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Introduction

Let A be an elliptic curve defined over Q, having ordinary reduction at a rational
prime p > 3. Let %1 and %2 be odd, irreducible, two-dimensional Artin representations
of the absolute Galois group of Q, which are unramified at p and satisfy the self-
duality condition det(%1) = det(%2)−1. By modularity, the triple (A, %1, %2) arises
from a triple (f, g, h) of cuspidal p-ordinary newforms of weights wo = (2, 1, 1). Let
fα be the ordinary p-stabilisation of f , and fix p-stabilisations gα and hα of g and h
respectively. Set % = %1 ⊗ %2. In the recent paper [BSV21c] we proposed a p-adic
analogue of the Birch and Swinnerton-Dyer conjecture for the leading term at wo of
the 3-variable Garrett–Hida p-adic L-function Lααp (A, %) = Lp(f , gα,hα) associated
with the triple (f , gα,hα) of Hida families specialising to (fα, gα, hα) at wo. In this
article we verify our conjecture in the analytic rank-zero exceptional cases, viz. when
the complex Garrett L-function L(A, %, s) = L(f ⊗ g ⊗ h, s) does not vanish at s = 1
and Lααp (A, %) has an exceptional zero at wo in the sense of Mazur–Tate–Teitelbaum
(cf. Theorem 2.1 and Section 2.1 below). Moreover, when L(A, %, 1) = 0 and Lααp (A, %)
has an exceptional zero, we propose a conjecture relating the value at wo of the fourth
partial derivative of Lααp (A, %) along the f -direction to the p-adic logarithms of two
global points on A rational over the number field cut out by % (cf. Conjecture 2.3).

1. Setting and notations

Fix algebraic closures Q̄ and Q̄p of Q and Qp respectively, and field embeddings
ip : Q̄ ↪−→ Q̄p and i∞ : Q̄ ↪−→ C. With the notations of the Introduction, let

ξ =
∑
n>1

an(ξ) · qn ∈ Su(Nξ, χξ)Q̄
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denote one of the cuspidal newforms f , g and h. Here u and Nξ are the weight and the
conductor of ξ respectively, and Su(Nξ, χξ)F is the space of cuspidal modular forms of
level Γ1(Nξ), weight u, character χξ and Fourier coefficients in the subfield F of Q̄p.
Fix a number field Q(%) containing for any ξ the Fourier coefficients an(ξ), as well as
the roots αξ and βξ of the pth Hecke polynomials Pξ,p = X2 − ap(ξ) ·X + χξ(p) · p.
Let V%i be a two-dimensional Q(%)-vector space affording the representation %i, and
let K% be a Galois number field such that %i factors through Gal(K%/Q). Set

V% = V%1 ⊗Q(%) V%2 and Vp(A, %) = Vp(A)⊗Q V%,

where Vp(A) = H1
ét(AQ̄,Qp(1)) is the p-adic Tate module of A with Qp-coefficients.

Throughout this note we make the following

Assumption 1.1. —
1. (Self-duality) The characters χg and χh are inverse to each other.
2. (Local signs) The conductors Ng and Nh are coprime to p ·Nf .
3. (Étaleness) The forms g and h are cuspidal, p-regular and do not have RM by

a real quadratic field in which p splits.

The first condition is a reformulation of the self-duality condition mentioned in
the Introduction, namely det(%1) = det(%2)−1. Recall that the form ξ is p-regular
if Pξ,p has distinct roots. Moreover, one says that a weight-one eigenform has RM
(real multiplication) if it is the theta series associated with a ray class character of a
real quadratic field. Assumption 1.1.3 is equivalent to require that V%i is irreducible,
not isomorphic to IndQ

Kχ for a finite order character χ : GK −→ Q(%)∗ of a real
quadratic field K in which p splits, and that an arithmetic Frobenius at p acts on V%i
with distinct eigenvalues. For ξ = g, h, this assumption guarantees that the p-adic
Coleman–Mazur–Buzzard eigencurve of tame level Nξ is étale over the weight space
at the points corresponding to the p-stabilisations of ξ (cf. [BD16]). It is used in
[BSV21c] to construct the Garrett–Nekovář height ⟪·, ·⟫fgαhα which appears in the
main result of this note. To explain the relevance of Assumptions 1.1.1 and 1.1.2,
let αf be the unit root of Pf,p and fix roots αg and αh of Pg,p and Ph,p respec-
tively. Fix a finite extension L of Qp containing Q(%) and the roots of unity of order
lcm(Nf , Ng, Nh). Let ξ be one of f , g and h, and let uo be the weight of ξ. According
to the results of [Hid86, Wil88, BD16], there exists a unique Hida family

ξα =
∑
n>1

an(ξα) · qn ∈ Oξ[[q]]

which specialises at uo to the p-stabilised newform

ξα = ξ(q)− χξ(p)p
u−1

αξ
· ξ(qp) ∈ Suo(p ·Mξ, χξ)L.

Here Mξ = Nξ/p
ordp(Nξ) is the tame level of ξ (so that Mξ = Nξ if ξ = g, h), and Oξ

is the ring of bounded analytic functions on a (sufficiently small) connected open disc
Uξ in the p-adic weight space over L. For each classical weight u in Uξ ∩ Z>3, the
weight-u specialisation ξα,u =

∑
n>1 an(ξα)(u) · qn ∈ L[[q]] of ξα is the q-expansion
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of the ordinary p-stabilisation of a newform ξu in Su(Mξ, χξ)L. Since f has a unique
p-ordinary p-stabilisation fα, we simply write f for fα.

Assumption 1.1.1 guarantees that for each classical triple w = (k, l,m) in the set
Σ = Uf ×Ug×Uh∩Z3

>1 the complex Garrett L-function L(fk⊗gl⊗hm, s) admits an
analytic continuation to all of C and satisfies a functional equation relating its values
at s and k + l +m− 2− s, with root number ε(w) =

∏
`6∞ ε`(w) equal to +1 or to

−1. Assumption 1.1.2 implies that all the local signs ε`(w) are qual to +1 for every
w in the f -unbalanced region Σf = {w = (k, l,m) ∈ Σ : k > l + m} (cf. [HK91]).
Under these assumptions, [Hsi21] associates with (f , gα,hα) an analytic function

L αα
p (A, %) = Lp(f , gα,hα)

in the ring Ofgh = Of ⊗̂LOg⊗̂LOh, whose square

Lααp (A, %) = Lp(f , gα,hα) = Lp(f , gα,hα)2

satisfies the following interpolation property. For each w = (k, l,m) in Σf , the value
of Lααp (A, %) at w is an explicit non-zero complex multiple of

(1)
(

1− βkαlαm
pcw

)2 (
1− βkβlαm

pcw

)2 (
1− βkαlβm

pcw

)2 (
1− βkβlβm

pcw

)2

· L(fk ⊗ gl ⊗ hm, cw).

Here cw = k+l+m−2
2 , and for ξ = f , gα,hα one denotes by αu the unit root of Pξu,p

and sets βu ·αu = χ′ξ(p) ·pu−1, where χ′ξ is the prime-to-p part of χξ (so that χ′ξ = χξ
for ξ = g, h, and χ′f is the trivial character modulo Mf ). We refer to Theorem A of
loc. cit. for the precise interpolation formula. We call Lααp (A, %) = Lp(f , gα,hα) the
Garrett–Hida p-adic L-function associated with (A, %) (or with (f , gα,hα)).

2. Exceptional zero formulae

The p-adic variant of the Birch and Swinnerton-Dyer conjecture formulated in
[BSV21c] predicts that the leading term of Lααp (A, %) at wo = (2, 1, 1) is encoded by
the discriminant of the Garrett–Nekovář height pairing

(2) ⟪·, ·⟫fgαhα : A†(K%)
% ⊗Q(%) A

†(K%)
% −→ I /I 2

constructed in Section 2 of loco citato, where I is the ideal of functions in Ofgh which
vanish at wo and the p-extended Mordell–Weil group A†(K%)

% is defined as follows.
When A has good reduction at p, one sets A†(K%)

% = A(K%)
%, where A(K%)

% is
a shorthand for the Gal(K%/Q)-invariants of A(K%) ⊗Z V%. If A has multiplicative
reduction at p, then αf = ap(f) = ±1 and the maximal p-unramified quotient Vp(A)−

of Vp(A) is a 1-dimensional Qp-vector space on which an arithmetic Frobenius acts
as multiplication by αf . Let qA in pZp be the p-adic Tate period of the base change
AQp

of A to Qp (cf. Chapter V of [Sil94]), and let Qp2 be the quadratic unramified
extension of Qp. The Tate uniformisation yields a rigid analytic morphism

℘Tate : Grig
m,Qp2

−→ AQp2

with kernel qZA and unique up to sign. Set

q(A) = p−
(
(℘Tate(pn

√
qA ))n>1

)
∈ Vp(A)−,
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where p− denotes the projection Vp(A) −→ Vp(A)− and (pn
√
qA )n>1 is any compatible

system of pn-th roots of qA, and define

A†(K%)
% = A(K%)

% ⊕Qp(A, %)

to be the direct sum of A(K%)
% and the Q(%)-submodule

Qp(A, %) = H0(Qp,Q(%) · q(A)⊗Q(%) V%)

of H0(Qp, Vp(A)− ⊗Q V%). The Garrett–Nekovář height ⟪·, ·⟫fgαhα depends on the
choice of suitably normalised GQ-equivariant embeddings

(3) γg : V%1 ↪−→ V (g) and γh : V%2 ↪−→ V (h),

where V (ξ) = V (ξα) ⊗1 L (for ξ = g, h) is the weight-one specialisation of the big
Galois representation V (ξα) associated with ξα. (We refer to Section 3.1 below for
precise definitions.) More precisely, denote by V (f) the fα-isotypic component of the
cohomology group H1

ét(X1(Nf , p)Q̄,Qp(1)), where X1(Nf , p)Q̄ is the base change to
Q̄ of the compact modular curve X1(Nf , p) of level Γ1(Nf ) ∩ Γ0(p) over Q, and set

V (f, g, h) = V (f)⊗Qp
V (g)⊗L V (h).

Section 2 of [BSV21c] constructs a canonical Garrett–Nekovář p-adic height pairing

(4) ⟪·, ·⟫fgαhα : Sel†(Q, V (f, g, h))⊗L Sel†(Q, V (f, g, h)) −→ I /I 2

on the naive extended Selmer group of V (f, g, h) over Q, defined as the direct sum
of the Bloch–Kato Selmer group Sel(Q, V (f, g, h)) of V (f, g, h) over Q and the
module H0(Qp, V (f, g, h)−) of GQp -invariants of the maximal p-unramified quotient
V (f, g, h)− of V (f, g, h). (The definition of ⟪·, ·⟫fgαhα is briefly recalled in Section
3.2.3 below.) Fix a modular parametrisation ℘∞ : X1(Nf , p) −→ A, under which one
identifies V (f) and Vp(A). The embeddings γg and γh and the global Kummer map
on A(K%) then induce an embedding γgh : A†(K%)

% ↪−→ Sel†(Q, V (f, g, h)). The
pairing (2) is defined to be composition of the canonical Garrett–Nekovář height and
γ⊗2
gh . The pairings (2) and (4) are skew-symmetric, and the discriminant of (2) in

(I r†(A,%)/I r†(A,%)+1)/Q(%)∗2, where r†(A, %) = dimQ(%)A
†(K%)

%, is independent of
the choice of ℘∞, γg and γh. We refer to [BSV21c] for more details.

If ξ denotes either g or h, then the restriction to GQp of the Artin representation
V (ξ) is the direct sum of the submodules V (ξ)α and V (ξ)β on which an arithmetic
Frobenius acts as multiplication by αξ and βξ respectively (cf. Assumption 1.1.3). The
GQp

-representation V (f, g, h)− then decomposes as the direct sum of the subspaces

V (f)−ij = V (f)− ⊗Qp
V (g)i ⊗L V (h)j ,

where (i, j) is a pair of elements of {α, β}. If ξ denotes either g or h, Section 3.1.1.1
below recalls the definition of canonical weight-one differentials

(5) ωξα ∈ (V (ξ)α ⊗Qp
Qnr
p )GQp and ηξα ∈ (V (ξ)β ⊗Qp

Qnr
p )GQp ,

where Qnr
p is the maximal unramified extension of Qp. If A is multiplicative at p, set

q(f) = ℘−1
∞ (q(A)) ∈ V (f)−,
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where one denotes again by ℘∞ : V (f)− ' Vp(A)− the isomorphism arising form the
fixed modular parametrisation ℘∞ : X1(Nf , p) −→ A.

Under the running assumptions, the Q(%)-module Qp(A, %) (resp., the L-module
H0(Qp, V (f, g, h)−)) is non-zero precisely A is multiplicative at p and

αf = αg · αh or αf = βg · αh,

in which case it has dimension 2 and one says that (A, %) is exceptional at p. More
precisely, note that αg 6= βg by Assumptions 1.1.3, hence only one of the previous
identities can be satisfied. Moreover αf = αg · αh (resp., αf = βg · αh) if and only if
αf = βg · βh (resp., αf = αg · βh) by Assumption 1.1.1. Fix an auxiliary integer mp

such that p splits (resp., is inert) in Q[
√
mp] if αf = +1 (resp., αf = −1), so that

GQp
acts trivially on √mp · q(f) in V (f)− ⊗Qp

Qnr
p . If αf = αg · αh, then GQp

acts
trivially on V (f)−αα and V (f)−ββ , hence the p-adic periods

qαα =
√
mp · q(f)⊗ ωgα ⊗ ωhα and qββ =

√
mp · q(f)⊗ ηgα ⊗ ηhα

can naturally be viewed as elements of V (f)−αα and V (f)−ββ respectively, which gen-
erate H0(Qp, V (f, g, h)−). Similarly, if αf = βg · αh, then the periods

qαβ =
√
mp · q(f)⊗ ωgα ⊗ ηgh and qβα =

√
mp · q(f)⊗ ηgα ⊗ ωhα

can naturally be viewed as generators of H0(Qp, V (f, g, h)−).
Equation (1) shows that the value of the square-root Garrett–Hida L-function

L αα
p (A, %) at wo is a non-zero multiple of(

1− αgαh
αf

)(
1− βgαh

αf

)(
1− αgβh

αf

)(
1− βgβh

αf

)
·
√
L(A, %, 1),

where L(A, %, s) = L(f ⊗ g ⊗ h, s). The previous discussion then shows that (A, %)
is exceptional at p precisely if one of the Euler factors which appear in the previous
expression is zero, id est if L αα

p (A, %) (or Lααp (A, %)) has an exceptional zero in the
sense of Mazur–Tate–Teitelbaum [MTT86]. In this case Lemma 9.8 of [BSV21d]
proves that the restriction L αα

p (A, %)|L of L αα
p (A, %) to the improving line L defined

by the equations m = 1 and k = l+ 1 admits the factorisation

L αα
p (A, %)|L = Ef · Eg ·L αα

p (A, %)?

in the ring O(L) of analytic functions on L, where

Ef = 1− ap(f)

ap(gα) · ap(hα)

∣∣∣∣
L

and Eg = 1− χh(p) · ap(gα)

ap(f) · ap(hα)

∣∣∣∣
L

.

Moreover, the value at wo of the improved p-adic L-function L αα
p (A, %)? is an explicit

algebraic number in Q(%), equal to zero precisely if L(A, %, s) vanishes at s = 1. We
refer to the proof of Proposition 8.3 of [Hsi21] for details.

The following is the main result of this note.

Theorem 2.1. — Assume that (A, %) is exceptional at p. Let (q[, q\) denote either
the pair (qαα, qββ) or (qαβ , qβα), depending on whether αf = αg · αh or αf = βg · αh
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respectively. Then the following equality holds in I /I 2 up to sign.

L αα
p (A, %) (mod I 2) =

deg(℘∞) · (1− βh/αh)

mp · ordp(qA)
·L αα

p (A, %)?(wo) · ⟪q[, q\⟫fgαhα
Theorem 2.1 is proved in Section 4 below. More precisely, Sections 3.3 and 3.4

below prove that the following equality holds in I /I 2 up to sign:

(6)
2 · deg(℘∞)

mp · ordp(qA)
· ⟪q[, q\⟫fgαhα = (Lan

f −Lan
gα

) · (l− 1) + ε · (Lan
f −Lan

hα) · (m− 1),

where ε = +1 if αf = αg · αh and ε = −1 if αf = βg · βh, and where

(7) − 1

2
· Lan
ξ = d log ap(ξ)u=uo

is the value at the centre uo of Uξ of the logarithmic derivative of the p-th Fourier
coefficient of the Hida family ξ = f , gα,hα. In Section 4 we then deduce Theorem
2.1 from Equation (6) and the study carried out in [BSV21d, Section 9] of the linear
term of L αα

p (A, %) at wo in the exceptional case.
It should be possible to extend Theorem 2.1 (and Conjecture 2.3 below) to the

case of p-new eigenforms of even weight k > 2 and trivial character (cf. Section 1.1 of
[BSV21c]). We have not checked the details.

2.1. The rank-zero exceptional case of [BSV21c, Conjecture 1.1]. — Assume
in this section that (A, %) is exceptional at p, and that the Garrett complex L-function
L(A, %, s) = L(f ⊗ g ⊗ h, s) does not vanish at s = 1:

L(A, %, 1) 6= 0.

According to Theorem B of [BSV21d], which extends the main result of [DR14] to
the multiplicative setting (see also Theorem B of [BSV20]), one has

A(K%)
% = 0,

hence A†(K%)
% = Qp(A, %). The Garrett–Nekovář p-adic regulator Rααp (A, %), viz.

the discriminant of the p-adic height ⟪·, ·⟫fgαhα on A†(K%)
%, is then given by

Rααp (A, %) = det
( ⟪qi, qj⟫fgαhα )16i,j62

= ⟪q1, q2⟫2
fgαhα

in (I 2/I 3)/Q(%)∗2, where (q1, q2) is a Q(%)-basis of Qp(A, %).
Let γgh : V (A, %)− ↪−→ V (f, g, h)− be the GQ-equivariant embedding defined by

the tensor product of the isomorphism Vp(A)− ' V (f)− induced by ℘∞, γg and γh
(cf. Equation (3)). The normalisation imposed on the embeddings γg and γh (and
described in Section 3.1.1.2 below) implies that the matrix M in GL2(L) defined by
the identity (q[ q\) ·M = (γgh(q1) γgh(q2)) has determinant in Q(%)∗. In light of
the above discussion, Theorem 2.1 then proves the following corollary, which together
with Equation (6) establishes [BSV21c, Conjecture 1.1] in the present setting.

Corollary 2.2. — If L(A, %, s) does not vanish at s = 1, then A†(K%)
% = Qp(A, %)

and the following equality holds in the quotient of I 2/I 3 by the action of Q(%)∗2.

Lααp (A, %) (mod I 3) = Rααp (A, %)
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2.2. Exceptional zeros and rational points (cf. [Riv21]). — Assume in this
section that (A, %) is exceptional at p, and that the Garrett complex L-function
L(A, %, s) vanishes at the central critical point s = 1:

L(A, %, 1) = 0.

Set {[, \} = {αα, ββ} of {[, \} = {αβ, βα}, depending on whether αf = αg · αh or
αf = βg ·αh. The p-adic L-function L αα

p (A, %) belongs to I 2 (cf. Theorem 2.1) and
Conjecture 1.1 of [BSV21c] predicts that its image in (I 2/I 3)/Q(%)∗ equals

⟪q[, q\⟫fgαhα ⟪P,Q⟫fgαhα − ⟪q[, P⟫fgαhα ⟪q\, Q⟫fgαhα + ⟪q[, Q⟫fgαhα ⟪q\, P⟫fgαhα
for two rational points P and Q in A(K%)

%. (Recall that the p-adic height ⟪·, ·⟫fgαhα
is skew-symmetric, hence the previous expression is a square root of its discriminant
on the Q(%)-submodule of A†(K%)

% generated by q[, q\, P and Q.) One has

⟪q[, q\⟫fgαhα (k, 1, 1) = 0

by Equation (6). Moreover, Section 3.5 below proves that

(8) ⟪q\, x⟫fgαhα (k, 1, 1) =
1

2
· log[(resp(x)) · (k − 2)

for each Selmer class x in Sel(Q, V (f, g, h)), where

log[ = 〈logp(·), q\〉fgh : H1
fin(Qp, V (f, g, h)) −→ L.

Here logp : H1
fin(Qp, V (f, g, h)) ' DdR(V (f, g, h))/Fil0 is the Bloch–Kato p-adic log-

arithm (cf. Lemma 9.1 of [BSV21d]), and 〈·, ·〉fgh : DdR(V (f, g, h))⊗2 −→ L is the
pairing induced by the natural Kummer duality πfgh : V (f, g, h)⊗2 −→ L(1) defined
in Section 3.1.1 below (cf. Equation (11)). We are then led to the following

Conjecture 2.3. — Assume that A(K%)
% is a 2-dimensional Q(%)-vector space.

Then for any Q(%)-basis (P,Q) of A(K%)
%, the equality

∂2L αα
p (A, %)

∂k2 (wo) = log[(P ) · log\(Q)− log\(P ) · log[(Q)

holds in L up to multiplication by a non-zero scalar in Q(%)∗.

As explained in [BSV21b], the main result of [BD07] can be used to prove cases
of Conjecture 2.3 when g and h are theta series associated with certain ray class
characters of the same imaginary quadratic field in which p is inert (and P and Q are
Heegner points). By combining this with an extension of the height computations car-
ried out in [Ven16a, Ven16b], the article [BSV21a] proves instances of Conjecture
1.1 of [BSV21c] in this setting.

Remark 2.4. — In light of the aforementioned results of [BSV21b], Rivero pro-
poses in [Riv21, Conjecture 4.5] a variant of Conjecture 2.3. He also asks (cf. Ques-

tion 5.3 of [Riv21]) if one can expect a similar description of ∂2Lαα
p (A,%)

∂k2 (wo) when
A has good reduction at p. The previous discussion places Rivero’s conjecture within
a conceptual framework and sheds some light on this question.
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3. Height computations

Throughout the rest of this note we assume that (A, %) is exceptional at p. In
particular A has multiplicative reduction at p, id est p divides exactly Nf .

3.1. Setting and notations. — This subsection briefly recalls the needed defini-
tions and notations from our previous articles [BSV21d, BSV21c].

3.1.1. Galois representations. — Set N = lcm(Nf , Ng, Nh) and let GQ,N be the
Galois group of the maximal extension of Q contained in Q̄ and unramified outside
N∞. If ξ denotes one of f , gα and hα, let V (ξ) be the big Galois representation
associated with ξ (cf. Section 5 of [BSV21d]). It is a free Oξ-module of rank two,
equipped with a continuous linear action GQ,N . For each u in Uξ ∩ Z>2 the base
change V (ξ)⊗uL of V (ξ) along evaluation at u on Oξ is canonically isomorphic to the
homological p-adic Deligne representation of ξu with coefficients in L (cf. loco citato
for more details). In particular if ξ = f and u = 2 there is a natural specialisation
isomorphism ρ2 : V (f)⊗2 L ' V (f). If ξ = gα,hα and u = 1 set V (ξ) = V (ξ)⊗1 L
(cf. Section 1). It is a two-dimensional L-vector space affording the dual of the p-adic
Deligne–Serre representation of ξ = g, h with coefficients in L. In order to have a
uniform notation, in this case one defines ρ1 : V (ξ)⊗1 L −→ V (ξ) to be the identity.

The restriction of V (ξ) to GQp
(via the embedding ip fixed at the outset) fits

into a short exact sequence of Oξ[GQp
]-modules V (ξ)+ ↪−→ V (ξ) −� V (ξ)− with

V (ξ)± free of rank one over Oξ. More precisely, let χcyc : GQ −→ Z∗p be the p-adic
cyclotomic character, and let ǎp(ξ) : GQp

−→ O∗ξ be the unramified character sending
an arithmetic Frobenius to the p-th Fourier coefficients ap(ξ) of ξ. Then

(9) V (ξ)+ ' Oξ
(
χu−1

cyc · χξǎp(ξ)−1
)

and V (ξ)− ' Oξ(ǎp(ξ)),

where χu−1
cyc : GQ −→ O∗ξ satisfies χu−1

cyc (σ)(u) = χcyc(σ)u−1 for each u in Uξ∩Z. (The
freeness of V (ξ)± is guaranteed by Assumption 1.1.3, cf. Section 5 of [BSV21d].) If
ξ = f and u = 2 the specialisation isomorphism ρ2 identifies V (f)− ⊗2 L with
the maximal unramified quotient V (f)− of V (f). If ξ = gα,hα and u = 1 we set
V (ξ)β = V (ξ)+⊗1L and V (ξ)α = V (ξ)−⊗1L. One has V (ξ) = V (ξ)α⊕V (ξ)β , where
V (ξ)γ = V (ξ)Frobp=γξ for γ = α, β is the submodule of V (ξ) on which an arithmetic
Frobenius Frobp acts as multiplication by γξ = αξ, βξ (cf. Assumption 1.1.3).

There is a natural GQ-equivariant skew-symmetric perfect pairing

πξ : V (ξ)⊗Oξ V (ξ) −→ Oξ(χξ · χu−1
cyc ),

inducing perfect dualities πξ : V (ξ)± ⊗Oξ V (ξ)∓ −→ Oξ(χξ · χu−1
cyc ). (See Section 5

cf. [BSV21d] for the definitions).
Denote by Ξfgh = χ

(4−k−l−m)/2
cyc : GQ −→ O∗fgh the character whose composition

with evaluation at (k, l,m) in Uf × Ug × Uh ∩ Z3 on Ofgh equals χ(4−k−l−m)/2
cyc . If ·

denotes one of the symbols ∅,+ and −, define
V · = V (f)·⊗̂LV (gα)⊗̂V (hα)⊗Ofgh Ξfgh.

Then V = V (f , gα,hα), resp. V ± = V (f , gα,hα)± is a free Ofgh-module of rank
8, resp. 4, equipped with a continuous action of GQ,N , resp. GQp

. As χg · χh = 1
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(cf. Assumption 1.1), the product of the perfect dualities πξ, for ξ = f , gα,hα, yields
a perfect skew-symmetric Kummer duality π : V ⊗Ofgh V −→ Ofgh(1), inducing a
perfect local Kummer duality π : V ± ⊗Ofgh V

∓ −→ Ofgh(1). After setting

V · = V (f, g, h)· = V (f)· ⊗L V (g)⊗L V (h)

and wo = (2, 1, 1), the product ρwo = ρ2⊗̂ρ1⊗̂ρ1 gives natural isomorphisms

(10) ρwo : V · ⊗wo L ' V ·

(where · ⊗wo L denotes the base change along evaluation at wo on Ofgh). Let

(11) πfgh : V ⊗L V −→ L(1)

be the specialisation of π via ρwo , and define π : V ± ⊗L V ∓ −→ L(1) similarly.

3.1.1.1. Weight one differentials. — Define D(ξ)− = H0(Qp, V (ξ)−⊗̂Qp
Q̂nr
p ), where

Q̂nr
p is the p-adic completion of the maximal unramified extension of Qp (and as

usual ξ denotes one of f , gα and hα). For each u in Uξ ∩ Z>2 there is a natural
comparison isomorphism between D(ξ)− ⊗u L and the ξu-isotypic component of the
space of cuspidal modular forms of weight u, level Γ1(Nξp) and Fourier coefficients in
L. Assumption 1.1.3 guarantees that D(ξ)− is free (of rank one) over Oξ, and admits
a basis ωξ whose image in D(ξ)− ⊗u L corresponds to ξu under the aforementioned
comparison isomorphism, for each u in Uξ∩Z>2. (We refer to Section 3.1 of [BSV21c]
and the references therein for more details.)

For ξ = gα,hα, the holomorphic weight-one differential

ωξα ∈ (V (ξ)α ⊗Qp
Qnr
p )GQp

mentioned in Equation (5) is defined to be the weight-one specialisation of ωξ, viz.
the image of ωξ in the quotient D(ξ)− ⊗1 L = D(ξ)α. The weight-one specialisation
of πξ yields a perfect GQ-equivariant skew-symmetric pairing

πξ : V (ξ)⊗L V (ξ) −→ L(χξ).

Let c be the common conductor of χg and χh, and identify (L(χξ)⊗Qp Q
nr
p )GQp with

L via the Gauß sum G(χξ) = (−c)iξ
∑
a∈(Z/cZ)∗ χξ(a)−1 ⊗ e2πia/c, where ig = 0 and

ih = 1 (so that G(χg) ·G(χh) = 1 by Assumption 1.1.1). The pairing πξ then induces
a perfect duality 〈·, ·〉ξ : D(ξ)α⊗LD(ξ)β −→ L, where D(ξ)γ = (V (ξ)γ ⊗Qp

Qnr
p )GQp .

One defines the antiholomorphic weight-one differential (cf. Equation (5))

ηξα ∈ (V (ξ)β ⊗Qp Q
nr
p )GQp

to be the dual of ωξα under 〈·, ·〉ξ, viz. the element satisfying 〈ωξα , ηξα〉ξ = 1.

3.1.1.2. The embeddings γg and γh. — With the notations of Section 1, set Vg = V%1
and Vh = V%2 . Let ξ denote either g or h. As recalled above, the Artin representation
V (ξ) = V (ξ) ⊗1 L affords the dual of the p-adic Deligne representation of ξ with
coefficients in L, id est is isomorphic to Vξ ⊗Q(%) L. Enlarging L if necessary, we
normalise the GQ-equivariant embedding γξ : Vξ −→ V (ξ) (introduced in Equation
(3)) by requiring that the composition πξ ◦ (γξ ⊗ γξ) takes values in the number field
Q(%) (via the embedding ip : Q̄ ↪−→ Q̄p fixed at the outset).
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3.1.2. Selmer complexes. — Let RΓ̃f (Q, V ) be the Nekovář Selmer complex asso-
ciated with (V, V +) (cf. Section 2.2 of [BSV21c]). It is an element of the derived
category Db

ft(L) of cohomologically bounded complexes of L-modules with cohomol-
ogy of finite type over L, sitting is an exact triangle

(12) RΓcont(GQ,N , V )
p−◦resp−→ RΓcont(GQp

, V −) −→ RΓ̃f (Q, V )[1],

where RΓcont(G, ·) is the complex of continuous non-homogeneous cochains of G with
values in ·, resp is the restriction map (induced by the embedding ip : Q̄ ↪−→ Q̄p

fixed at the outset) and p− is the map induced by the projection V −→ V −. Denote
by H̃ ·f (Q, V ) = H ·(RΓ̃f (Q, V )) the cohomology of RΓ̃(Q, V ), let Sel(Q, V ) be the
Bloch–Kato Selmer group of V overQ, and let i+ : V + −→ V be the natural inclusion.
Then there is a commutative and exact diagram of L-vector spaces (cf. loc. cit.)

(13) 0 // H0(Qp, V
−)

 // H̃1
f (Q, V ) //

·+

��

Sel(Q, V )

resp

��

// 0

H1(Qp, V
+)

i+ // H1(Qp, V )

where the first line arises from the exact triangle (12). In addition there is a unique
section ıur : Sel(Q, V ) −→ H̃1

f (Q, V ) of the above projection such that ıur(x)+ belongs
to the Bloch–Kato finite subspace H1

fin(Qp, V
+) for each x in Sel(Q, V ). We often

use  and ıur to identify Nekovář’s extended Selmer group H̃1
f (Q, V ) with the naive

extended Selmer group Sel†(Q, V ) = H0(Qp, V
−)⊕ Sel(Q, V ) (cf. Section 1).

One similarly associates with (V ,V +) a Selmer complex

RΓ̃f (Q,V ) ∈ Db
ft(Ofgh)

sitting in an exact triangle analogous to (12). (We refer to loc. cit. for more details.)

3.2. Preliminary lemmas. — This section gives a concrete description of the func-
tionals ⟪q, ·⟫fgαhα : Sel†(Q, V ) −→ L for q in H0(Qp, V

−) (cf. Lemma 3.4 below).

3.2.1. Bockstein maps. — Let (C, C) denote one of the pairs (RΓp(V
−),RΓp(V

−)),
(RΓ(V ),RΓ(V )) and (RΓ̃f (Q,V ),RΓ̃f (Q, V )), where RΓp(·) and RΓ(·) are short-
hands for RΓcont(Qp, ·) = RΓcont(GQp

, ·) and RΓcont(GQ,N , ·) respectively (cf. Sec-
tion 3.1.2). The specialisation maps ρwo (cf. Equation (10)) induce isomorphisms

(14) ρwo : C ⊗L
Ofgh,wo L ' C and ρwo ⊗ id : C ⊗L

Ofgh I /I 2[1] ' C ⊗L I /I 2[1].

Applying C ⊗L
Ofgh

· to the exact triangle

I /I 2 −→ Ofgh/I
2 −→ L −→ I /I 2[1]

(arising from evaluation on wo) then yields a derived Bockstein map

βC/C : C −→ C ⊗L I /I 2[1],

which in turn induces in cohomology a Bockstein map

βC/C : Hi(C) −→ Hi+1(C)⊗L I /I 2.
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If no risk of confusion arises, we simply write β for βC/C . Let

 : Hi(Qp, V
−) −→ H̃i+1

f (Q, V )

be the maps arising from the exact triangle (12).

Lemma 3.1. — The following diagram commutes.

H0(Qp, V
−)

β //



��

H1(Qp, V
−)⊗L I /I 2

⊗I /I 2

��
H̃1
f (Q, V )

β // H̃2
f (Q, V )⊗L I /I 2

Proof. — For M = V,V one has an exact triangle (cf. Equation (12))

∆M : RΓcont(GQ,N ,M)[−1]
p−◦resp−→ RΓcont(Qp,M

−)[−1]
M−→ RΓ̃f (Q,M).

Moreover ∆V is obtained by applying ·⊗L
Ofgh,wo

L to ∆V (cf. Equation (14)). It follows
from the definition of the derived Bockstein maps β− and β on RΓcont(Qp, V

−) and
RΓ̃(Q, V ) respectively that V ⊗I /I 2[1]◦β− is equal to β ◦ V . Since by definition
the maps  are the ones induced in cohomology by V , the lemma follows.

The following lemma gives a concrete description of βC/C .

Lemma 3.2. — Let (C, C) be as above, let z be a 1-cocycle in C, let Z be a 1-cochain
in C, and let Zk, Zl and Zm be 2-cochains in C such that

ρwo(Z) = z and dZ = Zk · (k − 2) + Zl · (l− 1) + Zm · (m− 1).

Then z· = ρwo(Z·) is a 2-cocycle for · = k, l,m, and one has the equality

−βC/C(cl(z)) = cl(zk) · (k − 2) + cl(zl) · (l− 1) + cl(zm) · (m− 1)

in H2(C)⊗L I /I 2, where cl(·) is the class in Hi(C) represented by the i-cocycle ·.

Proof. — The proof is very similar to that of [Ven16a, Lemma 5.5]. We omit it.

3.2.2. Local and global duality. — Nekovář’s generalised Poitou–Tate duality asso-
ciates with the perfect duality πfgh introduced in Equation (11) a global cup-product
pairing (cf. Section 2.4 of [BSV21c])

(15) 〈·, ·〉Nek : H̃2
f (Q, V )⊗L H̃1

f (Q, V ) −→ L.

The pairing πfgh induces a Kummer duality V − ⊗L V + −→ L(1) and we denote by

(16) 〈·, ·〉Tate : H1(Qp, V
−)⊗L H1(Qp, V

+) −→ L

the induced local Tate duality pairing. Recall finally the map

·+ : H̃1
f (Q, V ) −→ H1(Qp, V

+)

introduced in diagram (13).

Lemma 3.3. — For each ζ in H1(Qp, V
−) and ξ in H̃1

f (Q, V ) one has

〈(ζ), ξ〉Nek = 〈ζ, ξ+〉Tate.
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Proof. — This is proved as in [Ven16a, Lemma 5.7].

3.2.3. The Garrett–Nekovář p-adic height pairing. — Set

β̃fgαhα = βRΓ̃f (Q,V )/RΓ̃f (Q,V ) : H̃1
f (Q, V ) −→ H̃2

f (Q, V )⊗L I /I 2.

After identifying H̃1
f (Q, V ) with Sel†(Q, V ) (cf. Section 3.1.2), the canonical height

⟪·, ·⟫fgαhα introduced in Section 1 is defined by (cf. [BSV21c, Section 2])

⟪x, y⟫fgαhα =
〈
β̃fgαhα(x), y

〉
Nek

for each x and y in H̃1
f (Q, V ), where we write again 〈·, ·〉Nek for the I /I 2-base

change of Nekovář’s cup-product (15). Lemmas 3.1 and 3.3 give the following

Lemma 3.4. — For each q in H0(Qp, V
−) one has

⟪(q), ·⟫fgαhα =
〈
β−fgαhα(q), ·+

〉
Tate

as I /I 2-valued maps on H̃1
f (Q, V ), where β−fgαhα = βRΓp(V −)/RΓp(V −) (and we

write again 〈·, ·〉Tate for the I /I 2-base change of the local Tate pairing (16)).

3.3. Computation of ⟪qββ , qαα⟫fgαhα . — Assume in this subsection αf = αg ·αh,
so that H0(Qp, V

−) is generated over L by the periods

qαα =
√
mp · q(f)⊗ ωgα ⊗ ωhα and qββ =

√
mp · q(f)⊗ ηgα ⊗ ηhα .

Recall that χcyc : GQ −→ Z∗p denotes the p-adic cyclotomic character. Fix a lift
qββ in V − of qββ under ρwo . Since (cf. Section 3.1.1)

qββ ∈ V (f)− ⊗Qp
V (g)β ⊗L V (h)β ↪−→ V −

and V (ξ)β = V (ξα)+ ⊗1 L for ξ = g, h, we can choose qββ in the GQp -submodule

V (f)−⊗̂LV (g)+⊗̂LV (h)+ ⊗Ofgh Ξfgh ↪−→ V −

(cf. Section 3.1.1). By Equation (9) one has

(17) dqββ = Φ · qββ ,

where d denotes the differentials of the complex RΓcont(Qp,V
−) and

Φ =
ǎp(f)

ǎp(gα) · ǎp(hα)
· χ(l+m−k)/2

cyc − 1 : GQp −→ Ofgh.

The assumption αf = αg · αh implies that Φ takes value in I , and that its com-
position Φ′ with the projection I −→ I /I 2 is of the form

Φ′ = ϕk · (k − 2) + ϕl · (l− 1) + ϕm · (m− 1)

with ϕu in H1(Qp,Qp) for u = k, l,m. Identify H1(Qp,Qp) with the Qp-vector
space Hom(Q∗p,Qp) of continuous morphisms of groups from Q∗p to Qp via the local
reciprocity map recp : Q∗p −→ Gab

Qp
, normalised by requiring recp(p

−1) to be an
arithmetic Frobenius. By local class field theory, for each p-adic unit u one has

ϕk(u) =
∂

∂k

(
〈u〉(l+m−k)/2 − 1

)∣∣∣
wo

= −1

2
· logp(u),
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where 〈·〉 : Z∗p −→ 1 + pZp denotes the projection to principal units, and

ϕk(p) =
∂

∂k

(
ap(gα) · ap(hα)

ap(f)
− 1

)∣∣∣∣
wo

=
1

2
· Lan
f

(cf. Equation (7)). As a consequence −2 · ϕk is equal to

logf = logp−Lan
f · ordp ∈ H1(Qp,Qp)

(where the p-adic valuation ordp : Q∗p −→ Qp is normalised by ordp(p) = 1). Similarly
one shows that 2 · ϕl and 2 · ϕm are equal to the logarithms loggα = logp−Lan

gα
· ordp

and loghα = logp−Lan
gα
·ordp. It then follows from Equation (17) and Lemma 3.2 that

(18) 2 · β−fgαhα(qββ) =
(

logf ·(k − 2)− loggα ·(l− 1)− loghα ·(m− 1)
)
⊗ qββ

in H1(Qp, V
−)⊗LI /I 2, where (with the notations introduced in Section 3.2.1) one

writes β−fgαhα for the Bockstein map βC/C associated with C = RΓp(V
−). Note that

V (f)−ββ = V (f)− ⊗Qp
V (g)β ⊗L V (h)β

is an L[GQp
]-direct summand of V − on which GQp

acts trivially, so that logξ⊗qββ
(for ξ = f , gα,hα) belongs to the direct summand

H1(Qp, V (f)−ββ) = H1(Qp,Qp)⊗Qp V (f)−ββ

of the local cohomology group H1(Qp, V
−). Similarly

V (f)+
αα = V (f)+ ⊗Qp V (g)α ⊗L V (h)α

is an L[GQp ]-direct summand of V + isomorphic to Qp(1), hence

(19) H1(Qp, V (f)+
αα) = H1(Qp,Qp(1))⊗Qp V (f)+

αα(−1)

is a direct summand of H1(Qp, V
+). The local Tate pairing 〈·, ·〉Tate introduced

in Section 3.2.2 induces a perfect duality (denoted by the same symbol) between
H1(Qp, V (f)−ββ) and H1(Qp, V (f)+

αα), and identifying H1(Qp,Zp(1)) with the p-adic
completion Q̂∗p of Q∗p via the local Kummer map, local class field theory gives

(20) 〈ϕ⊗ v−, u⊗ v+〉Tate = ϕ(u) · πfgh(−1)(v+ ⊗ v−)

for each ϕ in H1(Qp,Qp), u in H1(Qp,Qp(1)), v− in V (f)−ββ and v+ in V (f)+
αα. Here

πfgh(−1) : V (f)+
αα(−1)⊗L V (f)−ββ −→ L

is the composition of πfgh⊗Qp(−1) with the evaluation pairing L(1)⊗LL(−1) −→ L.
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Recall that we identify H0(Qp, V
−) with a submodule of H̃1

f (Q, V ) via the embed-
ding  introduced in Diagram (13). Lemma 3.4 and Equations (18) and (20) give

2 · ⟪qββ , z⟫fgαhα
Lemma 3.4

= 2 ·
〈
β−fgαhα(qββ), z+

〉
Tate

(21)
Equation (18)

=
∑
ξ

(−1)uo · 〈logξ⊗qββ , z+〉Tate · (u− uo)

Equation (20)
=

∑
ξ

(−1)uo · logξ(z
+
αα) · (u− uo)

for each z in H̃1
f (Q, V ), where ξ = f , gα,hα, uo = 2, 1, 1 is the centre of Uξ, and

z+
αα ∈ H1(Qp,Qp(1)) = Q̂∗p ⊗Zp Qp

is defined as follows. Let prαα denote the projection onto the direct summand
H1(Qp, V (f)+

αα) of the local cohomology group H1(Qp, V
+), and let q∗ββ be the gen-

erator of V (f)+
αα(−1) dual to qββ under πfgh(−1), namely satisfying

πfgh(−1)(q∗ββ ⊗ qββ) = 1.

Then z+
αα is defined (via the natural isomorphism (19)) by the identity

(22) prαα(z+) = z+
αα ⊗ q∗ββ .

We now determine z+
αα for z = (qαα). By definition (qαα) is represented by

cαα = (0, dq̃αα, q̃αα) ∈ C̃1
f (Q, V ),

where q̃αα in V is a lift of qαα under the the projection V −→ V −, and where

dq̃αα : GQp
−→ V +

is its image under the differential in RΓcont(Qp, V ). By construction dq̃αα represents
the class q+

αα = (qαα)+ in H1(Qp, V
+). Since V (ξ) is the direct sum of V (ξ)α and

V (ξ)β for ξ = g, h, we can (and will) choose q̃αα of the form

q̃αα =
√
mp · q̃(f)⊗ ωgα ⊗ ωhα

for a lift q̃(f) of q(f) under the projection V (f) −→ V (f)−, so that dq̃αα represents
the image of qαα under the connecting morphism

δαα : V (f)−αα −→ H1(Qp, V (f)+
αα)

arising from the short exact sequence of GQp
-modules

0 −→ V (f)+
αα −→ V (f)αα −→ V (f)−αα −→ 0,

where V (f)·αα is the L[GQp
]-direct summand V (f)·⊗Qp

V (g)α⊗LV (h)α of V ·. Let qA
in pZp be the Tate period of AQp . Tate’s theory gives a rigid analytic isomorphisms
between the base change EQ2

p
of the Tate curve E = Grig

m,Qp
/qZA to the quadratic

unramified extension Qp2 of Qp and AQp2
. Set Vp(E) = H1

ét(EQ̄p
,Qp(1)) and let

℘Tate : Vp(E) ' Vp(A) be the isomorphisms of GQp2
-modules induced by the Tate

uniformisation. There is a short exact sequence of Qp[GQp
]-modules

(23) 0 −→ Qp(1)
a−→ Vp(E)

b−→ Qp −→ 0,
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where a(ζp∞) = (ζpn · qZA)n>1 for each compatible system ζp∞ = (ζpn)n>1 of pn-th
roots of unity, and b is the Qp-linear extension of the inverse limit of (canonical) maps
bn : E(Q̄p)pn = (Q̄∗p/q

Z
A)pn −→ Z/pnZ defined by bn(x · qZA) =

pn·ordp(x)
ordp(qA) + pn · Z.

By definition q(A) = ℘−Tate(1), where ℘−Tate ◦ b is the composition of ℘Tate and the
projection Vp(A) −→ Vp(A)− onto the maximal GQp -unramified quotient, and

q̃(f) = ℘−1
∞ ◦ ℘Tate( p∞

√
qA )

is the image of a compatible system p∞
√
qA of pn-th roots of the Tate period qA under

the composition of ℘Tate and the inverse of the isomorphism ℘∞ : V (f) ' Vp(A)
induced by the fixed modular parametrisation ℘∞ : X1(Nf ) −→ A. As a consequence
1 in Qp maps to qA⊗̂1 under the connecting map Qp −→ H1(Qp,Qp(1)) = Q∗p⊗̂Qp

associated with the short exact sequence (23), hence

(24) (qαα)+ = cl(dq̃αα) = δαα(qαα) =
√
mp · (℘−1

∞∗ ◦ ℘Tate)+
∗ (qA⊗̂1)⊗ ωgα ⊗ ωhα

in

H1(Qp, V (f)+
αα) = H0

(
Gal(Qp2/Q), H1(Qp2 , V (f)+)⊗Qp

V (g)α ⊗L V (h)α
)
,

where
(℘−1
∞ ◦ ℘Tate)+

∗ : Q∗p2⊗̂Qp ' H1(Qp2 , V (f)+)

is the map induced in cohomology by the composition of ℘−1
∞ and

℘+
Tate = ℘Tate ◦ a.

If A denotes either A or E, denote by

πA : Vp(A)(−1)⊗Qp Vp(A) −→ Qp

the composition of the evaluation pairing Qp(1) ⊗Qp
Qp(−1) −→ Qp with the base

change of the Weil pairing on Vp(A) by Qp(−1). Set

q(A)∗ = ℘+
Tate(ζp∞)⊗ ζ∗p∞ ∈ Vp(A)+(−1),

where ζp∞ is a generator of Qp(1) and ζ∗p∞ in Qp(−1) is its dual basis, and set

q(f)∗ = deg(℘∞) · ℘−1
∞ (q(A)∗) ∈ V (f)+(−1).

As πE((a(y)⊗ z)⊗ x) = b(x) · z(y) for each x in Vp(E), y in Qp(1) and z in Qp(−1),
the functoriality of the Poincaré duality under finite morphisms yields

πf (q(f)∗ ⊗ q(f)) = πA(q(A)∗ ⊗ q(A)) = πE
(
(a(ζp∞)⊗ ζ∗p∞)⊗ p∞

√
qA
)

= 1,

then (by the definition of the weight-one differentials ηξα , cf. Section 3.1.1.1)

q∗ββ =
1
√
mp
· q(f)∗ ⊗ ωgα ⊗ ωhα .

Together with Equation (24) this gives

(25) (qαα)+ =
mp

deg(℘∞)
· (qA⊗̂1)⊗ q∗ββ ,

id est

(26) (qαα)+
αα =

mp

deg(℘∞)
· qA⊗̂1.
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According to Theorem 3.18 of [GS93] Lan
f =

logp(qA)

ordp(qA) , so that

(27) − 2 · deg(℘∞)

mp · ordp(qA)
· ⟪qββ , qαα⟫fgαhα = (Lan

f −Lan
gα

) ·(l−1)+(Lan
f −Lan

hα) ·(m−1)

by Equations (21) and (26).

3.4. Computation of ⟪qαβ , qβα⟫fgαhα . — Assume in this subsection αf = βg ·αh,
so that H0(Qp, V

−) is generated by the p-adic periods

qαβ =
√
mp · q(f)⊗ ωgα ⊗ ηhα and qβα =

√
mp · q(f)⊗ ηgα ⊗ ωhα .

For γδ = αβ, βα and · = ∅,±, define V (f)·γδ = V (f)· ⊗Qp
V (g)γ ⊗ V (h)δ. Then

H0(Qp, V
−) = V (f)−αβ ⊕ V (f)−βα,

GQp
acts on V (f)+

αβ and V (f)+
βα via the p-adic cyclotomic character, and the local

Tate pairing 〈·, ·〉Tate introduced in Section 3.2.2 induces a perfect duality (denoted
by the same symbol) between H1(Qp, V (f)−αβ) and H1(Qp, V (f)+

βα). The argument
of the proof of Equation (25) shows that

(28) (qβα)+ =
mp

deg(℘∞)
· (qA⊗̂1)⊗ q∗αβ

in the direct summand H1(Qp, V (f)+
βα) = Q∗p⊗̂V (f)+

βα(−1) of H1(Qp, V
+), where

(29) q∗αβ =
1
√
mp
· q(f)∗ ⊗ ηgα ⊗ ωhα satisfies πfgh(−1)(q∗αβ ⊗ qαβ) = 1.

Let prαβ : H1(Qp, V
−) −→ H1(Qp,Qp)⊗Qp

V (f)−αβ denote the projection, and write

(30) prαβ ⊗I /I 2 ◦ β−fgαhα(qαβ) =
∑
u

γu ⊗ qαβ · (u− uo)

with γu in H1(Qp,Qp) = Hom(Q∗p,Qp) for u = k, l,m, where (with the notations
introduced in Section 3.2.1) β−fgαhα is a shorthand for

βRΓcont(Qp,V −)/RΓcont(Qp,V −) : H0(Qp, V
−) −→ H1(Qp, V

−)⊗L I /I 2,

and uo = 2 if u = k and uo = 1 if u = l,m. Then (cf. Equation (21))

⟪qαβ , qβα⟫fgαhα
Lemma 3.4

=
〈
β−fgαhα(qαβ), (qβα)+

〉
Tate

Eqs. (28) and (30)
=

mp

deg(℘∞)
·
∑
u

〈γu ⊗ qαβ , (qA⊗̂1)⊗ q∗αβ〉Tate · (u− uo)

=
mp

deg(℘∞)
·
∑
u

γu(qA) · (u− uo),(31)

where the last equality follows from Equation (29) and the analogue of Equation (20)
obtained by replacing αα and ββ with βα and αβ respectively. It then remains to
compute γu for u equal to k, l and m.
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For ξ = f , gα,hα, fix Oξ-bases b±ξ of V (ξ)±. After identifying V (ξ) with Oξ ⊕Oξ
via the Oξ-basis (b+ξ , b

−
ξ ), the action of GQp

on V (ξ) is given by (cf. Equation (9))χξ · ǎp(ξ)−1 · χu−1
cyc cξ

0 ǎp(ξ)

 : GQp −→ GL2(Oξ)

for a continuous map cξ : GQp −→ Oξ. Without loss of generality, assume that

qαβ = b−f ⊗̂b
−
gα
⊗̂b+hα ⊗ 1

in V − = V (f)−⊗̂LV (gα)⊗̂LV (hα)⊗Ofgh Ξfgh maps to

qαβ ∈ V (f)−αβ = V (f)⊗Qp
V (g)α ⊗L V (h)β

under ρw : V − −→ V −. (Recall that V (ξ) = V (ξα) ⊗1 L is the direct sum of
V (ξ)α = V (ξα)−⊗1L and V (ξ)β = V (ξα)+⊗1L for ξ = g, h, cf. Section 3.1.1.) Then

(32) dqαβ = Γ · qαβ + ∆ · qββ ,

where qββ = b−f ⊗̂b+gα⊗̂b
+
hα
⊗ 1, where

Γ =
ǎp(f) · ǎp(gα)

ǎp(hα)
· χh · χ(m−k−l+2)/2

cyc − 1

and where

∆ = ǎp(f) · ǎp(hα)−1 · χh · χ(m−k−l+2)/2
cyc · cgα .

The exceptional zero condition αf = βg ·αh and the self duality condition χg ·χh = 1
imply that Γ takes values in I . Moreover, since the GQp

-module V (g) = V (gα)⊗1L
splits as the direct sum of V (g)β = V (gα)+⊗1L and V (g)α = V (gα)−⊗1L, the map
cgα takes values in (l − 1) · Og, hence ∆ takes values in I . Because by construction
qββ maps to an element of V (f)−ββ under the specialisation map ρwo : V − −→ V −,
Lemma 3.2 and Equations (30) and (32) yield the identities

γu = − ∂

∂u
Γ(·)(wo),

hence (as in the previous subsection) a direct computation gives

(33) γk =
1

2
· logf , γl =

1

2
· loggα and γm = −1

2
· loghα .

Recalling that logf (qA) = 0 by [GS93, Theorem 3.18], Equation (31) finally proves

(34)
2 · deg(℘∞)

mp · ordp(qA)
· ⟪qαβ , qβα⟫fgαhα = (Lan

f −Lan
gα

) · (l− 1)− (Lan
f −Lan

hα) · (m− 1).
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3.5. Proof of Equation (8). — Assume in this subsection that (A, %) is exceptional
at p, and fix a Selmer class x in Sel(Q, V (f, g, h)). Let

x̃ = ıur(x) ∈ H̃1
f (Q, V (f, g, h))

be the corresponding extended Selmer class (cf. Section 3.1.2). By construction x̃+

belongs to the finite subspace of H1(Qp, V
+), and its image under the natural map

i+ : H1
fin(Qp, V

+) −→ H1
fin(Qp, V ) equals the restriction of x at p:

(35) resp(x) = i+(x̃+).

The Galois group GQp acts on V (f)+
\ via the p-adic cyclotomic character, hence

H1
fin(Qp, V (f)+

\ ) = Z∗p ⊗Zp V (f)+
\ (−1)

by Kummer theory. If q∗[ in V (f)+
\ denotes (as in the previous subsections) the dual

basis of q[ in V (f)−\ under the pairing πfgh, and if one writes

pr\(x̃
+) = x̃+

\ ⊗ q
∗
[ ∈ H

1
fin(Qp, V (f)+

\ )

for some x̃+
\ in Z∗p ⊗Zp L, then Equation (35) yields the equality

(36) log\(resp(x)) = 〈log+
p (x̃+), q[〉fgh = 〈logp(x̃

+
\ )⊗ q∗[ , q[〉fgh = logp(x̃

+
\ ),

where log+
p : H1

fin(Qp, V
+) ' DdR(V +) is the Bloch–Kato logarithm and (with a slight

abuse of notation) we denote again by logp : Z∗p ⊗Zp L −→ L the L-linear extension
of the p-adic logarithm. In the previous equation we used the functoriality of the
Bloch–Kato logarithm and the fact that (by construction) the linear form 〈·, q[〉fgh
on DdR(V +) factors through the projection onto DdR(V (f)+

\ ) = V (f)+
\ (−1).

Assume (αf = αg · αh and) q[ = qββ . According to Equations (21) and (36)

(37) 2 · ⟪qββ , x⟫fgαhα = logαα(resp(x)) · (k − l−m),

thus proving Equation (8) in this case.
Assume q[ = qαβ . Since (with the notations of Section 3.4) ∆ takes values in

(l− 1) · Ofgh, it follows from Lemma 3.2 and Equations (32) and (33) that

(38) 2 · β−fgαhα(qαβ) =
∑
ξ

εξ · logξ⊗qαβ · (u− uo) + ϑ · (l− 1)

for some cohomology class ϑ in H1(Qp, V (f)−ββ), where εhα = −1 and εξ = +1 for
ξ = f , gα. One has then

⟪qαβ , x⟫fgαhα (k, 1, 1)
Lemma 3.4

=
〈
β−fgαhα(qαβ), x̃+

〉
Tate

(k, 1, 1)(39)

Equation (38)
=

1

2
· 〈logf ⊗qαβ , x̃+

βα ⊗ q
∗
αβ〉Tate · (k − 2)

=
1

2
· logf (x̃+

αβ) · πfgh(qαβ ⊗ q∗αβ) · (k − 2)

Equation (36)
=

1

2
· logαβ(resp(x)) · (k − 2),
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thus proving Equation (8) when q[ = qαβ . Switching the roles of the Hida families gα
and hα, this also proves Equation (8) when q[ = qβα.

Assume finally q[ = qαα. With the notations of Section 3.4, let (b+ξ , b
−
ξ ) be Oξ-bases

of V (ξ) such that qαα = b−f ⊗̂b−gα⊗̂b
−
hα
⊗1 is a lift of qαα under the specialisation map

ρwo : V − −→ V −. Since cξ takes values in (u− uo) · Oξ for ξ = gα,hα, one has

dqαα ≡
(
χ(4−k−l−m)/2

cyc ·
∏
ξ

ǎp(ξ)− 1
)
· qαα

(
mod (l− 1,m− 1) · C1

cont(Qp,V
−)
)
,

hence Lemma 3.2 and a direct computation give

(40) 2 · β−fgαhα(qαα) = logf ⊗qαα · (k − 2) + ϑ · (l− 1) + ϑ′ · (m− 1)

for some local cohomology classes ϑ and ϑ′ in H1(Qp, V
−). As in (39) one deduces

Equation (8) for q[ = qαα from Lemma 3.4 and Equations (36) and (40).

4. Proof of Theorem 2.1

Let Πf , Πg and Πh be the improving planes in Uf × Ug × Uh defined respectively
by the equations k = l+m, k = l−m+ 2 and k = m− l+ 2. For ξ = f, g, h define

Eξ = 1− χ̄ξ(p) ·
ap(ξ)

ap(ξ
′) · ap(ξ′′)

in Ofgh, where {ξ, ξ′, ξ′′} = {f , gα,hα}. Lemma 9.8 of [BSV21d] implies that

(41) L αα
p (A, %)|Πξ = Eξ|Πξ ·L αα

p (A, %)?ξ

for an improved p-adic L-function L αα
p (A, %)?ξ in O(Πξ). Indeed loc. cit. (together

with its analogue obtained by switching the roles of g and h) proves that the mero-
morphic function L αα

p (A, %)?ξ on Πξ defined by the previous equation is (bounded,
hence) regular at wo. Shrinking the discs Uξ if necessary, we then conclude that the
improved p-adic L-function L αα

p (A, %)?ξ is analytic on Πξ, as claimed.
Assume first αf = αg · αh, so that

(42) 2 · Ef (mod I 2) = Lan
f · (k − 2)− Lan

gα
· (l− 1)− Lan

hα · (m− 1).

According to Theorem A and Proposition 9.3 of [BSV21d], the partial derivative of
L αα
p (A, %) with respect to k vanishes at wo, hence

2 ·L αα
p (A, %) (mod I 2)

is equal to(
(Lan
f − Lan

gα) · (l− 1) + (Lan
f − Lan

hα) · (m− 1)
)
·L αα

p (A, %)?f (wo)

by Equations (41) and (42). Moreover, with the notations introduced before the
statement of Theorem 2.1, one has L = Πf ∩ Πg and Ef = Ef |L, thus

L αα
p (A, %)?f (wo) = Eg(wo) ·L αα

p (A, %)?(wo).

Noting that Eg(wo) = 1 − βh/αh (when αf = αg · αh), the previous discussion and
Equation (27) conclude the proof of Theorem 2.1 when αf = αg · αh.
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Assume now αf = βg · αh. In this case, for ξ = g, h, one has

(43) 2 · Eξ (mod I 2) = Lan
ξα
· (u− 1)− Lan

f · (k − 2)− Lan
ξ′α
· (u′ − 1),

where {(ξα,u), (ξ′α,u
′)} = {(gα, l), (hα,m)}, and

(44) −L αα
p (A, %)?h(wo) = L αα

p (A, %)?g(wo) = Ef (wo) ·L αα
p (A, %)?(wo).

The second equality in the previous equation follows as above from the definitions,
according to which L = Πf ∩ Πg and Eg = Eg|L. The first equality follows by noting
that the restrictions of Eg and Eh to the line Πg ∩ Πh satisfy

Eg|Πg∩Πh = − χ̄g(p) · ap(gα)

ap(f) · ap(hα)

∣∣∣∣
Πg∩Πh

· Eh|Πg∩Πh

(as ap(f)|Πg∩Πh = αf = α−1
f and χg · χh = 1 by Assumption 1.1.1) with

− χ̄g(p) · ap(gα)

ap(f) · ap(hα)
(wo) = −1.

(In other words Eg|Πg∩Πh and −Eh|Πg∩Πh have the same leading term at wo, which
together with the equality Eg ·L αα

p (A, %)?g|Πg∩Πh = Eh ·L αα
p (A, %)?h|Πg∩Πh implies the

first identity in Equation (44).) Write

2 ·L αα
p (A, %) (mod I 2) = a · (k − 2) + b · (l− 1) + c · (m− 1)

with a, b and c in L. Equations (41) and (43) with ξ = g and Equation (44) give

a+ b = Ef (wo) ·
(
Lan
gα
−Lan

f

)
·L ?

p (wo) and c− a = Ef (wo) ·
(
Lan
f −Lan

hα

)
·L ?

p (wo),

where L ?
p is a shorthand for L αα

p (A, %)?. Similarly

b− a = Ef (wo) ·
(
Lan
gα
− Lan

f

)
·L ?

p (wo) and a+ c = Ef (wo) ·
(
Lan
f − Lan

hα

)
·L ?

p (wo)

by Equations (41) and (43) with ξ = h and Equation (44). As a consequence

−2 ·L αα
p (A, %) (mod I 2)

equals

Ef (wo) ·
(
(Lan
f − Lan

gα
) · (l− 1)− (Lan

f − Lan
hα) · (m− 1)

)
·L αα

p (A, %)?(wo).

Noting that Ef (wo) = 1 − βh
αh

(when αf = βg · αh), the previous discussion and
Equation (34) prove Theorem 2.1 when αf = βg · αh.
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