$ belongs to \mathscr{I}^{2} and that $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}$ is non-degenerate, hence that $\kappa(f, g_{\alpha}, h_{\alpha})$ is zero by Theorem 3.2 and the conjectural finiteness of the relevant Shafarevich–Tate group. In light of the above discussion, the following conjecture is a direct consequence of Conjecture 1.1, the conjectural finiteness of the *p*-primary part of the ϱ -component of the Shafarevich–Tate group of A over K_{ϱ} , and Theorem 3.2.

Conjecture 3.4. —

1. Assume that the $\mathbf{Q}(\varrho)$ -vector space $A(K_{\varrho})^{\varrho}$ has dimension 2. Then, for each $\mathbf{Q}(\varrho)$ -basis (P,Q) of $A(K_{\varrho})^{\varrho}$, the equality

$$\kappa(f, g_{\alpha}, h_{\alpha}) = \log_{\alpha\alpha}(\gamma_{gh}(Q)) \cdot \gamma_{gh}(P) - \log_{\alpha\alpha}(\gamma_{gh}(P)) \cdot \gamma_{gh}(Q)$$

holds in the Selmer group $Sel(\mathbf{Q}, V(f, g, h))$ up to multiplication by a non-zero element of $\mathbf{Q}(\varrho)^*$.

2. If $A(K_{\varrho})^{\varrho}$ has dimension greater than 2 over $\mathbf{Q}(\varrho)$, then the diagonal class $\kappa(f, g_{\alpha}, h_{\alpha})$ is equal to zero.

Remarks 3.5. -

- 1. The equality displayed in Part 1 of Conjecture 3.4 is independent of the choice of the isomorphisms γ_q and γ_h fixed in Equation (4).
- 2. Assume that both $r_{\text{MW}} = \dim_{\mathbf{Q}(\varrho)} A(K_{\varrho})^{\varrho}$ and $r_{\text{S}} = \dim_{L} \text{Sel}(\mathbf{Q}, V(f, g, h))$ are equal to 2, and let (P, Q) be a $\mathbf{Q}(\varrho)$ -basis of $A(K_{\varrho})^{\varrho}$. If $\log_{\alpha\alpha}$ is not identically zero on (the image under res_p of) Sel $(\mathbf{Q}, V(f, g, h))$, then Equation (29) implies

(30)
$$\kappa(f, g_{\alpha}, h_{\alpha}) = \lambda \cdot \left(\log_{\alpha\alpha}(\gamma_{gh}(Q)) \cdot \gamma_{gh}(P) - \log_{\alpha\alpha}(\gamma_{gh}(P)) \cdot \gamma_{gh}(Q) \right)$$

for some constant λ in L. In this case, the actual content of Conjecture 3.4 is then the non-vanishing and rationality statement λ belongs to $\mathbf{Q}(\varrho)^*$.

3. Assume $r_{\rm MW} = r_{\rm S} = 2$ and that $\log_{\alpha\alpha}$ is not identically zero on the Selmer group Sel($\mathbf{Q}, V(f, g, h)$). Fix a $\mathbf{Q}(\varrho)$ -basis (P, Q) of $A(K_{\varrho})^{\varrho}$. Equation (30), Proposition 2.1 and Theorem 3.2 and the non-triviality of $\log_{\alpha\alpha}$ give the identity

 $\mathscr{L}_p^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^2} = \lambda \cdot \langle\!\!\langle P,Q \rangle\!\!\rangle_{\boldsymbol{fg}_\alpha \boldsymbol{h}_\alpha}$

in $(\mathscr{I}/\mathscr{I}^2)/\mathbf{Q}(\varrho)^*$. According to Proposition 2.1 and the current assumption (27) (which implies $A(K_{\varrho})^{\varrho} = A^{\dagger}(K_{\varrho})^{\varrho}$), the square of $\langle\!\langle P, Q \rangle\!\rangle_{\boldsymbol{fg}_{\alpha}\boldsymbol{h}_{\alpha}}$ equals the regulator $R_p^{\alpha\alpha}(A, \varrho)$, hence the previous equation yields the equality

$$L_p^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^3} = \lambda^2 \cdot R_p^{\alpha\alpha}(A,\varrho)$$

in $(\mathscr{I}^2/\mathscr{I}^3)/\mathbf{Q}(\varrho)^{*2}$. As a consequence Conjecture 3.4, namely the statement λ belongs to $\mathbf{Q}(\varrho)^*$, and the non-degeneracy of $\langle\!\langle\cdot,\cdot\rangle\!\rangle_{fg_{\alpha}h_{\alpha}}$ on the Mordell–Weil group $A(K_{\varrho})^{\varrho}$, is equivalent to Conjecture 1.1.

- 4. Since by assumption the forms g and h are p-regular (cf. Section 1), one can actually consider the four diagonal classes $\kappa(f, g_{\alpha}, h_{\alpha}) \kappa(f, g_{\alpha}, h_{\beta}), \kappa(f, g_{\beta}, h_{\alpha})$ and $\kappa(f, g_{\beta}, h_{\beta})$ arising from the different choices of the roots of the pth Hecke polynomials of g and h. Conjecture 3.4, combined with standard conjectures, predicts that these classes generate a non-trivial submodule of $Sel(\mathbf{Q}, V(f, g, h))$ precisely when $r_{MW} = 2$. Assuming $r_{MW} = 2$, one has that res_p is not identically zero on $Sel(\mathbf{Q}, V(f, g, h))$, hence one of the logarithms $\log_{\alpha\alpha}$, $\log_{\alpha\beta}$, $\log_{\beta\alpha}$ and $\log_{\beta\beta}$ (defined similarly as in Section 3.1) is not identically zero on $Sel(\mathbf{Q}, V(f, g, h))$. Reordering the roots (α_g, β_g) and (α_h, β_h) if necessary, one can assume that $\log_{\alpha\alpha}$ is not identically zero. It follows from Conjecture 3.4 that the class $\kappa(f, g_{\alpha}, h_{\alpha})$ is non-zero. Conversely, assume that $\kappa(f, g_{\alpha}, h_{\alpha})$ is non-zero. According to the parity conjecture and the conjectural finiteness of the p-primary part of the ρ -component of the Shafarevich–Tate group of A over K_{ρ} one has that $r_{MW} \ge 2$. Conjecture 3.4 implies the equality $r_{MW} = 2$.
- 5. Conjecture 3.4 is a reformulation of [DR16, Conjecture 3.12], which (together with Conjecture 2.1 of loc. cit.) is a refinement of the Elliptic Stark Conjecture formulated in [DLR15] (cf. Proposition 3.13 and Remark 3.14 of [DR16]). The above discussion then gives a conceptual explanation of the conjectures formulated in [DLR15, DR16] in the framework of the *p*-adic analogues of the Birch and Swinnerton-Dyer conjecture.
- 6. Assume in this remark that (A, ϱ) is exceptional at p. When $\alpha_f = \alpha_g \cdot \alpha_h$ we expect that Conjecture 3.4 holds verbatim in light of Remark 3.3. By contrast, if $\alpha_f = \beta_g \cdot \alpha_h$, then the specialisation $\kappa(f, g_\alpha, h_\alpha)$ of $\kappa(f, g_\alpha, h_\alpha)$ at $w_o = (2, 1, 1)$ is equal to zero, independently on whether $L(f \otimes g \otimes h, s)$ vanishes or not at s = 1. In this case, we expect that Conjecture 3.4 holds after replacing $\kappa(f, g_\alpha, h_\alpha)$ with the *improved diagonal class* $\kappa^*(f, g_\alpha, h_\alpha)$ defined in Section 1.2 of [**BSV20**] (cf. Theorem B of loco citato).
- **3.4.** Proof of Theorem 3.2. This section proves Theorem 3.2.

Under the running assumption (27), the module $H^0(\mathbf{Q}_p, V(f, g, h)^-)$ is equal to zero and we identify the Block-Kato Selmer group $\mathrm{Sel}(\mathbf{Q}, V(f, g, h))$ with Nekovář's extended Selmer group $\tilde{H}^1_f(\mathbf{Q}, V(f, g, h))$ under the isomorphism (18). Fix a 1-cocycle

$$\tilde{z} = (z, z^+, a) \in \tilde{C}^1_f(G_{Np}, V(f, g, h))$$

which represents the diagonal class $\kappa(f, g_{\alpha}, h_{\alpha})$ in $\tilde{H}_{f}^{1}(\mathbf{Q}, V(f, g, h))$. Then

$$z \in \mathcal{C}^1_{\text{cont}}(G_{Np}, V(f, g, h)), \quad z^+ \in \mathcal{C}^1_{\text{cont}}(\mathbf{Q}_p, V(f, g, h)^+)$$

and

$$a = (a_v)_{v|Np} \in \bigoplus_{v|Np} V(f,g,h)$$

satisfy the relations

$$dz = 0$$
, $\kappa(f, g_{\alpha}, h_{\alpha}) = cl(z)$, $dz^{+} = 0$ and $res_{Np}(z) = i^{+}(z^{+}) - da$,

where d denotes the differentials of the complexes C^{\bullet}_{cont} and $cl(\cdot)$ denotes the cohomology class represented by \cdot . Let

$$Z \in C^1_{\text{cont}}(G_{Np}, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$$

be a 1-cocycle representing $\kappa(f, g_{\alpha}, h_{\alpha})$ and specialising to z at w_o :

$$dZ = 0, \quad \kappa(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}) = \operatorname{cl}(Z) \quad \text{and} \quad \rho_{w_o}(Z) = z$$

(cf. Equation (14)). The 1-cocycle \tilde{z} is then lifted by a 1-cochain of the form

$$Z = (Z, Z^+, A) \in C^1_f(G_{Np}, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha))$$

under the morphism of complexes

$$\rho_{w_o}: \tilde{\mathrm{C}}^{\bullet}_f(G_{Np}, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})) \longrightarrow \tilde{\mathrm{C}}^{\bullet}_f(G_{Np}, V(f, g, h))$$

induced by ρ_{w_o} (cf. Equation (15)), where the cochains

$$Z^+ \in \mathrm{C}^1_{\mathrm{cont}}(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)) \quad \text{and} \quad A = (A_v)_{v \mid Np} \in \bigoplus_{v \mid Np} V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)$$

are lifts of z^+ and *a* respectively under the map induced by ρ_{w_o} . As \tilde{z} is a 1-cocycle, the differential $d\tilde{Z}$ of \tilde{Z} in $\tilde{C}_f^2(G_{Np}, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha))$ can be written as

(31)
$$d\tilde{Z} = (\boldsymbol{k}-2) \cdot \tilde{Z}_{\boldsymbol{k}} + (\boldsymbol{l}-1) \cdot \tilde{Z}_{\boldsymbol{l}} + (\boldsymbol{m}-1) \cdot \tilde{Z}_{\boldsymbol{r}}$$

with 2-cochains \tilde{Z}_{\cdot} (for $\cdot = \boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m}$) in $\tilde{C}_{f}^{2}(G_{Np}, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$ of the form

$$\tilde{Z}_{\cdot} = (Z_{\cdot}, Z_{\cdot}^+, W_{\cdot})$$

where the 1-cochains $W_{\cdot} = (W_{\cdot,v})_{v|Np}$ in $\bigoplus_{v|Np} C^1_{\text{cont}}(\mathbf{Q}_v, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))$ satisfy

(33)
$$(\mathbf{k}-2) \cdot W_{\mathbf{k}} + (\mathbf{l}-1) \cdot W_{\mathbf{l}} + (\mathbf{m}-1) \cdot W_{\mathbf{m}} = i^+(Z^+) - \operatorname{res}_{Np}(Z) - dA.$$

A slight extension of [Ven16a, Lemma 5.5] (cf. [Ven16b, Appendix C]) proves that \tilde{c}

$$\tilde{z}_{\cdot} = \rho_{w_o}(Z_{\cdot})$$

are 2-cocycles in $\tilde{\mathbf{C}}_{f}^{2}(G_{Np}, V(f, g, h))$ and (cf. Equation (26))

(34)
$$-\beta_{\boldsymbol{f}\boldsymbol{g}_{\alpha}\boldsymbol{h}_{\alpha}}(\kappa(f,g_{\alpha},h_{\alpha})) = (\boldsymbol{k}-2)\cdot\operatorname{cl}(\tilde{z}_{\boldsymbol{k}}) + (\boldsymbol{l}-1)\cdot\operatorname{cl}(\tilde{z}_{\boldsymbol{l}}) + (\boldsymbol{m}-1)\cdot\operatorname{cl}(\tilde{z}_{\boldsymbol{m}}).$$

For $V = V(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}), V(f, g, h)$, denote by

 $\mathbf{22}$

 $p^-: \mathrm{C}^{\bullet}_{\mathrm{cont}}(\mathbf{Q}_p, V) \longrightarrow \mathrm{C}^{\bullet}_{\mathrm{cont}}(\mathbf{Q}_p, V^-)$

the morphism of complexes induced by the projection $p^-: V \longrightarrow V^-$. Define

(35)
$$X_{\cdot} = p^{-}(W_{\cdot,p}) \in \mathrm{C}^{1}_{\mathrm{cont}}(\mathbf{Q}_{p}, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})^{-});$$
$$x_{\cdot} = \rho_{w_{o}}(X_{\cdot}) = p^{-} \circ \rho_{w_{o}}(W_{\cdot,p}) \in \mathrm{C}^{1}_{\mathrm{cont}}(\mathbf{Q}_{p}, V(f, g, h)^{-}).$$

After setting $A_p^- = p^-(A_p)$, Equation (33) yields

(36)
$$(\boldsymbol{k}-2) \cdot X_{\boldsymbol{k}} + (\boldsymbol{l}-1) \cdot X_{\boldsymbol{l}} + (\boldsymbol{m}-1) \cdot X_{\boldsymbol{m}} = -p^{-} (\operatorname{res}_{p}(Z)) - dA_{p}^{-}.$$

As Z is a 1-cocycle, this implies that the 1-cochains x. are 1-cocycles, and one sets

$$\mathfrak{x}_{\cdot} = \mathrm{cl}(x_{\cdot}) \in H^1(\mathbf{Q}_p, V(f, g, h)^-).$$

Similarly, as Z is a 1-cocycle, Equations (31) and (32) imply that $\rho_{w_o}(Z_{\cdot}) = 0$, hence

$$\tilde{z}_{\cdot} = \left(0, \rho_{w_o}(Z_{\cdot}^+), \rho_{w_o}(W_{\cdot})\right)$$

Because $C^{\bullet}_{cont}(\mathbf{Q}_v, V(f, g, h))$ is acyclic for $v \neq p$, this implies

(37)
$$\operatorname{cl}(\tilde{z}_{\cdot}) = j(\mathfrak{x}_{\cdot})$$

(cf. Equations (17) and (35)). After recalling the definition of Garrett–Nekovář *p*-adic height $\langle\!\langle \cdot, \cdot \rangle\!\rangle_{fg_{\alpha}h_{\alpha}}$ given in Section 2.5, Equations (34) and (37) yield

(38)
$$\langle\!\langle \kappa(f, g_{\alpha}, h_{\alpha}), \cdot \rangle\!\rangle_{fg_{\alpha}h_{\alpha}} = \langle \hat{\beta}_{fg_{\alpha}h_{\alpha}}(\kappa(f, g_{\alpha}, h_{\alpha})), \cdot \rangle_{\operatorname{Nek}} \otimes \mathscr{I}/\mathscr{I}^{2}$$
$$= -\sum_{\boldsymbol{u}} \langle j(\mathfrak{x}_{\boldsymbol{u}}), \cdot \rangle_{\operatorname{Nek}} \cdot (\boldsymbol{u} - u_{o})$$
$$= -\sum_{\boldsymbol{u}} \langle \mathfrak{x}_{\boldsymbol{u}}, \cdot^{+} \rangle_{\operatorname{Tate}} \cdot (\boldsymbol{u} - u_{o}),$$

where (\boldsymbol{u}, u_o) denotes one of the pairs $(\boldsymbol{k}, 2)$, $(\boldsymbol{l}, 1)$ and $(\boldsymbol{m}, 1)$, where

$$\langle \cdot, \cdot \rangle_{\text{Tate}} : H^1(\mathbf{Q}_p, V(f, g, h)^-) \otimes_L H^1(\mathbf{Q}_p, V(f, g, h)^+) \longrightarrow L$$

is the local Tate duality induced by the perfect pairing π_{fgh} (cf. Section 2.1), and where \cdot^+ is the morphism introduced in Equation (20). The last equality in Equation (38) follows from the adjointness of the maps \jmath and \cdot^+ with respect to the pairings $\langle \cdot, \cdot \rangle_{\text{Nek}}$ and $\langle \cdot, \cdot \rangle_{\text{Tate}}$ (cf. Lemma 5.7 of [Ven16a].)

To conclude the proof we need the following lemma. Set

$$V(\boldsymbol{f},\boldsymbol{g}_{\alpha},\boldsymbol{h}_{\alpha})_{f}=V(\boldsymbol{f})^{-}\hat{\otimes}_{L}V(\boldsymbol{g}_{\alpha})^{+}\hat{\otimes}_{L}V(\boldsymbol{h}_{\alpha})^{+}\otimes_{\mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}}\Xi_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}.$$

The projection $p^- : V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}) \longrightarrow V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})^-$ maps $\mathscr{F}^2 V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})$ onto $V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})_f$, hence induces in cohomology a morphism

(39)
$$p_f: H^1_{\text{bal}}(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)) \longrightarrow H^1(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)_f).$$

(Recall that the natural map $H^1(\mathbf{Q}_p, \mathscr{F}^2V(\mathbf{f}, \mathbf{g}_{\alpha}, \mathbf{h}_{\alpha})) \longrightarrow H^1(\mathbf{Q}_p, V(\mathbf{f}, \mathbf{g}_{\alpha}, \mathbf{h}_{\alpha}))$ is injective, hence identifies its source with $H^1_{\mathrm{bal}}(\mathbf{Q}_p, V(\mathbf{f}, \mathbf{g}_{\alpha}, \mathbf{h}_{\alpha}))$.)

Lemma 3.6. — There exist $\mathfrak{Y}_{\mathbf{k}}, \mathfrak{Y}_{\mathbf{l}}$ and $\mathfrak{Y}_{\mathbf{m}}$ in $H^1(\mathbf{Q}_p, V(\mathbf{f}, \mathbf{g}_\alpha, \mathbf{h}_\alpha)_f)$ such that $p_f(\operatorname{res}_p(\kappa(\mathbf{f}, \mathbf{g}_\alpha, \mathbf{h}_\alpha))) = (\mathbf{k} - 2) \cdot \mathfrak{Y}_{\mathbf{k}} + (\mathbf{l} - 1) \cdot \mathfrak{Y}_{\mathbf{l}} + (\mathbf{m} - 1) \cdot \mathfrak{Y}_{\mathbf{m}}.$

Moreover, if the previous equation is satisfied, then for u = k, l, m one has

$$\mathfrak{x}_{\boldsymbol{u}} = -\rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}}).$$

Proof. — Set $V(f)_{\beta\beta}^- = V(f) \otimes_{\mathbf{Q}_p} V(g)_\beta \otimes_L V(h)_\beta$. It is an $L[G_{\mathbf{Q}_p}]$ -direct summand of $V(f, g, h)^-$, and the specialisation map ρ_{w_o} induces an isomorphism

$$\rho_{w_o}: V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})_f \otimes_{w_o} \mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}} \simeq V(f)^-_{\beta\beta}.$$

Since the kernel of evaluation at w_o on \mathscr{O}_{fgh} is generated by a regular sequence and $H^2(\mathbf{Q}_p, V(f)^-_{\beta\beta})$ is equal to zero, the specialisation isomorphism ρ_{w_o} induces in cohomology an isomorphism (denoted by the same symbol)

(40)
$$\rho_{w_o}: H^1(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)_f) \otimes_{w_o} L \simeq H^1(\mathbf{Q}_p, V(f)^-_{\beta\beta}).$$

As explained in Section 9.1 of [BSV20], the Bloch–Kato finite subspace of the local cohomology group $H^1(\mathbf{Q}_p, V(f, g, h))$ is equal to the kernel of

 $p^-: H^1(\mathbf{Q}_p, V(f, g, h)) \longrightarrow H^1(\mathbf{Q}_p, V(f, g, h)^-)$

(cf. Section 9.1). Because $\kappa(f, g_{\alpha}, h_{\alpha}) = \rho_{w_o}(\kappa(f, g_{\alpha}, h_{\alpha}))$ is a Selmer class (under the current assumption $L(A, \varrho, 1) = 0$), it follows that the local class

$$oldsymbol{\kappa}_f = p_f(\mathrm{res}_p(\kappa(oldsymbol{f},oldsymbol{g}_lpha,oldsymbol{h}_lpha)))$$

belongs to the kernel of (40), thus proving the first statement.

Let $\mathfrak{Y}_{\boldsymbol{u}}$ in $H^1(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)_f)$ be local classes satisfying

$$\boldsymbol{\kappa}_f = \sum_{\boldsymbol{u}} \mathfrak{Y}_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_o)$$

We prove that $\rho_{w_o}(\mathfrak{Y}_u)$ is equal to $-\mathfrak{r}_u$ for u = k, the cases u = l, m being similar. Since by construction $\operatorname{cl}(Z) = \kappa(f, g_\alpha, h_\alpha)$, according to Equation (36) one has

(41)
$$\operatorname{cl}\left(\sum_{\boldsymbol{u}} X_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_o)\right) = -\sum_{\boldsymbol{u}} i_f(\mathfrak{Y}_{\boldsymbol{u}}) \cdot (\boldsymbol{u} - u_o) \in H^1(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_\alpha, \boldsymbol{h}_\alpha)^-),$$

where i_f denotes both the inclusion $V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})_f \longrightarrow V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})^-$ and the morphism it induces in cohomology. Let $\nu : \mathcal{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}} \longrightarrow \mathcal{O}_{\boldsymbol{f}}$ be the surjective morphism of rings sending the analytic function $F(\boldsymbol{k}, \boldsymbol{l}, \boldsymbol{m})$ to $F(\boldsymbol{k}, 1, 1)$, and set

$$V(\boldsymbol{f}, g, h)^{-} = V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})^{-} \otimes_{\nu} \mathscr{O}_{\boldsymbol{f}} \quad \text{and} \quad V(\boldsymbol{f})_{\beta\beta}^{-} = V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})_{f} \otimes_{\nu} \mathscr{O}_{\boldsymbol{f}}.$$

(Note that $V(\boldsymbol{f})_{\beta\beta}^{-} = V(\boldsymbol{f})^{-} \otimes_{L} V(g)_{\beta} \otimes_{L} V(h)_{\beta} \otimes_{\mathscr{O}_{\boldsymbol{f}}} \chi_{\text{cyc}}^{1-\boldsymbol{k}/2}$ is an $\mathscr{O}_{\boldsymbol{f}}[G_{\mathbf{Q}_{p}}]$ -direct summand of $V(\boldsymbol{f}, g, h)^{-}$ and $i_{f} \otimes_{\nu} \mathscr{O}_{\boldsymbol{f}}$ is the natural inclusion.) If one denotes by ν also the morphisms induced in cohomology (resp., on continuous cochains) by the projections $V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})^{-} \longrightarrow V(\boldsymbol{f}, g, h)^{-}$ and $V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})_{f} \longrightarrow V(\boldsymbol{f})_{\beta\beta}^{-}$, then $\nu(X_{\boldsymbol{k}})$ is a 1-cocycle in $\mathcal{C}^{\bullet}_{\text{cont}}(\mathbf{Q}_{p}, V(\boldsymbol{f}, g, f)^{-})$ (cf. Equation (36)) and Equation (41) gives

$$(\boldsymbol{k}-2)\cdot\left(\operatorname{cl}(\nu(X_{\boldsymbol{k}}))+\nu(\mathfrak{Y}_{\boldsymbol{k}})\right)=0.$$

On the other hand, the $(\mathbf{k} - 2)$ -torsion of $H^1(\mathbf{Q}_p, V(\mathbf{f}, g, h)^-)$ is a quotient of $H^0(\mathbf{Q}_p, V(f, g, h)^-)$, which is zero by assumption (viz. (A, ϱ) is not exceptional at p). Then $\nu(\mathfrak{Y}_k) = -\operatorname{cl}(\nu(X_k))$, hence by construction $\rho_{w_o}(\mathfrak{Y}_k) = -\mathfrak{x}_k$.

Let $\mathfrak{Y}_{\boldsymbol{u}}$ be as in the statement of Lemma 3.6, and let \tilde{y} be an element of $\tilde{H}_{f}^{1}(\mathbf{Q}, V(f, g, h))$. Equation (38) and Lemma 3.6 give the identity

(42)
$$\langle\!\langle \kappa(f, g_{\alpha}, h_{\alpha}), \tilde{y} \rangle\!\rangle_{fg_{\alpha}h_{\alpha}} = \sum_{\boldsymbol{u}} \langle \rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}}), \tilde{y}^+ \rangle_{\text{Tate}} \cdot (\boldsymbol{u} - u_o).$$

If $\tilde{y} = \iota_{\rm ur}(y)$ corresponds to the Selmer class y in Sel $(\mathbf{Q}_p, V(f, g, h))$, then the image of \tilde{y}^+ under the map induced in cohomology by the inclusion $V(f, g, h)^+ \longrightarrow V(f, g, h)$ is equal to the restriction of y at p. In this case we claim that

(43)
$$\left\langle \rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}}), \tilde{y}^+ \right\rangle_{\text{Tate}} = \log_{\alpha\alpha}(\operatorname{res}_p(y)) \cdot \left\langle \exp_p^*(\rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}})), \eta_f \otimes \omega_{g_\alpha} \otimes \omega_{h_\alpha} \right\rangle_{fgh},$$

where $\exp_p^* : H^1(\mathbf{Q}_p, V(f, g, h)^-) \longrightarrow D_{\mathrm{dR}}(V(f, g, h)^-)$ is the Bloch–Kato dual exponential. Indeed, note that the projection $p^- : V(f, g, h) \longrightarrow V(f, g, h)^-$ and the inclusion $i^+ : V(f, g, h)^+ \longrightarrow V(f, g, h)$ induce natural isomorphisms

$$\operatorname{Fil}^{0}V_{\mathrm{dR}}(f,g,h) \simeq D_{\mathrm{dR}}(V(f,g,h)^{-}) \text{ and } D_{\mathrm{dR}}(V(f,g,h)^{+}) \simeq V_{\mathrm{dR}}(f,g,h)/\operatorname{Fil}^{0},$$

which we consider as equalities. Moreover, since by assumption (A, ϱ) is not exceptional at p, the Bloch–Kato exponential map gives an isomorphism between $D_{dR}(V(f, g, h)^+)$ and $H^1(\mathbf{Q}_p, V(f, g, h)^+)$. As $i^+(\tilde{y}^+) = \operatorname{res}_p(y)$, it follows that

(44)
$$\langle \rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}}), \tilde{y}^+ \rangle_{\text{Tate}} = \langle \exp_p^*(\rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}})), \log_p(\operatorname{res}_p(y)) \rangle_{fgh}.$$

For (i, j) in $\{\alpha, \beta\}^2$ and $\cdot = \emptyset, \pm$, define

$$V(f)_{ij}^{\cdot} = V(f)^{\cdot} \otimes_{\mathbf{Q}_p} V(g)_i \otimes_L V(h)_j$$

(so that $V(f, g, h)^{\cdot}$ is the direct sum of the submodules $V(f)_{ij}^{\cdot}$). Then $\rho_{w_o}(\mathfrak{Y}_u)$ belongs to $H^1(\mathbf{Q}_p, V(f)_{\beta\beta}^{-})$ (cf. the proof of Lemma 3.6), hence the linear form

$$\left\langle \exp_p^*(\rho_{w_o}(\mathfrak{Y})_{\boldsymbol{u}}), \cdot \right\rangle_{fgh} : V_{\mathrm{dR}}(f, g, h) / \mathrm{Fil}^0 \longrightarrow L$$

factors through the map $\operatorname{pr}_{\alpha\alpha} : V_{\mathrm{dR}}(f,g,h)/\operatorname{Fil}^0 \longrightarrow D_{\mathrm{dR}}(V(f)_{\alpha\alpha})/\operatorname{Fil}^0$ induced by the projection $V(f,g,h) \longrightarrow V(f)_{\alpha\alpha}$. Since by definition (cf. Section 3.1)

$$\operatorname{pr}_{\alpha\alpha}(\log_p(\operatorname{res}_p(y))) = \log_{\alpha\alpha}(\operatorname{res}_p(y)) \cdot \eta_f \otimes \omega_{g_\alpha} \otimes \omega_{h_\alpha}$$

the claim Equation (43) follows from Equation (44).

After setting

$$\exp_{\alpha\alpha}^*(\rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}})) = \left\langle \exp_p^*(\rho_{w_o}(\mathfrak{Y}_{\boldsymbol{u}})), \eta_f \otimes \omega_{g_\alpha} \otimes \omega_{h_\alpha} \right\rangle_{fgh},$$

Equations (42) and (43) prove the equality

(45)
$$\langle\!\langle \kappa(f, g_{\alpha}, h_{\alpha}), \cdot \rangle\!\rangle_{fg_{\alpha}h_{\alpha}} = \log_{\alpha\alpha}(\operatorname{res}_{p}(\cdot)) \cdot \sum_{\boldsymbol{u}} \exp^{*}_{\alpha\alpha}(\rho_{w_{o}}(\mathfrak{Y})_{\boldsymbol{u}}) \cdot (\boldsymbol{u} - u_{o})$$

of $\mathscr{I}/\mathscr{I}^2$ -valued L-linear forms on the Selmer group $\operatorname{Sel}(\mathbf{Q}, V(f, g, h))$.

By Proposition 7.3 of [**BSV20**], the Perrin-Riou logarithm \mathscr{L}_{f} introduced in Section 3.2 factors through the map p_{f} defined in Equation (39), and hence gives rise to a morphism (denoted again by the same symbol)

$$\mathscr{L}_{\boldsymbol{f}}: H^1(\mathbf{Q}_p, V(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha})_f) \longrightarrow \mathscr{O}_{\boldsymbol{f}\boldsymbol{g}\boldsymbol{h}}.$$

Moreover, for each local class \mathfrak{Z} in $H^1(\mathbf{Q}_p, V(\mathbf{f}, \mathbf{g}_\alpha, \mathbf{h}_\alpha)_f)$ one has (cf. loc. cit.)

$$\mathscr{L}_{\boldsymbol{f}}(\mathfrak{Z})(w_o) = \frac{\left(1 - \frac{\alpha_g \alpha_h}{\alpha_f}\right)}{\left(1 - \frac{\alpha_f}{p \alpha_g \alpha_h}\right)} \cdot \exp^*_{\alpha \alpha}(\rho_{w_o}(\mathfrak{Z})).$$

Applying $\mathscr{L}_{\boldsymbol{f}}$ to both sides of the identity

$$p_f(\operatorname{res}_p(\kappa(\boldsymbol{f}, \boldsymbol{g}_{\alpha}, \boldsymbol{h}_{\alpha}))) = \sum_{\boldsymbol{u}} \mathfrak{Y}_{\boldsymbol{u}} \cdot (\boldsymbol{u} - u_o),$$

and using the explicit reciprocity law Equation (28), one then gets the identity

$$\mathscr{L}_{p}^{\alpha\alpha}(A,\varrho) \pmod{\mathscr{I}^{2}} = \frac{\left(1-\frac{\alpha_{g}\alpha_{h}}{\alpha_{f}}\right)}{\left(1-\frac{\alpha_{f}}{p\alpha_{g}\alpha_{h}}\right)} \cdot \sum_{\boldsymbol{u}} \exp_{\alpha\alpha}^{*}(\rho_{w_{o}}(\mathfrak{Y}_{\boldsymbol{u}})) \cdot (\boldsymbol{u}-u_{o}).$$

Theorem 3.2 follows from the previous equation and Equation (45).

References

- [AI20] F. Andreatta and A. Iovita. Triple product *p*-adic *L*-functions associated to finite slope *p*-adic families of modular forms. *Duke Math. J.*, to appear (available at http://www.mat.unimi.it/users/andreat/research.html), 2020. 8
- [BDP19] Adel Betina, Mladen Dimitrov, and Alice Pozzi. On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve, 2019. 8
- [BSV20] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. Reciprocity laws for balanced diagonal classes. *Preprint*, 2020. 4, 9, 10, 15, 16, 17, 18, 20, 23, 25
- [BSV21a] M. Bertolini, M. A. Seveso, and R. Venerucci. Heegner points and exceptional zeros of Garrett *p*-adic *L*-functions. *Preprint*, 2021. 18
- [BSV21b] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. On exceptional zeros of Garrett–Hida *p*-adic *L*-functions. *Preprint*, 2021. 7, 8
- [DLR15] Henri Darmon, Alan Lauder, and Victor Rotger. Stark points and *p*-adic iterated integrals attached to modular forms of weight one. *Forum Math. Pi*, 3:e8, 95, 2015. 2, 20
- [DR16] Henri Darmon and Victor Rotger. Elliptic curves of rank two and generalised Kato classes. *Res. Math. Sci.*, 3:Paper No. 27, 32, 2016. 2, 20
- [DR20] H. Darmon and V. Rotger. p-adic families of diagonal cycles. Preprint, 2020. 15
- [Hsi20] M.-L. Hsieh. Hida families and p-adic triple product L-functions. Amer. J. Math., to appear (available at http://www.math.sinica.edu.tw/mlhsieh/research.htm), 2020. 4, 8
- [MTT86] B. Mazur, J. Tate, and J. Teitelbaum. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math., 84(1):1–48, 1986. 7
- [Nek06] Jan Nekovář. Selmer complexes. Astérisque, (310):viii+559, 2006. 6, 11, 12, 13

- [NN16] Jan Nekovář and Wiesława Nizioł. Syntomic cohomology and *p*-adic regulators for varieties over *p*-adic fields. Algebra Number Theory, 10(8):1695–1790, 2016. 9
- [Pot13] J. Pottharst. Analytic families of finite-slope Selmer groups. Algebra Number Theory, 7(7), 2013. 8
- [Ven13] R. Venerucci. *p*-adic regulators and *p*-adic analytic families of modular forms. Ph.D. Thesis, University of Milan, 2013. 14
- [Ven16a] Rodolfo Venerucci. Exceptional zero formulae and a conjecture of Perrin-Riou. Invent. Math., 203(3):923–972, 2016. 21, 22
- [Ven16b] Rodolfo Venerucci. *p*-adic regulators and *p*-adic families of modular representations. *Preprint*, 2016. 21

Massimo Bertolini & Marco Adamo Seveso & Rodolfo Venerucci