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Introduction

Let A be an elliptic curve over the field Q of rational numbers and let %1, %2 be
a pair of two-dimensional odd Artin representations of the absolute Galois group of
Q. Set % = %1 ⊗ %2 and denote by K% the extension of Q cut out by %. Assume the
self-duality hypothesis det(%1) = det(%2)−1. The equivariant Birch and Swinnerton-
Dyer conjecture aims at understanding the %-component A(K%)

% of the Mordell-Weil
group of A/K% in terms of the complex L-function L(A, %, s) of A twisted by %.

The purpose of this article is twofold. The first objective is to formulate a p-adic
analogue of this equivariant Birch and Swinnerton-Dyer conjecture. Assume for sim-
plicity (but see Section 1.1 for generalisations) that p is an ordinary prime for A
and that %1 and %2 are irreducible. Let (f, g, h) be the triple of cuspidal modular
forms associated to (A, %1, %2) by the modularity theorems. Hida’s theory associates
to (f, g, h) a triple (f , gα,hα) of p-adic families of ordinary cuspidal modular forms,
where f specialises in weight 2 to the unique ordinary p-stabilisation of f , while gα
and hα specialise in weight 1 to a choice of p-stabilisations gα and hα of g and h
respectively. Our conjecture replaces L(A, %, s) with a p-adic L-function Lααp (A, %)
arising from the triple of p-adic families (f , gα,hα). The L-function Lααp (A, %) in-
terpolates the central critical values of the complex L-functions of fk ⊗ gl ⊗ hm at
triples of classical weights (k, l,m) such that k > l+m, where fk, gl and hm denotes
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the specialisation of f , gα and hα at k, l and m respectively. A p-adic avatar of the
Birch and Swinnerton-Dyer conjecture suggests that the behaviour of Lααp (A, %) at
the triple of weights (2, 1, 1) should reflect the arithmetic of A over K%. This is the
content of our Conjecture 1.1, which states that the order of vanishing of Lααp (A, %) at
(2, 1, 1) is equal to the rank of the %-component A†(K%)

% of the extended Mordell–Weil
group of A/K%. Furthermore, it relates the leading term of Lααp (A, %) to the regulator
Rααp (A, %) of a p-adic height pairing on this extended Mordell–Weil group, constructed
in Section 2 by exploiting Nekovář’s theory of Selmer complexes associated to Hida’s
deformation of the Galois representations of (f, gα, hα).

The second objective of this article is to understand the Elliptic Stark Conjectures
of Darmon, Lauder and Rotger [DLR15, DR16] within the conceptual framework of
the p-adic variants of the Birch and Swinnerton-Dyer conjecture. Under the assump-
tion that the Mordell–Weil rank is equal to 2, the above mentioned works obtained
experimentally a relation between an iterated p-adic integral associated to the triple
(f, gα, hα) and certain combinations of p-adic logarithms of rational points in the %-
component of the Mordell–Weil group of A. Section 3 (see in particular Conjecture
3.4 and Remarks 3.5) shows that these conjectural relations are a consequence of Con-
jecture 1.1, combined with a formula à la Rubin–Perrin-Riou established in Theorem
3.2 for the derivatives of a big diagonal class encoding Lp(f , gα,hα) by an explicit
reciprocity law.

1. The p-adic Birch and Swinnerton-Dyer conjecture

This section states the main conjecture of this paper, assuming the precise def-
inition of the Garrett–Nekovář p-adic height pairings given in Section 2 below. To
ease the exposition we state our conjecture for p-ordinary elliptic curves over Q, i.e.
p-stabilised ordinary weight-two newforms with trivial character and rational Fourier
coefficients. See Section 1.1 below for possible generalisations.

Fix a rational prime p > 3, algebraic closures Q̄ and Q̄p of Q and Qp respectively
and an embedding of Q̄ into Q̄p. For positive integers k and m, a Dirichlet character
χ : (Z/mZ)∗ −→ Q̄∗ and a subfield F of Q̄p, denote by Mk(m,χ)F the F -module of
modular forms of weight k, level Γ1(m), character χ and Fourier coefficients contained
in F , and by Sk(m,χ)F its subspace of cuspidal modular forms. When χ is the trivial
character, we omit it from the notation.

Let A be an elliptic curve defined over Q and let

% = %1 ⊗ %2

be the tensor product of two odd, two-dimensional Artin representations

%i : GQ −→ GL(V%i) ' GL2(Q(%))

of GQ = Gal(Q̄/Q) with coefficients in a number field Q(%) (contained in Q̄), satis-
fying the self-duality condition

(1) det(%1) = det(%2)−1.
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According to the modularity theorem of Wiles, Taylor–Wiles et al., the p-adic Tate
module of A/Q with Qp-coefficients is isomorphic to the dual of the p-adic Deligne
representation of the weight-two cuspidal newform

f =
∑
n>1

an(f) · qn ∈ S2(Nf )Q,

where Nf is the conductor of A/Q and a`(f) = 1+`−|A(Z/`Z)| for each prime ` - Nf .
Similarly, the Serre conjecture, proved by Khare and Wintenberger, implies that %1

and %2 are isomorphic respectively to the duals of the Deligne–Serre representations
associated with weight-one normalised Hecke eigenforms

g =
∑
n>0

an(g) · qn ∈M1(Ng, χg)Q(%)

and
h =

∑
n>0

an(h) · qn ∈M1(Nh, χh)Q(%)

of conductors Ng and Nh equal to those of %1 and %2 respectively and characters χg
and χh = χ−1

g (cf. Equation (1)). The form g (resp., h) is cupidal precisely if the
Artin representation %1 (resp., %2) is irreducible.

Assume that A has good ordinary or multiplicative reduction at p, so that Nf is
of the form Mf · prf with rf 6 1 and Mf coprime with p. The p-th Hecke polynomial
X2− ap(f) ·X + 1Nf (p) · p of f has a unique root αf which is a p-adic unit, the other
root being βf = 1Nf (p)p/αf . (Here 1Nf is the trivial character modulo Nf .) By Hida
theory, the ordinary p-stabilisation

fα(q) = f(q)− βf · f(qp) ∈ S2(Mfp)Q(αf )

is the specialisation at weight two of a unique cuspidal Hida family

f = fα =
∑
n>1

an(f) · qn ∈ O(Uf )[[q]],

for a suitable connected open disc Uf centred at 2 in the weight spaceW overQp. Here
O(Uf ) is the ring of analytic functions on Uf . For each classical weight k in Uf ∩Z>2,
the weight-k specialisation fk =

∑
n>1 an(f)(k) · qn of f is (the q-expansion of) the

ordinary p-stabilisation of a p-ordinary newform fk of weight k and level Γ0(Mf ).
Let ξ denote either g or h, and let αξ and βξ = χξ(p)/αξ be the roots of its pth

Hecke polynomial X2−ap(ξ)·X+χξ(p). Fix a finite extension L of Qp which contains
the Fourier coefficients of ξ, the roots αf and αξ (for ξ = g, h), and the N -th roots
of unity, where N is the least common multiple of Nf , Ng and Nh. We assume that
p does not divide Nξ and that ξ is cuspidal and p-regular (viz. the roots αξ and βξ
are distinct). Moreover we assume that ξ is not the theta series associated with a ray
class character of a real quadratic field in which p splits. Under these assumptions
the p-stabilisation

ξα(q) = ξ(q)− βξ · ξ(qp) ∈ S1(Nξp, χξ)L



4 MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI

is the weight-one specialisation of a unique cuspidal Hida family

ξα =
∑
n>1

an(ξα) · qn ∈ O(Uξ)[[q]],

where Uξ is a (small) connected open neighbourhood of 1 in W ⊗Qp
L. For each

classical weight u in Uξ ∩Z>1, the weight-u specialisation ξα,u =
∑
n>1 an(ξ)(u) · qn

is the ordinary p-stabilisation of a p-ordinary newform ξu of weight u, level Γ1(Nξ)
and character χξ. We refer the reader to [BSV20] (especially the discussion following
Assumption 1.1, Remark 1.4 and Section 5) and the references therein for more details.

Let Σcl denote the set of classical triples, namely the intersection of Uf ×Ug ×Uh
with Z3

>1. Under the self-duality assumption (1), for each (k, l,m) in Σcl the complex
Garrett L-function L(fk ⊗ gl ⊗ hm, s) admits an analytic continuation to all of C
and satisfies a functional equation with sign +1 or −1 relating its values at s and
k + l + m − 2 − s. Assume from now on that the conductors Ng and Nh of g and h
are coprime to the conductor Nf of the elliptic curve A:

(2) (Ng ·Nh, Nf ) = 1.

Assumption (2) guarantees that the signs in the above functional equations are equal
to +1 for all classical triples (k, l,m) in the f -unbalanced region, id est triples (k, l,m)
in Σcl such that k > l +m. In particular the complex Garrett L-function

L(A, %, s) = L(f ⊗ g ⊗ h, s)

vanishes to even order at the central critical point s = 1. Set Ofgh = Of ⊗̂Qp
Og⊗̂LOh,

where O· denotes the ring of bounded functions on U·. The article [Hsi20] associates
to the triple of Hida families (f , gα,hα) a square-root Garrett–Hida p-adic L-function

L αα
p (A, %) = Lp(f , gα,hα) ∈ Ofgh,

whose square, the Garrett–Hida p-adic L-function of (A, %),

Lααp (A, %) = L αα
p (A, %)2

interpolates the central critical values

L

(
fk ⊗ gl ⊗ hm,

k + l +m− 2

2

)
of the complex Garrett L-functions L(fk⊗gl⊗hm, s) at classical triples (k, l,m) in the
f -unbalanced region. We refer to [BSV20, Section 6.1] (where Lααp (A, %) is denoted
by Lp(f , gα,hα)) for the precise interpolation property (see in particular Equation
(132) of loc. cit.). The L-function Lααp (A, %) is symmetric in the families gα and hα.

Enlarging Q(%) if necessary, we assume it contains αξ for ξ equal to f, g and h.
The weight-one specialisation (cf. Section 2.1 below)

V (ξ) = V (ξα)⊗1 L

of the Galois representation V (ξα) associated with ξα affords the dual of the p-adic
Deligne–Serre representation of ξ with coefficients in L. The GQ-representation V (ξα)
is a free rank-two Oξ-module and the tensor product · ⊗1 L = · ⊗Oξ,1 L is taken with
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respect to evaluation at 1 in Uξ. The global p-adic representation V (ξ) is equipped
with a canonical, GQ-equivariant, perfect, skew-symmetric pairing

(3) πξ : V (ξ)⊗L V (ξ) −→ L(χξ),

arising as the weight-one specialisation of a suitably twisted Poincaré duality on V (ξα)
(cf. Section 2.1). Enlarging L if necessary, fix isomorphisms

(4) γg : V%1 ⊗Q(%) L ' V (g) and γh : V%2 ⊗Q(%) L ' V (h)

of L[GQ]-modules such that the perfect dualities πg ◦γg⊗γg and πh ◦γh⊗γh map the
Q(%)-structures V%1 ⊗Q(%) V%1 and V%2 ⊗Q(%) V%2 into the Q(%)-structures Q(%)(χg)
and Q(%)(χh) of L(χg) and L(χh) respectively.

Let V (f) = Tap(A/Q) ⊗Zp L be the p-adic Tate module A/Q with coefficients
in L, and let V (f)− be the maximal unramified quotient of the restriction of V (f)
to GQp

. It is a 1-dimensional L-module, on which an arithmetic Frobenius in GQp

acts as multiplication by αf . Set V% = V%1 ⊗Q(%) V%2 , V (f, %) = V (f) ⊗Q(%) V% and
V (f, %)− = V (f)−⊗Q(%)V%, so that V (f, %)− is the maximal GQp

-unramified quotient
of V (f, %), on which an arithmetic Frobenius acts with eigenvalues αfαgαh, αfβgαh,
αfαgβh and αfβgβh. Define the module of p-adic periods of (A, %):

Qp(A, %)L = H0(Qp, V (f, %)−)

to be the space of GQp -invariants of V (f, %)−. As suggested by the notation

Qp(A, %)L = Qp(A, %)⊗Q(%) L

for a canonical Q(%)-submodule Qp(A, %) defined as follows. Note first that Qp(A, %)L
is zero if A has good reduction at p. In this case set Qp(A, %) = 0. If A has multi-
plicative reduction at p, Tate’s theory gives a rigid analytic isomorphism

℘Tate : Gan
m,Qp2

/qZA ' AQp2
,

unique up to sign. Here AQp2
is the base change of A to the quadratic unramified

extension Qp2 of Qp and qA in pZp is the Tate period of A. Taking the p-adic
Tate modules ℘Tate induces a (canonical up to sign) isomorphism of GQp2

-modules
V (f)− ' L. Write q(A) in V (f)− for the element corresponding to the identity of L
under this isomorhism and define

Qp(A, %) =
(
Q(%) · q(A)⊗Q(%) V%

)GQp .

Let X1(Nf , p) be the compact modular curve of level Γ1(Nf , p) = Γ1(Nf ) ∩ Γ0(p)
over Q. Fix a modular parametrisation (viz. a non-constant map of Q-schemes)

℘∞ : X1(Nf , p) −→ A.

Let K% be a finite Galois extension of Q such that %1 and %2 factor through
Gal(K%/Q). Define the p-extended Mordell–Weil group of (A, %) by

A†(K%)
% =

(
A(K%)⊗Z V%

)Gal(K%/Q) ⊕Qp(A, %).

Section 2 below associates with the triple (f, gα, hα), the modular parametrisation
℘∞, and the isomorphisms γg and γh a Garrett–Nekovář p-adic height pairing

(5) ⟪·, ·⟫fgαhα : A†(K%)
% ×A†(K%)

% −→ I /I 2,
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where I is the ideal of analytic functions in Ofgh vanishing at wo = (2, 1, 1). The
pairing ⟪·, ·⟫fgαhα is skew-symmetric and associated by cohomological means to an
appropriate self-dual twist of the representation V (f)⊗̂Qp

V (gα)⊗̂LV (hα), viewed
as a p-adic deformation of V (f, g, h) = V (f) ⊗L V (g) ⊗L V (h). Its construction
grounds on Nekovář’s theory of Selmer complexes and generalised Poitou–Tate duality
[Nek06]. More precisely, after identifying V (f) with the fα-isotypic component of
the cohomology group H1

ét(X1(Nf , p)Q̄, L(1)) via the fixed modular parametrisation
℘∞, Section 2 below defines a canonical Garrett–Nekovář p-adic height pairing

(6) ⟪·, ·⟫fgαhα : Sel†(Q, V (f, g, h))⊗L Sel†(Q, V (f, g, h)) −→ I /I 2,

where the (naive) extended Selmer group

(7) Sel†(Q, V (f, g, h)) = Sel(Q, V (f, g, h))⊕H0(Qp, V (f, g, h)−)

is the direct sum of the Bloch–Kato Selmer group of V (f, g, h) over Q and the module
of GQp -invariants of the maximal p-unramified quotient V (f, g, h)− of V (f, g, h). The
global Kummer map A(K%) −→ H1(K%, V (f)) and the fixed isomorphisms γg and γh
give rise to an embedding γgh : A†(K%)

% ↪−→ Sel†(Q, V (f, g, h)), and one defines (5)
as the restriction of the canonical height pairing (6) along γgh.

Set
r†(A, %) = dimQ(%)A

†(K%)
%

and define the Garrett–Nekovář regulator

Rααp (A, %) ∈
(
I r†(A,%)/I r†(A,%)+1

)
/Q(%)∗2

to be the discriminant of the Garrett–Nekovář p-adic height pairing:

Rααp (A, %) = det
( ⟪Pi, Pj⟫fgαhα )16i,j6r†(A,%),

where P1, . . . , Pr†(A,%) is a Q(%)-basis of the p-extended Mordell–Weil group A†(K%)
%.

In view of the normalisation of the isomorphisms γg and γh fixed in (4), the regulator
Rααp (A, %) is independent of the choice of γg and γh. Moreover, it does not depend
on the modular parametrisation ℘∞.

If Qp(A, %) is non-zero –the exceptional case– assume that either

(8) Lan
f 6= Lan

gα
or Lan

f 6= Lan
hα ,

where the analytic L -invariants of f and ξα = gα,hα are defined respectively as the
logarithmic derivatives

(9) Lan
f = −2 · d log(ap(f))k=2 and Lan

ξα
= −2 · d log(ap(ξα))u=1

of −2 times the pth Fourier coefficients of f and ξα at k = 2 and u = 1. Here Of and
Oξ are identified with subrings of the power series rings L[[k−2]] and L[[u−1]], where
k − 2 and u− 1 are uniformisers at the centres 2 and 1 of Uf and Uξ respectively.

We say that a non-zero element F of Ofgh has order of vanishing r ∈ Z>0 at
wo = (2, 1, 1) if it belongs to I r − I r+1, and denote by F ∗ its leading term in the
Taylor expansion at wo, namely its image in the quotient I r/I r+1.
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Conjecture 1.1. — The Garrett–Hida p-adic L-function Lααp (A, %) has order of
vanishing r†(A, %) at wo = (2, 1, 1), and the following equality holds in the quotient of
I r†(A,%)/I r†(A,%)+1 by the multiplicative action of Q(%)∗2.

Lααp (A, %)∗ = Rααp (A, %)

In particular, the Garrett–Nekovář p-adic height pairing ⟪·, ·⟫fgαhα is non-degenerate.

Remarks 1.2. —
1. Under the current assumptions, the module Qp(A, %) is non-zero precisely if

αf = αg · αh or αf = βg · αh,

in which case dimQ(%)Qp(A, %) = 2 and one says that (A, %) is exceptional at
p. Since by assumption g is p-regular, only one of the displayed equalities
can be satisfied. Moreover, as αξ and βξ are roots of unity for ξ = g, h, if
(A, %) is exceptional at p, then α2

f = 1 and either αg · αh = αf = βg · βh or
αg · βh = αf = βg · αh by the self-duality assumption (1).

2. The value of Lααp (A, %) at w0 = (2, 1, 1) is a non-zero complex multiple of(
1− αgαh

αf

)2(
1− βgαh

αf

)2(
1− αgβh

αf

)2(
1− βgβh

αf

)2
· L(A, %, 1).

It follows that (A, %) is exceptional at p precisely if Lααp (A, %) has an exceptional
zero in the sense of [MTT86], viz. one of the Euler factors which appear in the
previous expression is equal to zero. In this case r†(A, %) = dimQ(%)A(K%)

%+2,
hence Conjecture 1.1 and the classical Birch and Swinnerton-Dyer conjecture
predict that the order of vanishing of Lααp (A, %) at wo equals ords=1L(A, %, s)+2.

3. Since ⟪·, ·⟫fgαhα is skew-symmetric, the regulator Rααp (A, %) vanishes if r†(A, %)

is odd. On the other hand, the assumption (2) implies that the order of van-
ishing of L(A, %, s) at s = 1 is even, hence r†(A, %) should also be even by the
classical Birch and Swinnerton-Dyer conjecture (and the first remark).

4. If L(A, %, s) does not vanish at s = 1 and (A, %) is not exceptional at p, then
Lααp (A, %)(wo) is the square of a non-zero element of Q(%)∗. In this case Conjec-
ture 1.1 is a consequence of the classical Birch and Swinnerton-Dyer conjecture.

5. Assume that (A, %) is exceptional at p. The article [BSV21b] proves Conjecture
1.1 when L(A, %, s) does not vanish at s = 1. It also shows the equality

⟪q, q′⟫fgαhα = (Lan
f − Lan

g ) · (l− 1) + ε · (Lan
f − Lan

h ) · (m− 1)

in (I /I 2)/Q(%)∗ (cf. Equation (9)), where (q, q′) is a Q(%)-basis of Qp(A, %)
and ε = +1 if αf = αg · αh while ε = −1 if αf = βg · αh. (Recall that
⟪·, ·⟫fgαhα is skew-symmetric, and that by assumption either Lan

f 6= Lan
g or

Lan
f 6= Lan

h , hence ⟪q, q′⟫fgαhα is a non-zero square root of Rααp (A, %).)
6. Assume that (A, %) is exceptional and that L(A, %, s) vanishes at s = 1. Let

(q, q′) be a Q(%)-basis of Qp(A, %). Conjecture 1.1 predicts the equality

∂2L αα
p (A, %)

∂k2 (wo) = logq(P ) · logq′(Q)− logq′(P ) · logq(Q)
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in L/Q(%)∗ for two rational points P and Q in A(K%)
%, where logq·(·) is the

evaluation at q· of the Bloch–Kato p-adic logarithm for q· = q, q′. The reader
is referred to Section 2.2 of [BSV21b] for details.

1.1. Generalisations. —

1.1.1. The semi-stable case. — Assume that A has semi-stable reduction at p, and
let αf be a non-zero root of the p-th Hecke polynomial hf,p = X2−ap(f)·X+1Nf (p)·p
of f . If A has good ordinary reduction at p and αf is the root of hf,p with positive
p-adic valuation, assume in addition that A does not have complex multiplication.
Under these assumptions, there exists a unique Coleman family (of slope ordp(αf ))
which specialises to fα = f(q) − βf · f(qp) in weight 2, where βf · αf = 1Nf (p) · p.
By combining the results of [Hsi20] and [AI20], one should be able to associate to
the triple (fα, gα,hα) a canonical p-adic L-function Lααp (fα, %) = Lp(fα, gα,hα)2

(generalising the construction of Lααp (A, %) = Lααp (fα, %) when A is p-ordinary and
αf is the unit root of hf,p). On the algebraic side of the matter, (while not necessarily
ordinary) the Galois representation V (fα) associated with fα is trianguline at p. In
light of the extension of Nekovář’s theory to families of trianguline representations
obtained in [Pot13], the construction of ⟪·, ·⟫fαgαhα , given in Section 2 below when
A is p-ordinary and αf is the unit root of hf,p, easily generalises to the present setting.
Conjecture 1.1 should then extend to the semi-stable setting.

1.1.2. The reducible case. — The formalism leading to the definition of the p-adic
regulator Rααp (A, %) extends to the case in which one or both the Artin representations
%1 and %2 is reducible and p-irregular, i.e. of the form χ⊕ χ′ for Dirichlet characters
satisfying χ(p) = χ′(p). Let ξ = g or h be the associated weight-one Eisenstein series
Eis1(χ, χ′). According to the main result of [BDP19] there exists a unique cuspidal
Hida family ξα specialising in weight one to the (unique) p-stabilisation ξα of ξ. The
construction of ⟪·, ·⟫fgαhα given in Section 2 carries over to this setting, if V (ξα)

is replaced by its parabolic counterpart. This guarantees the freeness of V (ξα) and
of its maximal p-unramified quotient. Note that the p-regular reducible cases would
involve the Hida–Rankin p-adic L-functions associated to f and one or two families
of Eisenstein series.

1.1.3. The higher-weight case. — One can formulate a higher-weight analogue of
Conjecture 1.1, in which the weight-2 newform associated with A is replaced by a
newform

f =
∑
n>1

an(f) · qn ∈ Sk(Nf )L

of even weight k > 2 and trivial character. Assume for simplicity that p does not
divide the conductor Nf of f , and that ap(f) is a p-adic unit (under the embedding
Q̄ ↪−→ Q̄p fixed at the outset). Let f = fα be the unique Hida family specialising
to the ordinary p-stabilisation fα of f at weight k. The article [Hsi20] associates
to (fα, gα,hα) a p-adic L-function Lααp (fα, %) = L f

p (f , gα,hα)2. Let Ek−2 be the
(k − 2)-fold fibre product of the universal generalised elliptic curve E −→ X1(Nf )
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over the modular curve X1(Nf ) of level Γ1(Nf ) over Q. The self-dual twist Vf of the
Deligne representation of f is a direct summand of Hk−1

ét (Ek−2 ⊗Q Q̄, L(k/2)), hence
the p-adic Abel–Jacobi map yields a morphism (cf. [NN16])

rét :
(
CHk/2(Ek−2 ⊗Q K%)0 ⊗Q V%)

)Gal(K%/Q) −→ Sel(Q, Vf ⊗Q(%) V%),

where CHi(·)0 is the Chow group of homologically trivial codimension i cycles in ·
with Q-coefficients, and Sel(Q, ·) is the Bloch–Kato Selmer group of · over Q. Define
Af (K%)

% to be the image of the Abel–Jacobi map rét:

Af (K%)
% = Image(rét).

The constructions of Section 2 below readily generalise to give a pairing

⟪·, ·⟫fgαhα : Af (K%)
% ⊗Q(%) Af (K%)

% −→ Ik/I
2
k ,

where Ik is the ideal of functions in Ofgh which vanish at (k, 1, 1). The pairing
⟪·, ·⟫fgαhα is skew-symmetric, and canonical up to the choice of the isomorphisms
γg and γh fixed in (4). The Bloch–Kato conjecture predicts that rét is injective, and
that the dimension r(fα, %) of Af (K%)

% over Q(%) is finite. Generalising Conjecture
1.1, we expect that Lααp (fα, %) belongs to I

r(fα,%)
k −I

r(fα,%)+1
k , and that its image in

(I r(fα,%)/I r(fα,%)+1)/Q(%)∗2 is equal to the discriminant of ⟪·, ·⟫fgαhα , computed
with respect to any Q(%)-basis of Af (K%)

%.

2. Garrett–Nekovář p-adic height pairings

Notation. In this section we set (f , g,h) = (f , gα,hα). We denote by GNp the
Galois group of the maximal algebraic extension of Q which is uramified at all the
rational primes not dividing Np.

2.1. Galois representations (cf. [BSV20]). — Let ξ be one of f , g and h, and
let V (ξ) be the Galois representation introduced in [BSV20, Section 5]. Under the
current assumptions it is a free Oξ-module of rank two, equipped with a linear action
of GNp. (Recall that Oξ denotes the ring of bounded functions on Uξ, cf. Section 1.)
For each classical point u in Uξ ∩ Z>2, there is a natural specialisation isomorphism

ρu : V (ξ)⊗u L ' V (ξu)

between the base change of V (ξ) along evaluation at u on Oξ and the homological
Deligne representation V (ξu) of ξu. (We refer to Equation (106) of loc. cit. for
more details.) Moreover, if ξ = g,h, the base change of V (ξ) along evaluation at
1 on Uξ yields a canonical model of the (homological) Deligne–Serre representation
associated with the weight-one cuspidal eigenform ξ1. In this case we set (cf. Section
1) V (ξ) = V (ξ1) = V (ξ)⊗1 L and denote by ρ1 : V (ξ)⊗1 L ' V (ξ1) the identity.

The representation V (f2) is the f -isotypic component of H1
ét(X1(Nf , p), L(1)) and

the modular parametrisation ℘∞ : X1(Nf , p) −→ A fixed in Section 1 induces an
isomorphism ℘∞∗ : V (f2) ' V (f). With a slight abuse of notation we write again

(10) ρ2 : V (f)⊗2 L ' V (f)
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for the composition of ℘∞∗ with the specialisation isomorphism ρ2.
The restriction of V (ξ) to GQp is nearly-ordinary: let χu−1

cyc : GQ −→ O∗ξ be the
character whose composition with evaluation at u in Uξ ∩Z is the (u− 1)-th power of
the p-adic cyclotomic character χcyc : GQ −→ Z∗p, and let ǎp(ξ) : GQp −→ O∗ξ be the
unramified character sending an arithmetic Frobenius to the p-th Fourier coefficient
ap(ξ) of ξ. Then there exists a natural short exact sequence of Oξ[GQp

]-modules

0 −→ V (ξ)+ i+−→ V (ξ)
p−−→ V (ξ)− −→ 0

with

(11) V (ξ)+ ' Oξ(χ
u−1
cyc · χξ · ǎp(ξ)−1) and V (ξ)− ' Oξ(ǎp(ξ)).

According to Equations (103) and (114) of [BSV20], there exists a natural skew-
symmetric GQ-equivariant perfect pairing

πξ : V (ξ)⊗Oξ V (ξ) −→ Oξ(χξ · χu−1
cyc ).

For each u in Uξ∩Z>2, the base change of πξ along evaluation at u and the specialisa-
tion isomorphism ρu yield a perfect pairing πξu : V (ξu)⊗EV (ξu) −→ L(χξ+u−1). If
ξ = f and u = 2, then πf2 is equal, up to sign, to the pairing arising from the Poincaré
duality H1(X1(Nf , p),Qp(1))⊗2 −→ Qp(1) (cf. loco citato), hence its composition

πf : V (f)⊗L V (f) −→ L(1)

with the inverse of ℘⊗2
∞∗ is a rational multiple of the Weil pairing. If ξ equals either g

or h, then the base change of πξ along evaluation at u = 1 on Oξ yields the perfect
pairing πξ : V (ξ)⊗L V (ξ) −→ L(χξ) introduced in Equation (3).

As in Section 1, set Ofgh = Of ⊗̂Qp
Og⊗̂LOh and define

V (f , g,h) = V (f)⊗̂Qp
V (g)⊗̂LV (h)⊗Ofgh Ξfgh,

where Ξfgh : GQ −→ O∗fgh is the character satisfying

Ξfgh(g)(w) = χcyc(g)(4−k−l−m)/2

for each g in GQ and w = (k, l,m) in Uf × Ug × Uh ∩ Z3. The GQ-representation
V (f , g,h) is a free Ofgh-module of rank eight. Moreover V (f , g,h) is Kummer self-
dual: because χg = χ−1

h (cf. Equation (1)), the product of the perfect pairings πξ (for
ξ = f , g,h) define a GQ-equivariant and skew-symmetric perfect pairing

(12) πfgh : V (f , g,h)⊗Ofgh V (f , g,h) −→ Ofgh(1).

Set wo = (2, 1, 1). Then the specialisation map (10) induces an isomorphism

(13) ρwo : V (f , g,h)⊗wo L ' V (f, g, h)

between the base change of V (f , g,h) along evaluation at wo on Ofgh and

V (f, g, h) = V (f)⊗L V (g)⊗L V (h).

The pairing πfgh and ρwo yield a GQ-equivariant, skew-symmetric and perfect duality

πfgh : V (f, g, h)⊗L V (f, g, h) −→ L(1),

which by construction equals the product of the dualities πf , πg and πh.
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2.2. Selmer complexes (cf. [Nek06]). — For ξ = f , g,h, denote by Λξ the ring
of analytic functions on Uξ bounded by 1, and set Λfgh = Λf ⊗̂ZpΛg⊗̂OLΛh, so that
Ofgh = Λfgh[1/p]. The OL-algebra Λfgh is isomorphic to a three-variable power series
ring with coefficients in OL. In particular it is a regular local complete Noetherian ring
with finite residue field. Let G denote either GNp or GQ`

, for a rational prime ` divid-
ing Np, and let (B, M) denote one of the pairs (OL, V(f, g, h)) and (Λfgh, V(f , g,h)),
where V(f, g, h) (resp., V(f , g,h)) is an OL-lattice (resp., a Λfgh-lattice) in V (f, g, h)
(resp., V (f , g,h)) preserved by the action of GNp. Equip G with the profinite topol-
ogy and M with the mB-adic topology, where mB is the maximal ideal of B. Set
(B,M) = (B[1/p], M[1/p]) and

C•cont(G,M) = C•cont(G, M)⊗B B,

where C•cont(G, M) is the complex of non-homogeneous continuous cochains of G with
values in M. IfG = GQ`

, we also write C•cont(Q`,M) as a shorthand for C•cont(GQ`
,M).

Recall the Of [GQp
]-submodule V (f)+ of V (f) introduced in Section 2.1 and set

V (f , g,h)+ = V (f)+⊗̂QpV (g)⊗̂LV (h)⊗Ofgh Ξfgh.

Define V (f)+ to be the image of V (f)+ ⊗2 L under the specialisation isomorphism
ρ2 : V (f)⊗2 L ' V (f) (cf. Equation (10)), and set

V (f, g, h)+ = V (f)+ ⊗L V (g)⊗L V (h).

Denote by i+ : M+ ↪−→ M the natural inclusion, fix a GQp
-stable B-lattice M+

mapping into M under i+, and define C•cont(GQp
,M+) = C•cont(Qp,M

+) to be the base
change to B of the complex C•cont(GQp

, M+) of continuous non-homogeneous cochains
of GQp

with values in M+. The inclusion i+ induces a morphism of complexes

i+ : C•cont(Qp,M
+) −→ C•cont(Qp,M),

which we call the f -Greenberg local condition on the GQp
-representation M .

The f -Nekovář Selmer complex

C̃•f (GNp,M)

of the GNp-representation M is the complex of B-modules

Cone

C•cont(GNp,M)⊕ C•cont(Qp,M
+)

resNp−i+−→
⊕
`|Np

C•cont(Q`,M)

 [−1],

where resNp = ⊕`|Npres` is the direct sum over the primes dividing Np of the re-
striction morphisms res` : RΓcont(GNp,M) −→ RΓcont(Q`,M) associated with fixed
embeddings i` : Q̄ ↪−→ Q̄` (with ip the embedding fixed at the outset.) Denote by

RΓ̃f (Q,M) ∈ Db
ft(B)

the image of C̃•f (GNp,M) in the derived category Db
ft(B) of bounded complexes of

B-modules with cohomology of finite type over B and by

H̃ ·f (Q,M) = H ·
(
RΓ̃f (Q,M)

)
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its cohomology. (The complex RΓ̃f (Q,M) is indeed a perfect complex of perfect
amplitude contained in [0, 3], cf. [Nek06].) Similarly denote by

RΓcont(GNp,M), RΓcont(Q`,M) and RΓcont(Qp,M
+)

the images in Db
ft(B) of C•cont(GNp,M), C•cont(Q`,M) and C•cont(Qp,M

+), and by

H ·(GNp,M), H ·(Q`,M) and H ·(Qp,M
+)

their cohomology.
The specialisation isomorphism (13) induces isomorphisms in Db

ft(L):

(14) ρwo : RΓcont(G,V (f , g,h))⊗L
Ofgh,wo L ' RΓcont(G,V (f, g, h))

and

ρwo : RΓcont(Qp, V (f , g,h)+)⊗L
Ofgh,wo L ' RΓcont(Qp, V (f, g, h)+),

which in turn induce on f -Selmer complexes an isomorphism

(15) ρwo : RΓ̃f (Q, V (f , g,h))⊗L
Ofgh,wo L ' RΓ̃f (Q, V (f, g, h)).

(This follows easily by the fact the kernel of evaluation at wo on Ofgh is generated
by an Ofgh-regular sequence.)

The local Tate duality implies that for each prime ` dividing N the complex
RΓcont(Q`, V (f, g, h)) is isomorphic to zero, hence so is RΓcont(Q`, V (f , g,h)) by
Equation (14). It then follows from the definition of the Selmer complex C̃•f (GNp,M)

that one has a distinguished triangle in Db
ft(R):

(16) RΓ̃f (Q,M) −→ RΓcont(GNp,M)
p−◦resp−→ RΓcont(Qp,M

−),

where M− is the quotient of M by M+ and p− is the map induced on complexes by
the the projection p− : M −→M−.

2.3. The extended Selmer group. — The exact triangle (16) gives rise to a long
exact cohomology sequence

(17) H̃i
f (Q,M) −→ Hi(GNp,M) −→ Hi(Qp,M

−)
−→ H̃i+1

f (Q,M).

As easily checked

Sel(Q, V (f, g, h)) = ker

(
H1(GNp, V (f, g, h))

p−◦resp−→ H1(Qp, V (f, g, h)−)

)
,

hence one can extract from the previous sequence the short exact sequence

(18) 0 −→ H0(Qp, V (f, g, h)−) −→ H̃1
f (Q, V (f, g, h)) −→ Sel(Q, V (f, g, h)) −→ 0.

The projection in the previous equation has a natural splitting

(19) ıur : Sel(Q, V (f, g, h)) ↪−→ H̃1
f (Q, V (f, g, h)),

characterised by the following property. Denote by

(20) ·+ : H̃1
f (Q, V (f, g, h)) −→ H1(Qp, V (f, g, h)+)

the morphism induced by the natural map of complexes (i.e. projection)

C̃•f (GNp, V (f, g, h)) −→ C•cont(Qp, V (f, g, h)+).
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Then for any Selmer class x in Sel(Q, V (f, g, h)) one has

ıur(x)
+ ∈ H1

fin(Qp, V (f, g, h)+).

We often identify the Bloch–Kato Selmer group Sel(Q, V (f, g, h)) with a subgroup
of the Nekovář extended Selmer group H̃1

f (Q, V (f, g, h)) via the splitting ınr. In
other words, we use the splitting ınr to identify the Nekovář extended Selmer group
H̃1
f (Q, V (f, g, h)) with the naive extended Selmer group Sel†(Q, V (f, g, h)) introduced

in Equation (7):

(21) H̃1
f (Q, V (f, g, h)) = Sel(Q, V (f, g, h))⊕H0(Qp, V (f, g, h)−).

The Kummer map and the Shapiro isomorphism yield an injective morphism

(A(K%)⊗Z V%)
Gal(K%/Q) ⊗Q(%) L ↪−→ Sel(Q, V (f)⊗Q(%) V%).

Together with the isomorphism of L[GQ]-modules

γg ⊗ γh : V% ⊗Q(%) L ' V (g)⊗L V (h)

(cf. Equation (4)), it entails an injective morphism of L-vector spaces

(22) γgh : A†(K%)
% ⊗Q(%) L ↪−→ H̃1

f (Q, V (f, g, h)),

which is an isomorphism precisely if the p-part of the %-isotypic component of the
Shafarevich–Tate group of A over K% is finite.

2.4. Generalised Poitou–Tate duality (cf. [Nek06]). — Section 6.3 of [Nek06]
(see also Proposition 1.3.2) associates to the Kummer duality

πfgh : V (f, g, h)⊗L V (f, g, h) −→ L(1)

(satisfying πfgh(V (f, g, h)+ ⊗L V (f, g, h)+) = 0) a global cup-product pairing

∪Nek = ∪Nek : RΓ̃f (Q, V (f, g, h))⊗L
L RΓ̃f (Q, V (f, g, h)) −→ RΓ̃∅(Q, L(1)),

where RΓ̃∅(Q, L(1)) denotes the complex

Cone

RΓcont(GNp, L(1))
resNp−→

⊕
`|Np

RΓcont(Q`, L(1))

 [−1].

Let H̃ ·∅(Q, L(1)) be the cohomology of RΓ̃∅(Q, L(1)). The fundamental exact se-
quence of global class field theory yields a canonical isomorphism

TrL : H̃3
∅ (Q, L(1)) '

⊕
`|Np

H2(Q`, L(1))
/

resNp
(
H2(GNp, L(1))

)
' L,

arising from the sum of the invariant maps inv` : H2(Q`, L(1)) ' L of local class field
theory, for ` dividing Np (cf. Equation (5.3.1.3.2) of [Nek06]). Define

(23) 〈·, ·〉Nek : H̃2
f (Q, V (f, g, h))⊗L H̃1

f (Q, V (f, g, h)) −→ H̃3
∅ (Q, L(1)) ' L.

to be the composition of the map H2,1(∪Nek) induced on (2, 1)-cohomology by
Nekovář’s global cup-product ∪Nek with the trace isomorphism TrL.
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2.5. The p-adic height pairing. — To lighten the notation, we abbreviate
V (f, g, h), V (f , g,h),RΓ̃f (Q, ·) and H̃(Q, ·) with V,V ,RΓ̃f (·) and H̃f (·) respec-
tively.

Applying RΓ̃f (V )⊗L
Ofgh

· to the exact triangle

(24) I /I 2 −→ Ofgh/I
2 −→ L

δ−→ I /I 2[1]

arising from evaluation at wo on Ofgh, yields a morphism in Db
ft(Ofgh):

(25) RΓ̃f (V )⊗L
Ofgh,wo L −→ RΓ̃f (V )⊗L

Ofgh I /I 2[1].

The specialisation map ρwo gives rise to isomorphisms (cf. Equation (15))

ρwo : RΓ̃f (V )⊗L
Ofgh,wo L ' RΓ̃f (V )

and
ρwo⊗ id : RΓ̃f (V )⊗L

OfghI /I 2 ' RΓ̃f (V )⊗L I /I 2,

which together with (25) induce a derived Bockstein map

β̃fgh : RΓ̃f (Q, V (f, g, h)) −→ RΓ̃f (Q, V (f, g, h))[1]⊗L I /I 2.

The Garrett–Nekovář canonical p-adic height pairing

⟪·, ·⟫fgh : H̃1
f (Q, V (f, g, h))⊗L H̃1

f (Q, V (f, g, h)) −→ I /I 2

is the composition of the Nekovář cup-product pairing (cf. Equation (23))

〈·, ·〉Nek ⊗I /I 2 : H̃2
f (V )⊗L H̃1

f (V )⊗L I /I 2 −→ I /I 2

with the morphism

β̃fgh ⊗ id : H̃1
f (V )⊗L H̃1

f (V ) −→ H̃2
f (V )⊗L H̃1

f (V )⊗L I /I 2,

where the Bockstein map

(26) β̃fgh : H̃1
f (Q, V (f, g, h)) −→ H̃2

f (Q, V (f, g, h))⊗L I /I 2

is the map H1(β̃fgh) induced on the first cohomology groups by β̃fgh.

Proposition 2.1. — The p-adic height ⟪·, ·⟫fgh is skew-symmetric.

Proof. — As explained in Section 2.1, the Kummer self-duality πfgh on V (f, g, h)
lifts (under ρwo) to a skew-symmetric, GQ-equivariant perfect pairing

πfgh : V (f , g,h)⊗Ofgh V (f , g,h) −→ Ofgh(1),

under which the GQp
-submodule V (f , g,h)+ of V (f , g,h) is its own orthogonal com-

plement. The proposition then follows from the results of [Ven13, Appendix C].

The p-adic height pairing (cf. Equation (5))

⟪·, ·⟫fgαhα : A†(K%)
% ⊗Q(%) A

†(K%)
% −→ I /I 2

which appears in Conjecture 1.1 is defined to be restriction of the canonical height
pairing ⟪·, ·⟫fgαhα : H̃1

f (Q, V (f, g, h))⊗2 −→ I /I 2 to the p-extended Mordell–Weil
group A†(K%)

% along the injective morphism γgh introduced in Equation (22).
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3. Diagonal classes and rational points

As proved in [BSV20, Theorem A] and [DR20, Theorem 5.1], the square root
p-adic L-function L αα

p (A, %) is the image of a big diagonal class κ(f , gα,hα) in
H1(Q, V (f , gα,hα)) under an appropriate branch of the Perrin-Riou big logarithm.
The leading term of Lααp (A, %) at wo = (2, 1, 1) is then intimately connected to the
derivatives of the class κ(f , gα,hα) at wo. This section exploits this connection and
its relation with Conjecture 1.1.

To simplify the exposition, we assume in this section that

(27) αf 6= αg · αh and αf 6= βg · αh.
This condition is equivalent to the vanishing of the module of p-adic periods Qp(A, %)
of (A, %) (or equivalently of the module H0(Qp, V (f, g, h)−)), and is satisfied when A
has good (ordinary) reduction at p (cf. Remark 1.2.1). In particular, in this section,
the Nekovář extended Selmer group and the Bloch–Kato Selmer group of V (f, g, h)
over Q are equal to each other (cf. Equation (21)):

H̃1
f (Q, V (f, g, h)) = Sel(Q, V (f, g, h)).

3.1. Differentials and logarithms. — Let ξ denote one of f , gα or hα, and recall
the short exact sequence of Oξ-modules V (ξ)+ ↪−→ V (ξ) −� V (ξ)− (cf. Section 2.1).

If ξ = gα,hα define

V (ξ)α = V (ξ)− ⊗1 L and V (ξ)β = V (ξ)+ ⊗1 L.

Equation (11) implies that V (ξ)α = V (ξ)Frobp=αξ and V (ξ)β = V (ξ)Frobp=βξ are the
subspaces of V (ξ) on which an arithmetic Frobenius Frobp in GQp

acts as multipli-
cation by αξ and βξ respectively. In particular one has the decomposition

V (ξ) = V (ξ)α ⊕ V (ξ)β

of L[GQp ]-modules. (Recall that by assumption the roots αξ and βξ = χξ(p) · α−1
ξ of

the p-th Hecke polynomial of ξ are distinct, cf. Section 1.)
Set D(ξ)− = H0(Qp, V (ξ)−⊗̂Qp

Q̂nr
p ), where Q̂nr

p is the p-adic completion of the
maximal unramified extension of Qp (equipped with its natural GQp -action). As
explained in [BSV20, Section 5], the Oξ-module D(ξ)− is free of rank one, and its
base change D(ξ)−u = D(ξ)−⊗uL along evaluation at a classical weight u in Uξ∩Z>2

on Oξ is canonically isomorphic to the ξu-isotypic component L · ξu of Su(pNξ, χξ)L.
Moreover, there exists an Oξ-basis

ωξ ∈ D(ξ)−

whose image ωξu in D(ξ)−u corresponds to ξu under the aforementioned isomorphism
for each classical weight u in Uξ ∩ Z>2 (cf. Equations (117)–(119) of [BSV20]).

Remark 3.1. — We caution the reader that the notation used here differ from that
of [BSV20]. Precisely, Section 5 of loc. cit. introduces a differential ωξ = ωBSV

ξ in
a suitable dual D∗(ξ)− of D(ξ)−. Here we denote by ωξ the image of ωBSV

ξ under
the isomorphism w−Np : D∗(ξ)− ' D(ξ)− induced by the Atkin–Lehner isomorphism
w−Np : V ∗(ξ)−(1+κUf ) ' V (ξ)− defined in [BSV20, Equation (114)]. Accordingly the
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canonical isomorphism D(ξ)−u ' L ·ξu mentioned above arises from the specialisation
isomorphism D∗(ξ)− ⊗u L ' Fil1V ∗dR(ξu) defined in [BSV20, Equation (116)] and
the Atkin–Lehner operator (cf. Equation (29) of loc. cit.).

If ξ is either gα or hα, the weight-one specialisation of ωξ yields canonical elements

ωξα ∈ D(ξ)−1 = Dcris(V (ξ)α).

In this case, let ηξα in Dcris(V (ξ)β) be the class satisfying

〈ηξα , ωξα〉ξ = 1,

where
〈·, ·〉ξ : Dcris(V (ξ)α)⊗L Dcris(V (ξ)β) −→ Dcris(L(χξ)) ' L

is the perfect pairing induced by the duality πξ introduced in Equation (3). (The
crystalline module Dcris(χξ) = H0(Qp, L(χξ) ⊗Qp Bcris) of the one-dimensional rep-
resentation L(χξ) is generated over L by the Gauß sum

G(χξ) =
∑

a∈(Z/c(χξ)Z)∗

χξ(a)⊗ e2πia/c(χξ)

in L⊗Qp
Qp(µNξ) of the primitive character χξ : (Z/c(χξ)Z)∗ −→ L∗ associated with

χξ. Since by assumption L contains Q(µNξ), here we identify G(χξ) with the element∑
a χξ(a) · e2πia/c(χξ) of L, hence Dcris(χξ) with L.)
Identify V (f) = Tap(A) ⊗Zp L with the f -isotypic component of the étale coho-

mology group H1
ét(X1(Nf , p)Q̄,Qp(1))⊗Qp L under the modular parametrisation ℘∞

fixed in Section 1. The modular form f in Fil0H1
dR(X1(Nf , p)Qp

,Qp(1)) then defines
(via the comparison isomorphism between étale and de Rham cohomology) a class

ωf ∈ Fil0DdR(V (f))

(where DdR(·) = H0(Qp, · ⊗Qp BdR) is Fontaine’s de Rham functor). Define ηf in
DdR(V (f))/Fil0 to be the de Rham class satisfying

〈ηf , ωf 〉f = 1,

where 〈·, ·〉f : DdR(V (f)) ⊗L DdR(V (f)) −→ L is the perfect pairing induced on the
de Rham modules by the Weil pairing on V (f).

Set VdR(f, g, h) = DdR(V (f, g, h)). The Bloch–Kato exponential map gives an
isomorphism between VdR(f, g, h)/Fil0 and the finite subspace H1

fin(Qp, V (f, g, h)) of
H1(Qp, V (f, g, h)) (cf. Lemma [BSV20, 9.1]). Denote by

logp : H1
fin(Qp, V (f, g, h)) −→ VdR(f, g, h)/Fil0

the inverse of the Bloch–Kato exponential. Under the self-duality assumption (1), the
product of the pairings 〈·, ·〉ξ, for ξ = f, g, h, yields a perfect duality

〈·, ·〉fgh : VdR(f, g, h)⊗L VdR(f, g, h) −→ DdR(Qp(1))⊗Qp L = L.

(Here one identifies VdR(f, g, h) with the tensor product of DdR(V (f)), Dcris(V (g))
and Dcris(V (h)) under the natural isomorphism.) Define the αα-logarithm

logαα =
〈

logp(·), ωf ⊗ ηgα ⊗ ηhα
〉
fgh

: H1
fin(Qp, V (f, g, h)) −→ L.
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to be the composition of the Bloch–Kato p-adic logarithm with evaluation on the class
ωf ⊗ ηgα ⊗ ηhα in Fil0VdR(f, g, h) under the duality 〈·, ·〉fgh. If κ is a global Selmer
class in Sel(Q, V (f, g, h)), we often write logαα(κ) as a shorthand for logαα(resp(κ)).

3.2. Diagonal classes. — Following [BSV20, Section 7.2] define (cf. Section 2.1)

F 2V (f , gα,hα) =

[ ∑
p+q+r=2

F pV (f)⊗̂LF qV (gα)⊗̂LF rV (hα)

]
⊗Ofgh Ξfgh,

where for ξ = f , gα,hα one sets F iV (ξ) = V (ξ) for i 6 0, F 1V (ξ) = V (ξ)+ and
F jV (ξ) = 0 for j > 2. It is an Ofgh[GQp

]-submodule of V (f , gα,hα), free of rank
four over Ofgh. We call the image of the injective natural map

H1(Qp,F
2V (f , gα,hα)) −→ H1(Qp, V (f , gα,hα))

the balanced local condition, and denote it by H1
bal(Qp, V (f , gα,hα)). The balanced

Selmer group H1
bal(Q, V (f , gα,hα)) is the module of global cohomology classes in

H1(Q, V (f , gα,hα)) which are unramified at every prime ` 6= p and whose restriction
at p belongs to the balanced local condition. For each classical triple w = (k, l,m) in
Uf ×Ug ×Uh ∩Z3

>2, one defines similarly the balanced local condition H1
bal(Qp, Vw),

where Vw = V (fk, gα,l,hα,m) is the self-dual Tate twist of the tensor product of the
homological Deligne representations V (ξu) of ξu = fk, gα,l,hα,m. If w is balanced (id
est k < l + m, l < k + m and m < k + l), then H1

bal(Qp, Vw) equals the Bloch–Kato
finite subspace of H1(Qp, Vw) (cf. [BSV20, Lemma 7.2]). The work of Perrin-Riou
et alii yields a big logarithm map

Lf : H1
bal(Qp, V (f , gα,hα)) −→ Ofgh,

satisfying the following interpolation property. Let Z be a local balanced class in
H1

bal(Qp, V (f , gα,hα)), and let w = (k, l,m) be a balanced classical triple. Denote
by Zw in H1

bal(Qp, Vw) the image of Z under the map induced in cohomology by the
specialisation isomorphism ρw : V (f , gα,hα)⊗w L ' Vw (the latter being defined as
the tensor product of the specialisation isomorphisms ρu : V (ξ) ⊗u L ' V (ξu), for
ξu = fk, gα,l,hα,m, cf. Section 2.1). Set cw = (k + l + m − 2)/2, αk = ap(f)(k),
αl = ap(gα)(l), αm = ap(hα)(m), and define βξ by the identities αk · βk = pk−1,
αl · βl = χg(p) · pl−1 and αm · βm = χh(p) · pm−1. Then one has

Lf (Z)(w) =
(−1)cw−k

(cw − k)!
·

(
1− βkαlαm

pcw

)
(

1− αkβlβm
pcw

) · 〈 logp(Zw),fu
〉
w
,

where logp is the Bloch–Kato logarithm map, fw in Fil0DdR(Vw) denotes the dif-
ferential ηfk ⊗ ωgα,l ⊗ ωhα,m (defined similarly as in Section 3.1), and the pairing
〈·, ·〉w : DdR(Vw)/Fil0 ⊗L Fil0DdR(Vw) −→ L is the one induced by the specialisation
at wo of the perfect duality πfgh (cf. Equation (12)). We refer to Proposition 7.3 of
[BSV20] for a proof of the existence of Lf .

Theorem A of [BSV20] constructs a canonical big balanced diagonal class

κ(f , gα,hα) ∈ H1
bal(Q, V (f , gα,hα))
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such that

(28) Lf

(
resp

(
κ(f , gα,hα)

))
= L αα

p (A, %).

One defines the (balanced) diagonal class

κ(f, gα, hα) ∈ H1(Q, V (f, g, h))

to be the image of κ(f , gα,hα) under the map induced in cohomology by the spe-
cialisation isomorphism ρwo defined in Equation (13). Note that wo lies outside the
balanced region, hence the class κ(f, gα, hα) is not necessarily crystalline at p. In-
deed, under the current assumption (27), it follows from the explicit reciprocity law
(28) and Perrin-Riou’s reciprocity law for big dual exponentials that κ(f, gα, hα) is
crystalline at p (hence a Selmer class) precisely if the the complex Garrett L-function
L(A, %, s) = L(f ⊗ g ⊗ h, s) vanishes at the central point s = 1. (Cf. Theorem B of
[BSV20], proved in the present setting in Section 9.1 of loco citato.) In this case

(29) logαα(κ(f, gα, hα)) = 0,

as follows from the fact that κ(f, gα, hα) is by construction (the specialisation at wo
of) a balanced class (cf. the discussion following Diagram (193) of [BSV20]).

When L(f ⊗ g⊗h, s) vanishes at s = 1, the following proposition relates the linear
form ⟪κ(f, gαhα), ·⟫fgαhα on Sel(Q, V (f, g, h)) and the derivative of L αα

p (A, %).

Theorem 3.2. — Assume that the complex Garrett L-function L(A, %, s) vanishes
at s = 1, so that κ(f, gα, hα) is a Selmer class. Then(

1− αgαh
αf

)
(

1− αf
pαgαh

) · ⟪κ(f, gα, hα), ·⟫fgαhα = logαα
(
resp(·)

)
·L αα

p (A, %) (mod I 2)

as I /I 2-valued linear maps on the Selmer group Sel(Q, V (f, g, h)).

Theorem 3.2 is proved in Section 3.4 below.

Remark 3.3. — The construction of the class κ(f , gα,hα) and the proof of the
reciprocity law (28) given in [BSV20] work also when the assumption (27) is not
satisfied, id est if A has multiplicative reduction at p and αf equals either αg · αh or
βg ·αh. (Since g is p-regular by an assumption of Section 1, one has αg ·αh 6= βg ·αh.)
Assume that αf = αg ·αh and that L(A, %, s) vanishes at s = 1, so that κ(f, gα, hα) is
crystalline at p by Theorem B of [BSV20]. Let q and q′ be generators ofQp(A, %). For
Selmer classes x and y in Sel(Q, V (f, g, h)), denote by h̃ααp (x⊗ y) the square-root of
the discriminant of ⟪·, ·⟫fgαhα computed on the Q(%)-submodule of H̃1

f (Q, V (f, g, h))

generated by x, y, q and q′. The article [BSV21a] proves the equality

h̃ααp
(
κ(f, gα, hα)⊗ y

)
= logαα

(
resp(y)

)
·L αα

p (A, %)
(
mod I 3

)
in (I 2/I 3)/Q(%)∗ for each Selmer class y.



ON p-ADIC ANALOGUES OF THE BSD CONJECTURE 19

3.3. Perrin-Riou conjecture for diagonal classes. — Recall the map

γgh : A(K%)
% ⊗Q(%) L ↪−→ Sel(Q, V (f, g, h))

defined in Equation (22), arising from the Kummer map on A(K%) and the isomor-
phisms γg and γh fixed in (4). Assume that A(K%)

% has dimension 2 over Q(%). The
classical Birch and Swinnerton-Dyer conjecture predicts that the Shafarevich–Tate
group of A over K% is finite, hence that γgh is an isomorphism. In this case, if (P,Q)
is a Q(%)-basis of A(K%)

%, one has κ(f, gα, hα) = a · γgh(P ) + b · γgh(Q) with a and b
in L. After setting

E =

(
1− αgαh

αf

)
·
(

1− αf
pαgαh

)−1

,

Theorem 3.2 and Proposition 2.1 yield the identities

E · a · ⟪P,Q⟫fgαhα = logαα(γgh(Q)) ·L αα
p (A, %) (mod I 2)

and
−E · b · ⟪P,Q⟫fgαhα = logαα(γgh(P )) ·L αα

p (A, %) (mod I 2)

Moreover, Conjecture 1.1 predicts that ⟪P,Q⟫fgαhα and L αα
p (A, %) (mod I 2) are

non-zero, and equal up to multiplication by a non-zero algebraic scalar in Q(%)∗.
To sum up, when dimQ(%)A(K%)

% = 2, one expects that κ(f, gα, hα) is equal to
logαα(γgh(Q)) · γgh(P ) − logαα(γgh(P )) · γgh(Q) up to multiplication by a non-zero
scalar in Q(%)∗. When dimQ(%)A(K%)

% > 2, Conjecture 1.1 predicts that L αα
p (A, %)

belongs to I 2 and that ⟪·, ·⟫fgαhα is non-degenerate, hence that κ(f, gα, hα) is zero
by Theorem 3.2 and the conjectural finiteness of the relevant Shafarevich–Tate group.
In light of the above discussion, the following conjecture is a direct consequence of
Conjecture 1.1, the conjectural finiteness of the p-primary part of the %-component
of the Shafarevich–Tate group of A over K%, and Theorem 3.2.

Conjecture 3.4. —
1. Assume that the Q(%)-vector space A(K%)

% has dimension 2. Then, for each
Q(%)-basis (P,Q) of A(K%)

%, the equality

κ(f, gα, hα) = logαα(γgh(Q)) · γgh(P )− logαα(γgh(P )) · γgh(Q)

holds in the Selmer group Sel(Q, V (f, g, h)) up to multiplication by a non-zero
element of Q(%)∗.

2. If A(K%)
% has dimension greater than 2 over Q(%), then the diagonal class

κ(f, gα, hα) is equal to zero.

Remarks 3.5. —
1. The equality displayed in Part 1 of Conjecture 3.4 is independent of the choice

of the isomorphisms γg and γh fixed in Equation (4).
2. Assume that both rMW = dimQ(%)A(K%)

% and rS = dimL Sel(Q, V (f, g, h)) are
equal to 2, and let (P,Q) be a Q(%)-basis of A(K%)

%. If logαα is not identically
zero on (the image under resp of) Sel(Q, V (f, g, h)), then Equation (29) implies

(30) κ(f, gα, hα) = λ ·
(

logαα(γgh(Q)) · γgh(P )− logαα(γgh(P )) · γgh(Q)
)
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for some constant λ in L. In this case, the actual content of Conjecture 3.4 is
then the non-vanishing and rationality statement λ belongs to Q(%)∗.

3. Assume rMW = rS = 2 and that logαα is not identically zero on the Selmer
group Sel(Q, V (f, g, h)). Fix a Q(%)-basis (P,Q) of A(K%)

%. Equation (30),
Proposition 2.1 and Theorem 3.2 and the non-triviality of logαα give the identity

L αα
p (A, %) (mod I 2) = λ · ⟪P,Q⟫fgαhα

in (I /I 2)/Q(%)∗. According to Proposition 2.1 and the current assumption
(27) (which implies A(K%)

% = A†(K%)
%), the square of ⟪P,Q⟫fgαhα equals the

regulator Rααp (A, %), hence the previous equation yields the equality

Lααp (A, %) (mod I 3) = λ2 ·Rααp (A, %)

in (I 2/I 3)/Q(%)∗2. As a consequence Conjecture 3.4, namely the statement
λ belongs to Q(%)∗, and the non-degeneracy of ⟪·, ·⟫fgαhα on the Mordell–Weil
group A(K%)

%, is equivalent to Conjecture 1.1.
4. Since by assumption the forms g and h are p-regular (cf. Section 1), one can

actually consider the four diagonal classes κ(f, gα, hα) κ(f, gα, hβ), κ(f, gβ , hα)
and κ(f, gβ , hβ) arising from the different choices of the roots of the pth Hecke
polynomials of g and h. Conjecture 3.4, combined with standard conjectures,
predicts that these classes generate a non-trivial submodule of Sel(Q, V (f, g, h))
precisely when rMW = 2. Assuming rMW = 2, one has that resp is not iden-
tically zero on Sel(Q, V (f, g, h)), hence one of the logarithms logαα, logαβ ,
logβα and logββ (defined similarly as in Section 3.1) is not identically zero on
Sel(Q, V (f, g, h)). Reordering the roots (αg, βg) and (αh, βh) if necessary, one
can assume that logαα is not identically zero. It follows from Conjecture 3.4
that the class κ(f, gα, hα) is non-zero. Conversely, assume that κ(f, gα, hα) is
non-zero. According to the parity conjecture and the conjectural finiteness of
the p-primary part of the %-component of the Shafarevich–Tate group of A over
K% one has that rMW > 2. Conjecture 3.4 implies the equality rMW = 2.

5. Conjecture 3.4 is a reformulation of [DR16, Conjecture 3.12], which (together
with Conjecture 2.1 of loc. cit.) is a refinement of the Elliptic Stark Conjecture
formulated in [DLR15] (cf. Proposition 3.13 and Remark 3.14 of [DR16]).
The above discussion then gives a conceptual explanation of the conjectures
formulated in [DLR15, DR16] in the framework of the p-adic analogues of
the Birch and Swinnerton-Dyer conjecture.

6. Assume in this remark that (A, %) is exceptional at p. When αf = αg · αh
we expect that Conjecture 3.4 holds verbatim in light of Remark 3.3. By
contrast, if αf = βg · αh, then the specialisation κ(f, gα, hα) of κ(f , gα,hα)
at wo = (2, 1, 1) is equal to zero, independently on whether L(f ⊗ g ⊗ h, s)
vanishes or not at s = 1. In this case, we expect that Conjecture 3.4 holds after
replacing κ(f, gα, hα) with the improved diagonal class κ∗(f, gα, hα) defined in
Section 1.2 of [BSV20] (cf. Theorem B of loco citato).

3.4. Proof of Theorem 3.2. — This section proves Theorem 3.2.
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Under the running assumption (27), the module H0(Qp, V (f, g, h)−) is equal to
zero and we identify the Block–Kato Selmer group Sel(Q, V (f, g, h)) with Nekovář’s
extended Selmer group H̃1

f (Q, V (f, g, h)) under the isomorphism (18). Fix a 1-cocycle

z̃ = (z, z+, a) ∈ C̃1
f (GNp, V (f, g, h))

which represents the diagonal class κ(f, gα, hα) in H̃1
f (Q, V (f, g, h)). Then

z ∈ C1
cont(GNp, V (f, g, h)), z+ ∈ C1

cont(Qp, V (f, g, h)+)

and
a = (av)v|Np ∈

⊕
v|Np

V (f, g, h)

satisfy the relations

dz = 0, κ(f, gα, hα) = cl(z), dz+ = 0 and resNp(z) = i+(z+)− da,
where d denotes the differentials of the complexes C•cont and cl(·) denotes the coho-
mology class represented by ·. Let

Z ∈ C1
cont(GNp, V (f , gα,hα))

be a 1-cocycle representing κ(f , gα,hα) and specialising to z at wo:

dZ = 0, κ(f , gα,hα) = cl(Z) and ρwo(Z) = z

(cf. Equation (14)). The 1-cocycle z̃ is then lifted by a 1-cochain of the form

Z̃ = (Z,Z+, A) ∈ C̃1
f (GNp, V (f , gα,hα))

under the morphism of complexes

ρwo : C̃•f (GNp, V (f , gα,hα)) −→ C̃•f (GNp, V (f, g, h))

induced by ρwo (cf. Equation (15)), where the cochains

Z+ ∈ C1
cont(Qp, V (f , gα,hα)) and A = (Av)v|Np ∈

⊕
v|Np

V (f , gα,hα)

are lifts of z+ and a respectively under the map induced by ρwo . As z̃ is a 1-cocycle,
the differential dZ̃ of Z̃ in C̃2

f (GNp, V (f , gα,hα)) can be written as

(31) dZ̃ = (k − 2) · Z̃k + (l− 1) · Z̃l + (m− 1) · Z̃m
with 2-cochains Z̃· (for · = k, l,m) in C̃2

f (GNp, V (f , gα,hα)) of the form

(32) Z̃· = (Z·, Z
+
· ,W·),

where the 1-cochains W· = (W·,v)v|Np in
⊕

v|Np C1
cont(Qv, V (f , gα,hα)) satisfy

(33) (k − 2) ·Wk + (l− 1) ·Wl + (m− 1) ·Wm = i+(Z+)− resNp(Z)− dA.
A slight extension of [Ven16a, Lemma 5.5] (cf. [Ven16b, Appendix C]) proves that

z̃· = ρwo(Z̃·)

are 2-cocycles in C̃2
f (GNp, V (f, g, h)) and (cf. Equation (26))

(34) − β̃fgαhα(κ(f, gα, hα)) = (k − 2) · cl(z̃k) + (l− 1) · cl(z̃l) + (m− 1) · cl(z̃m).
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For V = V (f , g,h), V (f, g, h), denote by

p− : C•cont(Qp, V ) −→ C•cont(Qp, V
−)

the morphism of complexes induced by the projection p− : V −→ V −. Define

X· = p−(W·,p) ∈ C1
cont(Qp, V (f , gα,hα)−);(35)

x· = ρwo(X·) = p− ◦ ρwo(W·,p) ∈ C1
cont(Qp, V (f, g, h)−).

After setting A−p = p−(Ap), Equation (33) yields

(36) (k − 2) ·Xk + (l− 1) ·Xl + (m− 1) ·Xm = −p−
(
resp(Z)

)
− dA−p .

As Z is a 1-cocycle, this implies that the 1-cochains x· are 1-cocycles, and one sets

x· = cl(x·) ∈ H1(Qp, V (f, g, h)−).

Similarly, as Z is a 1-cocycle, Equations (31) and (32) imply that ρwo(Z·) = 0, hence

z̃· =
(
0, ρwo(Z

+
· ), ρwo(W·)

)
.

Because C•cont(Qv, V (f, g, h)) is acyclic for v 6= p, this implies

(37) cl(z̃·) = (x·)

(cf. Equations (17) and (35)). After recalling the definition of Garrett–Nekovář p-adic
height ⟪·, ·⟫fgαhα given in Section 2.5, Equations (34) and (37) yield

⟪κ(f, gα, hα), ·⟫fgαhα =
〈
β̃fgαhα(κ(f, gα, hα)), ·

〉
Nek
⊗I /I 2

= −
∑
u

〈(xu), ·〉Nek · (u− uo)(38)

= −
∑
u

〈xu, ·+〉Tate · (u− uo),

where (u, uo) denotes one of the pairs (k, 2), (l, 1) and (m, 1), where

〈·, ·〉Tate : H1(Qp, V (f, g, h)−)⊗L H1(Qp, V (f, g, h)+) −→ L

is the local Tate duality induced by the perfect pairing πfgh (cf. Section 2.1), and
where ·+ is the morphism introduced in Equation (20). The last equality in Equation
(38) follows from the adjointness of the maps  and ·+ with respect to the pairings
〈·, ·〉Nek and 〈·, ·〉Tate (cf. Lemma 5.7 of [Ven16a].)

To conclude the proof we need the following lemma. Set

V (f , gα,hα)f = V (f)−⊗̂LV (gα)+⊗̂LV (hα)+ ⊗Ofgh Ξfgh.

The projection p− : V (f , gα,hα) −→ V (f , gα,hα)− maps F 2V (f , gα,hα) onto
V (f , gα,hα)f , hence induces in cohomology a morphism

(39) pf : H1
bal(Qp, V (f , gα,hα)) −→ H1(Qp, V (f , gα,hα)f ).

(Recall that the natural map H1(Qp,F 2V (f , gα,hα)) −→ H1(Qp, V (f , gα,hα)) is
injective, hence identifies its source with H1

bal(Qp, V (f , gα,hα)).)
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Lemma 3.6. — There exist Yk,Yl and Ym in H1(Qp, V (f , gα,hα)f ) such that

pf (resp(κ(f , gα,hα))) = (k − 2) ·Yk + (l− 1) ·Yl + (m− 1) ·Ym.

Moreover, if the previous equation is satisfied, then for u = k, l,m one has

xu = −ρwo(Yu).

Proof. — Set V (f)−ββ = V (f)⊗Qp V (g)β ⊗L V (h)β . It is an L[GQp ]-direct summand
of V (f, g, h)−, and the specialisation map ρwo induces an isomorphism

ρwo : V (f , gα,hα)f ⊗wo Ofgh ' V (f)−ββ .

Since the kernel of evaluation at wo on Ofgh is generated by a regular sequence
and H2(Qp, V (f)−ββ) is equal to zero, the specialisation isomorphism ρwo induces in
cohomology an isomorphism (denoted by the same symbol)

(40) ρwo : H1(Qp, V (f , gα,hα)f )⊗wo L ' H1(Qp, V (f)−ββ).

As explained in Section 9.1 of [BSV20], the Bloch–Kato finite subspace of the
local cohomology group H1(Qp, V (f, g, h)) is equal to the kernel of

p− : H1(Qp, V (f, g, h)) −→ H1(Qp, V (f, g, h)−)

(cf. Section 9.1). Because κ(f, gα, hα) = ρwo(κ(f , gα,hα)) is a Selmer class (under
the current assumption L(A, %, 1) = 0), it follows that the local class

κf = pf (resp(κ(f , gα,hα)))

belongs to the kernel of (40), thus proving the first statement.
Let Yu in H1(Qp, V (f , gα,hα)f ) be local classes satisfying

κf =
∑
u

Yu · (u− uo).

We prove that ρwo(Yu) is equal to −xu for u = k, the cases u = l,m being similar.
Since by construction cl(Z) = κ(f , gα,hα), according to Equation (36) one has

(41) cl
(∑

u

Xu · (u− uo)
)

= −
∑
u

if (Yu) · (u− uo) ∈ H1(Qp, V (f , gα,hα)−),

where if denotes both the inclusion V (f , gα,hα)f ↪−→ V (f , gα,hα)− and the mor-
phism it induces in cohomology. Let ν : Ofgh −→ Of be the surjective morphism of
rings sending the analytic function F (k, l,m) to F (k, 1, 1), and set

V (f , g, h)− = V (f , gα,hα)− ⊗ν Of and V (f)−ββ = V (f , gα,hα)f ⊗ν Of .

(Note that V (f)−ββ = V (f)− ⊗L V (g)β ⊗L V (h)β ⊗Of χ
1−k/2
cyc is an Of [GQp ]-direct

summand of V (f , g, h)− and if ⊗ν Of is the natural inclusion.) If one denotes by ν
also the morphisms induced in cohomology (resp., on continuous cochains) by the pro-
jections V (f , gα,hα)− −→ V (f , g, h)− and V (f , gα,hα)f −→ V (f)−ββ , then ν(Xk)

is a 1-cocycle in C•cont(Qp, V (f , g, f)−) (cf. Equation (36)) and Equation (41) gives

(k − 2) ·
(
cl(ν(Xk)) + ν(Yk)

)
= 0.



24 MASSIMO BERTOLINI, MARCO ADAMO SEVESO & RODOLFO VENERUCCI

On the other hand, the (k − 2)-torsion of H1(Qp, V (f , g, h)−) is a quotient of
H0(Qp, V (f, g, h)−), which is zero by assumption (viz. (A, %) is not exceptional at
p). Then ν(Yk) = −cl(ν(Xk)), hence by construction ρwo(Yk) = −xk.

Let Yu be as in the statement of Lemma 3.6, and let ỹ be an element of
H̃1
f (Q, V (f, g, h)). Equation (38) and Lemma 3.6 give the identity

(42) ⟪κ(f, gα, hα), ỹ⟫fgαhα =
∑
u

〈
ρwo(Yu), ỹ+

〉
Tate
· (u− uo).

If ỹ = ıur(y) corresponds to the Selmer class y in Sel(Qp, V (f, g, h)), then the image of
ỹ+ under the map induced in cohomology by the inclusion V (f, g, h)+ ↪−→ V (f, g, h)
is equal to the restriction of y at p. In this case we claim that

(43)
〈
ρwo(Yu), ỹ+

〉
Tate

= logαα(resp(y)) ·
〈

exp∗p(ρwo(Yu)), ηf ⊗ ωgα ⊗ ωhα
〉
fgh

,

where exp∗p : H1(Qp, V (f, g, h)−) −→ DdR(V (f, g, h)−) is the Bloch–Kato dual ex-
ponential. Indeed, note that the projection p− : V (f, g, h) −� V (f, g, h)− and the
inclusion i+ : V (f, g, h)+ ↪−→ V (f, g, h) induce natural isomorphisms

Fil0VdR(f, g, h) ' DdR(V (f, g, h)−) and DdR(V (f, g, h)+) ' VdR(f, g, h)/Fil0,

which we consider as equalities. Moreover, since by assumption (A, %) is not ex-
ceptional at p, the Bloch–Kato exponential map gives an isomorphism between
DdR(V (f, g, h)+) and H1(Qp, V (f, g, h)+). As i+(ỹ+) = resp(y), it follows that

(44)
〈
ρwo(Yu), ỹ+

〉
Tate

=
〈

exp∗p(ρwo(Yu)), logp(resp(y))
〉
fgh

.

For (i, j) in {α, β}2 and · = ∅,±, define

V (f)·ij = V (f)· ⊗Qp
V (g)i ⊗L V (h)j

(so that V (f, g, h)· is the direct sum of the submodules V (f)·ij). Then ρwo(Yu)

belongs to H1(Qp, V (f)−ββ) (cf. the proof of Lemma 3.6), hence the linear form〈
exp∗p(ρwo(Y)u), ·

〉
fgh

: VdR(f, g, h)/Fil0 −→ L

factors through the map prαα : VdR(f, g, h)/Fil0 −→ DdR(V (f)αα)/Fil0 induced by
the projection V (f, g, h) −� V (f)αα. Since by definition (cf. Section 3.1)

prαα(logp(resp(y))) = logαα(resp(y)) · ηf ⊗ ωgα ⊗ ωhα
the claim Equation (43) follows from Equation (44).

After setting

exp∗αα(ρwo(Yu)) =
〈

exp∗p(ρwo(Yu)), ηf ⊗ ωgα ⊗ ωhα
〉
fgh

,

Equations (42) and (43) prove the equality

(45) ⟪κ(f, gα, hα), ·⟫fgαhα = logαα(resp(·)) ·
∑
u

exp∗αα(ρwo(Y)u) · (u− uo)

of I /I 2-valued L-linear forms on the Selmer group Sel(Q, V (f, g, h)).
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By Proposition 7.3 of [BSV20], the Perrin-Riou logarithm Lf introduced in Sec-
tion 3.2 factors through the map pf defined in Equation (39), and hence gives rise to
a morphism (denoted again by the same symbol)

Lf : H1(Qp, V (f , gα,hα)f ) −→ Ofgh.

Moreover, for each local class Z in H1(Qp, V (f , gα,hα)f ) one has (cf. loc. cit.)

Lf (Z)(wo) =

(
1− αgαh

αf

)
(

1− αf
pαgαh

) · exp∗αα(ρwo(Z)).

Applying Lf to both sides of the identity

pf
(
resp

(
κ(f , gα,hα)

))
=
∑
u

Yu · (u− uo),

and using the explicit reciprocity law Equation (28), one then gets the identity

L αα
p (A, %) (mod I 2) =

(
1− αgαh

αf

)
(

1− αf
pαgαh

) ·∑
u

exp∗αα(ρwo(Yu)) · (u− uo).

Theorem 3.2 follows from the previous equation and Equation (45).
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