Normed vector spaces and the tannakian building

thiago solovera e nery

April 13th, 2024

These are the notes for a talk on the Kleine AG, April 2024.

1 Norms

Lets start by fixing a non-archimedian field K and a non-archimedian norm $|_|: K \to \mathbf{R}$. (The paper fixes an ordered group Γ , but every non-archimedean field has $\Gamma \subset \mathbf{R}$ by definition and we will only need the case where, in fact, $|K| = \mathbf{R}$.) Let $A \subset K$ be its ring of integers and k its residue class field.

Definition 1. Let V be a K-vector space. A <u>non-archimedian norm</u> on K is a function $|_{-}|: V \rightarrow \mathbf{R}$ such that

- 1. |x| = 0 if and only if x = 0;
- 2. $|\lambda x| = |\lambda||x|$;
- 3. $|x + y| \leq \max\{|x|, |y|\}$.

A <u>normed vector space</u> is a *K*-vector space endowed with a norm. A linear map $V \to V'$ is said to be <u>contractive</u> if $|f(x)| \le |x|$ for all $x \in V$. In particular they are continuous.

If $W \subset V$ is a subspace, then it inherits a norm. The quotient V/W inherits the norm

 $|v+W| = \min_{w \in W} |v+w|$

and becomes normed also, and the map $V \to V/W$ is strict. A homomorphism $f: V \to V'$ is called <u>strict</u> if it induces an isomorphism <u>of</u> normed vector spaces $V/\ker f \xrightarrow{\sim} f(V) \subset V'$. If V = K then one sees that the usual norm is a norm in the sense above. Furthermore, point 2 above implies that the choice of a norm on V is determined by choosing any point $v \in V$ and $|v| \in \mathbf{R}$. In higher dimensions, such argument breaks down, and we make it into a definition.

Definition 2. Let V be a normed vector space. A <u>splitting</u> of V is defined to be a K-basis e_i such that

$$\left|\sum_{i} \lambda_{i} e_{i}\right| = \max_{i} |\lambda_{i}| |e_{i}|.$$

The terms splittable, split and etc are defined as usual.

Remark. If *K* is spherically complete (eg. a DVF) then every *K* vector space is splittable. In fact the converse is also true, as one may find in that case an extension $L \supset K$ with |L| = |K| and k = l. Taking $a \in L - K$ the vector space $K \oplus aK$ with obvious norm does not admit a splitting.

Definition 3. Let V be a normed vector space over K. For $\lambda \in \mathbf{R}_{>0}$ we define

 $V^{\leq \lambda} = \{ v \in V \mid |v| \leq \lambda \}, \qquad V^{<\lambda} = \{ v \in V \mid |v| < \lambda \}.$

Clearly each $V \leq \lambda$ is a flat A-module, and a lattice in V if finitely generated. Furthermore if x is in K then

 $V^{\leqq \lambda} \xrightarrow{\sim} V^{\leqq |x|\lambda}$

via multiplication by x.

The $\{V_{\lambda}\}_{\lambda \in \mathbf{R}}$ therefore determine a filtration on V (which for example makes V into a topological vector space in a natural way). The associated graded

 $\operatorname{gr}(V) = \bigoplus_{\lambda \in \mathbf{R}} V^{\leq \lambda} / V^{<\lambda}$

is therefore a k-vector space. We note that K^{\times} acts on V compatibly with the Γ -filtration in the sense that $x \in K^{\times}$ maps $V^{\leq \lambda}$ into $V^{\leq |x|\lambda}$. This also descends to an action of K^{\times} on gr(V).

Definition 4. Let K be a non-archemedean field. We denote by Norm[°](K) the category of splittable normed finite dimensional K-vector spaces. The morphisms are contractible (but not necessairly strict) homomorphisms of such.

We endow this category with some structure. Firstly, we see that this is an exact *A*-linear category, with short exact sequences given by strict extensions. Secondly, there is a canonical forgetful faithful functor

forg: Norm[°](K) \rightarrow Vect(K)

forgetting the underlying norm. Similarly, we have a forgetul functor

 $(_) \stackrel{\leq}{=} 1: \operatorname{Norm}^{\circ}(K) \to \operatorname{Mod}(A)$

given by $V \mapsto V^{\leq 1}$ (and similarly for $\leq x$). This is also faithful since $f(x) = \pi^n f(x/\pi^n)$.

Most importantly, Norm $^{\circ}(K)$ is a strict tensor category. Firstly, we have a tensor product $V \otimes W$ where we define

 $|z| = \min_{z = \sum_j v_j \otimes w_j} \max_j |v_j| |w_j|.$

Here we check that this is a well defined norm and that if e_i and f_j split V and W we have that $e_i \otimes f_j$ splits $V \otimes W$.

For the duals, we define a norm on $V^* = Hom(V, K)$ as

 $|\phi| = \max\{|\phi(v)|/|v| \mid v \neq 0\}$

and check that we have maps $V \otimes V^* \to K$ and $K \to V \otimes V^*$ as usual by choosing a splitting basis and showing its independent of it. We can now also re-interpret the *A*-linear structure as

 $\operatorname{Hom}(V,W) = (V^* \otimes W)^{\leq 1} \in \operatorname{Mod}(A).$

1.1 Lattices

A lattice in a K vector space V is an A-submodule $L \subset V$ such that L is finitely generated and

 $L \otimes_A K \xrightarrow{\sim} V.$

Since L is automatically flat, this is equivalent to L being (finitely locally) free.

Definition 5. Let $L \subset V$ be a lattice in a finite dimensional *K*-vector space. We define a norm $|-|_L = |-|$ associated to *L* to be

$$|v| = \left|\sum_{i} \lambda_{i} v_{i}\right| = \max_{i} |\lambda_{i}|$$

for $\{v_i\}$ A-basis of L. Clearly this is a splittable norm with $V^{\leq 1} = L$ and |V| = |K|.

Proposition 1. Let V be a splittable normed K-vector space, and suppose that $|V| \subset |K|$. Then $V^{\leq 1}$ is a lattice and this induces the norm on V.

Proof. If V is a normed K-vector space, $\{e_i\}$ splits V, and $|e_i| \in |K|$ (and hence we can assume that $|e_i| = 1$), then

 $L = e_1 A \oplus \dots \oplus e_d A = V^{\leq 1}$

is a lattice and the norm comes from it by its non-archimedeanness.

Corollary 1. If $|K| = \mathbf{R}$ then lattices are in bijection with splittable norms.

We are interested, however, mostly in the case where K is a discretely valued field. In that case, it is not enough to remember a lattice, but we must also remember an **R**-filtration in a compatible way. (This is indeed, included in the original definition of the building).

Definition 6. Let V be a finite dimensional K-vector space. Suppose given an A-lattice $L \subset V$ and an **R**-grading χ of L, ie.

$$L = \bigoplus_{w \in \mathbf{R}} L_{w}, \quad (V = \bigoplus_{w \in \mathbf{R}} V_{w})$$

Then we define a norm $|_{-}| = |_{L_{\chi}}$ via

$$|v| = \left|\sum_{w} v_{w}\right| = \max_{w} w . |v_{w}|_{w} \in \mathbf{R}$$

where $|_{-}|_{w}$ is the norm on V_{w} defined by L_{w} .

Remark. A grading of L as above can be seen as the same data as a homomorphism

 $\chi: D_A \to \mathsf{GL}(L) \cong \mathsf{GL}_{d,A},$

where D_A is the "diagonal" A-group scheme given by the Hopf groupalgebra $A[\mathbf{R}]$. (Its representation parametrize **R**-gradings on Amodules).

Proposition 2. The norms $|_{-|_{L,\chi}}$ are splittable for every L and χ as above. Every splittable norm is furthermore of this form (in more than one way).

2 Normed Fiber Functors

We now fix a smooth affine model \mathcal{G} of G over A. Also fix some non-archimedean extension L/K with integral elements B and residue l. (Not required to be algebraic, or to preserve the value group.)

Definition 7. A <u>normed fiber functor</u> over some non-archimedean extension L/K (with respect to our fixed model G) is an A-linear tensor exact (faithful) functor

 $\alpha : \operatorname{\mathsf{Rep}}^{\circ}(\mathcal{G}) \to \operatorname{\mathsf{Norm}}^{\circ}(L)$

from the category of dualizable G-representations in finite (free) A-modules to the category of L-norms as defined last section.

Definition 8. Let $\omega: \operatorname{Rep}^{\circ}(\mathcal{G}) \to \operatorname{Vect}_K$ be a fiber functor. We define the set of norms on ω , $N^{\otimes}(\omega)$, to be the set of normed fiber functors whose underlying fiber functor is ω . We also define $N^{\otimes}(\mathcal{G})$, the set of norms of \mathcal{G} , to be the set of norms on the standard (forgetful followed by base-change) fiber functor of \mathcal{G} .

This comes equipped with two actions

- An **R**-action given by the canonical **R**-action on the norms.
- A G(K)-action given by the canonical action of G(K) on $L \otimes K$.

For clarity, if $|_{-}|: V \to \mathbf{R}$ is some norm, then so is $\lambda|_{-}|$ for $\lambda \in \mathbf{R}_{>0} \cong \mathbf{R}$. Similarly, if $T \in GL(V)$ then so is $|T^{-1}_{-}|$.

The goal of this seminar is to show that in fact, this is nothing but the (extended) Bruhat-Tits building of $G = \mathcal{G}_K$. The more modest goal of this talk, is to establish the result for split tori. For now, we show that the building is non-empty, and in fact has a canonical base point. Consider the standard integral fiber functor

 $\lambda \colon \operatorname{Rep}^{\circ}(\mathcal{G}) \to \operatorname{Mod}_A$

given by forgetting the action. This determines a canonical lattice $\lambda(V) \subset \lambda(V) \otimes K = \omega(V)$. In particular it determines a splittable norm on it.

2.1 Example: the building of a torus

Let Γ be an abelian group. There is an associated algebraic group over \boldsymbol{Z}

 $D^{\Gamma} = \operatorname{Spec} \mathbf{Z}[\Gamma]$

given by the Hopf algebra above. From a tannakian perspective, D^{Γ} -representations are given by a Γ -grading on a lattice. (The γ -graded part being associated with the γ -eigenspace for such representation.)

Very crucially, we may identify $D^{\mathbf{Z}}$ with \mathbf{G}_m and $D^{\mathbf{Z}^n}$ with \mathbf{G}_m^n . For a ring A we write D_A^{Γ} for the base change of the group scheme above to Spec A.

Lemma 1. Fix a field k, and let T be a split k-torus, ie. $D_k^{\mathbf{Z}^n} = \mathbf{G}_{m,k}^n$. Then there exists a canonical, **R** and T(k)-invariant isomorphism

 $\operatorname{Hom}_{\operatorname{Gps}}(D_{k}^{\mathbf{R}},T)\cong X_{*}(T)\otimes \mathbf{R}\cong \mathbf{R}^{n}.$

Proof. The idea of the proof is as follows: we imediately reduce to the case of n = 1 and we note that any homomorphism of groups $x: \mathbb{Z} \to \mathbb{R}$ singles out a morphism

 $\operatorname{Spec} k[T^{\mathbf{R}}] = D_k^{\mathbf{R}} \to D_k^{\mathbf{Z}} = \operatorname{Spec} k[T^{\pm}]$

given by the functoriality of D. (In coordinates, we identify the right hand side as $\mathbf{Z}[T^{\pm}]$ and the morphism is given by $T \mapsto T^x$ on the left.)

Crucially now, we use the fact that this is a homomorphism of algebraic groups, hence of Hopf algebras, to see that any such homomorphism is of this form. (Hint: write the image of T as $\sum_{x} a_{x}T^{x}$. Use the fact it preseves multiplication to see that only one a_{x} is non-zero. The fact that it preserves inversion implies that this $a_{x} = 1$.) The proof now follows.

Fix a split torus $G = \mathbf{G}_{m,K}^n$ and its canonical integral model $\mathcal{G} = \mathbf{G}_{m,A}$.

Now, we construct a map $\operatorname{Hom}_{\operatorname{Gps}}(D_{K}^{\mathbf{R}},G) \to N^{\otimes}(G)$. Given such a map

 $\chi \colon D_K^{\mathbf{R}} \to G$

we have now a unique extension to a homomorphism $D^{\mathbf{R}}_A \to \mathcal{G}$. This determines a norm

 $\alpha_{\chi} : \operatorname{\mathsf{Rep}}^{\circ}(\mathcal{G}) \to \operatorname{\mathsf{Norm}}^{\circ}(\mathcal{G})$

given as follows.

Fix a \mathcal{G} -representation L over A. Then this determines a representation $D_K^{\mathbf{R}} \to \mathcal{G} \to \operatorname{GL}(L)$, and hence a decomposition into eigenspaces

 $V = \bigoplus_{x \in \mathbf{R}_{>0}} V_x.$

This determines therefore a norm by the results of last sections. This assembles into a normed fiber functor (ie. is functorial, exact and endowed with a canonical symmetric monoidal structure).

Theorem 1. The construction above determines a bijection

 $X_*(T) \otimes \mathbf{R} \cong \operatorname{Hom}(D_K^{\mathbf{R}}, T) \xrightarrow{\sim} N^{\otimes}(T).$

equivariant for both G(K) and **R** actions.

We break the proof into three parts.

Proof (equivariance). How does $(K^{\times})^n$ acts on both sides? On the left we see that each such tuple determines a morphism $T \to T$ and hence we get an action. On the right, we write for each normed vector space $\alpha(V)$ a decomposed lattice $L(V) = \bigoplus_x L(V)_x$ determining its norm, and we see that we must re-scale the norm acording to the tuple in question.

Staring at this long enough one sees that the construction above is equivariant essentially from its definition. $\hfill\square$

Proof (injectivity). Since we have fixed a lattice in our construction (namely the canonical one associated to our base point \mathcal{G}) the norm is completely determined by the grading.

Proof (surjectivity). By the "Main Theorem" of the paper, every norm is splittable. (More about this, and proof, on next talk). This gives us in particular another integral model $\tilde{\mathcal{G}}$ of $G = \mathcal{G}_K$ given by the fiber functor

 $\lambda : \operatorname{Rep}^{\circ} \mathcal{G} \to \operatorname{Mod}_A$

of our fiber functor ω together with a map $\chi\colon D_A^{\mathbf{R}}\to \widetilde{\mathcal{G}}$ splitting the norm globally.

Now \mathcal{G} and $\widetilde{\mathcal{G}}$ are isomorphic fpqc-locally on A, and since we are working with smooth models, they are also isomorphic étale locally on A. But since any T-torsor on A is trivial (Satz90) they must be already isomorphic over A.

Since there was already a fixed isomorphism $\mathcal{G}_K \cong \widetilde{\mathcal{G}}_K$, we get an element $g \in G(K)$ and a computation shows that $g\chi$ splits \mathcal{G} already. In other words, $g\theta_{\chi}$ is our normed fiber functor. By equivariance, the map above is surjective.