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1 Introduction

If M is a smooth manifold, one introduces the de Rham cohomology of M , which is an
important geometrical invariant of M . It is defined as the quotient

HdR(M,E) =
ker(d)

im(d)
,

where d denotes the exterior derivative on the space of smooth differential forms on M
with values in some vector space E over the real or complex numbers.
In the case of a complex manifold X, there is an almost complex structure on the tangent
bundle of X. Hence every differential form of degree k splits uniquely into a sum of forms
of degree (p, q), where p+ q = k.
Since the almost complex structure on a complex manifold is integrable, the exterior
derivative splits into a sum

d = ∂ + ∂̄,

where ∂̄ and ∂ denote the Dolbeault operator and the conjugate Dolbeault operator (see
[Wel08]). They satisfy

∂ ◦ ∂ = ∂̄ ◦ ∂̄ = ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0.

So, in addition to the de Rham cohomology, we can consider the so-called Dolbeault
cohomologies of X, which are defined to be

H∂̄(X,E) =
ker(∂̄)

im(∂̄)
and H∂(X,E) =

ker(∂)

im(∂)
.

While complex conjugation induces an isomorphism between the two Dolbeault coho-
mologies, in general, there is no natural map between HdR(M,E) and H∂̄(M,E). But,
one can introduce two cohomologies of X, which connect the de Rham and the Dolbeault
cohomology. The first one is the Bott-Chern cohomology [BC65], defined as

HBC(X) =
ker(∂) ∩ ker(∂̄)

im(∂∂̄)
,

and the other one is the Aeppli cohomology [Aep65], which is set to be

HA(X) =
ker(∂∂̄)

im(∂) + im(∂̄)
.

The connection that they provide is expressed in the following commutative diagram of
(bi-)graded complex vector spaces

HBC(X)

%%yy ��
H∂̄(X)

%%

HdR(X)

��

H∂(X)

yy
HA(X)

,

1



where the maps are all induced by the identity on the space of differential forms on X.
The natural question arises whether the maps in the diagram are injective or surjective.
It turns out that in general neither of them is. If X is compact, one knows that all
of the above cohomologies are finite-dimensional. Even in this case, no injectivity or
surjectivity is guaranteed.
The map from Bott-Chern to the de Rham cohomology is injective if and only if every
form which is exact with respect to ∂ and ∂̄ and closed with respect to d is ∂∂̄-exact.
Manifolds that fulfil this property are said to satisfy the ∂∂̄-Lemma [Ang14]. P. Deligne,
Ph. A. Griffiths, J. Morgan, and D. P. Sullivan proved in [DGMS75] that this is the
case for compact Kähler manifolds. They also proved that all maps are isomorphisms
whenever X satisfies the ∂∂̄-Lemma. In section 3 we will further investigate the relation
of the injectivity and surjectivity of the maps in the above diagram. Special attention
will be given to the case, where the diagram is restricted to one degree.
Another connection between the Dolbeault and the de Rham cohomology is the Frölicher
spectral sequence. It is a spectral sequence whose first sheet is isomorphic to the Dol-
beault cohomology and which abuts to the de Rham cohomology. This spectral sequence
yields the Frölicher inequality for compact complex manifolds [Frö55]

dimC Hk
dR(X) ≤

∑
p+q=k

dimC Hp,q
∂ (X) <∞.

Also, the spectral sequence degenerates at the first sheet if and only if equality holds in
the Frölicher inequality.
In [DGMS75] it was proved that a complex manifold satisfies the ∂∂̄-Lemma if and only
if the Frölicher spectral sequence degenerates at sheet 1 and, in addition, the natural
filtration on the space of differential forms induces some Hodge structure on the de
Rham cohomology. In section 4 we will recall this result and its proof.
The question arises what happens if the ∂∂̄-Lemma holds only in one degree. This means,
we will fix an integer k such that every differential form of degree k that is exact with
respect to ∂ and ∂̄ and closed with respect to d is ∂∂̄-exact. In section 5 we will see an
equivalent formulation of this property in terms of the Frölicher spectral sequence and
the filtration on the de Rham cohomology. The last section will give some applications
of this theorem.
We will state and prove everything in an abstract homological setting. The statements
about complex manifolds will be simple corollaries of their homological versions. For
this purpose, section 2 will introduce the homological concepts we will need. We will
explain the basics of the theory of complexes and their cohomologies as well as spectral
sequences.
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2 Definitions

2.1 Complexes and cohomologies

In this section we introduce the basic notions in cohomology of complexes. For more
details we refer to [Wei95] and [Bou98].

2.1.1 Complexes

If M is a smooth manifold, we can consider the space Ak(M) of complex valued smooth
differential forms of degree k on M . On this space we have the exterior derivative

dk : Ak(M)→ Ak+1(M)

satisfying dk+1 ◦ dk = 0. Thanks to this property one can introduce the de Rham coho-
mology Hk

dR(M) of M , which is defined to be

Hk
dR(M) = ker(dk)/ im(dk−1).

This notion, of course, can be viewed in a more general context, which leads to the notion
of a cochain complex of vector spaces and its cohomology.

Definition 2.1 (Complex). A cochain complex or simple complex (K; d) of vector spaces
over a field F is a Z-graded vector space

K =
⊕
n∈Z

Kn

together with a linear map

d : K → K

satisfying d ◦ d = 0, which is homogeneous of degree one. That is,

dn = d |Kn : Kn → Kn+1

is a linear map for every n ∈ Z. We call d the differential of K.

Let (K; d) be a cochain complex. We denote the image of d by B, Bd or Bd(K) and
call its elements exact. Similarly, the kernel of d is denoted by Z, Zd or Zd(K) and the
elements in the kernel are called closed. Since d ◦d = 0, every exact element is closed.
This leads to the following definition.

Definition 2.2 (Cohomology of a complex). Let (K; d) be a cochain complex. We set
the cohomology of (K; d) to be

Hd(K) = Zd /Bd .
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Since d is a homogeneous homomorphism, we have

Zn
d = Zn

d(K) = ker(d) ∩Kn = ker(dn)

and

Bn
d = Bn

d(K) = im(d) ∩Kn = im(dn−1).

This defines a grading on Hd(K) by

Hd(K) =
⊕
n∈Z

Hn
d(K),

where Hn
d(K) = Zn

d(K)/Bn
d(K).

2.1.2 Double complexes

Let X be a complex manifold. Then every smooth k-form can be decomposed uniquely
into a sum of forms of degree (p, q), where p+ q = k. We have

Ak(X) =
⊕

p+q=k

Ap,q(X).

Also, the exterior derivative splits into two parts

dk = ∂k + ∂̄k,

where

∂p,q = ∂k|Ap,q(X) : Ap,q(X)→ Ap+1,q(X)

and

∂̄p,q = ∂̄k|Ap,q(X) : Ap,q(X)→ Ap,q+1(X).

The maps ∂ and ∂̄ are the so-called Dolbeault operators. They satisfy ∂ ◦∂ = 0, ∂̄ ◦ ∂̄ = 0
and ∂◦∂̄+∂̄◦∂ = 0. So, we can define several cohomology vector spaces as the Dolbeault,
Bott-Chern and Aeppli cohomology. As before, we want to introduce these concepts in
a more general setting.

Definition 2.3 (Double complex). A double complex (K; ∂, ∂̄) of vector spaces over a
field is a Z-bigraded vector space

K =
⊕

(p,q)∈Z2

Kp,q

together with two linear maps

∂ : K → K and ∂̄ : K → K
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satisfying

∂ ◦ ∂ = 0,

∂̄ ◦ ∂̄ = 0,

∂̄ ◦ ∂ + ∂ ◦ ∂̄ = 0,

which are homogeneous of degree (1, 0) and (0, 1), respectively. That is,

∂p,q = ∂|Kp,q : Kp,q → Kp+1,q

and

∂̄p,q = ∂̄|Kp,q : Kp,q → Kp,q+1

are linear maps for each (p, q) ∈ Z2.
We say a double complex is bounded if there are integers a ≤ b such that Kp,q = 0
whenever p ≥ b, q ≥ b, p ≤ a or q ≤ a.

Let (K; ∂, ∂̄) be a double complex. By setting d = ∂ + ∂̄ and

Kn =
⊕

p+q=n

Kp,q,

we get a cochain complex, called the associated simple complex of (K; ∂, ∂̄). Indeed, by
linearity of ∂ and ∂̄,

d ◦d = (∂ + ∂̄) ◦ (∂ + ∂̄)

= ∂ ◦ ∂ + (∂ ◦ ∂̄ + ∂̄ ◦ ∂) + ∂̄ ◦ ∂̄
= 0,

and for xn =
∑

p+q=n xp,q ∈ Kn we have

d(xn) =
∑

p+q=n

d(xp,q)

=
∑

p+q=n

∂(xp,q) +
∑

p+q=n

∂̄(xp,q),

which is indeed an element of Kn+1.
For n ∈ Z we also set

∂n = ∂|Kn : Kn → Kn+1 and ∂̄n = ∂̄|Kn : Kn → Kn+1.

As in the case of a simple complex, one sets B∂ = B∂(K) = im(∂) and B∂̄ = B∂̄(K) =
im(∂̄) as well as Z∂ = Z∂(K) = ker(∂) and Z∂̄ = Z∂̄(K) = ker(∂̄). We define the
cohomologies by

H∂(K) = Z∂ /B∂
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and

H∂̄(K) = Z∂̄ /B∂̄

and call the first one the conjugate Dolbeault cohomology and the second one the Dol-
beault cohomology of (K; ∂, ∂̄).
Also, we will also use the notations

Bn
∂ = Bn

∂(K) = im(∂) ∩Kn = im ∂n−1,

Bp,q
∂ = Bp,q

∂ (K) = im(∂) ∩Kp,q = im ∂p−1,q,

Zn
∂ = Zn

∂(K) = ker(∂) ∩Kn = ker ∂n,

Zp,q
∂ = Zp,q

∂ (K) = ker(∂) ∩Kp,q = ker ∂p,q

and the analogous notation for ∂̄. This leads to the cohomologies

Hn
∂(K) = Zn

∂ /Bn
∂ ,

Hp,q
∂ (K) = Zp,q

∂ /Bp,q
∂ ,

Hn
∂̄(K) = Zn

∂̄ /Bn
∂̄ ,

Hp,q

∂̄
(K) = Zp,q

∂̄
/Bp,q

∂̄
,

which define (bi-)gradings on H∂(K) and H∂̄(K), respectively.
If no confusion can arise, we will always write xp,q for the component of an element x ∈ K
in Kp,q and xn for the component in Kn.
In the case of a complex manifold complex conjugation induces an isomorphism between
its Dolbeault cohomology in some degree (p, q) and its conjugate Dolbeault cohomology
in degree (q, p). However, there is no natural map between the Dolbeault and the de
Rham cohomology.
Also in the case of an arbitrary double complex there are no natural maps between
the introduced cohomologies at all. To get a connection between them we define the
Bott-Chern and the Aeppli cohomology of a double complex as for complex manifolds.

Definition 2.4 (Bott-Chern cohomology and Aeppli cohomology). Let (K; ∂, ∂̄) be a
double complex. The Bott-Chern cohomology is the vector space

HBC(K) =
ker(∂) ∩ ker(∂̄)

im(∂∂̄)
.

The Aeppli cohomology is the vector space

HA(K) =
ker(∂∂̄)

im(∂) + im(∂̄)
.

One easily checks that the defined quotients make sense. Furthermore, we define Hn
BC(K),

Hp,q
BC(K), Hn

A(K) and Hp,q
A (K) as in the case of the Dolbeault cohomologies.

The next statement explains how the Bott-Chern and the Aeppli cohomology connect
the Dolbeault cohomologies.
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Proposition 2.5. Let (K; ∂, ∂̄) be a double complex. The identity on K induces the
following commutative diagram

HBC(K)
ϕBC−∂

%%

ϕBC−∂̄

yy
H∂̄(K)

ϕ∂̄−A %%

H∂(K)

ϕ∂−Ayy
HA(K)

. (1)

Proof. To show that the maps are well-defined we have to show that each, the denomi-
nator and numerator, of the left side is contained in the one of the right side. But this
is obvious for all four maps. The commutativity is clear, since all maps are induced by
the identity.

In the same manner the identity on Kn or Kp,q induces maps between the (bi-)graded
cohomologies as in diagram (1). For instance, ϕn

BC−∂ will denote the map from Hn
BC(K)

to Hn
∂(K). Furthermore we set

ϕBC−A = ϕ∂−A ◦ ϕBC−∂ = ϕ∂̄−A ◦ ϕBC−∂̄ .

Also the cohomology of the associated simple complex can be fitted in this diagram and
hence be connected with the other cohomologies of the double complex.

Proposition 2.6. Let (K; ∂, ∂̄) be a double complex and (K; d) its associated simple
complex. The identity on K induces linear maps

1. ϕBC− d : HBC(K)→ Hd(K),

2. ϕd−A : Hd(K)→ HA(K).

These maps extend diagram (1) to the commutative diagram

HBC(K)
ϕBC−∂

%%

ϕBC−∂̄

yy
ϕBC− d

��
H∂̄(K)

ϕ∂̄−A %%

Hd(K)

ϕd−A

��

H∂(K)

ϕ∂−Ayy
HA(K)

. (2)

Proof. It is clear that ker(∂) ∩ ker(∂̄) ⊆ ker(d). If x ∈ im(∂∂̄), say x = ∂(∂̄(y)), then

d(∂̄(y)) = ∂(∂̄(y)) + ∂̄(∂̄(y))

= ∂(∂̄(y))

= x.
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This shows x ∈ im(d) so the map ϕBC−d exists.
Now let x ∈ ker(d). Then we can write x =

∑
n∈Z xn with xn ∈ Kn. Since d is a

homogeneous homomorphism, we have

d(xn) = 0

for all n ∈ Z. For fixed n ∈ Z we can write

xn =
∑

p+q=n

xp,q.

Introducing x−1,n+1 = 0 and xn+1,−1 = 0 in Kn we get

0 = d(xn)

=
∑

p+q=n

∂(xp,q) + ∂̄(xp,q)

=
∑

p+q=n+1

∂̄(xp,q−1) + ∂(xp−1,q).

(3)

But we always have

∂̄(xp,q−1) + ∂(xp−1,q) ∈ Kp,q,

and because

Kn+1 =
⊕

p+q=n+1

Kp,q,

every summand in equation (3) is zero. We deduce that for p+ q = n+ 1

∂(∂̄(xp,q−1)) = ∂(∂̄(xp,q−1) + ∂(xp−1,q))

= ∂(0)

= 0.

But this means that for arbitrary p and q

xp,q−1 ∈ ker(∂∂̄),

hence also

x ∈ ker(∂∂̄),

which had to be shown.
The last thing which has to be checked is that im(∂)+im(∂̄) contains im(d). This clearly
holds, since

d(y) = ∂(y) + ∂̄(y) ∈ im(∂) + im(∂̄)

for y ∈ K arbitrary. This shows the existence of the map ϕd−A.
The commutativity of the diagram follows again, because all maps are induced by the
identity on K.
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Note that this diagram can be restricted to subquotients of Kn instead of K.
The natural question arises if the maps in diagram (2) are injective or surjective. The
answer is that for an arbitrary double complex this has not to be the case. In section 3
we will discuss this question in greater detail.

2.2 Spectral sequences

Let X be a complex manifold. If X is compact, one has the Frölicher inequality

dimC(Hk
dR(X)) ≤

∑
p+q=k

dimC(Hp,q

∂̄
(X)),

which gives a relation between the dimensions of the Dolbeault cohomology and the de
Rham cohomology of X ([Frö55]).
The Frölicher inequality can be proved using the so-called Frölicher spectral sequence.
In this section we introduce spectral sequences in general and pay special attention to
spectral sequences associated to a filtered complex. The main example will be the natural
filtration(s) of a double complex. For a deeper discussion of this topic we refer to [GH14]
and [Wei95].

Definition 2.7 (Spectral sequence). A spectral sequence is a sequence (Er; dr)r≥0 of
Z-bigraded vector spaces

Er =
⊕
p,q

Ep,q
r ,

together with maps dp,q
r : Ep,q

r → Ep+r,q−r+1
r satisfying dp+r,q−r+1

r ◦dp,q
r = 0 such that

Ep,q
r+1 = Hp,q

dr
(Er) =

ker(dp,q
r )

im(dp−r,q+r−1
r )

.

If there is r0 ≥ 0 such that Er0 = Er0+1 = . . ., we say that the spectral sequence
degenerates at Er0 or at sheet r0 and write E∞ for this limit term. Note that the
degeneration at sheet r0 is equivalent to the maps dp,q

r being the zero map whenever
r ≥ r0.

Note that a spectreal sequence degenerates at sheet r0 if and only if dp,q
r = 0 for all (p, q)

and r ≥ r0.
One example of a spectral sequence is the spectral sequence that is induced by a so-called
filtration of a cochain complex.

Definition 2.8 (Filtered complex). Let (K; d) be a cochain complex. A filtration of
(K; d) is a sequence of subcomplexes F p(K) ⊆ K, p ∈ Z such that F p(K) ⊆ F p−1(K)
for all p,

⋂
p F

p(K) = 0,
⋃

p F
p(K) = K and d(F p(K)) ⊆ F p(K).

The associated graded complex is

G(K) =
⊕
p∈Z

Gp(K),
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where

Gp(K) = F p(K)/F p+1(K).

This filtration on K induces a filtration on the cohomology Hn
d(K) by

F p Hn
d(K) =

F p(Kn) ∩ ker(d)

F p(Kn) ∩ im(d)
.

We sometimes say that (K; d) is a filtered complex.
From now on we will always assume that the filtration is finite.

Definition 2.9. We say the differential is strictly compatible with the filtration or strict
relative to the filtration if for all p we have

d(F p(K)) = im(d) ∩ F p(K)

or equivalently

d(F p(Kn−1)) = im(dn−1) ∩ F p(Kn)

for all p and n.

We can assign a spectral sequence to a filtered complex in the following way.

Proposition 2.10. Let (K; d) be a complex together with a filtration F . Then there
exists a spectral sequence (Er; dr)r≥0 with

Ep,q
0 = F p(Kp+q)/F p+1(Kp+q),

Ep,q
1 = Hp+q

d (Gp(K)),

Ep,q
∞ = Gp(Hp+q

d (K)).

Remark 2.11. We say that the spectral sequence abuts to Hd(K).

Proof. For the proof see [GH14] and [Wei95]. We here just note that the terms for Ep,q
r

are given by

Ep,q
r =

F p(Kp+q) ∩ d−1(F p+r(Kp+q+1))

(F p+1(Kp+q−1) + d(F p−r+1(Kp+q−1))) ∩ (F p(Kp+q) ∩ d−1(F p+r(Kp+q+1)))

and dr is the map that is induced by d on the quotients.

In our case we will have a double complex (K; ∂, ∂̄) with two filtrations defined to be

′F p(Kn) =
⊕

r+s=n
r≥p

Kr,s, (4)

′′F q(Kn) =
⊕

r+s=n
s≥q

Kr,s. (5)
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This induces two spectral sequences, which are denoted by (′Er;
′ dr) and (′′Er;

′′ dr),
respectively. Their terms are the following.

′Ep,q
0 = ′′Eq,p

0 = Kp,q (6)
′ dp,q

0 = ∂̄p,q (7)
′′ dp,q

0 = ∂p,q (8)
′Ep,q

1 = Hp,q

∂̄
(K) (9)

′′Ep,q
1 = Hq,p

∂ (K) (10)
′Ep,q
∞ = F p(Hp+q

d (K))/F p+1(Hp+q
d (K)) (11)

Again, we refer to [GH14] and [Wei95] for more details.
In the case of a complex manifold and its double complex, one has that

′′F q(Ak(X)) =
⊕

r+s=n
s≥q

Ar,s(X) =
⊕

r+s=n
s≥q

As,r(X) = ′F q(Ak(X)).

It follows that also the two induced spectral sequences and the filtrations on the coho-
mology are conjugate to each other

′F p(Hk
dR(X)) = ′′F p(Hk

dR(X)),

′Ep,q
r = ′′Ep,q

r .

In this context the spectral sequence induced by ′F is called the Frölicher spectral se-
quence.
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3 The ∂∂̄-Lemma

In this section we wish to investigate the injectivity and surjectivity of the maps in
diagram (2). In general, none of the maps has to be injective or surjective. Even if the
double complex is the double complex of a complex manifold, no injectivity or surjectivity
is guaranteed. The injectivity of the map ϕBC− d is encoded in the so-called ∂∂̄-Lemma.
P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan stated in [DGMS75] that this
injectivity has strong connections to the injectivity and surjectivity of the other maps in
diagram (2). They stated that if ϕBC− d is injective, then automatically all maps in this
diagram are isomorphisms. In this section we will see what the injectivity of ϕn

BC− d for
some integer n means for the injectivity and surjectivity of the other maps between the
cohomology spaces.
The next proposition gives equivalent formulations of the injectivity of ϕn

BC− d.

Theorem 3.1. Let (K; ∂, ∂̄) be a double complex and (K; d) its associated simple com-
plex. Let n ∈ Z. Then the following conditions are equivalent.

(1) ϕn
BC− d : Hn

BC(K)→ Hn
d(K) is injective.

(2) ϕn
BC−∂ : Hn

BC(K)→ Hn
∂(K) and ϕn

BC−∂̄ : Hn
BC(K)→ Hn

∂̄
(K) are injective.

(3) ϕn
BC−A : Hn

BC(K)→ Hn
A(K) is injective.

(1*) ϕn−1
d−A : Hn−1

d (K)→ Hn−1
A (K) is surjective.

(2*) ϕn−1
∂−A : Hn−1

∂ (K)→ Hn−1
A (K) and ϕn−1

∂̄−A
: Hn−1

∂̄
(K)→ Hn−1

A (K) are surjective.

(3*) ϕn−1
BC−A : Hn−1

BC (K)→ Hn−1
A (K) is surjective.

To prove theorem 3.1 we will use the following theorem.

Theorem 3.2. Let (K; ∂, ∂̄) be a double complex and (K; d) its associated simple com-
plex. Let n ∈ Z. Then the following conditions are equivalent.

(1) ker(∂n) ∩ ker(∂̄n) ∩ im(dn−1) = im(∂n−1∂̄n−2) ⊆ Kn

(2) (i) ker(∂̄n) ∩ im(∂n−1) = im(∂n−1∂̄n−2) ⊆ Kn and

(ii) ker(∂n) ∩ im(∂̄n−1) = im(∂n−1∂̄n−2) ⊆ Kn

(3) ker(∂n) ∩ ker(∂̄n) ∩ (im(∂n−1) + im(∂̄n−1)) = im(∂n−1∂̄n−2) ⊆ Kn

(1*) im(∂n−2) + im(∂̄n−2) + ker(dn−1) = ker(∂n∂̄n−1) ⊆ Kn−1

(2*) (i) im(∂̄n−2) + ker(∂n−1) = ker(∂n∂̄n−1) ⊆ Kn−1 and

(ii) im(∂n−2) + ker(∂̄n−1) = ker(∂n∂̄n−1) ⊆ Kn−1

(3*) im(∂n−2) + im(∂̄n−2) + (ker(∂n−1) ∩ ker(∂̄n−1)) = ker(∂n∂̄n−1) ⊆ Kn−1
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Proof. In the first three statements the inclusion ⊇ is always true for double complexes.
In the last three statements the inclusion ⊆ always holds. So, we only have to check the
other inclusions.
(1) ⇒ (2): To show that (1) implies (2)(i), let x ∈ ker(∂̄n) ∩ im(∂n−1). Then there is
y ∈ Kn−1 with ∂(y) = x. Now fix (p, q) ∈ Z2 with p+ q = n. The (p, q)-component xp,q
of x satisfies ∂̄(xp,q) = 0 ∈ Kp,q+1 and xp,q = ∂(yp−1,q). Now consider d(yp−1,q) ∈ Kn.
We have

∂(d(yp−1,q)) = ∂(∂(yp−1,q) + ∂̄(yp−1,q))

= ∂(∂̄(yp−1,q))

= −∂̄(∂(yp−1,q))

= 0

and

∂̄(d(yp−1,q)) = ∂̄(∂(yp−1,q) + ∂̄(yp−1,q))

= ∂̄(∂(yp−1,q))

= 0.

By (1), this implies d(yp−1,q) ∈ ker(∂n) ∩ ker(∂̄n) ∩ im(dn−1) = im(∂n−1∂̄n−2). So there
is z ∈ Kn−2 with ∂(∂̄(z)) = d(yp−1,q). Hence ∂(∂̄(zp−1,q−1)) is the (p, q)-component of
d(yp−1,q), which is xp,q. Since, by this, xp,q ∈ im(∂n−1∂̄n−2) whenever p+ q = n, also

x =
∑

p+q=n

xp,q ∈ im(∂n−1∂̄n−2).

Analogously one shows that (1) implies (2)(ii).
(2) ⇒ (3): Let x ∈ ker(∂n) ∩ ker(∂̄n) ∩ (im(∂n−1) + im(∂̄n−1)). Hence, there are y, z ∈
Kn−1 with x = ∂(y) + ∂̄(z). Then

∂̄(∂(y)) = ∂̄(x− ∂̄(z)) = 0.

Hence ∂(y) ∈ ker(∂̄n)∩ im(∂n−1) = im(∂n−1∂̄n−2) by (2)(i). Similarly, by (2)(ii), ∂̄(z) ∈
ker(∂n) ∩ im(∂̄n−1) = im(∂n−1∂̄n−2). This implies

x = ∂(y) + ∂̄(z) ∈ im(∂n−1∂̄n−2).

(3) ⇒ (1): Since d = ∂ + ∂̄, we always have im(d) ⊆ im(∂) + im(∂̄). Hence,

ker(∂n) ∩ ker(∂̄n) ∩ im(dn−1) ⊆ ker(∂n) ∩ ker(∂̄n) ∩ (im(∂n−1) + im(∂̄n−1))

= im(∂n−1∂̄n−2),

by (3).
(2) ⇒ (2*): Let x ∈ ker(∂n∂̄n−1). Then ∂̄(x) ∈ ker(∂n) ∩ im(∂̄n−1). By (2)(ii), there is
y ∈ Kn−2, which satisfies ∂̄(x) = ∂(∂̄(y)). This yields

x = (x+ ∂(y)) + (−∂(y)) ∈ ker(∂̄n−1) + im(∂n−2),
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since ∂̄(x+ ∂(y)) = ∂̄(x)− ∂(∂̄(y)) = 0. This shows (2*)(i) and (2*)(ii) works similarly.
(2*) ⇒ (2): Let x ∈ ker(∂̄n) ∩ im(∂n−1) and y ∈ Kn−1 such that ∂(y) = x. Then
y ∈ ker(∂n∂̄n−1). By (2*)(i), y ∈ im(∂̄n−2) + ker(∂n−1). Then there are z ∈ Kn−2 and
w ∈ ker(∂n−1) such that y = ∂̄(z) + w. Hence

x = ∂(y) = ∂(∂̄(z)) ∈ im(∂n−1∂̄n−2),

which shows (2)(i). Equation (2)(ii) can be proved analogously.
(1*)⇒ (2*): Let x ∈ Kn−1 satisfying ∂(∂̄(x)) = 0. Now fix (p, q) ∈ Z2 with p+q = n−1.
The (p, q)-component xp,q of x satisfies ∂(∂̄(xp,q)) = 0 ∈ Kp+1,q+1. Then, by (1*), we
can write

xp,q = ∂(y) + ∂̄(z) + w,

where y ∈ Kp−1,q, z ∈ Kp,q−1 and w ∈ ker(dn−1). Note that, by this, ∂(w) = 0 ∈ Kp+1,q

and ∂̄(w) = 0 ∈ Kp,q+1. It follows that

xp,q = ∂(y) + (∂̄(z) + w) ∈ im(∂n−2) + ker(∂̄n−1).

and

xp,q = (∂(y) + w) + ∂̄(z) ∈ im(∂̄n−2) + ker(∂n−1),

which yields equations (2*)(i) and (2*)(ii).
(2*) ⇒ (3*): Let x ∈ Kn−1 satisfying ∂(∂̄(x)) = 0. Then, by (2*)(ii), we can write
x = ∂(a) + b with a ∈ Kn−2 and b ∈ ker(∂̄n−1). Since ker(∂̄n−1) ⊆ ker(∂n∂̄n−1), we may
write b = ∂̄(y) + z with y ∈ Kn−2 and z ∈ ker(∂n−1), by equation (2*)(i). Then also
∂̄(z) = ∂̄(b− ∂̄(y)) = 0. This shows that

x = ∂(a) + ∂̄(y) + z ∈ im(∂n−2) + im(∂̄n−2) + (ker(∂n−1) ∩ ker(∂̄n−1)),

which we wanted to show.
(3*) ⇒ (1*): Since d = ∂ + ∂̄, we always have ker(∂) ∩ ker(∂̄) ⊆ ker(d). So

ker(∂n∂̄n−1) = im(∂n−2) + im(∂̄n−2) + (ker(∂n−1) ∩ ker(∂̄n−1))

⊆ im(∂n−2) + im(∂̄n−2) + ker(dn−1),

which proves the claim.

We can easily prove theorem 3.1 now.

Proof (of theorem 3.1). For the proof we note what the statements mean in terms of
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kernels and images.

ϕn
BC− d injective⇔ ker(∂n) ∩ ker(∂̄n) ∩ im(dn−1) = im(∂n−1∂̄n−2)

ϕn
BC−∂ injective⇔ ker(∂̄n) ∩ im(∂n−1) = im(∂n−1∂̄n−2)

ϕn
BC−∂̄ injective⇔ ker(∂n) ∩ im(∂̄n−1) = im(∂n−1∂̄n−2)

ϕn
BC−A injective⇔ ker(∂n) ∩ ker(∂̄n) ∩ (im(∂n−1) + im(∂̄n−1)) = im(∂n−1∂̄n−2)

ϕn−1
d−A surjective⇔ im(∂n−2) + im(∂̄n−2) + ker(dn−1) = ker(∂n∂̄n−1)

ϕn−1
∂−A surjective⇔ im(∂̄n−2) + ker(∂n−1) = ker(∂n∂̄n−1)

ϕn−1
∂̄−A

surjective⇔ im(∂n−2) + ker(∂̄n−1) = ker(∂n∂̄n−1)

ϕn−1
BC−A surjective⇔ im(∂n−2) + im(∂̄n−2) + (ker(∂n−1) ∩ ker(∂̄n−1)) = ker(∂n∂̄n−1)

Now theorem 3.2 yields the claim.

If one of the properties of theorem 3.2 is satisfied, then we say that the double complex
satisfies the ∂∂̄-Lemma in degree n.
If one property is fulfilled for all n, the double complex is said to satisfy the ∂∂̄-Lemma.
Similarly, we say a complex manifold X satisfies the ∂∂̄-Lemma (in degree n) if its
associated double complex does.
Besides these equivalences, we have several other consequences of satisfying the ∂∂̄-
Lemma, which we state in the following proposition. But first we will give a lemma
which will be helpful for its proof.

Lemma 3.3. Let X be a vector space over some field and U, V,W ⊆ X linear subspaces
such that U ⊆ V . Then V ∩ (U +W ) ⊆ U + (V ∩W ).

Proof. Let x ∈ V ∩ (U + W ). Then we may write x = u + w with u ∈ U und w ∈ W .
This means w = x − u ∈ V . Since, by assumption, already w ∈ W , this shows that
x ∈ U + (V ∩W ).

Proposition 3.4. Let n ∈ Z and suppose that the double complex satisfies the ∂∂̄-
Lemma in degree n. Then

1. all maps in diagram (2) are injective in degree n and

2. all maps in diagram (2) are surjective in degree n− 1.

Proof. Theorem 3.1 yields the injectivity of the maps with domain Hn
BC(K) and the

surjectivity of the maps that have Hn−1
A (K) as codomain.

We start by showing that ϕn−1
BC− d is surjective. We have to check that

ker(dn−1) = im(dn−2) + (ker(∂n−1) ∩ ker(∂̄n−1)).

The inclusion from right to left is obvious. For the other inclusion let x ∈ ker(dn−1).
Then

∂̄(∂(x)) = ∂̄(−∂̄(x)) = 0
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and hence

∂(x) ∈ ker(∂̄n) ∩ im(∂n−1).

By equation (2)(i), we have ∂(x) ∈ im(∂n−1∂̄n−2). So let a ∈ Kn−2 such that

∂(∂̄(a)) = ∂(x). (12)

Then also

∂̄(x) = −∂(x) = −∂(∂̄(a)) = ∂̄(∂(a)).

Hence, we can write

x = d(a) + (x− d(a))

with x− d(a) ∈ ker(∂n−1) ∩ ker(∂̄n−1). Indeed

∂(x− d(a)) = ∂(x− ∂̄(a))− ∂(∂(a)) = 0

by equation (12) and also

∂̄(x− d(a)) = d(x− d(a))− ∂(x− d(a))

= d(x)− d(d(a))

= 0.

Now we want to prove that ϕn−1
BC−∂ is surjective. This map is surjective if and only if

ker(∂n−1) = (ker(∂n−1) ∩ ker(∂̄n−1)) + im(∂n−2).

The inclusion from right to left always holds. Furthermore

ker(∂n−1) = ker(∂n−1) ∩ ker(∂n∂̄n−1)

= ker(∂n−1) ∩ (im(∂n−2) ∩ ker(∂̄n−1))

⊆ im(∂n−2) + (ker(∂n−1) ∩ ker(∂̄n−1)),

where we use equation (2*)(ii) in the second line and lemma 3.3 in the third one. The
surjectivity of ϕn−1

BC−∂̄ is proved analogously.
Next, we want to show that ϕn

d−A is injective, that is

im(dn−1) = (im(∂n−1) + im(∂̄n−1)) ∩ ker(dn).

The inclusion ⊆ is clear. So let x ∈ ker(dn) ∩ (im(∂n−1) + im(∂̄n−1)). Let a, b ∈ Kn−1

such that

x = ∂(a) + ∂̄(b).
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Then b− a ∈ ker(∂n∂n−1), because

0 = d(x)

= d(∂(a) + ∂̄(b))

= ∂̄(∂(a)) + ∂(∂̄(b))

= ∂(∂̄(b− a)).

By equation (2*)(ii), x ∈ im(∂n−2)+ker(∂̄n−1). So there are r ∈ Kn−2 and s ∈ ker(∂̄n−1)
such that

b− a = ∂(r) + s.

We infer that

x = ∂(a) + ∂̄(b)

= ∂(a) + ∂̄(a) + ∂̄(b− a)

= d(a) + ∂̄(∂(r) + s)

= d(a) + ∂̄(∂(r))

= d(a+ ∂(r)),

which is an element of im(dn−1).
The last thing we have to check is that im(∂n−1) = ker(∂n) ∩ (im(∂n−1) + im(∂̄n−1)),
which yields the injectivity of ϕn

∂−A and, by analogy, the injectivity of ϕn
∂̄−A

. Again, the
inclusion from left to right is clear. For the other inlusion we compute, using lemma 3.3
and equation (2)(ii),

ker(∂n) ∩ (im(∂n−1) + im(∂̄n−1)) ⊆ im(∂n−1) + (ker(∂n) ∩ im(∂̄n−1))

= im(∂n−1) + im(∂n−1∂̄n−2)

= im(∂n−1),

which finishes the proof.

One gets several easy corollaries from this if one assumes that the ∂∂̄-Lemma holds in
several degrees. For instance, we get the following statement from [DGMS75] easily.

Corollary 3.5. If a double complex satisfies the ∂∂̄-Lemma, then all maps in diagram
(2) are isomorphisms.
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4 The ∂∂̄-Lemma and the Frölicher spectral sequence

In this section we want to recall the result from [DGMS75] that satisfying the ∂∂̄-Lemma
is equivalent to the degeneration of the Frölicher spectral sequence at the first sheet and
the fact that the two induced filtrations on the cohomology are n-opposite. We will
improve this statement in section 5. For the proof of this theorem we will need the
following proposition.

Proposition 4.1. Let (K; d) be a cochain complex with a filtration F . Then the fol-
lowing are equivalent.

1. The corresponding spectral sequence degenerates at E1.

2. The differential d is strictly compatible with the filtration.

Proof. We refer to [Del72]. In section 5 we will prove a stronger, degreewise version of
this result.

Theorem 4.2. Let (K; ∂, ∂̄) be a bounded double complex and (K; d) its associated
simple complex. Then the following conditions are equivalent.

(1) (K; ∂, ∂̄) satisfies the ∂∂̄-Lemma.

(2) The double complex is a possibly infinite sum of double complexes of the following
types:

(α) There is a pair (r, s) such that Kp,q = 0 if (p, q) 6= (r, s), and ∂ = ∂̄ = 0.

(β) Complexes which are a square of isomorphisms. This means that there is a
pair (r, s) such that Kp,q = 0 if (p, q) /∈ {(r, s), (r+1, s), (r, s+1), (r+1, s+1)}
and

Kr,s+1 ∂r,s+1

∼=
// Kr+1,s+1

Kr,s
∂r,s

∼= //

∂̄r,s ∼=

OO

Kr+1,s

∂̄r+1,s∼=

OO .

is a square of isomorphisms.

(3) The two spectral sequences induced by ′F (K) and ′′F (K) (cf. (4) and (5)) degen-
erate both at sheet 1 and the two induced filtrations on Hn

d(K) are n-opposite, that
is

′F p(Hn
d(K))⊕ ′′F q(Hn

d(K)) ∼= Hn
d(K)

for n = p+ q − 1.
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Proof. We will prove the equivalence of statements (1) and (3) later as a degreewise
result, which gives this as an easy corollary. Nevertheless, we give the complete proof
from [DGMS75] here. On the one hand because we have the decomposition property (2),
and on the other hand the later proof of (3)⇒ (1) is motivated by this one.
(1)⇒ (2): Let (r, s) ∈ Z2 and Sr,s ⊆ Kr,s be such that

Sr,s ⊕ ker(∂r,s+1∂̄r,s) = Kr,s,

and T r,s ⊆ ker(∂r,s) ∩ ker(∂̄r,s) such that

T r,s ⊕ im(∂r−1,s∂̄r−1,s−1) = ker(∂r,s) ∩ ker(∂̄r,s) ⊆ ker(∂r,s+1∂̄r,s).

By corollary 3.5, the map ϕr,s
BC−A is an isomorphism. This yields that

T r,s ⊕ (im(∂r−1,s) + im(∂̄r,s−1)) = ker(∂r,s+1∂̄r,s).

So we get the three following properties

(a) Kr,s = Sr,s ⊕ T r,s ⊕ (im(∂r−1,s) + im(∂̄r,s−1)),

(b) ∂r,s(T r,s) = 0 = ∂̄p,q(T r,s) and

(c) Sr,s ∩ ker(∂r,s+1∂̄r,s) = 0,

which hold for all (r, s) ∈ Z2.
Now fix (p, q) ∈ Z. Then equation (a) applied first for (r, s) = (p − 1, q) and then for
(r, s) = (p− 1, q − 1) yields

im(∂p−1,q) = ∂(Kp−1,q)

= ∂(Sp−1,q + T p−1,q + im(∂p−2,q) + im(∂̄p−1,q−1))

= ∂(Sp−1,q) + ∂(T p−1,q) + ∂(∂(Kp−2,q))+

∂(∂̄(Sp−1,q−1 + T p−1,q−1 + im(∂p−2,q−1) + im(∂̄p−1,q−2)))

= ∂(Sp−1,q) + ∂(∂̄(Sp−1,q−1)).

In the same way we get

im(∂̄p,q−1) = ∂̄(Sp,q−1) + ∂̄(∂(Sp−1,q−1)).

So going back to equation (a) for (r, s) = (p, q), we see

Kp,q = Sp,q ⊕ T p,q ⊕ (∂(Sp−1,q) + ∂̄(Sp,q−1) + ∂(∂̄(Sp−1,q−1))).

Now we want to show that the sum in parentheses is in fact a direct sum. So, suppose
there are a ∈ Sp−1,q, b ∈ Sp,q−1 and c ∈ Sp−1,q−1 such that

∂(a) + ∂̄(b) + ∂(∂̄(c)) = 0.
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Applying ∂ and ∂̄ to this equation yields

0 = ∂(∂̄(b)) and 0 = ∂̄(∂(a)).

But by (c), this shows a = b = 0. This implies ∂(∂̄(c)) = 0, which again, by (c), yields
that c = 0. Hence we get

Kp,q = T p,q ⊕ Sp,q ⊕ ∂(Sp−1,q)⊕ ∂̄(Sp,q−1)⊕ ∂(∂̄(Sp−1,q−1)). (13)

If we now define for each (p, q) the double complexes Lp,q as

0 0

0 // ∂̄(Sp,q) //

OO

∂(∂̄(Sp,q)) //

OO

0

0 // Sp,q //

OO

∂(Sp,q) //

OO

0

0

OO

0

OO

and Mp,q as

0

0 // T p,q

OO

// 0

0

OO

then we get, by equation (13), that

K =
⊕
p,q

Lp,q ⊕
⊕
p,q

Mp,q,

where Mp,q is of type (α) and Lp,q of type (β).
(2) ⇒ (3): It is enough to prove the claim for double complexes that have one of the
types (α) or (β). So, first consider the double complex

0

0 // Kp,q

OO

// 0

0

OO
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for some (p, q) ∈ Z. Then, by equation (6), we have

′Er,s
1 = Hr,s

∂̄
(K) =

{
0 (r, s) 6= (p, q)

Kp,q (r, s) = (p, q).

It follows that

′Er,s
2 = Hr,s

d1
(′E1) = ′Er,s

1

for all (r, s) ∈ Z2. This shows by induction that the spectral sequence degenerates at
′E1. In the same way one shows that the other spectral sequence degenerates at ′′E1.
Now we want to show that the filtrations on the cohomology are n-opposite. In our case
Bn is zero for all n ∈ Z, so

′F r Hm
d (K) =

⊕
a+b=m
a≥r

Ka,b ∩ Zm

and

′′F s Hm
d (K) =

⊕
a+b=m
b≥s

Ka,b ∩ Zm

for all r, s ∈ N and m ∈ Z. If now m = r + s− 1 6= p+ q, then

Hm
d (K) = 0,

since Zm ⊆ Km = 0 here. Hence

′F r Hm
d (K)⊕ ′′F s Hm

d (K) = Hm
d (K).

If m = r + s+ 1 = p+ q, then

′F r Hm
d (K) + ′′F s Hm

d (K) = (
⊕

a+b=m
a≥r

Ka,b ∩ Zm) + (
⊕

a+b=m
b≥s

Ka,b ∩ Zm)

= (
⊕

a+b=m
a≥r

Ka,b ∩ Zm) + (
⊕

a+b=m
a≤r−1

Ka,b ∩ Zm)

= (
⊕

a+b=m
a≥r

Ka,b ∩Kp,q) + (
⊕

a+b=m
a≤r−1

Ka,b ∩Kp,q)

= Kp,q

= Hm
d (K).
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Furthermore,

′F r Hm
d (K) ∩ ′′F s Hm

d (K) = (
⊕

a+b=m
a≥r

Ka,b ∩ Zm) ∩ (
⊕

a+b=m
b≥s

Ka,b ∩ Zm)

= (
⊕

a+b=m
a≥r

Ka,b ∩ Zm) ∩ (
⊕

a+b=m
a≤r−1

Ka,b ∩ Zm)

= (
⊕

a+b=m
a≥r

Ka,b ∩Kp,q) ∩ (
⊕

a+b=m
a≤r−1

Ka,b ∩Kp,q)

= 0,

which proves the claim in case (α).
Now consider the double complex

0 0

0 // Kp,q+1
∼= //

OO

Kp+1,q+1 //

OO

0

0 // Kp,q
∼=
//

∼=

OO

Kp+1,q //

∼=

OO

0

0

OO

0

OO

,

which is of type (β). Here we have that

′Er,s
1 = Hr,s

∂̄
(K) = 0,

′′Er,s
1 = Hr,s

∂ (K) = 0

for all (r, s) ∈ Z2. It follows that both spectral sequences degenerate at the first sheet.
Now we will show for all n that Hn

d(K) = 0. Hence the filtration will be n-opposite in
case (β). For this purpose, let n ∈ Z. If n /∈ {p+ q, p+ q + 1, p+ q + 2}, this is obvious,
since Kn is trivial. For x ∈ Zp+q ⊆ Kp,q we have

0 = d(x) = ∂(x) + ∂̄(x).

But this is a bidegree decomposition in degree p+ q + 1, since x is of pure bidegree. So
∂(x) = ∂̄(x) = 0. With the injectivity of ∂ and ∂̄ it follows that x = 0 and in particular

Hp+q
d (K) = Zp+q /Bp+q = 0.

Now we choose z ∈ Zp+q+1. We can write z = x + y with x ∈ Kp+1,q and y ∈ Kp,q+1.
Since ∂p,q and ∂̄p,q are both surjective, there are a, b ∈ Kp,q satisfying ∂(a) = x and
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∂̄(b) = y. We compute

0 = dp+q+1(x+ y)

= ∂̄p+1,q(x) + ∂p,q+1(y)

= ∂̄p+1,q(∂p,q(a)) + ∂p,q+1(∂̄p,q(b))

= ∂̄p+1,q(∂p,q(a− b)).

Since ∂p,q and ∂̄p+1,q are injective, it follows that a = b and hence z = d(a). We infer
that Zp+q+1 = Bp+q+1, which proves the claim in this case.
Now take x ∈ Zp+q+2 ⊆ Kp+1,q+1. By surjectivity of ∂p,q+1, there is a ∈ Kp,q+1 such
that x = ∂(a). But then also x = d(a), because ∂̄p,q+1 = 0. This finishes the case of
Hp+q+2

d (K).
Hence Hd(K) = 0, so the filtrations are n-opposite.
(3) ⇒ (1): Let (p, q) ∈ Z2. We want to show that equation (2)(i) in theorem 3.2 holds
in degree n = p+ q. For this assume x ∈ ker(∂̄p,q) ∩ im(∂p−1,q). We have to prove that
x ∈ im(∂p−1,q∂̄p−1,q−1). Since im(∂p−1,q) ⊆ ker(∂p,q), it follows that

x ∈ ker(∂p,q) ∩ ker(∂̄p,q) ⊆ ker(dp+q).

Now we choose y ∈ Kp−1,q such that x = ∂(y). Then the class of x in Hd(K) is the same
as the class of

x− d(y) = −∂̄(y).

But, by assumption, the filtration on Hn
d(K) is n-opposite, that is

′F p(Hn
d(K))⊕ ′′F q+1(Hn

d(K)) = Hn
d(K).

But the class of x is in the first and the class of −∂̄(y) is in the second summand. It
follows that the class of x is zero, hence x ∈ im(dp+q−1).
By proposition 4.1, the differential d is strict relative to both filtrations. In our case this
means that there are a ∈ ′F p(Kn−1) and b ∈ ′′F q(Kn−1) such that x = d(a) = d(b). It
follows that a− b ∈ ker(dn−1) and since

Hn−1
d (K) = ′F p(Hn−1

d (K))⊕ ′′F q(Hn−1
d (K)),

the class of a− b in Hn−1
d (K) is the sum of an element in ′F p(Hn−1

d (K)) and an element
in ′′F q(Hn−1

d (K)). Say

a− b = u+ v + d(w)

with u ∈ ′F p(Kn−1)∩ ker(dn−1), v ∈ ′′F q(Kn−1)∩ ker(dn−1) and w ∈ Kn−2. If we write

v =
∑
r≥p

vr,s,
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then we see that ∂̄(vp,q−1) = 0, since

0 = d(v)

= ∂̄(vp,q−1) + (∂(vp,q−1) + ∂̄(vp+1,q−2)) + . . .+ ∂(vp+q−1,0)

is the bidegree decomposition of d(v). It follows that

x = ∂̄(ap,q−1)

= ∂̄(vp,q−1 + ∂(wp−1,q−1) + ∂̄(wp−2,q))

= −∂(∂̄(wp−1,q−1)) ∈ im(∂p−1,q∂̄p−1,q−1),

which finishes the proof.

4.1 Hodge structures

In the case that the double complex is the double complex of a complex manifold we can
rephrase the condition that the two induced filtrations on Hn

d(K) are n-opposite by the
existence of a so-called Hodge structure on the cohomology. We want to introduce the
basic concept here and refer to [PS08] for more details.

Definition 4.3 (Hodge structure). Let V be a real vector space and VC = V ⊗R C its
complexification. A Hodge structure of weight k on V is a decomposition

VC =
⊕

p+q=k

V p,q

of VC, satisfying

V p,q = V q,p.

One way to obtain a Hodge structure of weight k on V is via a decreasing filtration F (VC)
on VC. It has to satisfy

F p(VC) ∩ F q(VC) = 0

whenever p+ q − 1 = k. If p+ q = k, we set

V p,q = F p(VC) ∩ F q(VC).

Then the V p,q induce a Hodge structure of weight k on V .
Note that conversely one can obtain a filtration on VC from a given Hodge structure by
setting

F p(VC) =
⊕

r+s=k
r≥p

V r,s.

Furthermore, these two methods are inverse to each other.
With this notion introduced, we can reformulate the equivalence of statements (1) and
(3) of theorem 4.2 in the following way.
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Proposition 4.4. Let X be a complex manifold. Then X satisfies the ∂∂̄-Lemma if and
only if

(a) the Frölicher spectral sequence degenerates at the first sheet and

(b) the filtration on HdR(X), which is induced by the natural filtration on the space of
differential forms on X, induces a Hodge structure of weight k on Hk

dR(X).
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5 Degreewise results

In the previous section we have seen the result of P. Deligne, Ph. A. Griffiths, J. Morgan,
and D. P. Sullivan that the ∂∂̄-Lemma holds if and only if the Frölicher spectral sequence
degenerates at the first sheet and the filtrations on the cohomology are n-opposite. Now
we want to study this relation degreewise. The starting point will be to assume that the
∂∂̄-Lemma does not hold for all degrees but only for one fixed degree n. In section 3 we
have seen what this means for the surjectivity and injectivity of the maps between the
cohomologies. In this section we want to study what the ∂∂̄-Lemma in one degree means
in terms of the degeneration of the spectral sequences and filtrations on the cohomology.
It turns out that the ∂∂̄-Lemma holds in degree n if and only if the maps dk,n−k−1

r are
zero for all k and the induced filtrations on the cohomology have trivial intersection in
degree n and they span the whole cohomology space in degree n− 1.
To prove this result we also need a degreewise formulation of proposition 4.1, with which
we start.

Proposition 5.1. Let (K; d) be a cochain complex with a filtration F and let (Er,dr)r∈N
be the induced spectral sequence. Let n, p ∈ Z. Assume

dk,n−k
r : Ek,n−k

r → Ek+r,n−k−r+1
r

is the zero map for all r ∈ N and k < p. Then

dF p(Kn) = im(dn) ∩ F p(Kn+1).

Remark 5.2. This yields the implication (1)⇒ (2) of proposition 4.1.

Proof. First fix k < p. We want to prove that

dF k(Kn) ∩ F k+1(Kn+1) = dF k+1(Kn).

It is clear that dF k+1(Kn) ⊆ dF k(Kn)∩F k+1(Kn+1). Conversely, let x ∈ F k(Kn) with
d(x) ∈ F k+1(Kn+1). We want to find an element of F k+1(Kn) with same differential as
x. Certainly x defines a class in Ek,n−k

1 . By assumption,

0 = dk,n−k
1 (x) = [dn(x)] ∈ Ek+1,n−k

1 ,

which implies that

d(x) ∈ dF k+1(Kn) + F k+2(Kn+1).

So we can write

d(x) = d(a) + b

with a ∈ F k+1(Kn) and b ∈ F k+2(Kn+1). If we set c = x− a, then c ∈ F k(Kn) and

d(c) = d(x)− d(a) = b ∈ F k+2(Kn+1).
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Furthermore c and x define the same class in Ek,n−k
1 .

Now we can apply a similar argument as before to c. We have c ∈ F k(Kn) and d(c) ∈
F k+2(Kn+1) ⊆ F k+1(Kn+1). So c defines a class in Ek,n−k

2 , and again

d(c) ∈ dF k+1(Kn) + F k+3(Kn+1)

since dk,n−k
2 is zero. So we can write

d(c) = d(e) + f,

where e ∈ F k+1(Kn) and f ∈ F k+3(Kn+1). Let g = c − e. Then g ∈ F k(Kn) and g, c
and x have the same class in Ek,n−k

1 . Moreover

d(g) = d(c)− d(e) ∈ F k+3(Kn+1).

Since the filtration of the complex is finite, there is N ∈ N such that

F k+N (Kn+1) = 0.

So, repeating the argument above we find an element y ∈ F k(Kn), which has the same
class in Ek,n−k

1 as x, and

d(y) ∈ F k+N (Kn+1) = 0.

The fact that the class of x and y is the same in Ek,n−k
1 yields

x− y ∈ dF k(Kn−1) + F k+1(Kn).

So there are z ∈ F k+1(Kn) and s ∈ dF k(Kn−1) such that x− y = s+ z. It follows that

d(z) = d(x)− d(y)− d(s) = d(x).

We infer that

dF k(Kn) ∩ F k+1(Kn+1) = dF k+1(Kn)

for all k < p.
By induction, we get

dF l(Kn) = dF k(Kn) ∩ F l(Kn+1)

for all k < l ≤ p.
Again by finiteness of the filtration, there is M ∈ Z, M < p such that FM (Kn) = Kn.
We conclude

dF p(Kn) = dFM (Kn) ∩ F p(Kn+1)

= im(dn) ∩ F p(Kn+1),

which was to be shown.
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As before also a converse statement holds.

Proposition 5.3. Let (K; d) be a cochain complex with a filtration F and let (Er,dr)r∈N
be the induced spectral sequence. Let n ∈ Z. Assume

dF p(Kn) = im(dn) ∩ F p(Kn+1)

for all p ∈ Z. Then

dk,n−k
r : Ek,n−k

r → Ek+r,n−k−r+1
r

is the zero map for all r ∈ N and k ∈ Z.

Remark 5.4. This implies the implication (2)⇒ (1) of proposition 4.1.

Proof. Let r ∈ N and k ∈ Z. In order to show that dk,n−k
r is the zero map, we have to

prove that

d(F k(Kn) ∩ d−1(F k+r(Kn+1))) ⊆ F k+r+1(Kn+1) + d(F k+1(Kn)).

This follows from

d(F k(Kn) ∩ d−1(F k+r(Kn+1))) ⊆ d(F k(Kn)) ∩ d(d−1(F k+r(Kn+1)))

⊆ d(F k(Kn)) ∩ F k+r(Kn+1)

⊆ im(dn) ∩ F k+r(Kn+1)

= d(F k+r(Kn))

⊆ d(F k+1(Kn))

⊆ F k+r+1(Kn+1) + d(F k+1(Kn)),

where we used the assumption in line 4.

The two previous propositions yield the following corollary, which is a degreewise version
of proposition 4.1.

Corollary 5.5. Let (K; d) be a cochain complex with a filtration F and let (Er, dr)r∈N be
the induced spectral sequence. Let n ∈ Z. Then the following statements are equivalent:

a) dF p(Kn) = im(dn) ∩ F p(Kn+1) for all p ∈ Z

b) dk,n−k
r : Ek,n−k

r → Ek+r,n−k−r+1
r is the zero map for all r ∈ N and k ∈ Z.

Now we want to obtain a degreewise version of theorem 4.2. We start with the following
refinement of the implication (3)⇒ (1) in theorem 4.2.

Proposition 5.6. Let (K; ∂, ∂̄) be a bounded double complex and (K; d) its associ-
ated simple complex. Denote by (′Er;

′ dr)r∈N and (′′Er;
′′ dr)r∈N the spectral sequences

induced by ′F p(K) and ′′F p(K), respectively. Further let n ∈ Z and assume that
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(a) ′ dk,n−k−1
r = 0 and ′′ dk,n−k−1

r = 0 for all k ∈ Z and r ∈ N, and

(b) the induced filtrations on Hd(K) satisfy

′F a(Hn−1
d (K)) + ′′F b(Hn−1

d (K)) = Hn−1
d (K) for (a, b) ∈ Z2 with a+ b = n (14)

′F a(Hn
d(K)) ∩ ′′F b(Hn

d(K)) = 0 for (a, b) ∈ Z2 with a+ b− 1 = n (15)

Then (K; ∂, ∂̄) satisfies the ∂∂̄-Lemma in degree n.

Proof. We show equation (2)(i) of theorem 3.2. For this, take (p, q) ∈ Z with p+ q = n
and let x ∈ ker(∂̄p,q) ∩ im(∂p−1,q). First, choose y ∈ Kp−1,q with x = ∂(y). Since
im(∂p−1,q) ⊆ ker(∂p,q), we have that x ∈ ker(dn). Hence x defines a class in Hn

d(K),
which is the same as the class of

x− d(y) = −∂̄(y) ∈ Kp−1,q+1.

But the class of x is in ′F p(Hn
d(K)) while the class of −∂̄p−1,q(y) is an element of

′′F q+1(Hn
d(K)). Thus, by assumption, the class of x is zero, hence

x ∈ im(dn−1).

In particular

x ∈ ′F p(Kn) ∩ im(dn−1) and x ∈ ′′F q(Kn) ∩ im(dn−1).

Using corollary 5.5, we infer that

x ∈ d(′F p(Kn−1)) and x ∈ d(′′F q(Kn−1)).

Note that here we use the boundedness of the complex, since this guarantees that the
filtrations are finite.
So, let a ∈ ′F p(Kn−1) and b ∈ ′′F q(Kn−1) such that x = d(a) = d(b). Then a − b ∈
ker(dn−1), so a−b defines a class in Hn−1

d (K). By assumption, there are e ∈ ′F p(Kn−1)∩
ker(dn−1), f ∈ ′′F q(Kn−1) ∩ ker(dn−1) and g ∈ Kn−2 such that

a− b = e+ f + d(g).

If we write

e =
∑
r≥p

r+s=n−1

er,s

as its bidegree composition, then ∂̄(ep,q−1) = 0, because

0 = d(e)

= ∂̄(ep,q−1) + (∂(ep,q−1) + ∂̄(ep+1,q−2)) + . . .+ ∂(en−1,0)
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is the bidegree decomposition of d(e). Writing

a =
∑
r≥p

r+s=n−1

ar,s

as well as

g =
∑
r≥p

gr,s,

we infer that

x = d(a)

= ∂̄(ap,q−1)

= ∂̄(ep,q−1 + ∂(gp−1,q−1) + ∂̄(gp,q−2))

= ∂̄(∂(gp−1,q−1)) ∈ im(∂n−1∂̄n−2).

This proves the claim.

Before proving that also the converse is true we want to give simple examples, which
show that we cannot drop the assumptions (14) and (15) in proposition 5.6.

Example 5.7. We cannot drop assumption (14). Consider the following double complex.
Let V be a nonzero vector space over a field, which does not have characteristic two. We
set

Kp,q =

{
V (p, q) ∈ {(−1, 0), (0,−1), (0, 0)},
0 else,

as well as ∂−1,0 = idV and ∂̄0,−1 = idV .

0 0

0 // V

OO

// V //

OO

0

0 // 0

OO

// V //

OO

0

0

OO

0

OO

We take n = 0. Then the filtration is 0-opposite, because H0
d(K) is trivial, since d−1 is

surjective. In particular condition (15) is satisfied.
Furthermore we have that

′Ep,q
1
∼= Hp,q

∂̄
(K) =

{
K−1,0 = V (p, q) = (−1, 0),

0 else.
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It follows that ′ dk,−k−1
r = 0 for all k ∈ Z and r ∈ N. The same argument applies to the

second filtration.
But the first condition of theorem 3.2 is not fulfilled in degree 0. Indeed, we have that

ker(∂0) = ker(∂̄0) = im(d−1) = V

whereas

im(∂−1∂̄−2) = 0.

Example 5.8. We also cannot drop assumption (15). Consider the following double
complex. We take V as before and set

Kp,q =

{
V (p, q) ∈ {(0, 0), (1, 0), (0, 1)},
0 else,

as well as ∂0,0 = idV and ∂̄0,0 = idV .

0 0

0 // V

OO

// 0 //

OO

0

0 // V

OO

// V //

OO

0

0

OO

0

OO

Let n = 1. Then the filtration is 0-opposite, because H0
d(K) is trivial, since d0 is injective.

In particular equation (14) holds.
Furthermore we have that

′Ep,q
1
∼= Hp,q

∂̄
(K) =

{
K1,0 = V (p, q) = (1, 0),

0 else.

It follows that ′ dk,−k
r = 0 for all k ∈ Z and r ∈ N. The same argument applies to the

second filtration.
But the first condition of theorem 3.2 is not fulfilled in degree 1. Indeed, we have that

ker(∂1) = ker(∂̄1) = K1

and

im(d0) = {(v, v) ∈ K1,0 ⊕K0,1} 6= 0

whereas

im(∂0∂̄−1) = 0.
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Proposition 5.9. Let n ∈ Z and assume that the double complex (K; ∂, ∂̄) satisfies the
∂∂̄-Lemma in degree n. Then the differential

dn−1 : Kn−1 → Kn

is strict relative to both filtrations ′F and ′′F , i.e.

dn−1(′F p(Kn−1)) = im(dn−1) ∩ ′F p(Kn),

dn−1(′′F p(Kn−1)) = im(dn−1) ∩ ′′F p(Kn)

for all p ∈ Z

Proof. We prove the claim for ′F , the other case works analogously. The inclusion

dn−1(′F p(Kn−1)) ⊆ im(dn−1) ∩ ′F p(Kn)

is clear. For the other inclusion let x ∈ im(dn−1) ∩ ′F p(Kn). We write

x =
∑

r+s=n
r≥p

xr,s

and take y =
∑

r+s=n−1 yr,s such that d(y) = x. Of course

x = d(y) =
∑

r+s=n−1

d(yr,s) =
∑

r+s=n−1
r≥p−1

d(yr,s) = d(
∑

r+s=n−1
r≥p−1

yr,s),

so we may assume that y ∈ ′F p−1(Kn−1). We have that ∂̄(yp−1,n−p) = 0. In particular
yp−1,n−p ∈ ker(∂n∂̄n−1). So, by equation (2*)(i) of theorem 3.2,

y ∈ im(∂̄n−2) ∩ ker(∂n−1)

and we can write

yp−1,n−p = ∂̄(a) + b

with ∂(b) = 0 and a ∈ Kp−1,n−p−1 ⊆ Kn−1. Then

xp,n−p = ∂(yp−1,n−p) + ∂̄(yp,n−p−1)

= ∂̄(∂(a) + yp,n−p−1).

We infer that

x = ∂̄(∂(a)) + ∂̄(yp,n−p−1) +
∑

r+s=n
r≥p+1

xr,s

= d(∂(a)) + d(
∑

r+s=n−1
r≥p

yr,s),

which is an element of dn−1(′F p(Kn−1)). This shows the claim.
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We get the following corollary as a consequence of propositions 5.9 and 5.3.

Corollary 5.10. Let (K; ∂, ∂̄) be a bounded double complex and (K; d) its associated
simple complex. Denote by (′Er;

′ dr)r∈N and (′′Er;
′′ dr)r∈N the spectral sequences in-

duced by ′F p(K) and ′′F p(K), respectively. Let further n ∈ Z and assume that the double
complex satisfies the ∂∂̄-Lemma in degree n. Then ′ dk,n−k−1

r = 0 and ′′ dk,n−k−1
r = 0 for

all k ∈ Z and r ∈ N.

The following proposition states what the ∂∂̄-Lemma means for the induced filtrations
on the cohomology.

Proposition 5.11. Let (K; ∂, ∂̄) be a bounded double complex and (K; d) its associ-
ated simple complex. Denote by (′Er;

′ dr)r∈N and (′′Er;
′′ dr)r∈N the spectral sequences

induced by ′F p(K) and ′′F p(K), respectively. Let further n ∈ Z and assume that the
double complex satisfies the ∂∂̄-Lemma in degree n. Then

′F p(Hn−1
d (K)) + ′′F q(Hn−1

d (K)) = Hn−1
d (K) for all (p, q) ∈ Z2 with p+ q = n

′F p(Hn
d(K)) ∩ ′′F q(Hn

d(K)) = 0 for all (p, q) ∈ Z2 with p+ q − 1 = n.

Proof. For the first equation take α = [z] ∈ Hn−1
d (K), where z ∈ Kn−1 is a representative

of α. Fix p and q with p+ q = n. We want to find x ∈ ′F pKn−1 and y ∈ ′′F qKn−1, both
in the kernel of d, such that [x] + [y] = α. If we write

z =
∑

r+s=n−1

zr,s

=
∑

r+s=n−1
r≥p

zr,s +
∑

r+s=n−1
r≤p−1

zr,s,

then ∂̄(zp,q−1) = −∂(zp−1,q), because d(z) = 0. Hence ∂̄(zp,q−1) ∈ im(∂̄n−1) ∩ ker(∂n),
which, by equation (2)(ii), is a subset of im(∂n−1∂̄n−2). So we find u ∈ Kp−1,q−1 ⊆ Kn−2

such that

∂(∂̄(u)) = ∂̄(zp,q−1) = −∂̄(∂(u)).

If we set

x =
∑

r+s=n−1
r≥p

zr,s + ∂(u)

and

y =
∑

r+s=n−1
r≤p−1

zr,s + ∂̄(u),

we get

x+ y = z + d(u).
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Furthermore x ∈ ′F pKn−1 and y ∈ ′′F qKn−1. By

∂̄(zp,q−1 + ∂(u)) = 0 and ∂(zp,q−1 + ∂(u)) = ∂(zp,q−1)

we infer that

d(x) = d(
∑

r+s=n−1
r≥p

zr,s + ∂(u))

= ∂̄(zp,q−1 + ∂(u))

= 0,

and similarly for y. This proves the first equation.
For the second equation let p and q be integers such that p + q = n + 1 and α ∈
′F p(Hn

d(K)) ∩ ′′F q(Hn
d(K)). This means there is

x =
∑

r+s=n
r≥p

xr,s ∈ ′F pKn ∩ ker(d)

as well as

y =
∑

r+s=n
s≥q

yr,s ∈ ′′F qKn ∩ ker(d)

such that α is the class of x and the class of y. Because their classes are equal, there is
u ∈ Kn−1 such that x− y = d(u). It follows that

xp,n−p = xp,q−1

= xp,q−1 − yp,q−1

= ∂(up−1,q−1) + ∂̄(up,q−2)

We have

0 = d(x)

= d(
∑

r+s=n
r≥p

xr,s)

=
∑

r+s=n
r≥p

∂(xr,s) + ∂̄(xr,s).

By considering bidegrees, this gives ∂̄(xp,q−1) = 0. Hence

0 = ∂̄(xp,q−1)

= ∂̄(∂(up−1,q−1)) + ∂̄(∂̄(up,q−2))

= ∂̄(∂(up−1,q−1)).
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Applying equation (2*)(ii) to ∂(up−1,q−1) we find v ∈ Kp−1,q−2 ⊆ Kn−2 such that

∂(up−1,q−1) = ∂(∂̄(v)) = −∂̄(∂(v)).

It follows that

d(
∑

r+s=n−1
r≥p

ur,s − ∂(v)) = (x− ∂(up−1,q−1))− ∂̄(∂(v)) = x.

So x is exact, and hence α is zero.

Putting the previous results together, we get the following theorem, which is a degreewise
analogue of theorem (5.17) from [DGMS75].

Theorem 5.12. Let (K; ∂, ∂̄) be a bounded double complex and (K; d) its associated
simple complex. Denote by (′Er;

′ dr)r∈N and (′′Er;
′′ dr)r∈N the spectral sequences in-

duced by ′F p(K) and ′′F p(K), respectively. Let further n ∈ Z. Then (K; ∂, ∂̄) satisfies
the ∂∂̄-Lemma in degree n if and only if

(a) ′ dk,n−k−1
r = 0 and ′′ dk,n−k−1

r = 0 for all k ∈ Z and r ∈ N, and

(b) the induced filtrations on Hd(K) satisfy

′F p(Hn−1
d (K)) + ′′F q(Hn−1

d (K)) = Hn−1
d (K) for all (p, q) ∈ Z2 with p+ q = n

′F p(Hn
d(K)) ∩ ′′F q(Hn

d(K)) = 0 for all (p, q) ∈ Z2 with p+ q − 1 = n

For complex manifolds this theorem can be reformulated as follows.

Theorem 5.13. Let X be a complex manifold of dimension n. Then X satisfies the
∂∂̄-Lemma in degree k if and only if

(a) the differential maps dk,n−k−1
r of the Frölicher spectral sequence are zero for all

r ≥ 1, and

(b) the filtration on HdR(X) that is induced by the natural filtration on the space of
differential forms on X satisfies

F p(Hk−1
dR (X)) + F q(Hk−1

dR (X)) = Hk−1
dR (X) for all (p, q) ∈ Z2 with p+ q = k

F p(Hk
dR(X)) ∩ F q(Hk

dR(X)) = 0 for all (p, q) ∈ Z2 with p+ q − 1 = k.
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6 Some applications to complex manifolds

If a complex manifold is compact and kählerian, then it satisfies the ∂∂̄-Lemma and
provides a Hodge structure on the de Rham cohomology. In this final section, we will
give some applications of theorem 5.13 by dropping one of these assumptions. First, we
will consider compact surfaces, and afterwards, we want to consider Kähler manifolds
which are not compact but have a certain convexity property.

6.1 The compact case

Compact examples, for which theorem 5.13 can be useful, are connected compact complex
surfaces. We refer to [BHPVdV15] for more details about those. Most results, which we
will use, can be found in chapter IV.
It is well known that the Frölicher spectral sequence degenerates at E1 for such manifolds.
This allows us to reformulate theorem 5.13 as follows.

Theorem 6.1. Let X be a connected compact complex surface. Then X satisfies the
∂∂̄-Lemma in degree k if and only if the filtration on HdR(X) that is induced by the
natural filtration on the space of differential forms on X satisfies

F p(Hk−1
dR (X)) + F q(Hk−1

dR (X)) = Hk−1
dR (X) for all (p, q) ∈ Z2 with p+ q = k (16)

F p(Hk
dR(X)) ∩ F q(Hk

dR(X)) = 0 for all (p, q) ∈ Z2 with p+ q − 1 = k. (17)

Furthermore, we have equality in the Frölicher inequality. If we denote the Hodge num-
bers of X by hp,q, this yields

bk =
∑

p+q=k

hp,q.

In order to investigate the validity of the ∂∂̄-Lemma here, we have to distinguish if the
first Betti number b1 of X is odd or even. In the even case the following equivalence
holds.

Theorem 6.2. A compact complex surface is Kähler if and only if its first Betti number
is even.

Proof. See [BHPVdV15].

Hence, any compact complex surface with even first Betti number satisfies the ∂∂̄-Lemma
in all degrees.
If the first Betti number of X is odd, then h1,0 = h0,1 − 1. In particular, X does not
admit a Hodge Structure in degree 1 and is not a Kähler manifold. Now we want to
check in which degrees X satisfies the ∂∂̄-Lemma.
Like all complex manifolds, X satisfies the ∂∂̄-Lemma in degree 0.
As a connected compact complex manifold, X satisfies the ∂∂̄-Lemma also in degree 1.
To see this, consider equation (2)(i) of theorem 3.2. We have

im(∂0∂̄−1) = 0.
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So let x ∈ ker(∂̄1) ∩ im(∂0) = ker(∂̄1,0) ∩ im(∂0,0). Then there exists a smooth function
f on X such that x = ∂(f). Therefore,

0 = ∂̄(∂(f)).

Using that X is compact, we infer by the maximum principle for pluriharmonic functions
that f is constant. Hence, x = ∂(f) = 0. Equation (2)(ii) works the same way.
For degree 2, first note that

F 1(H1
dR(X)) ∩ F 1(H1

dR(X)) = 0,

since the ∂∂̄-Lemma holds in degree 1.
Since the Frölicher spectral sequence degenerates at E1, we have

H1,0

∂̄
(X) = E1,0

1 = E1,0
∞ = F 1(H1

dR(X))/F 2(H1
dR(X)) = F 1(H1

dR(X)).

We deduce

dimC(F 1(H1
dR(X)) + F 1(H1

dR(X))) = dimC(F 1(H1
dR(X))) + dimC(F 1(H1

dR(X)))

= dimC(H1,0

∂̄
(X)) + dimC(H1,0

∂̄
(X))

= h1,0 + h1,0

= h1,0 + h0,1 − 1

= b1 − 1

= dimC(H1
dR(X))− 1.

Therefore, equation (16) is not fulfilled for k = 2, and hence, X does not satisfy the
∂∂̄-Lemma in degree 2.
For degree 3, we consider the filtration on H3

dR(X). We have

H3
dR(X) = F 1(H3

dR(X)) ⊇ F 2(H3
dR(X)) ⊇ F 3(H3

dR(X)) = 0.

Note that by Serre duality we have hp,q = h2−p,2−q. In particular, h2,1 = h1,2 + 1.
Similar to before, we have

H2,1

∂̄
(X) = E2,1

1 = E2,1
∞ = F 2(H3

dR(X))/F 3(H3
dR(X)) = F 2(H3

dR(X)).

In particular,

dimC(F 2(H3
dR(X))) = h2,1 = h0,1 = b1 − h1,0 = b1 − dimC(F 1(H1

dR(X))). (18)

Now consider

b : H1
dR(X)×H3

dR(X) −→ C

([α], [β]) 7−→
∫
X
α ∧ β,
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which is a non-degenerate bilinear map, by Poincaré duality. Note that

(F 1(H1
dR(X)))⊥ = {y ∈ H3

dR(X) | b(x, y) = 0 for all y ∈ F 1(H1
dR(X)}

contains F 2(H3
dR(X)). Hence, equation (18) implies that they are equal. The same is

true for the conjugated spaces. We infer that

dimC(F 2(H3
dR(X)) ∩ F 2(H3

dR(X))) = dimC((F 1(H1
dR(X)))⊥ ∩ (F 1(H1

dR(X)))⊥)

= dimC((F 1(H1
dR(X)) + F 1(H1

dR(X)))⊥)

= b1 − dimC(F 1(H1
dR(X)) + F 1(H1

dR(X)))

= 1.

This implies that equation (17) cannot be satisfied for k = 3. But then X does not
satisfy the ∂∂̄-Lemma in degree 3.
In degree 4 it is obvious that equation (17) is satisfied for all p and q. Also, equation
(16) is fulfilled whenever p ≤ 1 or q ≤ 1. For p = q = 2 we compute

dimC(F 2(H3
dR(X)) + F 2(H3

dR(X)))

= dimC(F 2(H3
dR(X))) + dimC(F 2(H3

dR(X)))− dimC(F 2(H3
dR(X)) ∩ F 2(H3

dR(X)))

= h2,1 + h2,1 − 1

= b1

= dimC(H3
dR(X)).

Hence, equation (16) is also satisfied in this case. This implies that X satisfies the
∂∂̄-Lemma in degree 4.
We summarize these considerations in the following theorem.

Theorem 6.3. Let X be a connected compact complex surface. Then the validity of
the ∂∂̄-Lemma is expressed as follows.

Table 1: Validity of the ∂∂̄-Lemma for compact complex surfaces
b1 even b1 odd

degree 0 yes yes
degree 1 yes yes
degree 2 yes no
degree 3 yes no
degree 4 yes yes

Note that the arguments we used for degree 3 and 4 can be used for a compact complex
manifold of arbitrary dimension as long as its Frölicher spectral sequence degenerates at
E1.

Theorem 6.4. Let X be an n-dimensonal compact complex manifold and suppose that
its Frölicher spectral sequence degenerates at E1. Then X satisfies the ∂∂̄-Lemma in
some degree k if and only if X satisfies it in degree 2n− k + 1.
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6.2 The non-compact case

Non-compact manifolds, where theorem 5.13 can be applied, are Kähler manifolds, which
satisfy an additional convexity condition. The following results mainly are due to [Ohs81].
We also refer the reader to [BDIP02] and the references given there for more details.

Definition 6.5. A smooth function defined on an n-dimensional complex manifold is
called strongly l-convex if its Levi form has n− l+ 1 positive eigenvalues at every point
outside a compact subset of X. Furthermore, we say a complex manifold X is absolutely
l-convex if X has a plurisubharmonic exhaustion function, which is strongly l-convex.

Then we have the following theorem.

Theorem 6.6. LetX be an n-dimensional Kähler manifold, which is absolutely l-convex.
Then in total degree greater or equal than n+ l we have

Hk
dR(X) ∼=

⊕
p+q=k

Hp,q

∂̄
(X) and Hp,q

∂̄
(X) ∼= Hq,p

∂̄
(X).

Furthermore, all these spaces are finite dimensional.

Proof. See [Ohs81].

Hence,

dimC Hk
dR(X) =

∑
p+q=k

dimC Hp,q
∂ (X)

whenever k ≥ n+ l, and the Frölicher spectral sequence degenerates at E1 in total degree
at least n+ l.
In particular, we can apply theorem 5.13 to such manifolds to get the ∂∂̄-Lemma in high
degrees.

Theorem 6.7. LetX be an n-dimensional Kähler manifold, which is absolutely l-convex.
Then X satisfies the ∂∂̄-Lemma in degrees greater than n+ l.
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