ON EXCEPTIONAL ZEROS OF
GARRETT-HIDA p-ADIC L-FUNCTIONS

by

Massimo Bertolini, Marco Adamo Seveso & Rodolfo Venerucci

To Bernadette Perrin-Riou on the occasion of her 65th birthday

Introduction

Let A be an elliptic curve defined over Q, having ordinary reduction at a rational
prime p > 3. Let o1 and g2 be odd, irreducible, two-dimensional Artin representations
of the absolute Galois group of Q, which are unramified at p and satisfy the self-
duality condition det(g;) = det(o2)~!. By modularity, the triple (A, o1, 02) arises
from a triple (f,g,h) of cuspidal p-ordinary newforms of weights w, = (2,1,1). Let
fa be the ordinary p-stabilisation of f, and fix p-stabilisations g, and h, of g and h
respectively. Set o = o1 ® 2. In the recent paper [BSV21c| we proposed a p-adic
analogue of the Birch and Swinnerton-Dyer conjecture for the leading term at w, of
the 3-variable Garrett-Hida p-adic L-function Ly (A, 0) = Ly(f,g,,ha) associated
with the triple (f, g, ha) of Hida families specialising to (fa, ga, fa) at we. In this
article we verify our conjecture in the analytic rank-zero exceptional cases, viz. when
the complex Garrett L-function L(A, 9, s) = L(f ® g ® h, s) does not vanish at s =1
and Ly (4, o) has an exceptional zero at w, in the sense of Mazur—Tate—Teitelbaum
(cf. Theorem 2.1 and Section 2.1 below). Moreover, when L(A4, 0,1) = 0 and Ly*(A, o)
has an exceptional zero, we propose a conjecture relating the value at w, of the fourth
partial derivative of Ly“(A, o) along the f-direction to the p-adic logarithms of two
global points on A rational over the number field cut out by o (cf. Conjecture 2.3).

1. Setting and notations

Fix algebraic closures_Q and Qp of Q and Q, respectively, and field embeddings
ip 1 Q — Qp and iy : Q — C. With the notations of the Introduction, let

= an(€) q" € SulNe,xe)q

n>1
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denote one of the cuspidal newforms f, g and h. Here u and N¢ are the weight and the
conductor of & respectively, and Sy, (N¢, x¢)r is the space of cuspidal modular forms of
level Ty (Ng), weight u, character x¢ and Fourier coefficients in the subfield F' of Q,,.
Fix a number field Q(p) containing for any & the Fourier coefficients a, (&), as well as
the roots a¢ and B¢ of the pth Hecke polynomials P, = X2 — a,(£) - X + x¢(p) - p.
Let V,, be a two-dimensional Q(g)-vector space affording the representation g;, and
let K, be a Galois number field such that p; factors through Gal(K,/Q). Set

Vo=Vo ®Q(o) V,, and Vp(Aa 0) = V})(A) ®q Vs

where V,(A) = H{(Ag, Qp(1)) is the p-adic Tate module of A with Qp-coefficients.
Throughout this note we make the following

Assumption 1.1. —
1. (Self-duality) The characters x4 and xp are inverse to each other.
2. (Local signs) The conductors Ny and Ny, are coprime to p- Ny.
3. (Etaleness) The forms g and h are cuspidal, p-reqular and do not have RM by
a real quadratic field in which p splits.

The first condition is a reformulation of the self-duality condition mentioned in
the Introduction, namely det(p;) = det(g2)~!. Recall that the form ¢ is p-regular
if P¢, has distinct roots. Moreover, one says that a weight-one eigenform has RM
(real multiplication) if it is the theta series associated with a ray class character of a
real quadratic field. Assumption 1.1.3 is equivalent to require that V,, is irreducible,
not isomorphic to Ind?{X for a finite order character x : Gx — Q(o)* of a real
quadratic field K in which p splits, and that an arithmetic Frobenius at p acts on V,
with distinct eigenvalues. For £ = g, h, this assumption guarantees that the p-adic
Coleman-Mazur-Buzzard eigencurve of tame level N¢ is étale over the weight space
at the points corresponding to the p-stabilisations of & (cf. [BD16]). It is used in
[BSV21c| to construct the Garrett—Nekovar height {-,-)¢; ,  which appears in the
main result of this note. To explain the relevance of Assumptions 1.1.1 and 1.1.2,
let oy be the unit root of Py, and fix roots a, and ay, of P, , and P, respec-
tively. Fix a finite extension L of Q, containing Q(¢) and the roots of unity of order
lem(Ny, Ng, Ny). Let £ be one of f, g and h, and let u, be the weight of £. According
to the results of [Hid86, Wil88, BD16], there exists a unique Hida family

€o = an(éy) 4" € Ocld]
n>1
which specialises at u, to the p-stabilised newform

u—1

Xe\P)p
6 = £(0) = B () € 5.0 Me X0
Here M, = Ng/pordP(Nﬁ) is the tame level of £ (so that My = N¢ if { = g, h), and O¢
is the ring of bounded analytic functions on a (sufficiently small) connected open disc
Ue in the p-adic weight space over L. For each classical weight u in Ug N Z>3, the
weight-u specialisation £, , = Zn>1 an(€,)(u) - ¢" € L[q] of &, is the g-expansion
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of the ordinary p-stabilisation of a newform &, in S, (M¢, x¢)r. Since f has a unique
p-ordinary p-stabilisation f,, we simply write f for f,.

Assumption 1.1.1 guarantees that for each classical triple w = (k,I,m) in the set
¥ = Ur x Ug x U NZ, the complex Garrett L-function L(fx @ gi ® i, s) admits an
analytic continuation to all of C and satisfies a functional equation relating its values
at s and k+1+m —2 — s, with root number (w) = [, €¢/(w) equal to +1 or to
—1. Assumption 1.1.2 implies that all the local signs £,(w) are qual to +1 for every
w in the f-unbalanced region £y = {w = (k,[,m) € £ : k > 1+ m} (cf. [HK91]).
Under these assumptions, [Hsi21] associates with (f, g, ho) an analytic function

2y (A,0) = Zp(f, 90 ha)
in the ring Opgn, = @}@)L ﬁg@)L Oy, whose square

Lga(A7 Q) = Lp(.fagouhoc) = gp(fvgaaha)Q

satisfies the following interpolation property. For each w = (k,I,m) in X, the value
of Ly*(A, 0) at w is an explicit non-zero complex multiple of

2 2 2 2
(1) (1 o) (1 - et ) (1 B )" (1 S22 ) L(fo @ g1 © ).

Here ¢, = %, and for £ = f,g,, ho one denotes by o, the unit root of P, ,

and sets 3, - o, = X/E (p)-p“~1, where X/g is the prime-to-p part of x¢ (so that X’5 = X¢
for £ = g, h, and X} is the trivial character modulo My). We refer to Theorem A of
loc. cit. for the precise interpolation formula. We call L3%(A, 0) = Ly(f,gq: ha) the
Garrett-Hida p-adic L-function associated with (A, g) (or with (f,g,,ha)).

2. Exceptional zero formulae

The p-adic variant of the Birch and Swinnerton-Dyer conjecture formulated in
[BSV21c| predicts that the leading term of Ly*(A, o) at w, = (2,1,1) is encoded by
the discriminant of the Garrett—-Nekovdr height pairing

(2) D pgona : AN(K,)? ®q AT(K,)® — /.57

constructed in Section 2 of loco citato, where .# is the ideal of functions in ffg4p which
vanish at w, and the p-extended Mordell-Weil group Af(K,)¢ is defined as follows.
When A has good reduction at p, one sets Af(K,)¢ = A(K,)?, where A(K,)¢ is
a shorthand for the Gal(K,/Q)-invariants of A(K,) ®z V,. If A has multiplicative
reduction at p, then oy = a,(f) = +1 and the maximal p-unramified quotient V,(A4)~
of V,(A) is a 1-dimensional Q,-vector space on which an arithmetic Frobenius acts
as multiplication by a¢. Let g4 in pZ, be the p-adic Tate period of the base change
Aq, of Ato Q, (cf. Chapter V of [Sil94]), and let Q,> be the quadratic unramified
extension of Q,. The Tate uniformisation yields a rigid analytic morphism
OTate - G”g — AQPQ

m,ng

with kernel ¢4 and unique up to sign. Set
Q(A) = p_ ((pTate(p\n/ qA ))n}l) S ‘/p(A)_a
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where p~ denotes the projection V,,(A) — V,(4)~ and (*{/ga )n>1 is any compatible
system of p™-th roots of g4, and define

AN(K,)? = A(K,)? ® Qy(4, 0)
to be the direct sum of A(K,)? and the Q(p)-submodule

9,(4,0) = H*(Qy, Qo) - ¢(A) ®q(0) Vo)

of H%(Q,, Vp(A)~ ®q V,). The Garrett-—Nekovar height (-, Vfg.n, depends on the
choice of suitably normalised G q-equivariant embeddings

(3) Vg : Vo = V(g) and Ay :Vy, — V(h),

where V(§) = V(€,) ®1 L (for £ = g,h) is the weight-one specialisation of the big
Galois representation V' (€,) associated with &,. (We refer to Section 3.1 below for
precise definitions.) More precisely, denote by V(f) the f,-isotypic component of the
cohomology group Hélt(Xl(Nf,p)Q7 Q, (1)), where X (Ny,p)q is the base change to
Q of the compact modular curve X;(Ny,p) of level 't (Ny) NTo(p) over Q, and set

V(f.9,h) =V (f) ®q, V(9) @ V(h).
Section 2 of [BSV21c¢]| constructs a canonical Garrett—Nekovaf p-adic height pairing

(4) (D pgon. = SN (Q,V(f,9,1) @1 Sel'(Q, V(f,9,h)) — .7 /.97

on the naive extended Selmer group of V(f, g, h) over Q, defined as the direct sum
of the Bloch-Kato Selmer group Sel(Q,V(f,g,h)) of V(f,g,h) over Q and the
module H%(Q,, V(f,g,h)”) of Gq,-invariants of the maximal p-unramified quotient
V(f,g,h)™ of V(f,g,h). (The definition of {-, '>>fg&ha is briefly recalled in Section
3.2.3 below.) Fix a modular parametrisation po : X1(Nf,p) — A, under which one
identifies V(f) and V,(A). The embeddings -y, and -y, and the global Kummer map
on A(K,) then induce an embedding ~,, : AT(K,)? — Sel’(Q,V(f,g,h)). The
pairing (2) is defined to be composition of the canonical Garrett—Nekoval height and
'y?hz. The pairings (2) and (4) are skew-symmetric, and the discriminant of (2) in
(7 (A0) /g (A0+1) /Q(0)*2, where rT(4, p) = dimqy) AT(K,)?, is independent of
the choice of o, v, and 7y,. We refer to [BSV21c]| for more details.

If £ denotes either g or h, then the restriction to Gq, of the Artin representation
V(&) is the direct sum of the submodules V(£), and V(£)s on which an arithmetic
Frobenius acts as multiplication by a¢ and S¢ respectively (cf. Assumption 1.1.3). The
Gq,-representation V(f,g,h)” then decomposes as the direct sum of the subspaces

V(i =V~ ®q, V(9)i @L V(h);,

where (4, 7) is a pair of elements of {a, 8}. If £ denotes either g or h, Section 3.1.1.1
below recalls the definition of canonical weight-one differentials

(5) we, € (V(§)a ®q, Qp)°% and 1, € (V(§)s ®q, Q)7r,

where Q" is the maximal unramified extension of Q. If A is multiplicative at p, set

a(f) = 9 (a(A)) € V(f)~,
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where one denotes again by po : V(f)~ ~ V,(A)~ the isomorphism arising form the
fixed modular parametrisation po : X1(Ny,p) — A.

Under the running assumptions, the Q(g)-module Q,(A4, o) (resp., the L-module
H°(Q,,V(f,g,h)7)) is non-zero precisely A is multiplicative at p and

af =ag- o or ay =Py ap,

in which case it has dimension 2 and one says that (A, g) is exceptional at p. More
precisely, note that oy # B, by Assumptions 1.1.3, hence only one of the previous
identities can be satisfied. Moreover oy = g - o, (resp., ay = B4 - o) if and only if
af = By Br (resp., ay = a4 - ) by Assumption 1.1.1. Fix an auxiliary integer m,,
such that p splits (resp., is inert) in Q[,/my] if ay = +1 (resp., ay = —1), so that
Gq, acts trivially on /my, - q(f) in V(f)™ ®q, Q)" If af = a, - ap, then Gq, acts
trivially on V(f)5, and V(f) g4, hence the p-adic periods

Qaa = \/mp"I(f) ®wy, @wp, and gpp = \/mp‘q(f) @ Ngo D Ny,

can naturally be viewed as elements of V(f),, and V(f);; respectively, which gen-

erate H(Q,,V(f,g,h)™). Similarly, if ay = B, - ap,, then the periods

Gap = /My - q(f) Owg, @ng, and  qga = /myp - q(f) @1y, @ wh,,

can naturally be viewed as generators of H°(Q,, V(f,g,h)7).
Equation (1) shows that the value of the square-root Garrett—Hida L-function
Z5 (A, 0) at w, is a non-zero multiple of

(-5 -52) (- 32) - 42)- v

where L(A,0,s) = L(f ® g ® h,s). The previous discussion then shows that (A, o)
is exceptional at p precisely if one of the Euler factors which appear in the previous
expression is zero, id est if Z;**(A, o) (or Ly*(A, 0)) has an exceptional zero in the
sense of Mazur—Tate—Teitelbaum [MTT86]. In this case Lemma 9.8 of [BSV21d]
proves that the restriction .Z**(A, o)L of Z**(A, 0) to the improving line L defined
by the equations m = 1 and k =1 + 1 admits the factorisation

LA 0l =& - & - Z7(A 0"
in the ring O(L) of analytic functions on L, where

ap(f) ap(ga)
ap(ga) 'ap(ha) L ap(f) 'ap(ha) |_.

Moreover, the value at w, of the improved p-adic L-function £**(A, 0)* is an explicit
algebraic number in Q(p), equal to zero precisely if L(A, p, s) vanishes at s = 1. We
refer to the proof of Proposition 8.3 of [Hsi21] for details.

The following is the main result of this note.

&r=1- and &, =1— xn(p)-

Theorem 2.1. — Assume that (A, o) is exceptional at p. Let (qy,qy) denote either
the pair (qaa,488) 07 (¢as,dsa), depending on whether ay = ag - o, or af = By - oy
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respectively. Then the following equality holds in .% /.72 up to sign.

de 00) — (0% ao *
g(?np)~ ofclip(‘Ii};/ s "L (A, 0)" (wo) - «Qb’qh»fgah“

LA, 0) (mod #2) =

Theorem 2.1 is proved in Section 4 below. More precisely, Sections 3.3 and 3.4
below prove that the following equality holds in .#/.#2 up to sign:

2 deg(poo) an amn -
O oy (g (Do, = (€F —E5) - A= D e- (EF —Li) - (m 1),
where ¢ = +1if ay = oy -, and e = —1 if ay = By - B, and where
1 an
(7) - 5 ’ 2’& = leg ap(é)u:uo

is the value at the centre u, of Ug of the logarithmic derivative of the p-th Fourier
coeflicient of the Hida family £ = f,g,,ho. In Section 4 we then deduce Theorem
2.1 from Equation (6) and the study carried out in [BSV21d, Section 9] of the linear
term of £ (A, 0) at w, in the exceptional case.

It should be possible to extend Theorem 2.1 (and Conjecture 2.3 below) to the
case of p-new eigenforms of even weight k > 2 and trivial character (cf. Section 1.1 of
[BSV21c]). We have not checked the details.

2.1. The rank-zero exceptional case of [BSV21c, Conjecture 1.1]. — Assume
in this section that (A, g) is exceptional at p, and that the Garrett complex L-function
L(A,0,8) = L(f ® g ® h, s) does not vanish at s = 1:

L(A,0,1) #0.
According to Theorem B of [BSV21d], which extends the main result of [DR14] to
the multiplicative setting (see also Theorem B of [BSV20]), one has

A(K,)? =0,

hence AT(K,)? = Q,(A,0). The Garrett—-Nekovdr p-adic regulator Ry(A, 0), viz.
the discriminant of the p-adic height (-,-);, , on AT(K,)e, is then given by

Rza (Aa Q) = det ( <<q17 4q; >>.fgaha )1§i,j§2 = <<q13 Q2>>§“gah,a

in (#2/.93)/Q(0)*?, where (g1,¢2) is a Q(po)-basis of Q,(A, o).

Let vygn : V(A,0)~ < V(f,g9,h)” be the Gq-equivariant embedding defined by
the tensor product of the isomorphism V,(A)™ ~ V(f)~ induced by poc, 74 and vyp
(cf. Equation (3)). The normalisation imposed on the embeddings 7, and 5, (and
described in Section 3.1.1.2 below) implies that the matrix M in GLy(L) defined by
the identity (g ¢q) - M = (Vgn(q1) Vgn(g2)) has determinant in Q(g)*. In light of
the above discussion, Theorem 2.1 then proves the following corollary, which together
with Equation (6) establishes [BSV21c, Conjecture 1.1] in the present setting.

Corollary 2.2. — If L(A, o, s) does not vanish at s = 1, then AT(K,)? = Q,(4, 0)
and the following equality holds in the quotient of #2/.73 by the action of Q(0)*2.

Lg‘o‘(A 0) (mod J?’) = Rga(A, 0)
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2.2. Exceptional zeros and rational points (cf. [Riv21]). — Assume in this
section that (A, p) is exceptional at p, and that the Garrett complex L-function
L(A, g, s) vanishes at the central critical point s = 1:

L(A,0,1) = 0.
Set {b,1} = {aw, B8} of {v,4} = {af, Ba}, depending on whether ay = « - ay, or
ay = fy - ap. The p-adic L-function £>*(A, ) belongs to .#? (cf. Theorem 2.1) and
Conjecture 1.1 of [BSV21c| predicts that its image in (.#2/.72)/Q(0)* equals

(@, 45) 9 1 AP Q) sg n — (@ Phsg n. (05 Q) sy + (00 Q) gon. (05 P) 1o

for two rational points P and @ in A(K,)¢. (Recall that the p-adic height (-, )¢, 5
is skew-symmetric, hence the previous expression is a square root of its discriminant
on the Q(p)-submodule of AT(K,)? generated by g, gy, P and Q.) One has

(@ a5) 5g_p. (R.1,1) =0

by Equation (6). Moreover, Section 3.5 below proves that

1
(8) {4, 2) g, n,, (K, 1,1) = 5 - log, (res,(2)) - (k —2)
for each Selmer class = in Sel(Q, V' (f, g, h)), where
1Ogb = <10gp(.)’qﬂ>f9h : Hflln(va V(fvga h)) — L.

Here log, : Hg, (Q,,V(f,9,h)) ~ Dar(V(f, 9, h))/Fil’ is the Bloch-Kato p-adic log-
arithm (cf. Lemma 9.1 of [BSV21d]), and (-, ) ;/, Dar(V(f,g,h))®? — L is the
pairing induced by the natural Kummer duality g, : V(f, g, h)®* — L(1) defined
in Section 3.1.1 below (cf. Equation (11)). We are then led to the following

Conjecture 2.3. — Assume that A(K,)? is a 2-dimensional Q(o)-vector space.
Then for any Q(o)-basis (P, Q) of A(K,)?, the equality

2L (A,
W(wo) = log, (P) - log;(Q) — log;(P) - log,(Q)

holds in L up to multiplication by a non-zero scalar in Q(o)*.

As explained in [BSV21b], the main result of [BD07] can be used to prove cases
of Conjecture 2.3 when g and h are theta series associated with certain ray class
characters of the same imaginary quadratic field in which p is inert (and P and @ are
Heegner points). By combining this with an extension of the height computations car-
ried out in [Venl6a, Venl6b], the article [BSV21a] proves instances of Conjecture
1.1 of [BSV21c] in this setting.

Remark 2.4. — In light of the aforementioned results of [BSV21b], Rivero pro-
poses in [Riv21, Conjecture 4.5] a variant of Conjecture 2.3. He also asks (cf. Ques-
2 aa
tion 5.3 of [Riv21]) if one can expect a similar description of %W(wo) when
A has good reduction at p. The previous discussion places Rivero’s conjecture within

a conceptual framework and sheds some light on this question.
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3. Height computations

Throughout the rest of this note we assume that (A, ) is exceptional at p. In
particular A has multiplicative reduction at p, id est p divides exactly N¢.

3.1. Setting and notations. — This subsection briefly recalls the needed defini-
tions and notations from our previous articles [BSV21d, BSV21c].

3.1.1. Galois representations. — Set N = lem(Ny, Ny, Ny) and let Gq n be the
Galois group of the maximal extension of Q contained in Q and unramified outside
Noo. If € denotes one of f,g, and h,, let V(£€) be the big Galois representation
associated with € (cf. Section 5 of [BSV21d]). It is a free O¢-module of rank two,
equipped with a continuous linear action Gq n. For each u in Ug N Zy> the base
change V (§) ®, L of V(§) along evaluation at u on ¢ is canonically isomorphic to the
homological p-adic Deligne representation of &, with coefficients in L (cf. loco citato
for more details). In particular if £ = f and u = 2 there is a natural specialisation
isomorphism ps : V(f) @ L= V(f). f € =g, ,ho and u=1set V() =V (€) ®; L
(cf. Section 1). It is a two-dimensional L-vector space affording the dual of the p-adic
Deligne—Serre representation of & = g, h with coefficients in L. In order to have a
uniform notation, in this case one defines p; : V() ®1 L — V(£) to be the identity.

The restriction of V() to Gq, (via the embedding i, fixed at the outset) fits
into a short exact sequence of 0¢[Gq,]-modules V(£)* «— V(§) — V(€)™ with
V(€)T free of rank one over U¢. More precisely, let xcyc : Gq — Zj, be the p-adic
cyclotomic character, and let a,(§) : Gq, — ﬁg‘ be the unramified character sending
an arithmetic Frobenius to the p-th Fourier coeflicients a,(€) of £&. Then

(9) V(€T =~ Oc(xtye! xe@p(€)™") and V(€)™ = Ge(a,(€)),
where x% ' 1 Gq — OFf satisfies xt. ' (0) (u) = Xeye(0)" ™" for each u in UgNZ. (The

freeness of V (§)* is guaranteed by Assumption 1.1.3, cf. Section 5 of [BSV21d].) If
& = f and u = 2 the specialisation isomorphism p, identifies V(f)~ ®2 L with
the maximal unramified quotient V(f)~ of V(f). If € = g,,h, and u = 1 we set
V(€)p=V(€)tT®1Land V() = V(&) ®1 L. One has V(€) = V(£)o ®V(£) 3, where
V (&), = V(&)FrP»=7 for v = , B is the submodule of V() on which an arithmetic
Frobenius Frob, acts as multiplication by v¢ = ag, B¢ (cf. Assumption 1.1.3).

There is a natural Gq-equivariant skew-symmetric perfect pairing

me 1 V(€) ®e, V(&) — Ocxe - X)),

inducing perfect dualities ¢ : V(€)* ®g, V(£)F — Oc(xe - x%'). (See Section 5
cf. [BSV21d] for the definitions).
Denote by Zfgn = X%Zk*l*m)/z :Gq — ﬁ;gh the character whose composition

with evaluation at (k,l,m) in Us x Uy x Up, N Z3 on Ofgp, equals Xé‘;;’“*l*m)/z. If -

denotes one of the symbols ), + and —, define
vV = V(.f)'®LV(ga)®V(ha) ®ﬁ’fgh Efgh'

Then V = V(f,gu,ha), tesp. VE = V(£,g,,ha)* is a free Opgp-module of rank
8, resp. 4, equipped with a continuous action of Gq,n, resp. Gq,- As Xy Xxn = 1
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(cf. Assumption 1.1), the product of the perfect dualities m¢, for £ = f, g, ha, yields
a perfect skew-symmetric Kummer duality 7 : V ®g,,, V — Ofgn(1), inducing a
perfect local Kummer duality 7 : V= Rpn VT — Opgn(1). After setting

Vi =V(f,g,h) =V (f) @ V(g) ®r V(h)
and w, = (2,1,1), the product p,, = p2®p1®p; gives natural isomorphisms
(10) P, V' @, L=V
(where - ®,,, L denotes the base change along evaluation at w, on Opgp). Let
(11) Trgh 2V @@LV — L(1)
be the specialisation of 7 via p,,,, and define 7 : V* @7 VF — L(1) similarly.

3.1.1.1. Weight one differentials. — Define D(&)~ = H°(Q,, V(E)‘@QPQE’“), where

Qgr is the p-adic completion of the maximal unramified extension of Q, (and as
usual £ denotes one of f, g, and h,). For each uw in Ug N Z>o there is a natural
comparison isomorphism between D(£)~ ®,, L and the & ,-isotypic component of the
space of cuspidal modular forms of weight u, level I'; (N¢p) and Fourier coefficients in
L. Assumption 1.1.3 guarantees that D (&)~ is free (of rank one) over O, and admits
a basis wg whose image in D(§)~ ®,, L corresponds to £, under the aforementioned
comparison isomorphism, for each u in UgNZ3o. (We refer to Section 3.1 of [BSV21c]|
and the references therein for more details.)
For £ = g,, hq, the holomorphic weight-one differential

we, € (V(&)a ®Qp Q;r)GQp
mentioned in Equation (5) is defined to be the weight-one specialisation of we, viz.

the image of wg in the quotient D(§)™ ®1 L = D(&)o. The weight-one specialisation
of m¢ yields a perfect Gq-equivariant skew-symmetric pairing

me : V(§) @1 V(§) — Lxe)-
Let ¢ be the common conductor of x, and x4, and identify (L(x¢) ®q, Q;Y)GQP with
L via the GauR sum G(x¢) = (—c)% Doae(z)cz) xe(a)™t @ €79/ where i, = 0 and
in, =1 (so that G(x4) - G(xn) = 1 by Assumption 1.1.1). The pairing 7 then induces

a perfect duality (-, )¢ : D(§)a ®@r D(§)g — L, where D(§) = (V(§) ®q, Q;r)GQP.
One defines the antiholomorphic weight-one differential (cf. Equation (5))

ne. € (V(9)p ©q, Q)7
to be the dual of we, under (-, -),, viz. the element satisfying (we, "¢, ) = 1.

3.1.1.2. The embeddings 4 and ~y,. — With the notations of Section 1, set V; =V,
and Vj, = V,,. Let £ denote either g or h. As recalled above, the Artin representation
V(€) = V(&) ®1 L affords the dual of the p-adic Deligne representation of £ with
coefficients in L, id est is isomorphic to Ve ®q(,) L. Enlarging L if necessary, we
normalise the Gq-equivariant embedding ¢ : Ve — V(&) (introduced in Equation
(3)) by requiring that the composition m¢ o (¢ ® y¢) takes values in the number field
Q(o) (via the embedding i, : Q — Q,, fixed at the outset).
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3.1.2. Selmer complexes. — Let Rf‘f(Q, V) be the Nekovar Selmer complex asso-
ciated with (V,VT) (cf. Section 2.2 of [BSV21c]). It is an element of the derived
category D% (L) of cohomologically bounded complexes of L-modules with cohomol-
ogy of finite type over L, sitting is an exact triangle

(12) Rl cone (G, V) 7 =57 RTcont(Gq,, V™) — RI4(Q, V)[1],

where R ont (G, -) is the complex of continuous non-homogeneous cochains of G with
values in -, res, is the restriction map (induced by the embedding i, : Q — Qp
fixed at the outset) and p~ is the map induced by the projection V. — V~. Denote
by ]~{J}(Q,V) = H'(Rff(Q,V)) the cohomology of RI(Q, V), let Sel(Q, V) be the
Bloch—Kato Selmer group of V over Q, and let i™ : VT — V be the natural inclusion.
Then there is a commutative and exact diagram of L-vector spaces (cf. loc. cit.)

H}(Q,V) Sel(Q,V) ——=0

HY(Q,, V) —> HY(Q,, V)

(13) 0— H(Q,, V) —2

where the first line arises from the exact triangle (12). In addition there is a unique
section 2y, : Sel(Q, V) — H}(Q7 V) of the above projection such that 2, (x)" belongs

to the Bloch-Kato finite subspace Hi (Q,, V™) for each z in Sel(Q, V). We often
use 7 and 1y, to identify Nekovar’s extended Selmer group H}(Q, V) with the naive

extended Selmer group Self(Q, V) = H(Q,, V™) ®Sel(Q, V) (cf. Section 1).
One similarly associates with (V, V) a Selmer complex

RI((Q,V) € D}(Ggn)

sitting in an exact triangle analogous to (12). (We refer to loc. cit. for more details.)

3.2. Preliminary lemmas. — This section gives a concrete description of the func-
tionals (¢, ) 54 5, : Sel’(Q,V) — L for ¢ in H°(Q,, V™) (cf. Lemma 3.4 below).

3.2.1. Bockstein maps. — Let (C,C) denote one of the pairs (RT,(V ™), RI,(V 7)),
(RI(V),RI(V)) and (RT(Q,V),RI#(Q,V)), where RI',(-) and RI'() are short-
hands for Rl cont(Qp, ) = Rl'cont(Gq,,) and Rl'¢ont(Gq,n, -) respectively (cf. Sec-
tion 3.1.2). The specialisation maps p,,, (cf. Equation (10)) induce isomorphisms

(14) pu, :C®p, , w, L=C and p,, @id:C®g, , /I ~CwL /%]
Applying C ®%fgh - to the exact triangle
I|I? — Opgn) I? — L — I/ 5[1]
(arising from evaluation on w,) then yields a derived Bockstein map
Beje:C—C®L S ]72],
which in turn induces in cohomology a Bockstein map

Beje : H(C) — HTY(C) @y 7/ 57
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If no risk of confusion arises, we simply write 3 for B¢ c. Let
7:H(Qp, V™) — I:ijl(Q, V)
be the maps arising from the exact triangle (12).

Lemma 3.1. — The following diagram commutes.

HY(Q,, V") — = HY(Q,, V") @y, 5.5

J\L lj@f/ﬂz
B

HH(Q,V) H}(Q,V)®L 5/.5?

Proof. — For M =V, V one has an exact triangle (cf. Equation (12))

Aps : RTeont (G, M)[—1] 7 257 RTcon(Qp, M7)[—1] 245 RT 4(Q, M).
Moreover Ay is obtained by applying '®15’fgh,woL to Ay (cf. Equation (14)). It follows
from the definition of the derived Bockstein maps 8~ and 3 on Rl coni(Qp, V™) and
RI'(Q,V) respectively that 3, ® .# /.#2[1]o 3 is equal to B0 3, . Since by definition
the maps j are the ones induced in cohomology by 3y, the lemma follows. O

The following lemma gives a concrete description of f¢ /.

Lemma 3.2. — Let (C,C) be as above, let z be a 1-cocycle in C, let Z be a 1-cochain
m C, and let Zy, Zy and Z,, be 2-cochains in C such that

pw,(Z)=2 and dZ =2y - (k—2)+Z1- (1 — 1)+ Zp, - (m —1).
Then z. = py,(Z.) is a 2-cocycle for - = k,l,m, and one has the equality
—Beye(cl(z)) = cl(zx) - (k = 2) +cl(z) - (I = 1) +cl(zm) - (m — 1)
in H?(C) @y, S| F2, where cl(-) is the class in H'(C) represented by the i-cocycle -.
Proof. — The proof is very similar to that of [Venl6a, Lemma 5.5]. We omit it. [

3.2.2. Local and global duality. — Nekovai’s generalised Poitou—Tate duality asso-
ciates with the perfect duality m¢4 introduced in Equation (11) a global cup-product
pairing (cf. Section 2.4 of [BSV21c])

(15) (3 Inek s HF(Q, V) @ HH(Q,V) — L.
The pairing 7s4, induces a Kummer duality V™~ ®7 VT — L(1) and we denote by
(16) <'a'>Tate : Hl(Qpavi)(g)L HI(Q;D,VJF) — L

the induced local Tate duality pairing. Recall finally the map
FLHNQ, V) — HY(Qp, V)
introduced in diagram (13).

Lemma 3.8. — For each ¢ in H'(Q,, V™) and £ in ﬁ}(Q,V) one has
<j(<)7£>Nek = <C7£+>Tate-
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Proof. — This is proved as in [Venl6a, Lemma 5.7]. O
3.2.3. The Garrett—Nekovdi p-adic height pairing. — Set
Btguha = ﬂRff(Q)V)/Rf‘f(Q’V) : H}(vi) — HJQC(Q, V)@ /)72
After identifying ﬁ}(Q, V) with SelT(Q, V) (cf. Section 3.1.2), the canonical height
(s #g._n, introduced in Section 1 is defined by (cf. [BSV21c, Section 2])
<<x7 y»fgaha = <Bfgaho< (3)), y>Nek

for each = and y in fl}(Q,V), where we write again (-, )y, for the .#/.#2-base
change of Nekovar’s cup-product (15). Lemmas 3.1 and 3.3 give the following

Lemma 3.4. — For each q in H°(Q,, V™) one has
<<J(Q)7'>>fgaha = <5;gaha (a), '+>Tatc

as 7 | I%-valued maps on f{}(Q,V), where 6f_gaha = Brr,(v-)/Rr,(v-) (and we

write again (-, )pu. fOr the I /92 -base change of the local Tate pairing (16)).

3.3. Computation of {gsg, qaa»fg h. - — Assume in this subsection ay = oy -,
so that H%(Q,, V™) is generated over L by the periods

Jaa = /My - q(f) ®wg, @wn, and  qgg = /my - q(f) @ ng, @ Mn,,
Recall that xcyc : Gq — Z;, denotes the p-adic cyclotomic character. Fix a lift
qzp in V7 of ggp under p,,,. Since (cf. Section 3.1.1)
438 € V(f)” ®q, V(9)s @L V(h)sg — V™
and V(§)p = V(§,)* @1 L for £ = g, h, we can choose g4 in the Gq,-submodule
V()" @LV(g) &LV (h)" ®6;,, Eggh — V™
(cf. Section 3.1.1). By Equation (9) one has
(17) dQ[m = 458>
where d denotes the differentials of the complex RI'cons(Qp, V') and

- = X
ap(ga) - ap(ha) ~°
The assumption ay = a4 - oy, implies that ® takes value in .#, and that its com-
position @' with the projection .% — .#/.#2 is of the form

' =pp-(k=2)+¢ (I=1)+¢m (m—1)
with ¢, in HY(Q,, Qp) for u = k,l,m. Identify H'(Q,,Q,) with the Q,-vector
space Hom(Qj;, Q) of continuous morphisms of groups from Q; to Q,, via the local
reciprocity map rec, : Q; — G?pr, normalised by requiring rec,(p~!) to be an
arithmetic Frobenius. By local class field theory, for each p-adic unit u one has

oulw) = o (1072 1)

- — ) wmenr gy .

1
= 75 . logp(u)7

Wo
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where (-) : Z;, — 1+ pZ;, denotes the projection to principal units, and

()

(cf. Equation (7)). As a consequence —2 - ¢y, is equal to

1 an
zi.gf

or(p)

Wo

logy = log, —£3" - ord, € H'(Qp. Qp)

(where the p-adic valuation ord,, : Q; — Q, is normalised by ord,(p) = 1). Similarly
one shows that 2- ¢y and 2 - ¢p, are equal to the logarithms log, = log, —£3" -ord,
and logy, = log, —£3" -ord,. It then follows from Equation (17) and Lemma 3.2 that

(18) 287, n.(as5) = (logg (k —2) —logy_-(1 1) ~logy, -(m —1)) @ qap

in HY(Q,, V™) ®r .# /.92, where (with the notations introduced in Section 3.2.1) one
writes ;. 5, for the Bockstein map f¢/c associated with C = RT', (V™). Note that

V(f)gs = V() ©q, V(g)s@L V(h)s

is an L[Gq,]-direct summand of V™ on which Gq, acts trivially, so that log, ®qgss
(for € = f,g,, ha) belongs to the direct summand

HY(Qp, V(f)z5) = H (Qp. Qp) ®q, V(f) 55
of the local cohomology group H'(Q,,V~). Similarly
V(fHaa =V ®q, V(9)a®LV(h)a
is an L[Gq, ]-direct summand of V* isomorphic to Q,(1), hence
(19) HY(Qp, V(f)ia) = H'(Qp. Qp(1) ®q, V(f)Fal(-1)

is a direct summand of H'(Q,, V™). The local Tate pairing (-, )p,, introduced
in Section 3.2.2 induces a perfect duality (denoted by the same symbol) between
HY(Qyp, V(f)33) and H'(Qp, V(f){,), and identifying H'(Qy, Z, (1)) with the p-adic

completion Q; of Q,, via the local Kummer map, local class field theory gives

(20) (p@ v, u@ vt )ate = @(u) - Tpgn(—1) (v @ 0v7)

for each ¢ in H'(Q,, Qp), uin H'(Qp, Q,(1)), v~ in V(f) 55 and vt in V(f),. Here
Tign(=1) 1 V(f)a(=1) @L V(f)55 — L

is the composition of 74, ® Q,(—1) with the evaluation pairing L(1)®r L(—1) — L.
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Recall that we identify H°(Q,, V) with a submodule of ﬁ}(Q, V') via the embed-
ding j introduced in Diagram (13). Lemma 3.4 and Equations (18) and (20) give

Lemma 3.4 —
Q) 2 fgp2)gy S 2 -<ﬂfga <Qﬂ6>’z+>1aw
panzn () Z - (loge ®4p5, 2" ) Tate - (U — uo)
Equatlon (20) Z logg aa) . (u — Uo)

for each z in ﬁ}(Q,V), where £ = f,ga, as Uo = 2,1,1 is the centre of Ug, and
Zia € H'(Qp, Qp(1) = Q) ®2, Qp

is defined as follows. Let pr,, denote the projection onto the direct summand
HY(Q,, V(f)£,) of the local cohomology group H'(Q,, V™), and let 55 be the gen-
erator of V(f)1,(—1) dual to ggs under w4, (—1), namely satisfying

Tran(—1)(ghp ® qpp) = 1.
Then z7, is defined (via the natural isomorphism (19)) by the identity
(22) Proq(z") = 20, ® 455
We now determine 27, for 2 = 5(qaq). By definition 7(gaq) is represented by
Caa = (0,dfac, Gac) € CH(Q, V),
where ¢, in V is a lift of ¢, under the the projection V. — V'~ and where
Ao : GQp — VTt
is its image under the differential in RT'¢ont(Qp, V). By construction dgn. represents
the class ¢f, = 7(qaa)™ in H(Q,, V). Since V(£) is the direct sum of V(§), and
V(§)p for £ = g, h, we can (and will) choose Gnq of the form
Jaa = /My - 4(f) @ wg, ® wh,

for a lift ¢(f) of ¢(f) under the projection V(f) — V(f)~, so that dj.. represents
the image of ¢, under the connecting morphism

5&04 : V(f);a — Hl(Qpa V(f)zoz)
arising from the short exact sequence of Gq,-modules

0—V(flaa — V(flaa — V(flaa — 0,

where V(f),,,, is the L[Gq,]-direct summand V(f) ®q, V(9)a®LV (h)a of V'. Let ga
in pZ, be the Tate period of Aq,. Tate’s theory gives a rigid analytic isomorphisms
between the base change Eq: of the Tate curve £ = :;QQ /d% to the quadratic
unramified extension Q2 of Q, and Aq .. Set V,(E) = H1 . (Eq,: Qp(1)) and let
©Tate © Vp(E) =~ V,(A) be the isomorphisms of Gq,,-modules induced by the Tate

uniformisation. There is a short exact sequence of Q,[Gq,]-modules

(23) 0— Qu(1) % Vp(B) 2 Q, — 0,
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where a((p=) = ((pn - ¢%)n>1 for each compatible system (pec = ((pn)p>1 of p™-th
roots of unity, and b is the Q,-linear extension of the inverse limit of (canonical) maps

b+ E(Qp)pn = (Q)/d%)m — Z/p"Z defined by by (z - ¢%) = L9l | pn .7,

Ordp(QA)
By definition ¢(A) = pr..(1), where o1, © b is the composition of prate and the
projection V,(A) — V,(A)~ onto the maximal Gq,-unramified quotient, and

q~<f) = p(:ol o pTate(poo\/ qgA )
is the image of a compatible system »%/q4 of p™-th roots of the Tate period g4 under
the composition of @raie and the inverse of the isomorphism g : V(f) ~ V,(A)
induced by the fixed modular parametrisation po, : X1(Ny) — A. As a consequence

1 in Q, maps to g4®1 under the connecting map Q, — H'(Q,, Q,(1)) = Q;@QP
associated with the short exact sequence (23), hence

(24) ](Qaa)+ = cl(dfaa) = daal(daa) = VMyp * (p;ol* ° pTate)j(QA®1) Q Wy, @ Wh,

m

HY(Qp, V(f)da) = H°(Gal(Qp2/Q), H'(Qp2, V(f)T) @q, V(9)a ®r V(h)a),
where
(@o_ol o @Tate):_ : Q;ﬂ ®Qp =~ Hl (sza V(f)+)
is the map induced in cohomology by the composition of p7! and
PTate = PTate © 0.
If A denotes either A or E, denote by
ma: Vp(A)(=1) ©q, Vp(A) — Qp

the composition of the evaluation pairing Q,(1) ®q, Qp(—1) — Q, with the base
change of the Weil pairing on V,(A) by Q,(—1). Set

Q(A)* = @%‘_ate(gl)‘x’) & C;m € ‘/IJ(A)+(_1)a
where (e is a generator of Q,(1) and (j~ in Qp(—1) is its dual basis, and set
q(f)" = deg(pso) - 95 (a(A)7) € V()T (D).
As mp((a(y) ® z) ® ) = b(z) - 2(y) for each z in V,(E), y in Q,(1) and z in Q,(—1),
the functoriality of the Poincaré duality under finite morphisms yields
Tr(a(f)* @ a(f)) = ma(a(A)* @ q(A)) = 7 ((alG) @ (=) @7Vaa) =1,
then (by the definition of the weight-one differentials 7¢_, cf. Section 3.1.1.1)

1
q;’ﬁ: \/,’Tp.q(f)*@wga(gwha'

Together with Equation (24) this gives

m ~
25 aa t= r : 1 5 ;
id est
m ~
(26) I(daa)da P — . qa®1.

~ deg(po)
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According to Theorem 3.18 of [GS93] £3" = 98,(04) "oy that

ordp(ga)’
2 - deg(poo)

_— oNTPR — an __qany (1 | an _ qan 1
my, - ordy(ga) <<q’857qa°‘»fgaha (L5 —Lg. ) ( )+ (L5 —£5%) - (m—1)

by Equations (21) and (26).

(27) —

3.4. Computation of (¢us,qsa)) sy .- — Assume in this subsection oy = By~ v,
so that H°(Q,, V™) is generated by the p-adic periods

Gop = /My - 4(f) @ wg, @nn,  and  gga = /My - q(f) @ 19, @ wh,, -
For 40 = af, Ba and - = 0, &, define V(f). s = V(f) ®q, V(9)y ® V(h)s. Then

HY(Qp, V7)) =V(f)o5 ®V(f)par

Gq, acts on V(f)1 op and V(f)ﬂa via the p-adic cyclotomic character, and the local
Tate pairing (-,)p,.. introduced in Section 3.2.2 induces a perfect duality (denoted
by the same symbol) between H'(Q,, V(f)ap) and HY(Q,, V(f)ﬂa) The argument
of the proof of Equation (25) shows that

m
28 4B t= L
(28) (45a) dea(o)

in the direct summand H'(Q,, V(f)3,) = Q;@V(f)zga(—l) of H(Q,, V™), where

(qa®1) @ ¢p

(29) a(f)* @y, @wp, satisfies 7rgn(—1)(qhs ® qas) = 1.

. 1
o = —— -
8=
Let pr,g HY(Q,, V™) — HY(Q,,Q,) ®q, V(f);ﬁ denote the projection, and write

(30) Pry ,B®f/j Oﬂfg hao Q(lﬁ Z’Yu@%lﬂ 7U0)

with v, in H1(Q,, Q,) = Hom(Q;, Q) for u = k,1,m, where (with the notations
introduced in Section 3.2.1) B¢, 4, is a shorthand for

/BRFcont(Qp7V7)/Rl—‘cont(vavi) : HO(QP’ Vﬁ) H Hl(QP7 Vﬁ) ®L j/‘]2’
and u, =2 if w = k and u, = 1 if w =1, m. Then (cf. Equation (21))

Lemma 3.4

(qap: 980 >>fgaha = </8;gaha (Qaﬁ)aj(qﬁa)+>Tate
3. nd a
Eqgs (28):a (30) _mp . Z<'7u ® ug, (CIA®1) ® q25>Tate . (u _ Uo)
deg( w) o
1 u - 9

u

where the last equality follows from Equation (29) and the analogue of Equation (20)
obtained by replacing acv and B with Sa and af respectively. It then remains to
compute 7y, for u equal to k, I and m.
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For £ = f,g,, ha, fix O¢-bases bzt of V(€)*. After identifying V(&) with O¢ @ O
via the O¢-basis (b6+7 b ), the action of Gq, on V(§) is given by (cf. Equation (9))
X¢ - dp(é)_l : ng_cl Ce

0 ap(§)

for a continuous map c¢ : Gq, — O¢. Without loss of generality, assume that

: GQp — GLQ(ﬁ&)

Qop = by ®by @by ®1
in V™ =V(f)"®LV(9,)®LV (ha) ®;,, Efgn maps to
Gap €V (fap =V (f) ®q, V(9)a @ V(h)s

under p, : V- — V7. (Recall that V(¢) = V(&,) ®; L is the direct sum of
V(€)a=V(&,) @1 Land V(§)s =V (€,)T @1 L for £ = g, h, cf. Section 3.1.1.) Then

where g5 = b;®b;ra ®b:;a ® 1, where

iy (f) - (g, s
r— p(éz,(h,i;g )~Xh~xg’y72 k-l42)/2 _

and where

A =a,(f) -ap(ha)—1 X - X(M—k—l+2)/2 e

cyc 9o
The exceptional zero condition oy = B, - v, and the self duality condition x4 - xn =1
imply that I' takes values in .#. Moreover, since the Gq,-module V(g) = V(g,) ®1 L
splits as the direct sum of V(g)g = V(g,)" ®1 L and V(9)s = V(g,)~ ®1 L, the map
cg., takes values in (I — 1) - Og, hence A takes values in .#. Because by construction
qpz maps to an element of V(f)gﬁ under the specialisation map p,,, : V- — V7,
Lemma 3.2 and Equations (30) and (32) yield the identities

0

Tu =~ D))

hence (as in the previous subsection

~—

a direct computation gives

| =

. 1
(33) Te =5 logg, =g logg and g = -7 logy, .

2
Recalling that log¢(ga) = 0 by [GS93, Theorem 3.18|, Equation (31) finally proves

2 - deg(poo)

34 o st g, = (SF —S50) (4= 1)~ (2F —2) - (m 1)
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3.5. Proof of Equation (8). — Assume in this subsection that (A, o) is exceptional
at p, and fix a Selmer class = in Sel(Q, V(f,g,h)). Let

i =) € H(Q,V(f,9.h))
be the corresponding extended Selmer class (cf. Section 3.1.2). By construction z©
belongs to the finite subspace of H'(Q,, V"), and its image under the natural map
it HE (Qp, V') — Hi (Qp, V) equals the restriction of x at p:
(35) res,(z) =it (zT).
The Galois group Gq, acts on V/( f)h+ via the p-adic cyclotomic character, hence

Hi(Qp V(f)y) = Z;y @2, V(f){ (-1)

by Kummer theory. If ¢ in V/( f); denotes (as in the previous subsections) the dual
basis of ¢, in V(f )h_ under the pairing 74, and if one writes

pr(I7) = & ® ¢ € Hgo(Qp, V(f)])

for some 53;' in Z3 ®z, L, then Equation (35) yields the equality

(36) log, (resp()) = (log} (Z7), &) rgn = (log,(T) ® 45, ab) rgn = log,, (),
i b

where log ! : Hi (Q,, V™) ~ Dqr(V™) is the Bloch-Kato logarithm and (with a slight
abuse of notation) we denote again by log, : Zs ®z, L — L the L-linear extension
of the p-adic logarithm. In the previous equation we used the functoriality of the
Bloch-Kato logarithm and the fact that (by construction) the linear form (-, g,) Foh
on Dgr(V™) factors through the projection onto DdR(V(f);') =V(f)(-1).

i
Assume (af = ay - o, and) g, = ggg. According to Equations (21) and (36)

(37) 2 {955, 7) g _n, = 108aa(resp(@)) - (K =1 —m),

thus proving Equation (8) in this case.
Assume ¢, = go3. Since (with the notations of Section 3.4) A takes values in
(I —1) - Ogn, it follows from Lemma 3.2 and Equations (32) and (33) that

(38) 2 Bry n(Gap) = Y ¢+ 108 Dap - (u— o) +0 - (1 —1)
3

for some cohomology class ¢ in Hl(vaV(f)[;[j)? where e, = —1 and g¢ = +1 for
&= f,g.- One has then

Lemma 3.4 — ~
(39) (qap: x».fgaha (k,1,1) emma <5fgaha (90p), 1:+>Tate(k’ 1,1)
Equation (38) }

2 <1ng ®qas; iga ® QZ5>Tate (k—2)

1 N .
3 og ¢ (&15) - Trgn(dap @ @g) - (k —2)

Equation (36) 1 log,, 5 (resy (2)) - (k —2),

DO | =
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thus proving Equation (8) when g, = ¢op. Switching the roles of the Hida families g,
and h,, this also proves Equation (8) when ¢, = ¢gq.
Assume finally g, = ¢oo. With the notations of Section 3.4, let (bg‘7 bg) be O¢-bases

of V(&) such that q,,, = b;®b;a ®b,:a ®1 is a lift of goa under the specialisation map
Puw, 1V~ —> V7. Since c¢ takes values in (u — u,) - O¢ for € = g,,, hq, one has

dqaa = (X£§;k_l_m)/2 : Hap(é) - 1) “qon (mOd (l - 17m - 1) ' C}:ont(QP? V_))7
13

hence Lemma 3.2 and a direct computation give
(40) 2-Bsg ha (qaa) = logs ®qae - (K —2)+9J- (1 —1)+ V- (m—1)

for some local cohomology classes ¥ and ¥ in H*(Q,, V™). As in (39) one deduces
Equation (8) for g, = ¢aa from Lemma 3.4 and Equations (36) and (40).

4. Proof of Theorem 2.1

Let Mg, My and My, be the improving planes in Ur x Ug x Uy, defined respectively
by the equations k =14+ m, k=1l—m+2and k =m — 1+ 2. For £ = f, g, h define
ap(§)
ap(€) - ap(€’)
in Opgp, where {€,&',¢"} = {f,9,.ha}. Lemma 9.8 of [BSV21d] implies that
(41) Z;(A, 0)lng = Elne - £ (A, 0)¢

for an improved p-adic L-function £**(A, )f in O(Tg). Indeed loc. cit. (together
with its analogue obtained by switching the roles of g and h) proves that the mero-
morphic function Z**(A4, ¢)¢ on Mg defined by the previous equation is (bounded,
hence) regular at w,. Shrinking the discs U if necessary, we then conclude that the
improved p-adic L-function Z**(4, 9)2 is analytic on [¢, as claimed.

Assume first ay = g - oy, so that

(42) 2-& (mod F%) = £ - (k—2) - £ - (1—-1) - £} - (m —1).

According to Theorem A and Proposition 9.3 of [BSV21d], the partial derivative of
25 (A, o) with respect to k vanishes at w,, hence

2-Z7(A,0) (mod I

Ee=1-Xe(p)-

is equal to
(S5 = £50) - U= 1)+ (£F" = £i1) - (m = 1)) - L7(A, o)} (wo)

by Equations (41) and (42). Moreover, with the notations introduced before the
statement of Theorem 2.1, one has L = My N T, and & = E¢|., thus

25 (A; 0)7(wo) = &(wo) - L7 (A, 0)" (wo).

Noting that & (w,) = 1 — pn/ap, (when ay = a4 - ay), the previous discussion and
Equation (27) conclude the proof of Theorem 2.1 when af = ay - .
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Assume now ay = 3, - ap,. In this case, for { = g, h, one has
(43) 2-& (mod F%) =L - (u—1) - £5*- (k —2) — £g' - (u' — 1),
where {(&,,u), (€, u)} = {(ga.1), (ha,m)}, and
(44) =LA 0)i(wo) = L (A, 0)y(wo) = Ep(w,) - L7 (A, 0)" (wo).

The second equality in the previous equation follows as above from the definitions,
according to which L = My N My and &; = &y|L. The first equality follows by noting
that the restrictions of £; and &, to the line M, NI}, satisfy

_ Xo(P) - ap(g0)
ap(f) - ap(ha) MyNMy,

(as ap(f)ln,nn, = af = a;l and x4 - xp = 1 by Assumption 1.1.1) with

Egln,nn, = “Enlnynny,

W) -alel)
ap(F) -y () ) T T

(In other words &y|n,nn, and —&x|n,nn, have the same leading term at w,, which
together with the equality &, - £ (A, 0);|n,nn, = &n- L5 “(A, 0)}|n,nn,, implies the
first identity in Equation (44).) Write

2- 27 (A, 0) (mod IN=a-(k—=2)+b-(I—1)+c-(m—1)
with a, b and ¢ in L. Equations (41) and (43) with £ = g and Equation (44) give
a+b=&r(w,)- (232 — L) - L (w,) and c—a=E(w,) - (L5 — &) - L7 (w,),
where £ is a shorthand for Z**(A, o)*. Similarly
b—a= & (w,) - (23‘; — L) - L (wo) and a+c= & (w,) - (€5 — L3 - L (w,)
by Equations (41) and (43) with & = h and Equation (44). As a consequence
—2- Z(A, 0) (mod .#?)

equals

Erlwe) - (£ — £2) - (L= 1) — (£ — &) - (m— 1)) - £2°(4, 0)" (w,).

1—
Noting that &f(w,) = 1 — 2—2 (when oy = B4 - ay), the previous discussion and
Equation (34) prove Theorem 2.1 when ay = f§, - ay,.
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