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Introduction

Arguably one of the most fascinating objects in mathematics is the Riemann
zeta function ζ. An interesting question which one might ask: what happens if
we plug in positive integer values? Euler found a remarkable, explicit formula
for the values of the Riemann zeta function at the positive even integers. But
for odd numbers, not much is known. There is an intriguing conjecture stating
that

2πi, ζ(3), . . . , ζ(2n+ 1), . . .

are algebraically independent over Q. But it is surprisingly hard to prove.
However, some things have been done in this direction. For example, we know
that π is transcendental (proven by Lindemann in 1882), that ζ(3) is irrational
(shown by Apéry in 1978) and that the Q-vector space spanned by the odd zeta
values is infinite dimensional (proven by Rivoal and Ball–Rivoal around 2000).

All these results can be proven by constructing small linear forms in zeta
values coming from elementary integrals. More precisely, the basic structure of
all these irrationality proofs is as follows:

1. Construct a sequence (In)n of Q-linear forms

In ∈ Qζ1 + · · ·+ Qζs,

in fixed zeta values ζ1, . . . , ζs.

2. Prove bounds on the linear forms, i.e. find inequalities of the form

0 < |In| < εn,

where ε is a small positive integer.

3. Bound the denominators of the linear forms, i.e. prove there exists a
sequence (dn)n of integers dn ∈ Z such that

dnIn ∈ Zζ1 + · · ·+ Zζs

for all n, and such that dnε
n → 0 as n→∞.
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4. Use these to deduce the desired result (by deriving a contradiction in some
way).

So how does one find suitable linear forms? In practice, they often seem to
come from elementary integrals. It was the insight of Francis Brown that there
is a more conceptional construction of such linear forms which recovers many of
the known irrationality proofs. The motivation of his approach is the following
theorem:

Theorem (Brown, 2009). The periods of the moduli space M0,n of stable n-
punctured curves of genus 0 are all linear combinations of multiple zeta values.

Remark. For any tuple of integers (s1, · · · , sk) ∈ Zk such that s1 > 1 and
si ∈ Z≥1 for i ∈ {2, · · · , k}, there is a corresponding multiple zeta value defined
by the formula

ζ(s1, · · · , sk) =
∑

n1>n2>···>nk≥1

1

ns11 n
s2
2 · · ·n

sk
k

.

One can show that this sum converges. The weight of the above multiple zeta
value is defined to be s1 + · · · + sk. These multiple zeta values have quite
some relations between them, often also involving ‘single’ zeta values. A famous
example is the fact that ζ(2, 1) = ζ(3) (shown by Euler). Therefore, the above
theorem gives one some hope that computing periods of M0,n will produce some
linear forms to use in irrationality proofs.

In [4], Brown constructs fast converging sequences of period integrals on the
moduli space of stable n-punctured curves of genus 0. Furthermore, he gives
a motivic criterion for the vanishing of multiple zeta values of certain weight.
His families of period integrals recover essentially all of the above irrationality
results on zeta values. Furthermore, they provide promising candidates for new
interesting sequences of linear forms in multiple zeta values.

The aim of this seminar is to understand Brown’s paper [4]. In the first
two talks, we summarize the ’classical’ proofs of Apéry and Ball–Rivoal. Af-
terwards, we recall some facts about periods of smooth algebraic varieties. As
an example, we will realize ζ(2) as a period. In the following talks, we give a
brief introduction to moduli spaces of stable n-punctured curves. We will not
be able to give full proofs in this part of the seminar. Instead, we focus on the
key ideas and an explicit description of the moduli space M0,n. Finally, we will
study Brown’s paper [4] and prove that it recovers the irrationality proofs of
Apéry and Ball-Rivoal.

List of talks

In the following, we give a detailed summary of the content of the talks.

1 Introduction and overview, October 14

We give an introduction to the topic and summarize the goals of this seminar.
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2 Irrationality of zeta values, October 21

In the first part of this talk, we will prove Apéry’s theorem on the irrationality
of ζ(3) following Beuker’s proof in [2].

• Prove the upper bound lcm(1, . . . , n) < 3n, see [2, §2].

• State and prove statements (b) and (d) of Lemma 1 in [2] and explain how
they are used to construct linear forms in 1 and ζ(3).

• Deduce the irrationality of ζ(3), see [2, Theorem 2].

The goal of the second part of this talk is to sketch the proof of the theorem of
Rivoal and Ball–Rivoal, see [1] and [7, §2.2] for a nice summary.

• Introduce the series Sn(z), see [1, p. 195] or [7, equation (19)].

• State [7, Proposition 2.5] and sketch the proof of (a), see [7, §2.3.2 and
§2.3.3] and [1, Lemme 1].

• State Nesterenko’s linear independence criterion ([7, Théorème 2.8]) which
will be proven in the next talk and deduce the theorem of Rivoal and Ball-
Rivoal.

• State (without proof) the alternative formula for the value Sn(1) given at
the end of §2 in [7, p. 31]:

Sn(1) =
(rn)!2

n!2r

∫
[0,1]a−1

∏a−1
j=1 x

rn
j (1− xj)ndxj

(1− x1 . . . xa−1)rn+1
∏

2≤2j≤a−2(1− x1 . . . x2j)n+1
.

This formula will be used in a later talk.

3 Nesterenko’s linear independence criterion, October 28

The aim of this talk is to prove Nesterenko’s linear independence criterion. We
will follow the simplified proof of Fischler and Zudilin, see [8].

• Recall Minkowski’s convex body theorem.

• Formulate Nesterenko’s linear independence criterion, see [8, Theorem A].

• Prove Nesterenko’s criterion, see [8, §2.1]. The statement proven in [8,
§2.1] is slightly stronger than Nesterenko’s criterion (Theorem A). For our
purposes it is enough to prove Nesterenko’s criterion in its original form.
You may assume δi,n = 1, which simplifies the formulation and the proof.
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4 The comparison isomorphism, November 4

The aim of this talk is to sketch the proof of the comparison isomorphism
between de Rham and Betti cohomology for smooth varieties over a field of
characteristic zero.

• Sketch the proof of the comparison isomorphism [6, Theorem 2.90] be-
tween Betti and de Rham cohomology for smooth varieties over a field of
characteristic zero. A nice exposition is given in [6, §2.3].

5 Periods, November 11

In this talk, we discuss algebraic de Rham cohomology relative to a normal cross-
ing divisor. We extend the comparison isomorphism to this relative situation
and define periods as matrix coefficients of this period isomorphism. Finally, we
give a detailed example realizing ζ(2) as a period. This computation will serve
as a guiding example for realizing zeta values as period integrals.

• Recall the definition of de Rham comomology relative to a normal crossing
divisor, see [6, §2.2.7] or [9, §3.3.1.2].

• State [6, Theorem 2.127] and explain [9, Remark 2.129].

• Define periods, see [6, Definition 2.133] and give some Examples, e.g. [6,
Example 2.135].

• Explain how to realize ζ(2) as a period, see [6, §2.5.1]. This example
is important, so please take some time to discuss it. You can put this
example into perspective by observing that the blow-up of P1 × P1 at
(0, 0), (1, 1) and (∞,∞) is the moduli space M0,5, see [12, p. 41]. We will
discuss these moduli spaces in the following talks.

6 Moduli functors and moduli spaces, November 18

The aim of this talk is to recall basic facts about moduli spaces.

• Define moduli functors, fine moduli spaces and coarse moduli spaces, for
example using [12, §2].

• Give examples and non-examples, e.g. projective space, the j-invariant,
etc. See [12, §1 and §2.3].

• Prove [13, Proposition 2.4.23] and deduce [12, Proposition 2.10].

7 Moduli of stable curves, November 25

In this talk, we introduce the moduli problem of stable curves (with marked
points) and discuss its basic properties.
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• Recall some basic facts about (complex) curves, see [12, Definition 3.2,
Proposition 3.3, Exercise 3.4, Definition 3.6, Exercise 3.8].

• Explain [12, Fact 3.9].

• Define stable curves and stable n-pointed curves, see [12, Definition 3.10].

• Prove [12, Proposition 3.13].

• Define n-pointed families of smooth/stable curves and introduce their
moduli functors, [12, Definition 3.16 and 3.17].

• State (without proof) [12, Theorem 3.19].

8 The construction of M0,n, December 2

In this talk, we sketch the construction of the moduli space of stable curves of
genus 0 with n marked points.

• Explain the combinatorics of the boundary divisors, e.g., using ’stable
graphs’, see [12, Definitions 4.5 and 4.8].

• Sketch the construction of the ’gluing, forgetful and stabilization mor-
phisms’, see [12, Proposition 4.15], [13, §4.5.].

• Explain the key ideas behind the inductive construction of M0,n, see [11]
or [13, §4.5.4].

9 Dihedral extensions, December 9

The aim of the following two talks is to give an explicit description of the moduli
space M0,n and its boundary divisors M0,n \M0,n.

• Define the cross ratio and introduce simplicial and cubical coordinates,
see [3, §2.1].

• Introduce dihedral structures, dihedral coordinates and prove Lemma 2.2
and Corollary 2.3 from [3].

• Discuss the R-valued points of the moduli space, define the open cells XS,δ

and explain the simplicial and cubical coordinates in the example M0,5.
Discuss [3, Lemma 2.6].

• Introduce dihedral extensions and discuss their basic properties, see [3,
Definition 2.4, Lemma 2.5, Lemma 2.6, Definition 2.7]. If time permits
sketch the proofs of Lemma 2.5 and Lemma 2.6. In the next talk, we
will see that the dihedral extensions form explicit affine charts for the
compactification M0,n.
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10 Explicit description of M0,n, December 16

In this talk, we will prove that dihedral extensions give us explicit charts for
the moduli space M0,n. Using these charts, we will be able to check that M0,n

is smooth and irreducible, and that M0,n \M0,n is a normal crossing divisor.

• Recall the definition of dihedral coordinates and dihedral extensions from
the last talk.

• Introduce the forgetful maps and prove that they extend to the dihedral
extensions, see [3, Lemma 2.9].

• State [3, Proposition 2.12], you do not have to prove it.

• Prove Lemma 2.13 and deduce Theorem 2.15 in [3].

• Introduce Brown’s compactification M0,n and state that it coincides with
the Deligne-Mumford-Knudsen compactification, see [3, §2.8].

• Prove Lemma 2.30 and Lemma 2.31 and deduce Corollary 2.32, see [3,
§2.8].

• State Definition 2.34, Proposition 2.35 and deduce Corollary 2.36, see [3].

11 Configurations and cellular integrals, January 13

The aim of this talk is to introduce cellular integrals, which are the first examples
of period integrals that give interesting linear forms in zeta values. We will
introduce cellular integrals and discuss their basic properties. Their convergence
is proven in the next talk. This talk covers essentially §3.1 -§3.3 of [4].

• Recall the notion of being ’of finite distance’ from Talk 10.

• Define convergent configurations, see [4, Definition 3.1].

• Define cellular forms and show that they descent to M0,S , see [4, §3.2].

• Prove [4, Lemma 3.2], i.e. [5, Proposition 2.7]. The proof of equation (2.7)
of [5] will be given in the next talk, so you can take it for granted.

• Define basic cellular integrals, see [4, Definition 3.5]. Observe Remark 3.7
and equation (3.8). These observations imply that 0 < |Iδ/δ′(N)| → 0 as
N →∞.

12 Convergence of cellular integrals, January 20

In this talk, we will prove the convergence of the cellular integrals introduced
in the previous talk. We follow [4, §3.4].

• Recall [3, Corollary 2.36] from Talk 10.

• Prove Lemma 3.8 and Corollary 3.9 of [4] and state Remark 3.10.

6



• Prove [4, Lemma 3.10], i.e. [5, equation (2.7)]. The proof uses [3, Propo-
sition 7.5].

• Sketch the proof of [3, Proposition 7.5]. For the proof, you will need to
recall [3, Proposition 2.35] from Talk 10.

13 Generalized cellular integrals, January 27

The aim of this talk is to generalize the period integrals of the previous two
talks, i.e. to introduce generalized cellular integrals. This family of integrals
allows us to recover many irrationality proofs for zeta values. For example, we
will see in the next talk that the linear forms of Apéry and Ball–Rivoal are
special cases of generalized cellular integrals. The main source of this talk is [4,
§5.1 and §5.2].

• Define generalized cellular integrals and parametrize them by sequences
of integers, see [4, §5.1 and §5.2].

• Discuss the polar locus of the generalized cellular forms and the conver-
gence properties of generalized cellular integrals, see [4, Proposition 5.2]
and [4, Corollary 5.3].

14 Back to irrationality proofs, February 3

In this final talk, we will close the circle and come back to irrationality proofs.
We will recover the linear forms of Apéry and Ball–Rivoal as period integrals
on certain moduli spaces of stable curves.

• Sketch the proof of [4, Proposition 7.2] and relate the corresponding gen-
eralized cellular integral to the linear forms appearing in the proof of
Ball–Rivoal from Talk 2.

• Show that the basic cellular integrals for n = 6 recover Apéry’s proof from
Talk 2. If time permits show that the vanishing of ζ(2) in these linear
forms has a ’motivic’ explanation, see [4, §11, Appendix 3].
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