ERRATA TO «RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES»

by

Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci

• After Equation (82) on page 113 of [BSV22a], it is implicitly stated that the pairing det^{*}_U induces a *perfect* duality of $\Lambda_U[p^{-1}]$ -modules

 $\det_U^*: H^1(\Gamma, D_{U,m})^{\leqslant h} \otimes_{\Lambda_U[p^{-1}]} H^1_c(\Gamma, D'_{U,m})^{\leqslant h} \longrightarrow \Lambda_U[p^{-1}]$

for each non-negative rational number h. In this generality, this is false. It is true in the following special cases. • h = 0.

n = 0.

Proof. — With the notation of Section 4.3 of [**BSV22a**], there are Shapiro isomorphisms of $\Lambda_U[p^{-1}]$ -modules (cf. Equation (87) of loco citato)

 $\operatorname{Sh}_{\gamma}: H^{1}_{\gamma}(\Gamma, D'_{U,m})^{\leq 0} \simeq e' \cdot \mathbf{T}_{\gamma} \otimes_{\diamond} \Lambda_{U}[p^{-1}],$

where $\gamma = \emptyset, c$ and \mathbf{T}_c is defined by replacing $H^1_{\text{\acute{e}t}}(Y_1(Np^r)_{\bar{\mathbf{Q}}}, \mathbf{Z}_p)$ with $H^1_{\text{\acute{e}t},c}(Y_1(Np^r)_{\bar{\mathbf{Q}}}, \mathbf{Z}_p)$ in the definition of **T**. According to Section 1.3 of **[Oht03]** the pairing (cf. Equation (114) of **[BSV22a]**)

$$\det_{U}^{*} \circ \left(w_{Np}^{-1} \circ \operatorname{Sh}^{-1} \otimes \operatorname{Sh}_{c}^{-1} \right) : \left(e' \cdot \mathbf{T} \otimes_{\diamond} e' \cdot \mathbf{T}_{c} \right) \otimes_{\diamond} \Lambda_{U}[p^{-1}] \longrightarrow \Lambda_{U}[p^{-1}]$$

is the $\Lambda_U[p^{-1}]$ -linear extension of a perfect pairing $e' \cdot \mathbf{T} \otimes_{\diamond} e' \cdot \mathbf{T}_c \longrightarrow \diamond$ between finite free \diamond -modules.

• U is (sufficiently small and) centred at an integer $k \ge h+2$.

Proof. — Set $r = k - 2 \ge 0$, set $L_r = L_r(\mathbf{Z}_p)$, set $\mathscr{L}_r = L_r^{\text{ét}}$, and let

 $\det_{r,\mathbf{Z}_{p}}^{*}: H^{1}_{\text{\acute{e}t}}(Y_{\bar{\mathbf{Q}}},\mathscr{L}_{r}) \otimes_{\mathbf{Z}_{p}} H^{1}_{\text{\acute{e}t},\mathbf{c}}(Y_{\bar{\mathbf{Q}}},\mathscr{L}_{r}) \longrightarrow \mathbf{Z}_{p}$

be the morphism arising from the pairing $\det_r^* : L_r \otimes_{\mathbf{Z}_p} L_r \longrightarrow \mathbf{Z}_p$ defined by $\det_r^*(\mu \otimes \nu) = \mu \otimes \nu ((x_1y_2 - x_2y_1)^r)$ for all μ and ν in L_r (cf. page 96 of [**BSV22a**]). The \mathbf{Q}_p -linear extension of \det_r^* is perfect, hence (by Poincaré duality) so is $\det_{r,\mathbf{Z}_p}^* \otimes_{\mathbf{Z}_p} L$. The latter induces a perfect pairing

$$\det_r^* : H^1_{\text{\'et}}(Y_{\bar{\mathbf{Q}}}, \mathscr{L}_r)_L^{\leqslant h} \otimes_L H^1_{\text{\'et}, c}(Y_{\bar{\mathbf{Q}}}, \mathscr{L}_r)_L^{\leqslant' h} \longrightarrow L,$$

BERTOLINI ET AL.

where $M_L^{\leqslant \cdot h} = (M \otimes_{\mathbf{Z}_p} L)^{\leqslant \cdot h}$ (cf. Section 4.1.4 of [**BSV22a**]). Proposition 4.2 and Equation (73) of [**BSV22a**] give isomorphisms

$$\underline{\rho}_{k,\gamma}^{\boldsymbol{\cdot}}: H^1_{\gamma}(\Gamma, D_{U,m}^{\boldsymbol{\cdot}})^{\leqslant h} \otimes_k L \simeq H^1_{\gamma}(\Gamma, D_{r,m}^{\boldsymbol{\cdot}})^{\leqslant h} \simeq H^1_{\text{\'et},\gamma}(Y_{\bar{\mathbf{Q}}}, \mathscr{L}_r)_L^{\leqslant \boldsymbol{\cdot}}h,$$

where $\gamma = \emptyset, c, \cdot = \emptyset, \prime$ and $M \otimes_k L$ denotes the base change of M along evaluation at k on Λ_U . (The assumption h < k-1 is used here to guarantee that the comparison morphisms $H^1_{\gamma}(\Gamma, D^{\boldsymbol{\cdot}}_{r,m}) \longrightarrow H^1_{\text{ét},\gamma}(Y_{\mathbf{Q}}, \mathscr{L}_r)_L$ induce isomorphisms on the slope $\leq h$ parts.) By construction

$$\det_U^* \otimes_k L = \det_r^* \circ \varrho_k \otimes \varrho'_{k,c},$$

hence the specialisation $\det_U^* \otimes_k L$ of \det_U^* at weight k is a perfect pairing. Shrinking U if necessary, this implies that the finite $\Lambda_U[p^{-1}]$ -modules $H^1_{\gamma}(\Gamma, D_{U,m}^{\cdot})^{\leq h}$ are free, and that \det_U^* is perfect. \Box

In Section 4.2 of [**BSV22a**], the morphisms $\zeta_{U,m}, \zeta'_{U,m}, \mathbf{s}_{U,h}$ and $\mathbf{s}'_{U,h}$ are then defined assuming either h = 0 or U centred at an integer $k \ge h + 2$. The rest of the paper and its sequel [**BSV22b**] (where h = 0) are unaffected.

- In the line before Equation (92), *isomorphisms* should be *isomorphism*. The full stop after the isomorphism displayed in Equation (92) should be a comma.
- In the second line of Remark 4.4, $h < k_o 2$ should be $h < k_o 1$.

Acknowledgements

We thank David Loeffler for pointing out mistakes and inaccuracies.

References

- [BSV22b] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. Balanced diagonal classes and rational points on elliptic curves. *Astérisque*, 434:175–201, 2022. 2
- [Oht03] Masami Ohta. Congruence modules related to Eisenstein series. Ann. Sci. École Norm. Sup. (4), 36(2):225–269, 2003. 1

[[]BSV22a] Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci. Reciprocity laws for balanced diagonal classes. *Astérisque*, 434:77–174, 2022. 1, 2

BERTOLINI ET AL., Massimo Bertolini: Essen, Germany
E-mail: massimo.bertolini@uni-due.de • Marco Adamo Seveso: Milano, Italy
E-mail: seveso.marco@gmail.com • Rodolfo Venerucci: Milano, Italy
E-mail: rodolfo.venerucci@unimi.it