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Preface

The Enriques-Kodaira classification is a classification of compact complex surfaces into ten classes. For each
class, the surfaces in the class can be parametrized by a moduli space. While the moduli spaces for most
of the classes are well understood, the moduli space for the class of surfaces of general type is difficult to
describe explicitly. This is one of the reasons why this class of surfaces is worth exploring. Some well-known
examples of surfaces of general type include the Castelnuovo surfaces, fake projective planes (see Chapter
5), and products of two curves, each having genus at least 2. The Chern numbers of a compact complex
surface of general type satisfy the inequality ¢? < 3cy. This is now a well known classical result known as the
Bogomolov-Miyaoka- Yau inequality, or BMY inequality for short. Surfaces of general type satisfying ¢? = 3ca,
i.e., the extreme case of the BMY inequality, are especially interesting. It was shown by Hirzebruch that
every such surface occurs as the quotient of the unit ball in C2 by the free action of an infinite discrete group.
These ball quotient surfaces have proven tricky to construct and have been a subject of great interest and
research in recent years.

This thesis consists broadly of three parts. In the first part, we study the proof of the Bogomolov-Miyaoka-Yau
inequality following the 1978 article of Miyaoka ”On Chern numbers of surfaces of general type”. We first
discuss some preliminary results that will be used later in the thesis, and then make explicit and more
accessible the proof of every result in Miyaoka’s article. For this part, the main reference, apart from the
article itself, is the book ”Compact complex surfaces” by Barth, Hulek, Peters, and van de Ven (see [1]). This
book is a detailed resource on the (classical) theory of surfaces, and we encourage the interested reader to
follow it.

In the second part of the thesis, we discuss examples of surfaces of general type, focusing mainly on those that
satisfy the equality ¢? = 3cy. We study the construction of such surfaces starting from line arrangements in
the projective plane P2. In this method, the desired surface is constructed as a ’good cover’ of a blow up of the
projective plane P2, branched along an arrangement of divisors. We describe the construction of a Kummer
covering of a blow up of P2 branched along an arrangement of divisors arising from a line arrangement in P2,
and derive conditions for such a surface to satisfy ¢? = 3co. This construction was introduced by Hirzebruch
in his article ” Arrangements of lines and algebraic surfaces”, although it is not described in as much detail
here. For this part of the thesis, we use the book ”Complex ball quotients and line arrangements in the
projective plane” by P. Tretkoff as the main reference.

The third part of the thesis is dedicated to an interesting class of surfaces of general type satisfying ¢? = 3¢,
the fake projective planes. A fake projective plane is so called because it has the same Betti numbers as the
projective plane P2 but is not isomorphic to it. Fake projective planes have proven difficult to construct and
have been studied extensively in recent years. Prasad and Yeung [11] have shown that many fake projective
planes admit finite automorphism groups. Following this, Keum classified quotients of fake projective planes
by the action of their finite automorphism groups, and their minimal resolutions of singularities, in his article
”Quotients of fake projective planes”. In the thesis we study this article and make explicit the proof of all
results in it.

A natural question that arises is: Can one construct a fake projective plane starting from a line arrangement
in P?, using the method mentioned above? For the complete quadrilateral arrangement discussed in the
thesis, the answer turns out, unfortunately, to be no. However, this question is still worth exploring, possibly
in a more general setting. Another interesting direction to pursue would be studying automorphism groups
of surfaces of general type satisfying ¢? = 3¢y constructed using line arrangements on P2. Are there any such
surfaces admitting finite automorphism groups? If yes, what do their quotients and minimal resolutions look
like?
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0 Notation

The following notation is used throughout the thesis.

Ox: structure sheaf of the algebraic variety or complex space X.
det(F): determinant of the locally free sheaf (or vector bundle) F.
F: dual sheaf of the locally free sheaf F.

S"F: the n-th symmetric power of F.

P(F): projective bundle associated to F.

H': divisor associated to the tautological invertible sheaf on P(F).

e(X): topological Euler characteristic (also called Euler number) of X.

If X is a complete variety, the following notation is used:

¢i(F): the i-th Chern class of the locally free sheaf F on X.

[£]: the Cartier divisor associated to an inverticle sheaf £ on X.

hi(X,F): dimension of H*(X, F).

X(X,F): the Euler characteristic of F; by definition, x(X,F) = ¥,(—1)*h*(X, F).

|D]: complete linear system associated to the divisor D on X.

If X is a complete smooth variety, we use the following notation:
QL : locally free sheaf of holomorphic 1-forms on X.
Kx: canonical divisor on X; by definition, Ox (Kx) = detQ}.

¢;(X): the i-th Chern class of X; by definition, ¢;(X) = cl(@) = (—=1)'¢;(2%). Note that co(X) = e(X) if
X is a smooth surface.

Pic(X): Picard group of X i.e., the group of isomorphism classes of invertible sheaves on X.

P,,(X): the m-th plurigenus h°(X, Ox(mKx)) of X.



If X is a complete surface, we use the following notation:
py(X): the geometric genus h?(X, Ox) of X.
q(X): the irregularity h'(X,Ox) of X.

Pa(X): the arithmetic genus py(X) — ¢(X) of X.



1 Basic invariants of complex manifolds

In this section we discuss some important invariants associated to a complex manifold and how these change
under birational transformations. By [1], Corollary III.4.4, every birational map is a composition of finitely
many blow-ups, so it suffices to study how the invariants change under a blow-up at a single point. We begin

with the following fundamental result from [1].

Theorem 1.1 ([1], 1.9.1). Let X be a complex manifold of dimension n > 2, andp: X — X the blow-up of

X at a point xg. Let E = p~'(z0) be the exceptional divisor on X, which is isomorphic to P*~'. Then

1. p induces an isomorphism between the fields of meromorphic functions on X and X. In particular, if

X (and hence X ) is compact, then X and X have the same algebraic dimension.
2. psOx = Ox and Rip,(Ox) =0 fori > 1.
3. p*: HY(X,0x) — HY(X,Ox) is an isomorphism for all i = 0.
4. p*  H(X,Z) — H’()A(, Z) is bijective for i = 1 and injective for i = 2. Furthermore,
H(X,7) ~ p* (H*(X, 7)) @ Z{e},
where e = ¢1(Ox(FE)).
5. For every a € H*(X,Z), we have pip*(a) = a.

6. p* : HY(X,0x) — HY(X,Ox) is injective and thus Pic(X) is isomorphic to the product of Pic(X)
and the infinite cyclic group generated by Ox(E).

7. Ox(Kg) = p*(Ox (Kx)) ® Ox((dim(X) = 1)E).

8. p induces an isomorphism p* : T(X, Ox(mKx)) — T'(X, Ox(mKx)) for allm > 1, so if X is compact,
P(X) = Pp(X) form =1 and k(X) = x(X).

For a complex surface X, the numbers ¢?(X) and co(X) play a central role in the discussion that follows

and so it is important to know how these numbers change if X is blown up at a point.

Lemma 1.2. Let X be a smooth, connected complex surface, and let p: X — X be the blow-up of X at a
point xog. Then we have

ci(X) = cf(X) -1

c2(X) = ca(X) + 1.
Proof. This is an easy consequence of Theorem 1.1 and Noether’s formula. For a smooth complex surface
Y, we have, by definition, ¢3(Y) = e(Y) = Z?zo(—l)ibi(Y), where b;(Y) denotes the i-th Betti number of
Y. Poincare duality implies that b;(Y) = bs—;(Y"), moreover if Y is connected, we have by(Y) = by(Y) = 1.
Let E = p~!(xg) be the exceptional divisor on X. Then E = P! and 7 : X\E — X\{zo} is a biregular map.
Hence X is also a smooth, connected surface, and statement 4 of Theorem 1.1 implies that by (X) = b;(X)
and by(X) = by(X) + 1. This implies that co(X) = e(X) = St bi(X) = 1= b1 (X) +ba(X) +1—b3(X) +1 =
ca(X) + 1.
The holomorphic Euler characteristic x(X,Ox) of X is defined as x(X,0x) = >,,(=1)"h'(X,Ox). From
statement 3 of Theorem 1.1 we get x (X, Ox) = x(X, Ox). Noether’s formula says

L @) + o),



from which it follows that ¢(X) + ca(X) = ¢3(X) + c2(X). Since we know that ca(X) = co(X) + 1, we get
c3(X) = ¢2(X) — 1. This proves the assertion. O

Lemma 1.3. Let X be a smooth projective surface. Then
X(X,0x) =14 pg(X) = q(X) =1+ pa(X).
If X is Kahler then
c2(X) =2 —4q(X) + by(X).

Proof. Recall that x(X,O0x) = Y,(—-1)"h*(X,Ox) = h%(X,0x) — h'(X, Ox) + h*(X,Ox). We also have
hi(X,0x) = dimH* (X, Q%) = h%(X). Note that h%? = by = 1, and h®! = ¢(X) and h*?(X) = py(X) by
definition. Hence it follows that x(X,Ox) =1 — ¢(X) + pg(X).

If X is Kéhler, then the first Betti number b;(X) is even i.e., h%1(X) = h10(X) (see [1], Theorem IV.3.1)
and so by (X) = b3(X) = 2¢(X). Thus it follows that co(X) = Z?:o bi(X) =2 —4g(X) + b2(X). This proves

the assertion. O

Remark 1.4. Let X be a smooth complex surface. Any birational transformation of X is a composition of
finitely many blow-ups, and so statement 3 of Theorem 1.1 implies that the holomorphic Euler characteristic
X(X,Ox), geometric genus py(X), and irreqularity ¢(X) are invariant under birational transformations of
X. If in addition X is compact and connected, then statement 8 of Theorem 1.1 implies that the plurigenera

P (X) are also invariant under birational transformations of X for m = 1.

For any compact, connected, oriented (not necessarily differentiable) manifold X, the index 7(X) is defined
as follows. If dim(X) # 0 mod 4, then set 7(X) = 0. If dim(X) = 4m, the cup product form defines on
H?™(X,Q) anon-degenerate quadratic form Q(X), and we set 7(X) = 7(Q(X)), i.e., 7(X) = b7 (X)—b"(X),
where b (X) and b~ (X) denote the number of positive and negative eigenvalues of ) respectively. Note that
bom (X) = b7 (X) + b~ (X). Writing H*(X,Q) = >, H(X,Q), we can make H*(X,Q) into a graded ring by
means of the cup product. For any element e € H*(X,Q), let t;(e) denote the component of e which is in
dimension ¢. Thus, given an isomorphism H"(X,Q) = Q, t,(e) is a rational number. Let L(X) € H*(X,Q)
denote the L-class of the tangent bundle of X (see [1], Chapter 1.3 and references therein for a more detailed

discussion). We now state an important result due to Hirzebruch.

Theorem 1.5 ([1], Theorem 1.3.1 (Thom-Hirzebruch index theorem)). Let X be a compact, connected,

oriented differentiable manifold of dimension 4m. Then,
T(X) = tam(L(X)).

In particular, if m = 1, and X carries an almost-complex structure, then 7(X) = b(X) — b~ (X) =
3(F(X) — 2e2(X)).

Lemma 1.6 ([1], Lemma IV.2.6). For every compact complex surface X the following inequalities hold:
1. 2RY9(X) < KO1(X) + h1O(X) < 2R%1(X)
2. 2pg(X) < bT(X).

Theorem 1.7 ([1], Theorem IV.2.7). Let X be a compact complex surface. Then

1. if bi(X) is even, then h*°(X) = h%1(X) and bT(X) = 2p,(X) + 1;



2. if b1(X) is odd, then h*°(X) = h%1(X) — 1 and b*(X) = 2p,y(X);

3. q(X) and py(X) are topological invariants, q(X) of the non-oriented, and py(X) of the oriented

underlying manifold.

Proof. From the Thom-Hirzebruch theorem (Theorem 1.7) it follows that
_ 1
bH(X) =7 (X) = 3(ei(X) = 2¢2(X)). (1)
Using Noether’s formula and Lemma 1.3, we have

L 2x) + ea(x)). ()

1= g(X) +py(X) = 15

Multiplying equation 2 by 4 and subtracting equation 1, we get
4—4q(X) +4pg(X) =0T (X) + b~ (X) = c2(X) = e(X) =2 —2b;(X) + b7 (X) — b~ (X)),
where we have used ba(X) = b7 (X) + b~ (X). Rearranging the terms in this equation, we get
(b7 (X) = 2py(X)) + (29(X) — bi (X)) = 1.

From Lemma 1.6 we know that each term in brackets in the left hand side of the above equation is a non-

negative integer. Thus there are exactly two possibilities, which are statements 1 and 2 of the theorem. O

Remark 1.8. Noether’s formula, together with statement 3 of Theorem 1.7 implies that ¢3(X) is a topological

invariant of the underlying oriented manifold. This is also clear from the Thom-Hirzebruch index theorem.

2 Some tools from algebraic geometry

2.1 Cyclic coverings

We begin with studying covering maps between complex spaces, because these will appear often in the
discussion to follow. Although the meaning of ”covering space of a topological space” depends largely on the

context, we have the following broad definition.

Definition 2.1. A covering space or cover of a topological space X is a topological space Y together with
a continuous map ™ : Y — X such that every point x € X has an open neighbourhood U, c X such that

7Y (U,) is a disjoint union of open sets in'Y, each of which is mapped homeomorphically onto U, via 7.

We can modify Definition 2.1 to suit the situation we are in. For example, suppose X and Y are connected
complex spaces and 7 : X — Y is a surjective holomorphic map such that all points y € Y have a connected
neighbourhood V;,, with the property that 7—!(V},) is a disjoint union of open subsets of X, each of which is
mapped isomorphically onto V,, via . In this case X is called an analytic covering space of Y and 7 : X — Y
is the covering map.

A covering map 7 : X — Y of topological spaces is called finite if for every point y € Y, the fibre 771(y)
is a discrete, finite subset of X. The fibres are homeomorphic over each connected component of Y. If
Y is connected then the degree of the covering map is defined as the cardinality of a fibre. Let X and Y
be schemes. Then a covering map 7 : X — Y is called flat if it is flat as a morphism of schemes. Now
suppose that X and Y are complex manifolds of the same dimension. A continuous map 7 : X — Y is a

branched covering if, away from a closed subspace S of Y, the map 7 : X\nr~!(S) — Y\S is a covering map



as in Definition 2.1, and S has codimension at least 1 in Y. The subspace S c Y is called the branch or
ramification locus of 7. Note that the cardinality of a fibre over any point in the branch locus is strictly less
than the cardinality of a fibre over any point not in the branch locus.

A cyclic cover is a branched covering space for which the set of covering transformations forms a cyclic group.
Cyclic coverings are a useful tool to construct new examples of surfaces. We study the construction of a
cyclic cover of a complex manifold branched along a divisor. We first consider a local description of the
m-fold cyclic covering of a variety branched along a divisor as given in [8]. Let X be an affine variety and let
s € C(X) be a non-zero regular function. The aim is to construct a variety Y on which the m-th root %/s of
s makes sense. To do this, we begin by taking the product X x A! of X and the affine line. Let ¢ be the
coordinate on A! and let Y — X x A! be the subvariety defined by the equation t™ — s = 0.

{tm —s=0} =Y < X x Al

s
pry

X

The natural mapping 7 : Y — X is a cyclic covering of X brached along the zero divisor D of s. Setting
s’ =tly € C(Y), we have the equality

of functions on Y. Thus we have constructed the desired m-th root of s. Note that the function s’ defines a
divisor D’ on Y which satisfies 7#*D = mD’.

This local construction can be globalized by means of the following result, which is proposition 4.1.6 in [8].

Proposition 2.2 (Cyclic coverings). Let X be a variety and L a line bundle on X. Let m be a positive
integer and let s € T'(X, L9™) be a non-zero section defining a divisor D on X. Then there exists a finite flat

covering w:Y — X, where Y is a scheme with the property that the line bundle 7*L has a section
s el(Y,n*L) with (&)™ =r*s.

The zero divisor D' of s’ maps isomorphically to D. Moreover, if X and D are non-singular, so too are Y
and D'.

Proof. This can be proved by taking an affine open covering {U;} of X over which £ is locally trivial, and
carrying out the above local construction over each U;. Since s is a section of the m-th tensor power of the
line bundle £, the resulting local coverings can be glued together. However, this local construction can be
globalized in a more direct manner.

More formally, let L be the total space of the line bundle £ and let p: L — X be the bundle projection. In
other words, we have L = Specg, Sym(ﬁA). Then, there is a tautological section t € T'(L, p*L). In fact, a
section of p* L is specified geometrically by giving for each point a € L a vector in the fibre of p over x = p(a).

But a itself is such a vector, and we set t(a) = a. More formally, ¢ is determined by a homomorphism
OL —_—> p*ﬁ
of Or-modules, or equivalently, by a mapping

Syme, (£) — L ®Symg, (£) (3)

of quasi-coherent sheaves on X. The term on the left in (3) is naturally a summand of the term on the right,

and the map is the canonical inclusion.
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The proposition now follows, by taking Y = L to be the zero divisor of the section
t™ — p*s e T(L, p*LO™),

and s’ = t|y. We then have a finite flat map 7 : ¥ — X such that (s')™ = 7*s € T(Y,7*L®™), with

s e T(Y,n*L). The other assertions of the proposition follow from the local construction. O

As an application, we have the following result, which will be used in the proof of Bogomolov’s lemma
(see Theorem 3.13).

Lemma 2.3. Let X be a non-singular projective variety and L a line bundle on X. Let n be a positive
integer and let f1, fa, f3 € T(X, LZ™) be non-zero sections. Then there exists a scheme Y and a finite flat
covering m:Y — X such that * f; = gl*, where g; e T(Y,7*L) fori=1,2,3.

Proof. The sections fi, fo, and f3 define divisors Dy, Ds, and D3 respectively, on X. Let m; : X1 — X be
an n-sheeted cyclic covering of X branched along D; (see Proposition 2.2). Then, there exists a divisor
D} on X; given by a section f] € I'(Xy,nFL) such that #¥D; = nDi, i.e., nffi = (f])". Let D} = 7§ Do
and Dj = nfDs. Then Dj and Dj are divisors on X; defined by the sections f5 = 7§ fo and f5 = 7§ f3
respectively, where f5, fi € T'(Xy, 7§ L).

Now let 7o : Xo — X7 be an n-sheeted cyclic covering of X; branched along D} = 7¥Dy. Then, there is a
divisor Dj on X, given by a section fJ € I'(Xy, 73 (7§ L)) such that 73D} = nDj, ie., m3f5 = (f5)". Let
DY = 75D} and D = w3 D5. Then D7 and DY are divisors on X5 defined by the sections fy = 73 f{ and

Y = 7k f4 respectively, where fJ, fi € T'(Xo, nd (nFL)).

Finally, let w3 : X3 — X5 be an n-sheeted cyclic covering of X» branched along D4 = w3 D5. As before,
there is a divisor D5 on X3 given by a section f{ € I'(X3, 7% (nd(n¥L))) such that n¥D4y = nDY, i.e.,
i fd = (f§)". Let DY = n¥D7 and DY = n¥Dj. Then DY and D7 are divisors on X3 defined by the
sections f1" = 7w f{ and fJ = «¥ fJ respectively, where f”, f3' € I'(Xs5, 75 (75 (75 L))).

Now take Y = X3. Then 7 = myomomg : ¥ — X is a finite flat covering of X. Moreover, taking
gi = fl"e (Y, m*L) we get n* f; = g" € (Y, m*L®") for i = 1,2,3. Thus the assertion is proved. O

2.2 Invariants of good covers

We now discuss coverings branched over subvarieties with transverse intersections. Let X be a complex
surface i.e., a complex manifold of dimension 2. Let {D;}, ¢ € I for some finite index set I, be a set of
smooth, one-dimensional irreducible subvarieties. In a neighbourhood of any point p € D;, we can choose
local coordinates (u,v) on X such that D; is given locally by the equation u = 0, and u is called a normal
coordinate to D; at p. We assume that for ¢ # j, D; and D; intersect transversally i.e., for any p € D; n Dy,
we have normal crossing at p. This means that we can assign local coordinates (u,v) at p such that D; is
given locally by v = 0 and Dj is given locally by v = 0. Moreover, we assume that no more than two of the
D; intersect at one point i.e., | J, D; consists of only ordinary double points.

Under these conditions, a good covering of X, as in [13], Def. 3.1, is given by the following definition.

Definition 2.4. Let Y be a complex surface that is a finite covering w : Y — X of X. Suppose that 7 is
branched along a system {D;} of one-dimensional subvarieties of X intersecting transversally. The covering
s a good covering if, in addition, there are integers N = 1 and b; = 2 for all i € I, such that

(i) for alli€ I, we have b;|N and there are N /b; points of Y over each point of Di\|J,; Di n D;.

(ii) for alli,je I, i +# j and D; n D; # &, we have b;b;|N and there are N /b;b; over each point of D; N D;.
(i) over the points not appearing in (i) and (i), there are N points of Y, and N is called the degree of this

COVETing.
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The following result gives a local description of a good cover.

Lemma 2.5. Let the setting be as above and let m: Y — X be a good cover of X as in Definition 2.4. Then
we have

(i) Centered at each point q of Y lying over a point of D;\|J
b;

oy D; n Dj, there are local coordinates (s,t)

such that w = s, v = t are local coordinates centered at w(q), with w a normal coordinate to D; at
m(q). The map 7 is given locally by the quotient of an open neighbourhood of q by the action of Z/b;Z by
(s,t) — (exp(2mim/b;)s,t) for m e Z/b;Z;

(i1) Centered at each point q of Y lying over a point of D; n D;, there are local coordinates (s,t) such that

u = sb

, v = t% are local coordinates centered at w(q), with u a normal coordinate to D; at 7(q) and v a
normal coordinate to D; at w(q). The map 7 is given locally by the quotient of an open neighbourhood of ¢ by
the action of (Z/b;Z) x (Z/b;Z) by (s,t) — (exp(2mim/b;)s, exp(2min/b;)t) for m € Z/b;Z, n € Z/b;Z;

(iii) At any point q of Y not appearing in (i) or (ii), the map w is locally biholomorphic.

We now derive expressions for the Euler number and the self-intersection number of the canonical divisor
of a good covering, as given in [13]. These formulae will be useful in constructing examples of surfaces which
satisy the extreme case of the Bogomolov-Miyaoka-Yau inequality. Recall that for a smooth complex surface
X, the second Chern class equals the Eucler characteristic (also called the Euler number), i.e., ca(X) = e(X).
Let the setting be as in Definition 2.4.

Lemma 2.6. The Euler number of a good covering Y of X of degree N is given by
e(Y) _ (YY)

1
N = N = CQ(X) — Zl‘ze(Dl) + 5 ;jl‘iijiDj, (4)

where we set x; =1 — % for all .

Proof. We compute the Euler number of Y in two parts: first we compute the contribution by the complement
of the ramification locus and then the contribution by the ramification locus.

The Euler characteristic of each divisor D; on X is e(D;) and so the total Euler characteristic of all divisors is
>, e(D;). Note that in this sum we have counted each intersection point in D; n D; for ¢ # j twice- once on
D; and once on D;. The total number of intersection points is %ZZ 2; DiDj. Thus the Euler characteristic of
the branch locus on X is )}, e(D;) — %Z#j D;D;. Since there are N points of ¥ above each point of X in
the complement of the branch locus, the Euler characteristic of the complement of the ramification locus on

Y is given by
N(e(x) ~Nle(Dy) + % 3 Dlpj). (5)
i i%j

Recall that over each point of D;\D; n D; for i # j there are N/b; points of Y i.e., over each point of each

divisor D; except the intersection points, there are N /b; points of Y. Thus the contribution to the Euler
N
i#j by
point in D; n D; for ¢ # j there are N /b;b; points of Y. Hence the contribution to the Euler characteristic
N
i#j bib;

1 N 1
Ny ) (e(Di) - D,-Dj) +5 o D0 (6)
7 JFu 1#£]
Summing the expressions 5 and 6 we get the Euler characteristic of Y, which is given by

ea(Y) = N(CQ(X) ~Ye(Di) + % 3 DiDj) Ny bl (e(Di) -3 DiDj) n % 3 ﬁDiDj. (7)
i i#j i J#i itj I

characteristic from divisors minus intersection points is >}, fe(D;) — 3 D;D;. Over each intersection
K3

by intersection points is %Z D;D;. Thus the contribution of the ramification locus is
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Rearranging terms in the right hand side of the equation 7 and writing

NZbDD— ZbDD ZbDDJ,
1#] 1#] z;é]
we get
CQ(Y):NCQ(X)—NZ(l—bl) +—<ZDD > DD Z 5 DDy +be )
i 1#7 Hﬁ] i#]

— Nea(X)— N Y] (1 . é)e(Di) + g 3 (1 _ l}) (1 _ F)DiDj.
i ¢ i#j v J

Setting z; = 1 — b% for all 7 and dividing the above equation by N, we get

c2(Y)
N :CQ(X)_Zi:xie( i ;xl%D iDj,

which is the equality 4. O

Let R denote the ramification divisor of 7 on Y. Then the canonical divisor of Y is given by Ky = n*Kx+R
(see for example equation 20 on p.53 in [1]). Note that R is the vanishing locus of the determinant of the
Jacobian of m on Y. We now derive an expression for Ky in terms of the branch locus on X, by following
Lemma 1.16.1 of [1].

Lemma 2.7. Let the setting be as in Definition 2.4. Then the canonical divisor on'Y is given by

Ky = m*(Kx + Z%‘Di), (8)

i
where x; = 1 — b% for all i, as before.

Proof. Let R =}, r;R;, where 7; are integers for all 4, and the R; are irreducible components of R such that
m(R;) = D; for all i. We know that at any point y € R; such that n(y) = z € D;\D; n D, for ¢ # j, the
branching order of 7 is b;. Let (u,v) be local coordinates on X centered at x such that D; is given locally by
the equation u = 0 at z. If R; is given locally by the equation ¢ = 0 at y, then we have 7*(u) = t%. Setting
w = du A dv, we get 7% (w) = bjt*1dt A ds, where s = 7*(v). This shows that (¢, s) is a local coordinate
system at y and that the zero divisor of 7*(w) is (b; — 1)R;. Thus we have r; = b; — 1 for all 4. This implies
that

Ky =m*Kx +Z(bi*1)Ri~ (9)
Since Dj is locally given by the equation v = 0 at =, 7*D; is locally given by 7*(u) = t* = 0 at y. Recall

that R; is locally given by the equation ¢ = 0 at y, and hence 7*D; = b; R; as divisors on Y. Plugging this
into the equation 9, we get

’/T*Di.

b;
Ky =m*Kx + ). -

. b, —
Setting x; = 1 — % = Tl

as before, it follows that
Ky =nm*Kx +Zl‘i7T*Di = F*(KX +Z.Z‘iD

which is the expression 8. O
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Since the degree of the map 7 : Y — X is N, it follows from Lemma 2.7 that the self intersection number

of the canonical class on Y is given by

Ky = N(Kx + Y, 2:D;)°. (10)
Expressing the formula 10 in terms of the first Chern numbers of X and Y, we have
A(Y) 2 2 212
T = (KX + ;$1D1> = Cl(X) + 2;.’131}()(1)1 + ;xiDi + ;jxiijiDj. (11)

In order to simplify this expression, we use the following well-known result.

Lemma 2.8 (Adjunction formula). Let X be a complex manifold of dimension 2 and D a smooth submanifold
of X of dimension 1. Then

e(D) = —(KxD + D?). (12)
Proof. A proof of the adjunction formula is given in [3], Proposition V.1.5. O

Lemma 2.9. Let the setting be as in Definition 2.4. Then the self-intersection number of the canonical
divisor of Y is given by

104
% = G (X) = 2> mi(e(D:) + D}) + Y 27D} + Y wix; D; D;. (13)
i i i#j

Proof. We can add and subtract 2 )}, z;D? from the right hand side of equation 11, which gives

()

. A(X) + 2in(KXDZ- + D?) - 22@-1)3 + Zm?D? + > @2, DiD;.

i#j
Using the adjunction formula 12, we replace K x D; + D? in the above equality by —e(D;) to get the equality
13. This proves the assertion. O

2.3 Construction of a Kummer covering

Let P2 denote the blow up of P? at the r-fold (r > 3) intersection points of a line arrangement in P? and Y a
good covering of P2 of degree N as before. A special case occurs when we take the ramification indices of all
divisors on P2 to be the same positive integer n > 2. In this case Y is called a Kummer covering of P2. We
derive the conditions necessary for such a surface Y to satisfy the equality 3c2(Y) = ¢3(Y) in section 7.4.
Now we discuss the construction of a Kummer covering starting from a line arrangement in P2.

Consider an arrangement of k lines in P2, defined by the equations I = 0,1y = 0,...,I; = 0. We assume
that the arrangement does not form a pencil, i.e., not all of the k lines pass through a single point. Let
¢ : P2 — P*~! be the map defined by sending a point z € P? to the point (I1(z) : lo(z) : ... : lx(x)) € PF1L,
Note that this map is well defined because we have assumed that the arrangement is not a pencil i.e., the [;’s
do not all simultaneously vanish, and they are all homogeneous of the same degree. Let v : PF~1 — Pk-1
denote the Fermat covering of P*~! by itself, i.e., the map given by sending a point (¢ : 1 : ... : xx_;) € P!
to the point (zf : & : ... : }_,), where we take n to be the ramification index assigned to each line in the
arrangement. It is straightforward to see that the degree of this map is n*~!. We now define the variety X

as follows
P? xpio1 PP 5 X = {(z,y) € P? xpees PF71 | @(2) = v(y)}.
Let 7 : X — P2 denote projection in the first factor, i.e., the map defined by sending a point (z,y) € X to

the point z € P2. Then the following statement is clear.

14



Lemma 2.10. The map 7 : X — P? defined above is a finite surjective map of degree n*=1. Moreover, this
map is branched exactly along the line arrangement on P? with ramification index n along each line and n” at
each r-fold intersection point of the arrangement. Any point ¢ in X lying above a point p in P? is a singular
point if and only if p is an r-fold intersection point of the line arrangement.

Thus if the line arrangement on P2 has r-fold intersection points then X is not smooth. Let p : P2 — P2
denote the blow-up of P? at the r-fold intersection points of the arrangement. Then the surface P2 is smooth,
and the new arrangement on P? consists of proper transforms of the lines of the arrangement and exceptional
divisors corresponding to the blown up points. Note that this new arrangement of divisors consists of only
simple normal crossings.

Proposition 2.11. There is a smooth surface Y together with a birational map 7 :Y — X, and a surjective

k—1

morphism o : Y — P2 such that the latter is a good covering of P2 of degree n in the sense of Definition

2.4. Moreover, o is branched along the new arrangement, and for each divisor D; in the arrangement,
the ramification index at each point in the set D\ |

intersection point D; N D is n?.

it D; n Dj isn, and the ramification index at each

The situation is represented by the following commutative diagram.

X¢—Y

P B

Proof. The existence of Y essentially follows from the proof of [1], Theorem II1.6.1. We blow up P? at all
the r-fold points of the line arrangement (r > 3) to get P? and a new arrangement which consists of only
simple normal crossings. We form the fibre product X xp2 P2 and observe that it is normal, since it is the
fibre product of normal varieties. We set Y = X xp2 I@Q, and get a birational map 7 : Y — X and a map
o:Y — I@’Q, which is a finite covering branched along the new arrangement on P2. Note that Y is a resolution
of singularities of X, i.e., Y is smooth. Since 7 : X — P2 has degree n*~1, it follows that o : Y — P? also
has degree n*~1.

To prove the assertion about ramification indices, we consider the affine local picture. Let p be an r-fold
point of the line arrangement on P? as before, let I; = 0,l3 = 0,...,1, = 0 be the equations of the lines
passing through p and let I, = 0 be a line not passing through p. Then we can take ~2— and 2 as local

lrt1 lrya

coordinates in an open affine neighbourhood U centered at p. The blow up of p = (0,0) € U is given by

{([“ Hol, (zr% zfi)) eP' xU| ”(zﬁl) - ”(zrlil)} —U
([u o) (lrli’ lrli)) }—> (lrli17 lrli).

The exceptional divisor is P* x (0,0), and we have two affine neighbourhoods on the blow up, namely {u # 0}
and {v # 0}. Putting u = 1, we have 2~ = y(;4-). If -~ = 0, then lil = 0 and so the exceptional

lry1 [ [ 1,

divisor is given by the equation llil = 0 in this chart. The proper transform of the line llj—l = 0 is given by
v = % = 0 in this chart. Similarly, putting v = 1 gives llil = u(lli1 ), which implies that llil = 0 defines
the exceptional divisor, and u = % = 0 defines the proper transform of the line lﬁl = 0 in this chart. Let FE

denote the exceptional divisor corresponding to p and let D1 and Dy denote the proper transforms in P2 of

the lines given by I3 = 0 and Iy = 0 respectively. In an open affine neighbourhood of the intersection point

15



Lol
(PRI

coordinates. We treat all other intersection points F; n D; in the new arrangement on P? in the same way.

) as local coordinates and similarly at E n Dy we can take (22, 4-) as local

[P

E n Dy, we can take (

Let ¢ be a singular point in X lying above p. Similarly as before, in an open affine neighbourhood of ¢ we can
take (lfil )% =0, (lrlil)% =0,.., (lfil )% = 0 as local equations of curves L}, L}, ..., L] passing through gq.

Thus the strict transform of the curve L} under the birational map 7:Y — X is given locally by (; lil )}T =0

in an open affine subset V of Y. Since 7 : Y\71(Sing(X)) — X\Sing(X) and p : P2\p~!(Sing(P?)) —
P2\Sing(P?) are isomorphisms, where Sing(X) denotes the set of singular points of X and Sing(P?) denotes

the set of singular points of the line arrangement on P2, we have Tly\r—1(Sing(X)) = (p~tom OT)|y\r—1(Sing(X))-

This implies that the ramification index of ¢ along the proper transform D of L} is n. Thus D] is locally

given by the equation (%)% = 0 in V, which implies that the exceptional divisor E’ arising from blowing

up q is given locally by (ll—z)% = 0in V. It follows that the ramification index along E’ is also n. Since the
T1

ramification index of 7 at g is n", we see that E’ maps onto E via ¢ with degree n”~!. At the intersection

point D] n E’, we can take ((%)%, (lfil )#) as local coordinates in V, which implies that the ramification

index at the intersection point D] n E’ is n?. We treat all other intersection points E! N D’ in the new

arrangement on Y in the same way.

Now suppose that p € P? is a regular intersection point of the lines defined by I; = 0 and I =0, and I3 =0

is any other line not passing through p. Then in an open affine neighbourhood of p, the lines meeting at
Lol

p can be given locally by % = 0 and % = 0, and we can take (E7 E) as local coordinates at p. A point ¢

lying above p in X is not singular and is the intersection point of the lines (11)37 = 0 and (12)37 =0. In

an open affine neighbourhood of ¢, these lines can be locally given by (l—l)% =0 and (%)% = 0, so we can

I3
I\ L 1

take ((7)=,( %) =) as local coordinates at ¢. Similarly, it follows that in an open affine neighbourhood of

the intersection point D1 n D5 on IF’Q, the proper transforms D; and Dy can be given locally by % =0 and

% = 0 and we can take (%, %) as local coordinates at this point. In an open affine neighbourhood of the

intersection point D] n D} on Y, D} and D} can be given locally by (%)% =0 and (%)% =0, and so we can
take ((%)%, (%)%) as local coordinates at this point. Thus the ramification index of ¢ at the intersection
point D] n D} is n?. The same argument holds for all intersection points D} n D} onY.

At any point not on the line arrangement on P2, the cover m : X — P? is unramified of degree n*~1, hence at
any point on P2 not on the new arrangement, the cover o : Y — P? is also unramified of degree n*~1.

Thus the three conditions of Definition 2.4 are satisfied and we conclude that o : Y — P2 is a good covering

of degree n*~! branched along the new arrangement on IF’Q, as claimed. O

The discussion of Kummer coverings is continued in Section 4.5.

We conclude this discussion by deriving formulae for the Euler characteristic and self intersection number of
an exceptional curve C arising from blowing up a singular point ¢ on X lying above an r-fold intersection
point p of the line arrangement on P2. We also state a result of Hirzebruch, in which he gives a classification

of surfaces constructed using the method described above.

Lemma 2.12. The Euler characteristic e(C) of an exceptional curve C described above is given by
e(C)=n""12—7r)+rn "2

Proof. We first determine the contribution to the Euler characteristic from the complement C’ of the set

S of intersection points on C. We know that away from the intersection points of C' with the divisors Dj,

C maps to an exceptional divisor E =~ P! on P? with degree n"~!. The number of intersection points on E

equals 7, so we have

e(C) =n""HeP) —r)=n""1 (2 —7). (14)
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2

We know that at each intersection point of C' with a divisor Dj, the ramification index is n?, so above each

intersection point F n D; on I@Q, there are n"~2 points of C. Since the number of intersection points on E is
r, we have

e(S) = rn""2. (15)
Thus summing the equations 14 and 15, we obtain the Euler charcteristic of C
e(C)y=n""12—7r)+rn "2
This completes the proof. O
Lemma 2.13. The self intersection number of such an exceptional curve C is given by
C?=—n""2

Proof. Let E be the exceptional curve on P? to which C is mapped via the map o : Y — P2. Note that we

have E? = —1, and since o has degree n*~!, we get
(0*E)? = deg(0)E* = —nF~ L. (16)
There are n*~1~" singular points of X above an r-fold intersection point of the line arrangement on P2, each

of which when blown up, gives a copy of the exceptional curve C' on Y. Thus o*E consists of n*~1~" disjoint
copies of C'. Together with the equality 16, this implies
k—1
2 _ N _ =2
C=m s

as claimed. O

For a line arrangement in P? which is not a pencil, recall that k denotes the number of lines, ¢, denotes the
number of r-fold points, and n denotes the ramification index assigned to each divisor in the corresponding

new arrangement on P2. Consider the following condition
k = 6, n = 2, tk = tk,1 = tk,Q =0. (17)

Now consider a line arrangement satisfying 17 which has exactly two singular intersection points p; and ps,
lying on a single line L, and suppose L contains no other intersection points. Let  and v denote the number
of lines passing through p; and ps. Then, such an arrangement satisfies

utv—1=k u=4, v=4,

ty=t, =1, ta=(w—-1)(v—1), t, =0 otherwise. (18)
Let Y, ]TDQ, and o : Y — P2 be as before. We can now state the following classification result due to Hirzebruch
[4].
Theorem 2.14. Assume the arrangement satisfies 17 and is not of type 18. Then the surface Y is minimal
i.e., does not contain (-1)-curves. For an arrangement of type 18, the divisor o*L' on'Y consists of n*~3
disjoint (-1)-curves (each with multiplicity n), where L' is the proper transform of the line L containing the

two singular points of the arrangement. Blowing down these (-1)-curves gives a minimal surface Yy, which is

a product of two curves C1, Cy with Fuler numbers
e(C1) =n"" 12 —u) +un""2, n""H2—v) +on’"2

All the surfaces Y arising from arrangements satisfying 17 are of general type for n = 3. For k = 6 and
n = 2 the surface Y is a K3 surface and for k =7 and n = 2 it is elliptic (of Kodaira dimension = 0), or of

general type.
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For a proof of this result we refer the reader to [4], p. 127.

2.4 Hirzebruch-Jung singularities

We now discuss exceptional curves on nonsingular surfaces, because they are of fundamental importance
when studying resolutions of surface singularities. We refer to [1], Section II1.2 for this part.

A compact, reduced, connected curve C' on a nonsingular surface X is called exceptional, if there is a
bimeromorphic map 7 : X — Y such that C is exceptional for 7, i.e., if there is an open neighbourhood
U of C in X, a point y € Y, and a neighbourhood V of y in Y, such that 7 maps U\C biholomorphically
onto V\{y}, and 7(C) = y. Exceptional curves are characterized by the following result, known as Grauert’s

criterion

Theorem 2.15 ([1], Theorem II1.2.1). A reduced, compact, connected curve C' with irreducible components

C; on a smooth surface is exceptional if and only if the intersection matriz (C;C;)q; is negative definite.

The following three kinds of exceptional curves are important.
1. Exceptional curves of the first kind. These are non-singular rational curves with self-intersection -1. They

are also known as (-1)-curves. The following result is a useful characterization of (-1)-curves.

Proposition 2.16 ([1], Proposition II1.2.2). An irreducible curve C < X is a (-1)-curve if and only if
C? <0 and KxC <0.

2. Hirzebruch-Jung strings. These are unions C' = | J;_, C; of smooth rational curves C; such that

C? < —2 for all i,
CiC; =1 if |i—j| =1,
CiC; =0 if |i —j| =2

If e; = C? then this configuration is visualized by the dual graph

el €9 €r—1 e,
@—@— e ——o
The intersection matrix
€1 1 0
1 €9 1
0 1 €3

is negative definite. Concrete examples of such curves are easy to construct. The simplest Hirzebruch-Jung
string is a smooth rational curve with self intersection -2. Such a curve is also known as a (-2)-curve.

3. A-D-E curves. These are exceptional curves C' = | JC; of which all irreducible components (-2)-curves.
The inequality

(Ci + Cj)Q = 2<Ci0j — 2) <0 forall i+#j

implies that C;C; < 1 i.e., two such curves can intersect in at most one point and then transversally. Since
the intersection form of C' is negative definite, it must be one of the forms described by Dynkin diagram A,
with n > 1, D,, with n > 4, or Eg, Er, or Eg (see [1], Section 1.2). Hence these Dynkin diagrams are the dual
graphs of these curves. Note that the curves A,, are Hirzebruch-Jung strings. A-D-E curves are characterized

by the following result
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Proposition 2.17 ([1], Proposition I11.2.5). Let C < X be an exceptional curve with KxC; = 0 for each
wrreducible component C; of C. Then C is an A-D-E curve.

We now turn our attention to singularities that arise from contracting Hirzebruch-Jung strings. These are

known as Hirzebruch-Jung singularities or A, 4 singularities. We are interested in a particular case of these
singularities, namely, cyclic quotient singularities, which appear in the section 7. We refer to [1], Section III.5
for this part.
Let C =Y | C; with C? = e; < —2 for all i, be a Hirzebruch-Jung string. For a sufficiently small X > C
there is a (closed, but not necessarily compact) smooth curve Cy which intersects C; transversally in one point,
without meeting any of the other curves C;. Similarly, there is a curve C,.; intersecting C,. transversally in
one point which does not intersect any other curve C;. The following graph represents the situation.

Co Cl 02 CT,1 CT Cr+1
*—o —o— —o—o—o

Let n; € Z, n; = 0 for all i = 0,...,7 + 1. It follows from [1], Section 3 that there is a holomorphic function ¢

on X with divisor (¢) = 370 n;C; if and only if

r+1

Nk, + exng + npr1 = (9)Cr = Z C,CrL=0
i=0

for all k = 1,...,r. Given ng and nq, the coefficients ng, k = 2,...,7 + 1 are determined uniquely by the

recursion formula
ng = |ek_1\nk_1 — Nk_—2. (19)

If ng < ny then it follows by induction that ny < ng,q for £ = 1,...,7. Thus if we determine integers i, vy
using the recursion formula 19, starting with the initial data pug = 0, uy = 1, and vy = 1, v; = 1, then for
k = 1 the integers uy, v, will be positive. Hence, we have holomorphic functions g, h on X with divisors

r+1 r+1

(9) = X wiCi, (h) = Y uiCi.
i=0 i=0

Notice that the integers pj satisfy

U3 1 Hi+1 1

p = ler], = =lea| — —, = lew| = —————=—
H2 |€1| Mk |6k—1| - __,7‘1|
€1

The recursion formula 19 implies that ged(ug+1, px) = ged(ug, pr—1) = ... = ged(pa, p1) = 1. It follows that

ur and pp1 are coprime, so they may also be defined by the above continued fraction expansion. Putting

n' = pury1, ¢ = p,, the expansion

|3
—

shows that the self intersection numbers e; are determined by the two integers n’ and ¢'. Finally, we define a
divisor

r+1

(f) = DI MG,
=0
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where the integers A; satisfy the recursion formula 19, and A7 = 0, A\, = 1. Here the integers \; are exactly
the integers p; we would have obtained if the index i started at the other end of the Hirzebruch-Jung string
C. Setting A\ = ¢ and \g = n, we have

n
LA —
q ‘62|_ T

We now show that the equality Ay + (n — q)ur = nyg holds for all kK = 0,...,r + 1 using induction on k. It is
easy to verify that it holds for £ = 0 and 1. The induction hypothesis says that A\; + (n — ¢)p; = ny; for all
j <k —1. Using equality 19 we have Ay, = |ex—1| \x—1 — Ag—2, and similarly for uy and v;. Together with
the induction hypothesis, this implies

A+ (n— @) pp = nug, (20)

for all kK = 0,...,7 + 1. Similarly, using induction on k, we get

Aefkr1 — Aer1fie = 1, (21)

forallk = 0,...,r+1. Putting k = r in equation 21 gives n’ = n, and from equation 20 we get 1+(n—q)q’ = nv,,
ie.,, ¢¢ =1+ n(¢  —v,). Thus ¢ is the unique integer determined by 0 < ¢’ < n, and ¢¢' =1 mod n. For
the functions f, g, and h defined earlier, equation 19 implies that

(fg"™") = (f) + (n—=q)(g) = n(h) = (h").

Hence, the functions fg"~? and h"™ have the same zeros, and so fg"~9/h™ is a function in I'(X, O%). Then
we have the relation f¢g"~% = h™. In other words, by w = h, z; = f, and zo = g, X is mapped into the
surface

W = {(w,21,20) € C* | w" = 212579} < C3.

Theorem 2.18 ([1], Theorem II.5.1). For 0 < ¢ <mn, n and q coprime, let C < X be a Hirzebruch-Jung
string with self intersection numbers e; satisfying equation 19, and let y € Y be the singularity resulting
from contracting C. Then this singularity is isomorphic to the unique singularity lying over 0 € C3 in the

normalization of the surface W above.

Remark 2.19. This theorem shows in particular that the singularity y € Y (hence the embedding C < X )
depends on n and q only. It is thus called the A, 4 singularity.

We now discuss a particular situation in which Hirzebruch-Jung singularities occur, namely cyclic quotient
singularities. A cyclic quotient singularity is the quotient X = C2/(Z/nZ) of C? by the action of a finite
cyclic group Z/nZ, n € Z. We denote the elements of Z/nZ by integers k, 0 < k < n. Every linear action of

7Z/nZ on C? can be expressed, with respect to suitable coordinates (ui,us), as

L u | e27riq1k/n 0 uy| e27'rz'q1k/nu1
Us - 0 627Tiq2k/n Us - e27riq2k/nu2

with integers q1, g2 satisfying 0 < ¢; < n for ¢ = 1,2. The integers ¢;, g2 are determined uniquely up to
ordering by the action, and are called the weights of the action. If one of them vanishes, the action is
essentially one-dimensional and the quotient is smooth, so we exclude this possibility henceforth. Moreover,
if ¢ = ged(n, q1,492) > 1, then the action of Z/nZ can be considered as an action of Z/(n/c)Z. So we assume
without loss in generality that ged(n, ¢1,¢2) = 1. We use the following notation for ¢ = 1,2, as in [1], p.104.
d; = ged(n, gi), n = nid;, ¢ = pd;, m = ged(ny,n2), p; the integer with p;p; =1 mod m, 0 < p; < m, and
g the integer with ¢ = p1p,, mod m, 0 < g < m.
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Proposition 2.20 ([1], Proposition I11.5.3). The image of (0,0) € C? in the quotient C%/(Z/nZ) is a
singularity of type A, 4.

By a result of H. Cartan, every action of a finite group on a manifold can be locally linearized. Applying
this result together with Proposition 2.20, it follows that

Theorem 2.21 ([1], Theorem II1.5.4). If the finite cyclic group G acts on a smooth surface X, then the
quotient X /G has only singularities of Hirzebruch-Jung type.

A singularity of type %(l,a) is the quotient C?/(Z/nZ), where the action is given, with respect to
coordinates ui,us on C?, by k(uy,ug) = (egmk/”ul, ekaa/n)_ So this is a special case of a cyclic quotient
singularity in which, using the notation above, m = n and ¢ is the integer with ¢(a/gcd(n,a)) =1 mod n.
Since this is a singularity of type A, 4, we know from earlier computations that it results from contracting a
Hirzebruch-Jung string C' = | J;_, C;, with self intersections C? =e;, e; < —2, given by

For example a singularity of type %(1, 1) results from contracting a single curve C with self intersection
C? = —n. We encounter these singularities again when we discuss quotients of fake projective planes in

section 7.

3 The Bogomolov-Miyaoka-Yau inequality

The discussion that follows is based on the article of Miyaoka[10] in which he proves the inequality ¢? < 3cz

of Chern numbers of surfaces of general type, which is now known as the Bogomolov-Miyaoka-Yau inequality.

3.1 Some facts about projective bundles

The setting is as follows. X is a smooth, complete variety and F is a locally free sheaf of rank r over X. P(F)
denotes the projective bundle Proj(@®}_,, S/ F), and 7 : P(F) — X the canonical projection. H denotes the
divisor associated to the tautological invertible sheaf on P(F). The results appearing in this section are used
as facts throughout Miyaoka’s paper. We refer to [2], Chapter 9 for a more detailed discussion on projective
bundles.

Lemma 3.1. There are natural isomorphisms

T« Opr)(nH) = S"F  (n = 0),
R'mOpry(nH) =0 (n=0,i>0).

Proof. Let U be an affine open subset of X over which F is trivial, i.e., Fly = O%r. Then the natural maps
HO(7*S" F|r-1y) — H°(Op(r)(nH)|-1y) are isomorphisms. By definition of the direct image functor, we
have HO(OP(]:) (nH)|z—1y) = HO(TF*OP(]:) (nH)|y). Thus it follows that W*Op(]:) (nH) =~ S"F.

We know that Hi(O]PJ(]:)(nH”Tr—lU) = 0 for i« > 0. By definition of higher direct images, we have
RimyOpry(nH )|y = H (Op(z)(nH)|r-1y7). This implies that RimyOp(r)(nH) = 0 for i > 0. This completes
the proof. O

Lemma 3.2. Any divisor P(F) is linearly equivalent to some diwvisor of the form mH + 7* D, where m is an

integer and D is a divisor on X.
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This result follows from the proof of [2], Theorem 9.6.

There are the following natural exact sequences of sheaves

0 = Op(r) — T F @ Opiry (H) > O -, yx 0 (22)
0— 7" Q% — QJ%»(;) - Q]lll’(]-‘)/X —0 (23)
0 — Opr)(—H) - 1*F - Q — 0 (24)

where ) denotes the universal quotient bundle of rank r on P(F). The exact sequences (22) and (24) are

known as the relative Euler sequence and the tautological exact sequence of P(F) respectively. Hence we get
Lemma 3.3. Kpr) = n*([det(F)] + Kx]) —rH

Proof. From the short exact sequence (24), it follows that 7* (det(F)) = Op(r)(—H) ®@det(Q). From (23) we
get

Op(r)(Kp(r)) = det(Qpr)/x) @ T*det(Qy) = det(Qp7)/x) @7 Kx. (25)

Now, we use that Q;(; = Homo, - (Opr)(—H),Q) = Opr)(H) ® Q, from which it follows that

det (2} ) ) = Op()((r — 1) H) ® det(Q). Dualizing, and observing that *(det(F)) = Op(r)(H) ® det(Q),
we get

det(Q]%,(}-)/X) = Opr)(—(r —1)H) ® det(Q) = Opr)(—rH) ® m*det(F). (26)
The equalities (25) and (26) together imply that
Op(7)(Kp(F)) = Opr)(—rH) @ m*det(F) @ 7" Ox (Kx).

Thus observing that 7*det(F) = 7*Ox ([det(F)]), we get Kp(r) = 7*(Kx + [det(F)]) —rH.
This concludes the proof. O

Lemma 3.4 (Grothendieck). We have the following identity in the cohomology group H?"(P(F),Z)

207 Yr¥er—j( F)=0

As a consequence, we have
Lemma 3.5. If dim(X) = rank(F) = 2, we have the following intersection table
1 = &(F) - ex(F)

H?7m*D = [det(F)]D
Hrn*Dn*D' = DD,

where D and D’ are divisors on X.
3.2 A fundamental lemma

In the discussion that follows, F will be a locally free sheaf of rank 2 over a complete smooth surface.

Theorem 3.6 (Algebraic Index Theorem). Let X be a complete smooth surface and Dy, Do divisors on X.
If D? > 0 and D1Dy = 0 then we have D3 < 0.
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Proof. Since X is a smooth projective manifold, it admits a metric form w which is a (1,1)-form and is

pointwise positive definite. Now define
Him(X,Q) = {[a]; [a A w] =0} = [w]*
leading to the orthogonal direct sum decomposition
H*(X,Q) = Q- [w] @ Hpin (X, Q).

(X,R) n HY1. This follows from the fact that for

any real (1,1)-form a with « A w = 0 one has a A w < 0 with equality if and only if o = 0; and from the

. . . . . 2
Then, the intersection product is negative definite on Hp,;,,

compatibility of the intersection product and the wedge product

Law:[aum

for all closed 2-forms «, 3 (details omitted).

Note that [w] - [w] > 0. The above statements imply that the intersection product is negative definite
on [w]* and so the signature of the intersection product is (1,hA%! — 1) on HY!. Thus it either restricts
non-degenerately to the Neron-Severi group of X (mod torsion) with signature (1, p — 1), where p is the rank
of the Neron-Severi group, or it is semi-negative (with rank one annihilator). Since the Neron-Severi group
always contains the class of an ample divisor, the second possibility is excluded.

Now the assertion of the theorem follows from the fact that two divisors D; and Do are homologically
equivalent up to torsion if and only if they are numerically equivalent, i.e. ¢1(D1) = ¢1(D2) if and only if
DyE = Dy F for all divisors E, where ¢1(D;) denotes the image of D; under the first Chern class map for
i=1,2. O

We obtain the following lemma as a corollary.

Lemma 3.7. Let p: X' — X be a surjective morphism of complete smooth surfaces. Assume that p(C;) is a

point on X, where C; is a curve on X'. Then we have
(Z CLiOi)z <0 (CLi eQ VZ)

Proof. Since X is a complete non-singular algebraic surface, it is a projective variety. This implies that there
exists an embedding ¢ : X — PV for some N > 0. The pullback ¢*Opn (1) is an invertible sheaf associated to
a very ample divisor L on X. Since L is very ample, we have L? > 0. Hence |nL| (n » 0) is a base point free
linear system, and so we may assume that nL does not meet the finite subset | p(C;). Indeed, for any section
o€ H°(X,Ox(nL)), the zero divisor of o defines an element of [nL| and every element of [nL| arises in this
way. Since L is very ample, so is nL. Thus nL defines an embedding ¢ : X — PV . Now take a hyperplane H
in PV intersecting ¢(X) but not meeting the the finite subset ¢(|Jp(C;)). Then ¢*H € |nL| and does not
meet | J p(C;). Since H is the vanishing locus of a section of Op~ (1), and since Ox(nL) = ¢*Opn (1), ¢*H is
the vanishing locus of a section in H°(X, Ox(nL)) and hence an element of |nL|. Without losing generality
we may assume it to be nL.

Hence it follows that C;p*L = 0 and that (3}, a;C;)p*L = 0. Moreover, we have (p*L)? = dL? > 0, where d
is the mapping degree of p. Now the assertion (3}; a;C;)? < 0 follows from Theorem 3.6. O

Lemma 3.8. Let p: X' — X be a birational morphism of a complete surface X' onto a non-singular surface
X. Then the image p(X) of the singular locus ¥ of X' is a finite subset of X.
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Proof. Let p' : X" — X' be a desingularization of X’. Then pop’ : X” — X is a birational morphism of

complete non-singular surfaces.
X// L’) X/ ﬁ) X

This implies that p o p’ is a composition of quadratic transformations. Therefore there is a finite subset A of
X such that pop' : X"\(pop') 1 (A) - X\A is an isomorphism. Let ¢ : X\A — X\(po p’)"1(A) be the
inverse isomorphism. Then p’ 09 is an isomorphism of X\A onto an open subset of X'.

~

m

X"\(pop)~H(A) = X\A

pop ,
/v /
/
\‘ p

X\pH(A) oo

Since the desingularization map p’ : X” — X’ is surjective, the image of X”\(p o p')~1(A) under p’ is
X"\p~Y(A). Thus the map pop : X"\(pop') 1 (A) — X\A factorizes as X"\(po p~1)(A) — X"\p~1(A) —
X\A. We know that this composition is an isomorphism and that the first map p’ is surjective, so it follows
that p' : X” — (pop’)~H(A) — X' — p~1(A) must be an isomorphism. Thus p' 09 : X\A — X"\p~1(A) is an
isomorphism. Since X is smooth, we have ¥ < p~1(A) i.e., p(¥) = A. But A is a finite subset of X, so it
follows that p(X) is a finite set. This proves the lemma. O

Recall that F denotes a locally free sheaf of rank 2 over a complete smooth algebraic surface X,
m:V =P(F) - X the associated projective bundle and H the divisor associated to the tautological invertible

sheaf on V. Then we have the following

Lemma 3.9 (Fundamental lemma). Assume that an irreducible effective divisor W on 'V is linearly equivalent

to H — m*D, where D is a divisor on X. Then we have the following inequality
D[det(F)] < co(F) + D?.

Proof. Let ¢ : W — V be the canonical injection. Then woi: W — X is a birational morphism. Now W is
possibly a singular surface but by Lemma 3.8 we know that the singular locus lies over a finite subset of X.

On the other hand, Hironaka’s theorem implies that there is a sequence of blow-ups
| A T R

of which each center is non-singular and lies over the singular locus of W, such that the proper transform W'
of W is a non-singular subvariety in V. Set u = puy o---ous and let Fy, ..., E5 be the exceptional divisors on
Vs. Then W' is linearly equivalent to u*(H — n*D) — a;F;, where a; € Z Vi. Letting i’ : W — V; be the
canonical injection, we infer that (i')* F; is an effective divisor whose each component is mapped to a point
viap=mopoi : W — X.

p=mopuoi’
WV, sV =PF) 45 X
Now p is a birational morphism of non-singular surfaces, hence p is a composition of quadratic transformations.

Thus we have Ky = p*Kx + Y, C;, where each C; is a curve on W’ for which p(C;) is a point on X. The
equality Ky — p* Kx = >, C; implies that

(KW’ — p*KX + Ci(i/)*Ei)Q = (Ci(i/)*Ei + ZC]‘)Q < O,
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since each term in the parentheses is a curve whose image under p is a point in X. Hence from Lemma 3.7
we get the inequality

(Kwr — p*Kx +¢;(i")*¥E;)* <0, (27)

for any ¢; € Q. Observing Lemma 3.3, we have Kp(r) = n*([det(F)] + Kx) — 2H since F is locally free of
rank 2. Thus we have Ky, = p*Kp(r) + > biE;, where b; € Z and E; are the exceptional curves. Hence we
have the following equality

KVS = /,L*(—QH + W*KX + W*[det(f)]) + szEw (bl € V’L)

Hence by the adjunction formula Ky = (i')*(Ky, + W’), and using W’ ~ p*(H — 7*D) — a; E;, we have

Ky = (")*(—p*H + p*7* (K x + [det(F)] — D) + Z(bi — ;) E;).

Replacing ¢; by a; — b; in inequality (27) we obtain the inequality
(K — p* Kx + () E)? = k = ()i (= H + 7 [det(F)] — 7 D))* <0. (28)
On the other hand, we have
k= (u*(—H + 7*[det(F)] — 7 * D))*(u*H — p*7*D = Y b E;)
= (—H + 7*[det(F)] — 7*D)*(H — n* D)
= H? + H*7*(D — 2[det(F)]) + H((z*[det(F)])? — (7*D)?).
Applying Lemma 3.5, we get
k = c}(F) — c2(F) — [det(F)]* + D[det(F)] — D*.
By definition we have [det(F)]*> = ¢3(F). Hence, from the inequality (28) we obtain 0 > k = —co(F) +

Dl[det(F)] — D? i.e., D[det(F)] < ca(F) + D?. This proves the lemma. O

3.3 Bogomolov’s Lemma

Lemma 3.10. Let X be a Kihler manifold. Then, for any f € H°(X,Q%), we have df = 0.

Remark 3.11. For compact Kihler manifolds there is the more general fact that dw = 0 for any global

holomorphic p-form w.

Proof of Lemma 4.1. Let w be a Kéhler form on X, i.e. w is a real closed (1,1)-form, and let r be the
dimension of X. Since f is holomorphic 1-form, df is a holomorphic 2-form and /—1df A df A (A *w) is a
positive-semidefinite 2r-form which is positive on non-empty open subsets of X unless df = 0. On the other
hand, Stokes’ theorem implies that

r—2 r—2 r—2
Lﬁdede (/\w) ZJXd<\/j1fAde (/\w)) - axﬁfAde (/\w) —0.
Thus, it follows that df = 0, which proves the assertion. O

Remark 3.12. Note that if the dimension of X is 2 then the Kdahler condition is not necessary.
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A variant of the proof of Lemma 3.10 is given in [12]

Theorem 3.13 (Bogomolov’s lemma). Let X be a non-singular projective variety and L an invertible subsheaf
of the cotangent sheaf Q% . Then any three global sections fi, fa, f3 of L™, for any n > 0, are not algebraically

independent of each other.

Proof. We may assume f; # 0, for i = 1,2, 3. From Lemma 2.3 we know that there exists a finite flat covering
B: X' — X of X such that 8*f; = g7 € T'(X', B*L®"), where g; € ['(X’, 8*L), for i = 1,2,3. Recall that the
pullback of an invertible sheaf is invertible, and so 8*L is an invertible sheaf on X’, and we have the chain
of inclusions g*L < B*QL < Q4,. On a sufficiently small open subset U of X', (8*L)|y is generated by a
single section, say, A. Thus we can write g; = h;\ where h; is a holomorphic function on U, for i = 1,2, 3.
Since each g; is a global section of 8*L < Q%,, i.e. g; € HY(X',QL,), we have from Lemma 3.10 that dg; = 0
i.e. d(Ah;) = 0 which implies dh; A A + h;d\ = 0 i.e., dh; A A = —h;d\. Hence we have the following equality

of rational forms

d(ﬁ) = (M) A\ = PafydA A+ hahydA (29)

h; h? h?
Note that at any point x € U, the stalk (8*L), is generated by A. Thus it follows from the equality (29), i.e.
from d(Z—]) A A = 0 that the 1-forms d(Z—]) at = are contained in (8*L),, which is a rank one subsheaf of
We claim that if hq,ho, and hs are algebraically independent of each other, then so are Z—f and Z—i’ Suppose
they are not, then there is a polynomial P € C[ty,¢3] such that P(%, Z—f) = 0. Multiplying this equality by a
large enough power of hy, we get an equality of the form Q(hq, ho, hg) = 0, where Q € C[t1, to,t3]. This is a
contradiction to the assumption, and hence the claim holds. Let 21, 22 be local coordinates on U, then hq, ho,
and hg being algebraically independent of each other means that the set

{(%(21,22% %(21,22)) eC? ’ (21,22) € U} (30)

is not the vanishing locus of any polynomial in C[t;,t3]. Thus the set (30) is an open subset of C? and
moreover, (%, Z—f) are local coordinates on this open subset. This implies that d(%) and d(Z—i’) are linearly
independent and generate a rank two subsheaf of Q&,’I, which is a contradiction.

Hence it follows that the h;’s are algebraically dependent. Recall that 8* f; = g7 = (Ah;)" for i = 1,2,3,
which implies that the 8* f;’s are algebraically dependent. Since (5* f;)(z) = f;(8(z)) for all z € X', it follows

that the f;’s are algebraically dependent. O
Definition 3.14. The D-dimension (D, X) is defined as follows

(tmnscendence degree over C of the graded ring Rp = Q—);O:O H(X,Ox (]D))) -1, ifRp+C

k(D,X) =
, if Rp = C.

—0
Theorem 3.13 can be reformulated as follows

Theorem 3.15. Let X be a non-singular projective variety and Ox (D) a subsheaf of Q. Then the

D-dimension of X does not exceed 1.

For a line bundle £ (as in Theorem 3.13), let D be the associated divisor, then £ =~ Ox (D) and
LO" ~ Ox(nD). Thus if no three global sections of L& are algebraically independent of each other (for any
n), then the transcendence degree of the ring Rp = (—B;O:O H°(X,0x(jD)) over C does not exceed 2, i.e.,
the D-dimension of X does not exceed 1, and conversely.

Titaka’s theory of D-dimension implies that Theorem 3.15 is equivalent to
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Theorem 3.16. If Ox (D) is contained in the cotangent sheaf QY of a projective variety X, then there exists
a constant ¢ such that h°(X,Ox (D)) < en for n » 0.

Proof. A proof of this result is given in [1], Proposition VII.4.2. O
As a corollary to Theorem 3.16, we have

Lemma 3.17. Let X be a complete smooth surface, and L an invertible sheaf generated by its global sections.
If Ox (D) is contained in QY , then we have either

D[L] <0 (31)
or,

D?<0. (32)
Moreover if D is effective, the inequality (32) holds.

Proof. We assume that D[L] is positive and prove (32). Recall that a line bundle is globally generated if and

only if it is base point free. Since [[L]] is free from base points, we have
E[£] =0 (33)

for any effective divisor E. Hence |Kx — nD| must be empty for n » 0. Indeed, consider an effective divisor
E in |Kx —nD]|, then we have F[L] = (Kx —nD)[£] = Kx[L] — nD[L]. Since we have assumed D[L] > 0,
we have that E[L] < 0 for n » 0, which is a contradiction to the inequality (33). This implies that there is
no effective divisor in |Kx —nD)|, i.e. |Kx —nD)| is empty.

Thus

h%(X,0x(nD)) = h°(X,0x(Kx —nD)) =0
for large n, where the first equality follows from Serre duality. Hence we get the inequality
1
en = hY(X,0x (nD)) = x(X,0x(nD)) = §n2D2 + linear term in n,

where the first ” > 7 follows from Theorem 3.16 and the second ” > 7 follows from the Riemann-Roch
theorem. But the left hand side of the inequality has cn and the right hand side has %712D2 as the leading
term and so cn > $n?D? + ... implies that we must have D? < 0. This is (32).

Now suppose that D is an effective divisor. If D is trivial, then the inequality (32) is automatically satisfied,
so we may assume D is non-trivial. If [£] is a very ample divisor, then we have D[L] > 0. Following the

arguments in the proof of the first part of the lemma, we get the inequality (32). This completes the proof. [

3.4 Chern numbers of surfaces of non-negative Kodaira dimension

The Kodaira dimension x(X) of a non-singular complete variety is defined as the Kx-dimension k(Kx, X).
If X is a surface, Rg, = (—B;CZO H°(X,0x(jKx)) is a finitely generated C-algebra and is independent of
a choice of model of X. Hence x(X) is a birational invariant of X. For a surface X with x(X) > 0, the

following facts are well-known
1. X has a unique minimal model

2. If X — X is a generically surjective rational map, then x(X) = x(X).
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3. If X is minimal, then there exists an integer n > 0, such that Ox (nKx) is generated by global sections.
We give a proof of statement 1, and cite references for proofs of staments 2 and 3.

Proof. 1. This follows from [1], Theorem IV.4.5 and Proposition IV.4.6. We first show that every compact
nonsingular surface X has a minimal model. Suppose that X contains a (-1)-curve C' and let X’ be obtained
by contracting C. Now if X’ contains a (-1)-curve C’, we obtain another surface by contracting C’, and so
on. Repeating this process must lead to a surface without (-1)-curves after finitely many steps because, by
statement 4 of Theorem 1.1, the second Betti number decreases by 1 for each blow down, and the second
Betti number is always non-negative.

In order to show that all minimal models of X are isomorphic, we prove the following more general claim:
Let X, Y be two compact connected nonsingular surfaces and f : X — 'Y a birational map. If Ky is nef, then
f is a morphism. If in addition Kx is nef, f is an isomorphism.

Suppose that o : X — X is the blow up of a point p € X. Let C — X be a curve in X containing p
with multiplicity m, and let C < X be the proper transform of C. Then, C' = ¢*C — mE, where E is the
exceptional divisor corresponding to p. We have

KxC = (c*Kx + E)(c*C —mE) = KxC+m > KxC. (34)

Thus the number K xC does not increase under blowing down, and if Ky is nef, any curve C on X with
K%C < —1 must be mapped to a point in X. If f : X — Y is not a morphism, then we blow X up until
we get a morphism f’ : X’ — Y. The morphism f’ is composed of blow-ups and any curve C’ in X’ which
arises from blowing up a point in X is mapped by f’ to a curve C in Y. Thus C’ is mapped to a curve
C in Y, where Y — Y is the first blow up map in the decomposition of f’. From the equality 34 we get
—1=Kx.C' > KyC. Again using 34 we have Ky C < KsC i.e. KyC < —1, which is not possible because
Ky is nef by assumption. Hence, f is a morphism. If Kx is also nef, then the inverse birational map of f is

also a morphism and so f is an isomorphism.

2. This result is Theorem 6.10 in [14]. It follows from Theorem 2.5 and Lemma 6.3 in the same book. For a
detailed proof, see [14], Lemma 6.3 on p. 66.

3. For a minimal surface X, proving that Ox(nKx) is generated by global sections for some n > 0 is
equivalent to proving that Kx is semi-ample i.e., the linear system |nK x| is base point free for some n > 0.

This is a non-trivial result known as the Abundance theorem, a proof is given in [9], Theorem 1-5-6. O

Remark 3.18. Note that statement 1 is not true if the Kodaira dimension is —oo. For example, the blow up

of P! x P! in one point can be blown down to get P2.

Proposition 3.19. Let F < Q% be a locally free sheaf of rank 2 on X and assume that (det(F))®" is
generated by global sections for some n > 0. If FQ® Ox(—D) admits a non-trivial global section then the
divisor D satisfies the following numerical condition

D[det(F)] < maz(ca(F),0).

Remark 3.20. Such a F ezists on X if and only if we have k(X) = 0. Indeed, the inclusion F < QY implies
that det(F) < det(Q%) = Ox(Kx), and so (det(F))®" « Ox(nKx). Since (det(F))®" is generated by global
sections by assumption, the inclusion (det(F))®" < Ox(nKx) implies that the transcendence degree of Ry
over C is positive i.e., k(X) = 0. Conversely if k(X) = 0, then F = p*Ql., satisfies the condition of the above
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proposition, where p : X — X' is the canonical projection of X onto the minimal model X' of X. Indeed, if
X" is smooth, then Q% is is a locally free sheaf of rank 2 on X' and so p*Q%., is a locally free sheaf of rank 2
on X. Since taking determinant commutes with pullback, we have det(p*QY.,) = p*det(Q,) = p*Ox (K x/).
Thus (det(F))®" = (p*Ox(Kx/))®" = p*Ox(nKx/). Since X' is minimal, we know that Ox(nKx/) is
generated by global sections (for large enough n) and so the pullback p*Ox(nKx:) is a sheaf generated by

global sections on X.

Proof of Proposition 3.19. Let m:V =P(F) — X be the projective bundle associated to F. Since Ox (—D)

is locally free, the projection formula can be applied i.e., we have
T Ov(H) ® Ox (=D) = 7, (Oy (H) @ 7*Ox (= D)).
Now using 7, Oy (H) = F from Lemma 3.1 and that 7*Ox(—D) = Oy (—n*D), it follows that
F®Ox(~D) = my(Oy (H) ® Oy (—7*D)) = 7Oy (H — 7*D).

By definition of the direct image functor, we have H%(X, Oy (H — 7*D)) =~ H%(V, Oy (H — 7* D)), which

gives a canonical isomorphism
HY(X,F®Ox(~D)) = H (V,0y(H — 7*D)).

Thus if F ® Ox(—D) has a non-trivial global section, we have |H — n*D| # . Let W be an element of
the linear system |H — 7*D|. A non-trivial global section of F ® Ox(—D) corresponds to an injective map
1:0x > F®Ox(—D), so we obtain a short exact sequence

05> 0x 5 F®0x(-D) B G—0

where G = (F ® Ox(—D))/Ox. Let N be the torsion subsheaf of G and let £ = p~*N be its preimage in
F ® Ox(—D). Note that L is a line bundle and contains Ox, which implies that I has a non-trivial global
section. Thus £ = Ox(D’), where D’ is an effective divisor on X. There is an inclusion j : £L - FQOx(—D)

which fits into a short exact sequence
0—LLFQOx(—D)%HH -0

where H is a torsion free sheaf. The map j corresponds to a global section of F ® Ox(—D) ® L =
FROx(—D—D’). Tt can be checked that this section has at most isolated zeros. Thus W can be decomposed

as follows
W =Wy +7*D’

where Wy is an irreducible effective divisor which is linearly equivalent to H — 7*(D + D’). Since (det(F))®"
is generated by global sections, it defines a morphism ¢ : X — PV, for some N, such that (det(F))®" =
@*Opn (1). Now Opn (1) is ample, so in particular it is nef. Hence the pullback ¢*Opn (1) is nef, which implies
that (det(F))®" is nef. Since D’ is effective, we have nD’'[det(F)] = 0, i.e. D'[det(F)] = 0. Hence writing
D" = D + D', we get D[det(F)] < D"[det(F)]. Thus it is sufficient to prove D”[det(F)] < max(cz(F),0).
From Lemma 3.9 it follows that

D"[det(F)] < ca(F) + (D)2 (35)

Let f be a non-trivial global section of F ® Ox(—D"). Then multiplication by f, i.e., the map Ox (D") — F
defined on every open set U < X by (Ox(D"))(U) — (F ® Ox(—D"))(U), s — s - f|u, is injective. Since
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F < QL it follows that Ox (D") is a subsheaf of Q% in a canonical way. Thus Ox (D”) satisfies the conditions
of Lemma 3.17.

Now from Lemma 3.17 it follows that D"[det(F)] < 0 or (D")? < 0. If D”[det(F)] < 0 then we are done. If
D"[det(F)] > 0 then (D”)? < 0 and so from the inequality (35) it follows that D”[det(F)] < ca(F). This

proves the assertion. O
Proposition 3.21. If k(X)) = 0 then c2(X) = 0 and x(X,0x) = 0.

Proof. Let X’ be the minimal model of X. Then Remark 3.20 implies that if <(X) > 0 then F = p*Q%, < Q%
is a locally free sheaf of rank 2 and (det(F))®" = p*Ox/(nKy) is generated by global sections for some
n > 0. But this means that (p*(nKx))? = deg(p)n?K%, > 0, which implies K%, = c}(X’) > 0. At first,
assume that the irregularity ¢(X’) vanishes. Then from Lemma 1.3 we have co(X') = 2—4¢(X') +b2(X’) > 0,

where by (X') denotes the second Betti number of X’. Hence we get
12x(X,0x) = 12x(X’, Ox/) = c1(X') + co(X') > 0.

The first equality follows from the fact that x is a birational invariant in characteristic 0 (see Remark 1.4)
and the second equality comes from the Riemann-Roch theorem. Lemma 1.2 says that blowing up a point
increases ¢y by 1. Thus we have ¢3(X) = ¢2(X'), and the assertion is proved.

Now assume that ¢(X’) > 0. Then from the definition ¢(X’) = h'? = dim(H°(X,Q%,)), it follows
that 7 = Q%, admits a non-trivial global section. Now F = QY. implies that det(F) = Ox/(Kx/) and
(det(F))®" = Ox/(nKx). Since k(X') = 0 by assumption, we know that Ox/(nK ) is generated by global
sections for some n > 0 and so F satisfies the conditions of Proposition 3.19. Note that F = QL is locally
free because X’ is smooth. Since F admits a non-trivial global section, we know that |H| # . Let W
be an element of this linear system. Then as in the proof of Proposition 3.19, W can be decomposed as
W = Wy + n*D”, where Wy is an effective and irreducible divisor linearly equivalent to H — 7*D” and
D" is an effective divisor on X’. So from Lemma 3.9 it follows that D”[det(F)] < c2(F) + (D”)? and
since (det(F))®" is globally generated for some n > 0 and D” is effective, we have D”[det(F)] = 0. Since
Ox/(D") = Q%, as above, and D" is effective, we can apply Lemma 3.17 to conclude that (D”)? < 0. Thus

ca(X) = c2(X') = c2(Uy) = c2(F) = —(D")? = 0.
Moreover, we have
12x(X, 0x) = 12x (X', Ox/) = A(X') + co(X') = 0.
This completes the proof. O

Corollary 3.22. If k(X) = 2 then x(X,Ox) > 0. In other words, if X is a surface of general type, then the

arithmetic genus p,(X) s non-negative.

Proof. We claim that if X is a minimal surface of general type, then cZ(X) > 0. Let C be a smooth hyperplane
section of X. Consider the exact sequence

0— Ox(nKX — C) — Ox(nKx) — Oc(nKx) — O,

and the associated long exact cohomology sequence. By [1], Theorem 1.7.2, there is a ¢ > 0 such that
h(X,0x(nKx)) > cn? for large n, while the Riemann-Roch theorem for curves implies that h°(C, Oc(nKx))
grows linearly with n. Thus there is an m > 0 such that there is an effective divisor E in [mKx — C|. Since
X is minimal, Kx is nef, hence Kx E > 0. We have

m?K% = (mKx)(E + C) >mKxC = EC + C? > C* > 0,
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i.e., c3(X) > 0 as claimed.
From Proposition 3.21 we know that c2(X) > 0. But this means that x(X,Ox) = 15(cf(X) + c2(X)) > 0.
Since x(X’,Ox/) = x(X, Ox) for any surface X’ birationally equivalent to X, the assertion follows. O

Now we study symmetric powers of a locally free subsheaf of the cotangent sheaf of X. The following
result is a consequence of the ”branched covering trick”, [1], Theorem 1.18.2. We give a slightly different

proof here.

Lemma 3.23. Let m:V =P(F) — X be the projective bundle associated to a locally free sheaf F of rank 2
on X and let W be an element of the linear system |mH — w* D|, where D is a divisor on X. Then there exists
a surjective morphism 3 of a non-singular surface X onto X such that B'*W < P(B8*F) can be decomposed
as Wi + ... + W, where W; is an effective divisor on P(8*F) linearly equivalent to H — 7*D;, H = f'*H
and Dy is a divisor on X. Here B’ : V =P(B*F) — V and 7 : V — X denote the morphism of projective

bundles induced by 8 and the canonical projection respectively.
Following is a diagram of the situation. The square is commutative.

P(8*F) —— B(F)

Bl
3

Xx— 7 ,x

Proof. This result follows from the fact that the category of algebraic varieties over C and dominant rational
maps between them is contravariantly equivalent to the category of finitely generated field extensions of C.
More specifically, every dominant map ¢ : Y — Y’ of varieties induces a morphism ¢* : C(Y') - C(Y) of
function fields and conversely, every morphism 6 : K — L of function fields induces a dominant rational map
Yy : Y > Y with K =~ C(Y’) and L =~ C(Y).

Let x be the generic point of X. Then, then residue field C(x) is equal to the the function field C(X) of X.
The fibre 771(z) is a projective line over C(z). Since W € |mH — 7*D|, W meets 7 *(z) in m points and so
W, = W n 7~ 1(x) is the vanishing locus of a homogeneous polynomial f = > f;T% of degree m, where T is
the coordinate on the projective line 771(z) and f; € C(z). Now let K be the splitting field of f, then K
is a finite field extension of C(X). Then by the contravariant equivalence of categories result, there exists
a variety X and a rational map 8 : X — X which is generically finite and dominant. This ensures that
X is a surface and moreover that C(X) = K. A rational map of surfaces can be extended to a morphism
after a sequence of blow-ups. Since blowing up preserves function fields up to isomorphism, we may assume
that X is a non-singular surface and that 3 : X — X is a surjective morphism. The morphism /3 induces
a morphism ' : P(8*F) — P(F) of projective bundles (see figure above) and W’ = (5')*W is an effective
divisor on P(8*F) in the linear system |mH — 7*3*D|. Let Z denote the generic point of X. Then W’ meets
the fibre 771(Z) in m points i.e., W. = W’ n 7~ 1(Z) consists of m points and is the vanishing locus of 8*f.
Since C(X) — C(X) is an inclusion, 8* f is just f i.e., B*f =Y fi(T"), where T’ is the coordinate on the
projective line 771(Z). Since f splits in C(X), 8% f can be expressed as a product of m linear polynomials
and hence W, can be decomposed as W, = Wz 1 + ... + Wz, where each W5 ; is the vanishing locus of
a linear polynomial with coefficients in C(X). Since this decomposition holds over the generic point, it
holds everywhere i.e., we can write W' = (8)*W = W; + ... + W,,,, where each W is an effective divisor
in |H — 7*D;|, where D; is a divisor on X and the D; are such that > D; = 3*D, where = denotes linear

equivalence. This completes the proof. O
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Theorem 3.24. Let F < Q% be a locally free sheaf of rank 2 on a complete non-singular surface X such
that (det(F))®" is generated by global sections for some n > 0. If S™F @ Ox(—D) has a non-trivial global
section then the inequality

D(det(F)] < maz(mcea(F),0)
holds.

Proof. Let f be a global section of S™F ® Ox(—D). We again use that Ox(—D) is locally free and the
projection formula to get an isomorphism

74 Op(r)(MH) ® Ox (—=D) = 1y (Op(ry(mH) @ 7*Ox (—D)).
Using 74 Op(ry(mH) = S™F from Lemma 3.1 and that 7*Ox (—D) = Opz)(—7*D), it follows that
S"F®Ox(—D) = m4(Op(r)(mH) ® Op(r)(—7* D)) = 74 Op(ry(mH — 7% D).
Since H(X, 7. Op(ry(mH — 7* D)) = H(P(F), Op(z)(mH — 7* D)), we get a canonical isomorphism
H°(X,8™F ® Ox(—D)) = H*(P(F), Op(x)(mH — n*D)).

Thus, f corresponds uniquely to a global section of Op(z)(mH — 7*D) which defines an effective divisor
linearly equivalent to mH — 7*D i.e., a divisor W in the linear system |mH — 7#*D| on P(F). From the
proof of Lemma 3.23 we know that there exists a surjective morphism 3 : X — X, where X is a non-singular
surface whose function field C(X) is such that 4* f splits into linear factors in C(X). We can write

B*f = frfm € HY (X, B*S"F ® Ox(-*D)) = H*(X,8"*F ® Ox(~4*D)), (36)

with f; € HO(X, B*F ® Ox(—D;)) where D; is a divisor on X, for all 4. The equality in (36) follows from the
fact that pullback commutes with taking symmetric powers. Note that there are canonical injections 5*F <
B*Q < QL. Since pullback commutes with taking determinant, we have (det(8*F))®" = 5*(det(F))®".
Moreover, 3*(det(F))®" is generated by global sections because the pullback along a surjective morphism
of a globally generated sheaf is globally generated. Since F is a locally free sheaf of rank 2, so is 8*F, and
B*F ® Ox(—D;) has a non-trivial global section, namely f;, for all ¢. Thus, the conditions of Proposition
3.19 are satisfied. Applying Proposition 3.19, we get the inequalities

D;[det(5*F)] < max(ca(8*F), 0), (37)

for all 7. Since (8')*W decomposes as (8')*W = Wi + ... + W,,,, where each W; is an effective divisor linearly
equivalent to H — 7* D, (8)*W must be linearly equivalent to mH — 3. 7%*D; = mH — 7* Y. D;. But W is
linearly equivalent to mH — 7* D, which implies that (8')*W is linearly equivalent to (8')*(mH — n*D) =
m(B')*H — (8)*n*D = mH —7*3*D. So comparing, we see that 7*8*D = 7* Y. D;. Since 7 : P(3*F) — X
is surjective, 7* : Pic(X) — Pic(P(B8*F)) is injective, and we get 8*D = >)D;. Thus, summing up the
inequalities (37) for all 4, we have

B*D[det(8*F)] = (3, Ds)[det(8*F)] < max(mey(8*F),0).
Letting d be the mapping degree of 8, we have
B*D[det(B8*F)] = dD[det(F)], co(B*F) = dea(F).
Thus 8*D[det(8*F)] < max(mca(8*F),0) = max(mdca(F),0). So dD[det(F)] < max(mdcy(F),0) implies

D[det(F)] < max(mcz(F),0). This completes the proof. O
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Theorem 3.25. If X is a non-singular complete surface of general type then the inequality
cH(X) < 3e2(X)
holds.

Proof. Suppose X is minimal and let X’ be a surface birationally equivalent to X. We know from Lemma
1.2 that blowing up a point increases c¢o by 1, and so ca(X') = ¢2(X). But we also know that x(X,Ox) =
X(X’,Ox), which implies ¢§(X) + c2(X) = c}(X) 4 c2(X’). Now c2(X’) = c2(X) implies ¢f(X') < ¢3(X).
If X satisfies ¢2(X) < 3ca(X), then ¢2(X’) < ¢3(X) < 3c2(X) < 3c2(X’). Thus we may assume X to be
minimal.
We consider the problem in two cases

1. ¢3(X) < 2cp(X); in this case there is no question.

2. 2(X) > 2c2(X).

In case 2, put

1
<3
2
and let § > 0 be a sufficiently small rational number. We claim that
RY(X,8™Q% @ Ox(—m(a + §)Kx)) = 0,

where m is any positive integer such that m(a + §) € Z. We know that if F is a locally free sheaf of rank 2
on X which satisfies the conditions of Theorem 3.24, and if S™F ® Ox(—D) has a non-trivial global section,
then the inequality D[det(F)] < max(mca(F),0) holds. In this situation we have D = m(a + 0)Kx and
F = QL so that det(F) = Ox(Kx). Note that m, a,d > 0, and since k(X) = 2 and X is minimal, it follows
from the proof of Corollary 3.22 that K% > 0. Hence we have D[det(F)] = m(a + §)K% > 0. Now

c2(X)

m(a+ 6 K% = m(c%(X)

+ 5)K§< = mea(X) + mIKY = mea(F) + méK% > meo(F).

Thus the inequality of Theorem 3.24 is not satisfied, which means S™Q% ® Ox(—m(a + §)Kx) has no
non-trivial global sections i.e., h(X,S™QY ® Ox(—m(a + §)Kx)) = 0 as claimed.
Serre duality implies that

h?(X,8™Q% ® Ox(—m(a + §)Kx)) = h°(X,8™Q% @ Ox(—m(1 —a — §)Kx — Kx)). (38)
Since a < % and ¢ is small, we have 1 —a — § > a. We claim that
RA(X,8™Q% @ Ox(—m(a + §)Kx)) = 0,

for any sufficiently large m. From the equality (38), this is equivalent to saying that h?(X,S™QL @O x (—m(1—
a—08)Kx —Kyx)) =0. We take F = Q% and D = m(1 — a — ) + Kx and apply Theorem 3.24. In this case

we have
D[det(F)] =m(l —a - 0)K% + K% > maK% + K%,

since 1 —a — & > a. Thus we have maK% + K% = mc2(QY) + K% > mca(Q%), because K% > 0. The
inequality of Theorem 3.24 is not satisfied, which implies that h°(X, S™QL @O x (—-m(1—a—§)Kx—Kx)) =0
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for a sufficiently large m, as claimed. From the Hirzebruch-Riemann-Roch theorem it follows that the Euler
characteristic y(X,S™Q% ® Ox(—m(a + §)Kx)) is non-positive. On the other hand, we know that

X(X,8™Q% ® Ox(—m(a +0)Kx)) = x(V,Ov(m(H — (a + §)7*Kx)))
grows asymptotically as
é(H (a4 Oyt K )Pm?,

where V is the projective bundle P(2%) and H the tautological line bundle on V. Hence we obtain the
inequality (H — (o + 0)7*Kx)? < 0. Letting § — 0, we have

0> (H—ar*Kx)? (39)
= H?® - 3H%an*Kx + 3H(an*Kx)? — (an*Kx)? (40)
=c(X) — co(X) = 3ac(X) + 3a2c3(X). (41)

The equality (41) follows from applying Lemma 3.5 to the equality (40). Putting ca(X) = ac?(X) in equality

(41), we get
0= (1—a-3a+3a?)d(X)
=(1-a)1—3a)?(X).
Since a < 3 and ¢}(X) > 0, this implies that 3 > 1. Thus ¢}(X) < 3¢2(X). This proves the theorem. [
Following are some easy consequences.
Corollary 3.26. If X is a surface of general type, then co(X) > 0.

Proof. If X is a minimal surface of general type, then we know from the proof of Proposition 3.21 that
c?(X) > 0. From theorem 3.25 we have ¢2(X) < 3co(X), which implies that co(X) > 0. If X’ is any surface
of general type then ¢o(X’) = co(X) and so the assertion follows. O

Corollary 3.27. If X is a surface of general type, then the inequality po(X) = §c3(X) — 1 holds.
Proof. The arithmetic genus p, of a complete smooth algebraic surface X is equal to
pa(X) = X(X7 OX) -1

Now x(X,0x) = 15(c?(X) + c2(X)) implies that

L(E(X) + (X)) - 1.

pazﬁ

From Theorem 3.25 we have the inequality ¢3(X) < 3c¢2(X) for X a surface of general type. Thus c2(X) >
£c3(X) and s0 pa(X) = 15(3(X) + 33(X)) — 1 ie,
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4 Examples and Applications

We now discuss some examples of surfaces of general type. The results discussed in subsections 4.1, 4.2, and 4.3
are those in subsections 6A, 6B, and 6C respectively, in Miyaoka’s paper [10]. With the exception of subsection
4.3, we study surfaces of general type which satisfy the extreme case of the inequality of Theorem 3.25 i.e,
surfaces whose Chern numbers satisfy ¢? = 3co. It is known that a surface X of general type satisfies this

equality if and only if the universal cover of X is the complex unit ball B2 = {(z1, z2) € C? | |21]? + |22|? < 1}.

4.1 Surfaces with ¢? = 3¢, (construction by Borel and Hirzebruch)

The ball B? is a bounded symmetric domain U(2,1)/U(2) x U(1). Suppose that a group G acts freely on B
and that B/G is compact. Then X = B/G is non singular algebraic surface of general type. Consider the
associated compact symmetric space B’ = U(3)/U(2) x U(1), which is also an algebraic variety, and is in
fact isomorphic to the projective plane P2. Hirzebruch found that the Chern numbers of the two algebraic

varieties X and B’ are closely related.

Theorem 4.1 (Hirzebruch). There is a constant t associated to the group G such that
A(X) = tc3(P?), ca(X) = tea(P?).

Since Kx is ample, we have ¢(X) > 0. On the other hand, the equalities ¢3(P?) = 9, co(P?) = 3 imply
that ¢2(X) = 3ca(X).

4.2 Surfaces of which the intersection matrices are positive definite

Let X be an algebraic surface and suppose that the intersection form on H?(X, Q) is positive definite. Then

we have the following result.

Proposition 4.2. We have the equality

In particular, we have ¢2(X) =9 and co(X) = 3.

Proof. We set h*J(X) = dimH’ (X, QY% ), and let by(X) denote the second Betti number of X. Note that
be(X) = h?9(X) + hbY(X) + h%%(X) and moreover that h*%(X) = h%2(X) by Serre duality. We also
have py(X) = h?9(X), which gives ba(X) = 2p,(X) + A1 (X). Recall that bo(X) = dimH?(X,Q) and let
{T'1,...,T,...,Tp,} denote a basis of H?(X,Q). Define b™ and b~ to be, respectively, the number of positive
and negative eigenvalues of the symmetric matrix (I';T';);;, where I';I"; denotes the intersection product of T';

and I';. Then from Theorem 1.5 and the paragraph preceding it, we have

2 1
b+ — b_ = —502 + gC% (42)

bt 4 b = by. (43)

Since we have assumed that the intersection form on H?(X, Q) is positive definite, we have that the matrix
(I';T;)i; has no negative eigenvalues, i.e., b~ = 0. Then equation (43) implies b™ = by(X). Now, since X is
a non-singular complex surface, we have h':°(X) = h%1(X), which implies that b;(X) = h1:0(X) + %1 (X)
is even. Thus from statement 1 of Theorem 1.7, we have bt = 2p,(X) + 1. It follows that 2py(X) + 1 =
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2pg(X)+h'1(X), ie., k! (X) = 1. On the other hand, equation (42) implies that by (X) = 1 (c%(X)—2c2(X)).
Hence, applying Theorem 3.25, i.e. the inequality ¢? < 3cq, we have

1 1
Zeo(X) = =

Using bo(X) = 2p,(X) + 1 again on the right hand side, we get

2p(X) +1=02(X) < (2 —4¢(X) + ba(X)).

2pg(X) +1< %(2 —4q(X) +2pg(X)+1) =1+ %(Zpg(X) — 4q(X)).

This gives py(X) < —¢q(X). Since py(X) = h?°%(X) and ¢(X) = h1°(X), py(X) and ¢(X) are both non-
negative, which implies py(X) = ¢(X) = 0. Thus bo(X) = h»!(X) =1 and c2(X) =2 -0+ 1 = 3. From
equation (42) we get ¢?(X) = 9. This proves the assertion. O

Corollary 4.3. Let kP? denote the connected sum of k copies of the complex projective plane P?. Then the
topological manifold kP? admits a complex structure if and only if k = 1.

Proof. We know that the Betti numbers by, b1, by, b3, by of the complex projective plane P? are 1,0,1,0,1
respectively. Thus if a complex surface X is homeomorphic to kP? then by (X) = 0 and bz(X) = k. Moreover,
the intersection form on X is positive or negative definite according to the orientation of X. On the other
hand, since b1 (X) = 0, X is a Kéhler manifold or a K3 surface. In any case, the intersection form is not
negative definite. This proves the assertion. O

4.3 Surfaces with ¢ < 2¢y

Let (p,r) be a pair of integers. If p+r =~ 0 mod 12 and p < 2r, then we can construct a surface X such that
c2(X) = p, and c3(X) = r as follows. Suppose ¢ is an integer such that 12¢ = p + 7. Then from p < 2r we
get the inequalities p < 8¢ and r > 4¢. Let C be a smooth curve of genus g(C) = |g| + 1, and set
o P! if g <0,

a smooth curve of genus 2 if ¢ > 0.
Consider the surface X’ = C x C'. Let p; : X’ — C and p> : X’ — C’ denote the two projections. Then the
canonical divisor of X" is given by Kx/ = pf K¢ + pi K¢v, where K¢ and K¢ are the canonical divisors of C
and C’ respectively (see Exercise I1.1.5 in [3]). Thus we have

K% = (piKc +piKe)? = (pFKe)? + 20f Ko)(pi Ko ) + (pi Ko )?. (44)

Note that deg(K¢c) = 2g(C) — 2, so the support of K¢ consists of 2g(C) — 2 points on C. Similarly, the
support of K¢ consists of 2g(C”) — 2 points on C’. Thus pf K¢ ~ (2¢9(C) — 2)({pt} x C") ~ (2¢9(C) — 2)C"
and similarly pf Ko ~ (29(C") — 2)(C x {pt}) ~ (29(C") — 2)C, where ~ denotes numerical equivalence.
Plugging this into equation 44, we get

K% = (29(C) = 2)C"™ +2(29(C) - 2)(29(C") — 2)CC" + (29(C") — 2)*C*. (45)

Note that for any two points P, Q € C, the fibres pf{P} and p¥{Q} are algebraically equivalent, which implies
they are numerically equivalent. Moreover, the fibres are disjoint. Since C" ~ ({P} x C") = pF{P} ~ p¥{Q} =
({Q} x €), we have € = (pH{P})? = (WFPHEHQY) = ({P} x C')({Q} x C') = 0. Similarly, we have
C? = 0. The fibre of any point P € C meets the fibre of any point P’ € C’ at exactly one point in X, namely
(P, P") and hence CC’ = 1. Thus it follows from equation 45 that

K% =2(29(C) = 2)(29(C") - 2) = 8(9(C) — 1)(g(C") — 1). (46)
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The Euler characteristic of X is given by e(X)e(C x C") = e(C)e(C"). We know that e(C) = 2 — 2¢(C) and
similarly for C’. Thus we have c3(X') = e(X’) = (2 — 29(C))(2 — 2¢(C")) = 4(9(C) — 1)(9(C") — 1). This
implies that

1
co(X') = 51{3(,. (47)

From the equalities 46 and 47 it follows that ¢3(X’) = 8¢ = 2¢2(X’). Now let X be the surface which is the
blow-up of X’ at 8¢ — p points. Since blowing up a point decreases ¢? by 1 and increases cp by 1, we have
A(X)=8¢— (8¢ —p) =pand c2(X) =4+ 8¢ —p = 12¢g —p = r. Thus X is a surface with the desired

Chern numbers. Moreover, since k(X ) = k(X') = k(C) + k(C") (see Theorem 1.7.3 in [1]), we have

—oo if g <0,
K(X)=<1 if g =0,
2 if ¢ > 0.

4.4 The complete quadrilateral

It is well-known that the Chern numbers of the projective plane P? are ¢?(P?) = 9 and c3(P?) = 3 i.e., they
satisfy ¢?(P?) = 3co(P?). From Theorem 3.25 we have the inequality ¢ < 3¢y for surfaces of general type.
Our goal is to study surfaces of general type which satisfy the extreme case of this inequality i.e., surfaces for
which the equality ¢? = 3¢, holds. This motivates the following definition.

Definition 4.4. The proportionality deviation Prop(Y') of a complex surface Y is given by
Prop(Y) = 3co(Y) — c3(Y).

For example, Prop(P?) = 0. The following theorem gives a formula to compute the proportionality

deviation for good coverings (see Definition 2.4) and is a useful computational tool.

Theorem 4.5. Let the setting be as in Definition 2.4. Then for good coverings w:Y — X of degree N, the

proportionality deviation is given by

Prop(Y) _ 3ca(Y) —2(Y)
N N

=3c(X) — (X +le ) +2D3?) + Zxx]D D; Zx2D2 (48)
Z#J

where the x;’s are real numbers given by x; = 1 — % for all i, and the b;’s are positive integers as in Definition

2.4.
Proof. The equality 48 follows from combining the equalities 4 and 13. O

We now study a line arrangement in P? which gives rise to a surface Y for which Prop(Y’) vanishes. This
arrangement is known as the complete quadrilateral and it is the arrangement of six lines having four triple
intersection points, labelled 0: for 4 = 1,2,3,4, no three of which are collinear (see figure below). Any four

points with this property are equivalent up to a projective transformation. The six lines, labelled L,z for
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a, B €{1,2,3,4}, are the six ways of connecting these four points by lines.

34

Ly 01 04

Lis N
13

This arrangement has three double and four triple intersection points. Any three of its lines not having

a common triple intersection point give an affine coordinate system on an open subset of P2. In suitable

projective coordinates (zg : 21 : 22), the arrangement is given by the equation
Z()2122(22 - Zl)(ZQ — Zo)(Z() — Zl) =0.

We now construct a new surface X by blowing up the four triple intersection points of the complete
quadrilateral on P2. Thus the surface X has ten divisors D,g, a, 8 € {0,1,2, 3,4}, six of which are transforms
of the original six lines of the arrangement and the other four are exceptional divisors corresponding to the
blown-up points. For example, the divisor Di5 is the proper transform of the line in the original arrangement
passing through the points 03 and 04, while Dy; for ¢ = 1,2, 3,4 is the divisor obtained by blowing up the
point 0i (see figure below).

D3y

Do

04

13

D
x)01 D1y :

The ten divisors have only simple intersection points and there are fifteen such points.

Note that the intersection number of any two lines in the complete quadrilateral is 1. Since each line in the
arrangement is isomorphic to P, the self-intersection number of each line is 1. We now want to determine
the intersection numbers of all divisors in the blown-up arrangement on X.

Lemma 4.6. The intersection numbers of the ten divisors Dog on X are given by
1 if{ap} # {70} and {af} n {70} = &
DusDys =10 if{aB} # {10} and {aB) n {6} # & (49)
-1 if{ap} = {y0}.
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Proof. We begin by computing the self-intersection numbers. We have D3, = —1 for i = 1,2,3,4 since
the Dy;’s are the exceptional divisors. For the other six D,g which are proper transforms of the L,g, we
have D25 = (7*Lag — Doy — Dos)?, where {3} n {7} = & and 7 denotes the projection of X onto P*.
Since the exceptional divisors are disjoint, we have Dgy;Dy; = 0 for i # j and since (7*D)(n*D’) = DD’
for any two divisors D, D" on P2, we have (7*Lag)* = Liﬁ = 1. By Serre’s moving lemma we can move
Lo away from the points 0+, 06 it passes through, and then pullback along m, from which it follows that
(7*Lag)Doy = (1% Lag)Dos = 0. Hence we get

Dzﬁ = (m*Lag — Doy — D05)2 = Liﬁ + ng + D§5 =1,

for o, B € {1,2,3,4}. Thus we have DiB = —1 for all o, B € {0,1,...,4}.

Next, we compute intersection numbers DygD. 5, where {af} # {v0}. We already know Dg;Dy; = 0 for
i # j. Consider the intersection D,gDy,, where D,g is not an exceptional divisor. We have D,gDgy =
(7*Lag — Doy — Dov)Doy = (7*Lag)Doy — DopDoy — Doy Doy. Thus if p = v or v = «, the intersection
number D,gDyy equals 1, otherwise it equals 0. Finally, consider the intersection D,sD.,s where none of

Dogs, D+s is an exceptional divisor. Hence we get

DapDys = (7" Lag — Doy — Dou)(7* Lys — Doy — Dop)
= Langs + DOuDOn + D()HDOP + D(),,Don + DOVD0p~

If {af} N {70} # I then the intersection number D,gD.s equals 0, otherwise it equals 1. To summarize, we
have DogDys = 1 if {af} n {7} = & and DagD.s = 0 if {af} n {7} # I, for all a, 5,7,6 € {0,1,...,4}.
Hence, the intersection numbers are as given in 49 and the assertion is proved. O

Since each of the ten divisors D, on X is isomorphic to P!, we have e(Dag) = 2 and hence —e(Dqyg) +
2D(2X,8 = —4 for all ten D,5. By Lemma 1.2, blowing up a point increases cs by 1 and decreases ¢? by 1. So

we have
3ca(X) — c1(X) = 3(ca(P?) + 4) — (c1(P?) — 4) = 16.

Using Lemma 4.6 together with the formula 48 of Theorem 4.5, we conclude that a good covering Y of X of
degree N satisfies

Pr%(Y) — 16+ Y —dras + > a2, + %Zxaﬁ( >. @apDasDss)- (50)
{ap}#{~5}
In order for Y to satisfy the equality ¢3(Y) = 3co(Y), we want the right hand side of the equality 50 to
vanish. Thus we want real numbers z,5 which give Prop(Y’) = 0 when plugged into equation 50.
We now exhibit a case in which Prop(Y’) vanishes. Let ug, 1, pi2, p£3, f14 be real numbers such that po+...+pug =
2 and let xo3 = i + pg. Then we have

Z Tap = 8.
apf

Putting this into the equality 50, we get

Prop(Y) 1
{aB}#{v6}

It is easily checked that for every a3, the term in the parentheses {-} equals 4. Thus it follows that

Prop(Y)

1
N = —16+§Z4xa5 = —16+ 16 = 0.

af
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Note however, that we have the additional requirement z,5 = 1 — ﬁ7 where b,g are positive integers as in
Definition 2.4. We want solutions of Prop(Y') = 0 with the additional constraint

R 1
l—2ap 1= (fia + pp)

€ Z>1. (51)

=

bag

There are eight solutions of Prop(Y) = 0 with the constraint 51, with 0 < po < 1 and >, ptq = 2 which are
given in Table 3.1 in [13]. Each of these eight solutions gives a surface Y which, assuming it exists, is a ball
quotient i.e., it is a surface of general type which satisfies the equality ¢2(Y) = 3¢2(Y). In his paper [5], Kato
has proved that for an arbitrary line arrangement in P2, and any set of integers b; assigned to the divisors D;
on X such that b; > 2 for all ¢, there exists a good covering Y of X branched along the new arrangement of
divisors on X, with ramification index b; along the divisor D;. Note that we have discussed the construction
of a good cover in the special case b; = n for all i, n > 2, in section 2.3. In this case Y is called a Kummer
covering of X.

In the complete quadrilateral case, the solution p, = % for all o, and hence b,g = 5 for example, gives rise to

a Kummer covering Y of X. We discuss this in more detail in the next section.

4.5 The case of a Kummer covering

Consider an arrangement of k > 3 lines Ly, ..., L, in P? which are given by homogeneous linear equations
l1 =0,...,lx =0. Assume that not all of the lines pass through a single point, i.e., the arrangement is not a
pencil. Let ¢, denote the number of points in the arrangement through which r lines pass. Then the number
of regular intersection points is ¢z and the number of singular intersection points is >, _4t,.. We blow up
P? at these Zrzs t, singular points and get a smooth surface X. Let D; denote the proper transform of L;
for i =1,...,k and let E; be the exceptional divisors corresponding to the blown-up points. Assign to each
D; the ramification n; = n and to each E; the ramification m; = n. We have described in section 2.3 the
construction of a good covering Y of X (see Definition 2.4) of degree N = n*~! branched along each D; with
index n; = n and along each E; with index m; = n.

We know from statement 1 of Theorem 1.1 that C(X) = C(PP?), where C(X) and C(P?) denote the function
fields of X and P? respectively. Thus the quotient /;/l; of two linear polynomials in homogeneous coordinates
is a meromorphic function on X. We consider all the n-th roots m , 1 # j. The covering Y is defined by
the property that these n-th roots all become single valued on Y.

The function field of Y is given by

C(Y) = C(X) (X1l ooy A L1/ i)

Note that C(Y) is a Kummer extension of C(X) of degree n*~!, and hence Y is a Kummer covering of X of

degree n*~1. More formally,

Definition 4.7. A covering w:Y — X is called a Kummer covering if the function field of Y is a Kummer
extension of the function field of X.

Note that the existence of Y is guaranteed by the result of Kato [5], and also by the construction carried
out in section 2.3.

Proposition 4.8. The surface Y satisfies the following equation

w2 (22 GODY 112, — k) 20— 1)(s — 260) + (o — o). (52

where fo = >, ooty and f1 =3 7t
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Proof. Multiplying the formula 48 by n2, we get

2 (BeelV) = )y

I =n2(3c2(X) — (X)) +n Zmz ;) +2D3?) +—2xeJDD 22%3D?

i#]
Note that the D; in the above equation denote the proper transforms of the original lines in the arrangement
and the exceptional divisors. Since the ramification indices b; are equal to n for all ¢, we have z; = 1— f = 17 =
for all 4. Putting this into the above equation we get

(32 =dW)y

~ n?(3c2(X) = ¢} (X)) + n(n — 1) Y (—e(D;) + 2D}) + ZDD

7 i#E]

—(n— 1)221)3. (53)

We compute each term in the right hand side of the equation 53. The surface X is a blow-up at all the
singular intersection points of the arrangement i.e., points through which r > 3 lines pass. The number of
such points is Zr;g r = fo — t2. By Lemma 1.2 we have

3ca(X) — c1(X) = 4(fo — t2).

Each divisor D; is isomorphic to P! and so e(D;) = 2 for all i. The total number of divisors is the number of
lines in the original arrangement plus the number of singular points which is k + fo — 2. Hence we get

D e(Di) = 2(k + fo—ta).
i
If D; is an exceptional divisor, then Df = —1. If D; is not an exceptional divisor, then D,i2 = (r*L; — F;, —
= E; ) = (7*L;)* + E} + ...+ EZ , where E;,, ..., E;_are the exceptional divisors which intersect D;. The
number of such divisors is equal to the number of singular points lying on L;. Letting o; denote the number
of singular points lying on L;, we get D? = 1 — ;. Thus we have

ZD2 Z (1—0i) = (fo—t2)
=k— ZO’Z fo —t2).

Note that )}, 0; is the number of singular points of the arrangement counted with multiplicity. An r-fold
intersection point is counted  times in the sum- once for each line it lies on. Hence ), oy = Zr>3 rt,. = f1—2ts.

Plugging this into the equation above, we get
ZD2 = (f1 = 2t2) = (fo —t2) =k — fo = f1 + 3t

The intersection number D;D; of two divisors is either 1 or 0. If D; and D; are proper transforms of
lines in the original arrangement meeting at a regular point, or if one of D;, D; is an exceptional divisor
corresponding to a singular point lying on a line of which the other divisor is the proper transform, then
D;D; = 1. Otherwise D;D; = 0. It follows that

Z D;Dj = 2(f1 — t2).
i#j

Putting everything into the equation 53, we get

n? (M) = 4’I’L2(f() — tz) + n(n — 1)(—4f0 —-2f1+ 8t2) + (’I’L - 1)2(—k + fo+2f1— 4t2).
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Finally, we write the above equation as a polynomial equation in n — 1 and arrive at

w2 (320D _ (12— k) 20— (i — 240) + 4fo — 1),

which is the equation 52. This proves the assertion. O]

We want to apply this result to some known line arrangements in the projective plane. For the complete
quadrilateral discussed in subsection 7.2, we have k = 6 lines, t; = 3 regular intersection points and t3 = 4
triple intersection points. This gives fy = 7 and f; = 18. Plugging this into the equation 52, we get

nQ(Pr%(YU = (n—5)%

Thus, we get Prop(Y') = 0 if n = 5. In other words, the Kummer covering Y is a ball quotient (see subsection
4.1) for n = 5. The degree of the covering is N = n*~! = 5°.
For the Hesse arrangement (see [13], Chapter 5), we have k = 12, {5 = 12, t3 = 0, and t4, = 9, which gives

fo =21 and f; = 60. Putting this in equation 52, we have

n%%m) =9(n — 3)%

Thus a Kummer covering of the blown up Hesse arrangement is a ball quotient for n = 3. The degree of the
covering in this case is N = n*~1 = 311,
For the Ceva(3) arrangement (see [13], Chapter 5) we have k = 9, ¢t = 0, and t3 = 12. This gives fp = 12

and f; = 36. Again, we put this into equation 53 and get

n2<13r0%(Y)) =3(n —5)%

The Kummer covering is a ball quotient for n = 5 and the degree of the covering in this case is N = nF~1 = 58,

It easy to see that in each of the three examples, Y is a surface of general type, because we have c2(Y) > 9
for each example. For the complete quadrilateral we have ¢2(Y) = 32 - 5%, for the Hesse arrangement we have

(V) =2%-3" and for the Ceva(3) arrangement we have c3(Y) = 32 - 5% . 37.

5 Fake projective planes

In this section we discuss the results in the article of Keum [6]. In this paper he classifies all possible structures
of surfaces which are quotients of fake projective planes by their finite automorphism groups, and their
minimal resolutions. He first considers the case when the automorphism group is of prime order and proves
the following

Theorem 5.1. Let G be a group of automorphisms of a fake projective plane X. Let Z = X/G andv Y — Z

be a minimal resolution. Then the following claims hold

1. If the order of G is 3, then Z has three singular points of type %(17 2), and Y s a minimal surface of
general type with K& =3, p,(Y) = 0.

2. If the order of G is 7, then Z has three singular points of type %(1,3), and Y s a minimal elliptic
surface of Kodaira dimension 1 with two multiple fibres. The pair of multiplicities is one of the following
three cases: (2,3), (2,4), (3,3).
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5.1 Preliminary results

A fake projective plane is a compact complex surface which has the same Betti numbers as the complex
projective plane P2, but is not isomorphic to it. There are a number of equivalent characterizations of fake

projective planes, some of which are as follows.

Theorem 5.2. A non-singular compact complex surface X with b1(X) =0, bo(X) = 1 is a fake projective
plane if one the following holds true:

1. X is not isomorphic to P?.

2. X is not homeomorphic to P2.

3. X is not homotopy equivalent to P?.

4. The fundamental group m(X) is an infinite group.

5. The universal cover of X is a two-dimensional complex ball B> = C?, and X =~ B?/m(X), where
m(X) < PU(2,1).

6. The canonical divisor Kx is ample.
7. Kx is ample, py(X) = ¢(X) =0, and K% = c3(X) = 3c2(X) = 9.
We begin with the following fundamental result.

Lemma 5.3. Let X be a fake projective plane and C' a smooth curve on X. Then e(C) < —4, or equivalently,
g(C) = 3.

Proof. Since X is a fake projective plane, we have by definition that by(X) = 1, b1(X) = 0, bo(X) = 1,
b3(X) =0, by(X) = 1. Hence we have the equality

It is known that a complex surface which has even b; is Kéhler. Since b1 (X) = 0, we conclude that X is
itimk h*7 | where
h¥J are the Hodge numbers of X. Note that all the h?’ are non-negative integers and we have h’J = hi

Kéhler. From Poincare duality and the Hodge decomposition theorem, we know that by = >

by Hodge symmetry. This implies that h%° = h»! = h22 = 1 are the only non-zero Hodge numbers. The
arithmetic genus of X is given by p,(X) = h?? — b0 = 0. Since x(Ox) = 1 + pa(X), it follows that
x(Ox) = 1. Applying Noether’s formula, we get 12 = ¢3(X) + co(X), which implies that ¢3(X) = 9. Hence
X satisfies ¢2(X) = 3c2(X). Since h™! = 1, we have that the Picard number of X is 1. Let H denote the
generator of the Neron-Severi group of X, then the canonical divisor Kx is a multiple of H. Any divisor L
on X is ample if and only if nL is ample for some n > 1. Since L is a multiple of H, we can assume H to be
ample. Hence H? = 1. Now K% =9 implies that Kx = +3H. If Kx were a negative multiple of H, then by
a result of Hirzebruch and Kodaira, X would be biholomorphic to P? (see Theorem 3 in [15]). Thus it follows
that Ky = 3H.

Let C' be a smooth curve on X, then C ~ mH for some positive integer m, where ~ denotes numerical

equivalence. Applying the adjunction formula, we get
e(C) =2-29(C) = —C(C + Kx) = —(m* + 3m) < —4.

This implies that 2 — 2¢g(C) < —4, i.e. g(C) = 3. Hence the assertion is proved. O
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A normal projective complex surface is called a Q-homology P? if it has the same Betti numbers as the
complex projective plane P2. If a Q-homology P? is non-singular, then it is either P2 or a fake projective

plane, by Theorem 5.2.

Proposition 5.4. Let X be a Q-homology P? with quotient singularities only and suppose that X admits a
finite group G of automorphisms. Then the quotient X /G is again a Q-homology P? with quotient singularities
only.

In particular, py(X/G) = ¢(X/G) =0, c2(X/G) =3, and x(Oxg) = 1.

Proof. The canonical map 7 : X — X/G is finite and surjective. Hence it follows that the pullback
map ©* : H(X/G,C) — H'(X,C) is injective, for all i. Since H'(X/G,C) = @, ,_, H"*(X/G) and
H'(X,C) = ®p+q:i HP9(X), the map 7* is injective on the level of each HP'? in the Hodge decomposition.
Recall that py(X) = dimH?*%(X) = h?% and ¢(X) = dimH"°(X) = h'Y. Since p,(X) = ¢(X) = 0, the
injectivity of #* implies that p,(X/G) = ¢(X/G) = 0. Thus we have

X(Ox/c) =1—py(X/G) +q(X/G) = 1.

Since bo(X) = 1, it follows that ba(X/G) = 1. Recall that co(X/G) = 2 — 4¢(X/G) + by(X/G) = 3. This
concludes the proof. O

Next, we consider fake projective planes with an automorphism of prime order.

Proposition 5.5. Let X be a fake projective plane with an automorphism o. Assume that the order of o is

a prime number p. Let Z = X /(o) and let v : Y — Z be a minimal resolution. Then the following holds.
1. Z is a Q-homology P? with K5 ample.
2. pg(Y) =q(Y) = 0.
3. K% =9/p.
4. The fized point set X7 consists of three points.

Proof. We know from Proposition 5.4 that the quotient surface Z has the same Betti numbers as X and
hence is a Q-homology P2. Moreover, we have p,(Z) = q(Z) = 0. Note that the resolution of singularities
v:Y — Z is a birational morphism and the irregularity ¢ and geometric genus p, are birational invariants.
The latter statement follows from the fact that R'v,Oy = 0 since Z has only rational singularities, and
that 2-forms can be extended along the resolution i.e., 1,03 =~ Q%. Thus it follows that Y also satisfies
pg(Y) = q(Y) = 0. This is (2).

Next, we prove (4). Suppose the fixed point locus X7 consists of n curves Cj, ..., C,, and m isolated points.
This implies that the quotient surface Z has m singular points. Since each point has Euler characteristic 1,
we have e(X7) =m + >, e(C;). Note that since o has order p, the degree of the quotient map 7 : X — Z

is p. Using a Hurwitz type formula for surfaces, we get

e(X) = pe(Z) = (p= D) (m+ Y e(Ch)). (54)
i=1
We know from Proposition 5.4 that e(X) = e(Z) = 3. This together with the equality 54 gives

m+ i e(C;) = 3. (55)

44



Let a denote the normalization of the curve C; on X. Then it is known that x(C;) = X(a) —r;, where r; is
the number of nodal points on C;. In particular, x(C;) < X(a) Thus observing equation 55 we may assume
that all C; are smooth curves. From Lemma 5.3 we know that e(C;) < —4 for all i = 1,...,n and so equality

55 implies that
m = 3+ 4n. (56)

It can be concluded from the orbifold Bogomolov-Miyaoka-Yau inequality that a Q-homology P? with quotient
singularities only cannot have more than five singular points, i.e. m < 5 (see for example [7]). Then the
inequality 56 implies that n = 0 and from 55 we get m = 3 i.e., the fixed point locus X? consists of three
isolated points. This is (4).

Note that X is a good cover of Z in the sense of Definition 2.4 and hence we have the following relation
between the canonical divisors Kx and Kz (see equation 10).

Kx = n* (KZ + EmD)

where the numbers z; are as defined earlier and D; are ramification divisors on Z. Although the notion of a
good cover was defined for smooth surfaces, Z has no codimension 1 singularities, and so the above formula
is valid. Since the ramification locus consists only of three isolated points, we have Kx ~ n* Kz, where ~
denotes numerical equivalence. Thus we have K% = (7*Kz)? = deg(m)K% = pK% i.e., Kz = K%/p = 9/p.
This is (3).

Since Kx is ample, it follows from the Nakai-Moishezon criterion (or Corollary 1.2.24 in [8]) that 7* Ky is
ample. This further implies that Kz is ample on Z (see Corollary 1.2.28 in [8]) and hence we have the second
part of assertion (1). This concludes the proof. O

Corollary 5.6. Let the setting be as in Proposition 5.5. Then p # 2.

Proof. Suppose p = 2. Then Z = X/(Z/27Z) has only singularities of type %(1,1). We know that the
exceptional divisor corresponding to such a singularity is a (-2)-curve. Thus Ky = v*Kyz + ), k; E;, where
v:Y — Z is the minimal resolution, and each E; is a (-2)-curve. Applying the adjunction formula to E;,
we see that 2 = —(KyE; + E?) = 2k; + 2, which gives k; = 0 for all . This implies that Ky ~ v*Kj.
Since Y is smooth, we know that c2(Y) = e(Y) = >,(—=1)'b;(Y), and so c2(Y) is an integer. Moreover,
x(Y,0y) = >,(=1)'h*(Y,Oy) is also an integer. Hence using Noether’s formula, it follows that ¢3(Y) =
K2 =12x(Y,0y) — c2(Y) is an integer. However, since Ky ~ v* Ky, statement 3 of Proposition 5.5 implies
that K% = K% = 9/p = 9/2, which is not an integer. This is a contradiction, hence p # 2. O

Prasad and Yeung [11] have given precise possible values for the order p of the automorphism o. According
to their result, p = 3 or 7. The goal is to determine in each case the types of singularities of the quotient
surface Z, using the holomorphic Lefschetz fixed point formula.

Lemma 5.7. Let S be a compact complex manifold of dimension 2 with py(S) = ¢(S) = 0. Assume that
S admits an automorphism o of prime order p. Let r; for (1 < i < p—1) be the number of isolated fized
points of o which give singularities of type %(1,2’) on the quotient surface. Let C1,...,Cy be one-dimensional
components of the fized locus S°. Then

1-g(C;) (p+1)C2\ "
DN o T J)Jr;am

j=1
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where

1 A 1
‘“‘p—l(;l =)

with ¢ a primitive p-th root of 1. For example, a; = (5 — p)/12 and ag = (11 — p)/24.

Proof. This follows from the original holomorphic Lefschetz fixed point formula. A proof is given in [16],

Lemma 1.6 and it is valid for all two-dimensional complex manifolds with p, = ¢ = 0. O

5.2 The case GG contains a normal subgroup of order 3
We now consider fake projective planes X which admit automorphisms of order 3.

Proposition 5.8. Let o be an automorphism of a fake projective plane X of order 8. Let Z = X /{o) and
letv:Y — Z be a minimal resolution. Then Z has three singularities of type %(1, 2), and Y is a minimal

surface of general type with K3 =3, py(Y) = 0.

Proof. We know from statement (2) of Proposition 5.5 that py(Y) = ¢(Y') = 0 and since ¢ has order p = 3, it
follows from statement (3) of Proposition 5.5 that K% = 9/3 = 3. From statement (4) of the same proposition
we know that the fixed point locus X7 consists of three points. Suppose that Z has r; singular points of
type %(1, 7). Since X consists of only three isolated points and no curves, the formula in Lemma 5.7 gives

1 = ayr1 + agre where

a —1( L + 1 )—}
PTo\1—w)?2 T (1—w?)?2) 6
a —1 + = >—1
"o\ -—w(l-w?) (1-w)(l-w)/ 3
Thus we have
1 1
1= 67‘1 + g’l‘g. (57)

Since the total number of singular points is 3, we have r; + ro = 3. Together with the equality 57 this gives
r1 = 0 and ro = 3. Thus we conclude that Z has three singular points of type %(1, 2). Note that each of these
three singularities is of type As s and since % =2 %, the exceptional divisor is a Hirzebruch-Jung string
consisting of two curves intersecting in one point, each having self intersection -2. The Dynkin diagram of

the exceptional divisors is

b, E E Ey FEs Es
*——0 *—0 *——o

This implies that Ky = v*Kyz + k1 Eq + ... + k¢ Eg, where each F; is a (-2)-curve. Applying the adjunction
formula to Ey, we see that 2 = —(Ky Ey + E?) = 2k; — ko + 2, which gives 2k; — ko = 0. Similarly for Es
we get 2 = —(Ky Ey + E2) = 2ko — k1 + 2 i.e., 2ky — k; = 0. This gives k; = ko = 0, and similarly we get
ks = ky = ks = k¢ = 0. It follows that Ky ~ v*Kyz, and hence K = K% = 3. From statement (1) of
Proposition 5.5 we know that Kz is ample, which implies it is semi-ample. This means that |mKz| is base
point free for some integer m > 0. Let y € Y be any point. Then there exists a divisor D € |mKz| not
containing z = v(y). It follows that v*D € |mv* K| does not contain y. Thus |mv* K| is base point free
and so v* Kz is semi-ample. In particular, this means that v* Kz is nef and since Ky ~ v* Kz, it follows that
Ky is nef. If Y contains a (-1)-curve C, then by the adjunction formula 12 we have that 2 = —(Ky C + C?),
i.e. KyC = —1, which is a contradiction. Hence Y is a minimal surface. Since ¢3(Y) = K% = 3, it follows

from the Enriques-Kodaira classification theorem that ¥ must be of general type. O
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Corollary 5.9. Let X be a surface whose automorphism group G is isomorphic to (Z/3Z)*. Let Z = X /G
and let v : 'Y — Z be a minimal resolution. Then Z has four singular points of type %(1,2), andY is a
minimal surface of general type with K3 =1, p,(Y) = 0.

Proof. We write the group (Z/37Z)? as (Z/3Z)? = {(a,b) | a,b € {0,1,2}}. It has four subgroups isomorphic
to Z/3Z, namely G; = {(0,0),(1,0),(2,0)}, Ga = {(0,0),(0,1),(0,2)}, Gs = {(0,0),(1,1),(2,2)}, and
G4 ={(0,0),(1,2),(2,1)}. Each subgroup G; is generated by an automorphism of X of order 3. We know
from Proposition 5.8 that the fixed point locus of an automorphism of order 3 consists of exactly three points,
which correspond to three singularities of type %(17 2) on the quotient surface Z. Hence, each subgroup G;
fixes three isolated points of X corresponding to singularities of type %(1, 2) on Z.

The stabilizer of any point x € X is either trivial- in which case the G-orbit of x corresponds to a smooth
point in the quotient Z; or isomorphic to Z/3Z, or isomorphic to (Z/3Z)?. Let z € X be a point whose
stabilizer is G, for some i € {1,2,3,4} i.e., it is isomorphic to Z/3Z. Then the G-orbit of x consists of three
points. Let y and z be the other two points of X fixed by G;. Then we claim that y and z are also the other
two points in the orbit of z. Indeed, let o be an element in G\G; and let 2’ = ox. Then for a non-trivial
element p € G;, we have pz’ = pox = opxr = ox = x’, where the second equality follows from the fact that
G is an abelian group. Thus p fixes 2/, and since G; is generated by p, G; fixes /. This implies that z’

2z = y would mean o € Gj,

must be either y or z. Note that if ox = y, then o022 = z because ¢%x = x or &
a contradiction to the assumption that o € G\G;. This proves the claim. Now suppose x is a point whose
stabilizer is isomorphic to (Z/3Z)?. Then the orbit of z consists of only the point x. Moreover, z is fixed
by each subgroup G;, for i = 1,2,3,4. Each G; fixes three points of X, which belong to the same G-orbit.
However, since the orbit of = contains only one point, each G; fixes a single point of X. This is a contradiction
to statement (4) of Proposition 5.5 and so it follows that no point of X has stabilizer isomorphic to (Z/3Z)?.
Thus there are 12 points, each of whose stabilizers is isomorphic to Z/3Z. The fixed point locus of each G;
consists of three points in the same orbit, corresponding to a singular point of Z of type %(1, 2), and hence Z
has 4 singular points of type %(1, 2).

The canonical divisor Kz of Z is Q-Cartier and since the ramification locus of the quotient map 7 : X — Z

consists of only isolated points, we have
KX ~ TI'*Kz.

Thus we have K% = K% /deg(r) = 9/9 = 1. Statement (1) of Proposition 5.5 implies that K is ample,
and since Z has only singularities of type %(1, 2), it follows similarly as in the proof of Proposition 5.8 that
Ky ~ v*Kyz. By the same argument as in the proof of Proposition 5.8, we have that Ky is nef. Hence Y is
a minimal surface satisfying K2 = K% = 1 and pg(Y) = 0. This completes the proof. O

According to the results of [11], many fake projective planes admit an automorphism of order 3. Thus by
taking quotients of such fake projective planes by the group generated by an order 3 automorphism, new

examples of minimal surfaces of general type Y satisfying K3 = 3, py(Y) = 0 can be obtained.

5.3 The case G contains a normal subgroup of order 7

In this part we prove the following result and also the classification result of Keum (Proposition 4.6 in [6]).

Proposition 5.10. Let o be an automorphism of order 7 of a fake projective plane X. Let Z = X [{o) and
let v:Y — Z be a minimal resolution. Then Z has three singular points of type %(1, 3) and K% = 0.

To prove this we need the following three lemmas.
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Lemma 5.11. Let o be an automorphism of order 7 of a fake projective plane X. Let Z = X /{o) and let
v:Y — Z be a minimal resolution. Then Z has either three singular points of type %(1, 3), or two singular

points of type %(1,4), and one singular point of type %(1,6).

Proof. We know from Proposition 5.5 that the fixed point locus X7 consists of three isolated points and
no curves. Suppose Z has r; singular points of type %(1,1’). From the formula in Lemma 5.7 we have

1= Z?:l a;ri. After computing the coefficients a;, we get
—ry + 19 + 213 + 14 + 215 + 4rg = 6. (58)

Since the total number of singular points is three, we also have »} 7; = 3. Adding this to the equation 58, we

get
2(rg +14) +3(r3 +75) + 5rg = 9. (59)

Now if r4 = 0, then from the equality 59 it follows that ro + r4 = 0 and r3 + r5 = 3, hence we get three
singular points of type 1(1,3) = 1(1,5). If r¢ = 1 then it follows that 73 + r4 = 2 and r3 + r5 = 0, hence we
get one singular point of type %(1, 6) and two singular points of type %(1, 2) = %(1, 4). This exhausts all
possibilities and so the assertion is proved. O

Next, we exclude one of the two possible cases in Lemma 5.11.

Lemma 5.12. Let o be an automorphism of order 7 of a fake projective plane X. Then o cannot have a

fized point corresponding to a singularity of type 1(1,4) on the quotient Z = X /(o).

Proof. Observe that any automorphism p of X in (o) can be lifted to an automorphism p of the universal
cover B2. However, p is not necessarily unique and there is no canonical way to choose such a p. Every such
p satisfies p o™ = 7 o p, where m : B2 — X denotes the projection map. It is easy to check that the set of all
automorphisms p of B? which are lifts of automorphisms of X in (¢ i.e., those which satisfy pon = 7o p,
p € (o), form a subgroup H of Aut(B?) = PU(2,1). We now show that the orbit spaces B2/H and X /(o) are
isomorphic. Consider the map ¢ : B2/H — X /(o) defined by HZ +— {(o)m(z). Note that ¢ is well-defined
because for any two points Z and 7 in B? belonging to the same H-orbit, there is a p € H such that pz = 7,
and pom = o p for some p € (o). This means that pm(Z) = 7(px) = 7(y) i.e., 7(Z) and 7(y) belong to the
same (o )-orbit. In other words, Hz and Hy have the same image in X /{o) via ¢. Suppose HZ and Hy map
to the same orbit (o) in X /(o) via ¢. This means that (o)7(Z) = (o) (y) i.e., 7(Z) and 7 (y) belong to the
same orbit in X /(o). This implies that there is a p € (o) such that pm(Z) = 7(y). Hence there is a pe H
such that por = wop and px = 7. It follows that Z and % belong to the same H-orbit i.e. Hz = Hy in B2/H,
so ¢ is injective. Let (o)z be any orbit in X /(o). Let ¥ be any point in the fibre 77!(2) = B2. Then the
orbit Hz in B2/H maps to (o)m(Z) = {o)x via ¢, so ¢ is surjective as well. Define the inverse map of ¢ by
Y : X /(o) —> B?/H, {o)x — HZT, where T is any point in the fibre 77!(z) = B?. Note that 1 is well-defined
because it is easy to check that all points in the same fibre belong to the same H-orbit, and for any two
points z, y in X, the fibres 77!(x) and 7= (y) belong to the same H-orbit in B2/H. It is also easily verified
that ¢ o) = idx sy and ¥ 0 ¢ = idg2/. Thus ¢ and 9 are isomorphisms and we have Z = X /(o) = B2/H.
Suppose that ¢ has a fixed point corresponding to a singularity of type %(1, 4). Then the group H contains a

matrix M which diagonalizes as

a 0 0
M=[0 a O
0 0 ot
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2mi/T is a primitive 7th root of unity and a € C is a complex number.

where ( = e
Following the notation of [11], we may choose the matrix M to be in T, which is contained in a rank 3 division

algebra over the field denoted by [. Hence the numbers
trace(M) = (1 + ¢ +¢*) and det(M) = o3¢°
must both belong to [. Thus I, being a field, contains trace(M)3/det(M), which is given by

(L4 ¢+ =6(C+HC )P+ ¢+ =15(C+¢) +5.

The field generated by this number over Q is Q[¢ + (1], and this must be contained in I. However, none
of the cases on the final list of Prasad and Yeung[11] has such an [. Thus, Z does not have a fixed point
singularity of the type 1(1,4), and the assertion is proved. O

A singularity of type %(1, 3) is an Ay 5 singularity. The continued fraction expansion of g is

7 1

5 - 2-1

and so a singularity of type %(1, 3) results from the contraction of a Hirzebruch-Jung string consisting of
three rational curves, two of which have self intersection -2, and one has self intersection -3. When Z has
three singularities of type %(17 3), we denote by Aj, As, As; By, Ba, Bs; C1,C5, Cs the exceptional curves of
the minimal resolution v : Y — Z whose Dynkin diagrams are

Al Ag A3 Bl BQ Bg 01 CQ 03
*——o—0 *——o—0 *—o—0

We take Ay, As, By, Ba, C1, Cs to be the (-2)-curves, and As, Bs, C5 to be the (-3)-curves.

Lemma 5.13. Assume that Z has three singularities of type %(1,3) and let v : Y — Z be the minimal
resolution. Then

1

1
Ky ~v*K, — 5(141 + 245 + 3A3) 7(31 + 2By + 333) (Cl + 205 + 303)

1
7
In particular, K2 = 0.

Proof. We have Ky = v*Kz+ D, where D is the exceptional divisor resulting from the three singular points of
type %(1, 3). Hence D is a Q-linear combination of the curves A;, B;, C; for i = 1,2, 3. The coefficients can be
uniquely determined by applying the adjunction formula to each curve. We carry out the computations for Ay,
Ay, and Az, the procedure being identical for the other six curves. Let ay, ao, and az be the coefficients of Ay,
Aa, and Aj respectively, then applying the adjunction formula to A;, we get 2 = —(Ky A1 + A2) = 2a1 —az +2,
which gives 2a; — az = 0. Applying it to As we get 2 = —(Ky Ay + A3) = 2a3 — a1 — a3 + 2, which gives
2a; — ay —az = 0. Similarly, for A3z we have 2 = —(Ky Az + A3) = 3a3z — az + 3, i.e., 3a3 — az = —1. Solving
the three equations for ai, as, and az simultaneously, we get a; = —%, as = —% and az = —%. In the
same way, letting b1, b, b3, c1, c2, c3 denote the coefficients of By, By, Bs, C1, C3, C5 respectively, we get

b1 =c = —%, by =co = —%, and b3 = c3 = —%. Putting everything together, we have

1 1
Ky ~v*K, — ?(Al 4+ 245 + 3A3) — §(Bl + 2B + 3B3) (Cl +2Cy + 303)

1
7
It follows that

1 1 1
Ki = (W*Kz)? + 1941 245+ 343)% + E(Bl + 2By +3B3)* + 19(C1+2C2 + 3C3)2. (60)
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From statement 3 of Proposition 5.5, we have (v*Kz)? = K% = 9/7. Moreover, we have

1 1 1 3
4*9(A1 + 245 + 3A3)2 = 4*9(31 + 2By + 333)2 = 4*9(01 + 205 + 3C3)2 = —?.

Plugging everything into equation 60 we get K2 = % — % — % — % = 0, and the assertion is proved. O

Thus the proof of Proposition 5.10 is complete. To complete the proof of Theorem 5.1 it suffices to prove
the following result

Proposition 5.14. Assume that Z has three singular points of type %(1, 3). Then there are the following

three possibilities

1. 'Y is a minimal elliptic surface of Kodaira dimension 1 with two multiple fibres with multiplicities 2 and
3.

2. 'Y is a minimal elliptic surface of Kodaira dimension 1 with two multiple fibres with multiplicities 2 and

4.

3. Y is a minimal elliptic surface of Kodaira dimension 1 with two multiple fibres with multiplicities 3 and
3.

The proof of Proposition 5.14 consists of several lemmas.

Lemma 5.15. Assume that Z has three singularities of type %(17 3). Then we have the following
1. —mKy is not effective for any positive integer m.
2. The Kodaira dimension of Y is at least 1.

Proof. We know that Ky = v*Kz + D, where D is the exceptional divisor which was computed in Lemma
5.13. Then for m > 1, we have

(V*Kz)(—mKy) = (V*Kz)(—m(v*Kz + D)) = —m(*Kz)* = —-mK% = —gm < 0.

Since Ky is ample, v* K is nef, and so (v*Kz)(—mKy) < 0 implies that —mKy cannot be effective for
m > 1. This proves statement 1.

We know from statement 2 of Proposition 5.5 that p,(Y) = ¢(Y) = 0, and by Proposition 5.10 we have
K2 = 0. Thus if Y has Kodaira dimension < 0, then by the Enriques-Kodaira classification theorem, Y’
is either a rational surface or an Enriques surface. We know from Proposition 5.4 that e(Z) = 3. Since Z
has three singular points, each of whose exceptional divisor consists of three rational curves on Y, we have
e(Y)=ca(Y) =e(Z) +9 = 12. Since ¢3(Y) = K2 = 0, applying Noether’s formula gives y(Oy) = 1. The
Riemann-Roch theorem says that

h(D) — h* (D) + h°(Ky — D) = x(Oy) + %(D2 — KyD),

where D is a divisor on Y. Taking D = kKy for k > 2, we have that h°(Ky — D) = h%((1 — k)Ky). We
know from statement 1 that —mKy is not effective for m > 1 and so h°((1 — k)Ky) = 0 for k > 2. Thus the

Riemann-Roch equation becomes
RO (kKy) = 1+ h'(kKy) > 1.

This implies that Y is not a rational surface. Since we have (v1*Kz)Ky = (V*Kz)? = K3 =9/7> 0, Ky is
not numerically trivial. Hence, Y is not an Enriques surface either. Thus the Kodaira dimension of ¥ must
be > 1. This proves statement 2. O
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Note that Pic(Y) =~ H?(Y,Z). Let Pic(Y); denote Pic(Y) modulo torsion. Then with the intersection
pairing Pic(Y"); becomes a lattice.

Lemma 5.16. Assume that Z has three singularities of type %(1, 3). Then one can choose two Q-divisors

1 2 4

L= ?(Al + 245 + 343) + ?(Bl + 2By +3Bs3) + ?(CI +2C5 + 3C5),
1 2 1

M = gu*KZ — 7(31 + 2By +3B3) + 7(01 +2C5 + 3Cs),

such that the lattice Pic(Y)y is generated over Z by the numerical equivalence classes of M, L, and the eight
curves As, A3, By, By, B3, C1,Cs, C3.

Proof. We know from Lemma 5.13 that K2 = 0. Hence Noether’s formula gives c2(Y) = 12, which implies
that the rank of Pic(Y')s is 10. Since Pic(Y)s contains an element having self intersection -3, e.g. the curve
As, it is unimodular and of signature (1,9).

Let R be the sublattice of Pic(Y); generated by the numerical equivalence classes of the nine curves
Ay, Ay, A3, By, By, B3, C1,C5,C3. Let R and R denote its primitive closure and orthogonal complement
respectively. Note that the rank of Rt is 1.

For an integral lattice N, let disc(IN) denote the discriminant group of N, defined as

disc(N) = Hom(N,Z)/N.
We have disc(R) = (Z/7Z)3. More precisely,

1 1 1
diSC(R) = <?(A1 + 245 + 3A3), ?(Bl + 2By + 383), ?(Ol + 2C5 + 303)>

Note that the length, i.e. the minimum number of generators of disc(R) is 3. Since the lattice Pic(Y) is
unimodular, disc(R) is isomorphic to disc(R*) which is of length 1. Hence R must be of index 7 in R, and
the generator of R/R is of the form

1 b
L= ?(Al + 245 + 3A3) + %(Bl + 2By + 333) + ?(01 +2C5 + 303)

Since both LKy and K2 must be integers, it follows that (a,b) = (2,4) or (4,2) modulo 7. Thus, up to
interchanging the B;’s with the C;’s, the divisor L has been determined uniquely modulo R.

Now we have disc(R) = disc(R*) = Z/7Z. Note that the integral divisor 7v*Ky belongs to R* and
(Tv*Kz)* = 7-32. Thus R* is generated by Zv*Ky, hence

disc(R*) = <%V*Kz>.

On the other hand,

disc(R) = (LY* (L) = <%(B1 + 2B, + 3B3) + %(C1 +2C, + 303)>,

where (L) = R/R is the isotropic subgroup of disc(R) generated by L modulo R and (L) is its orthogonal
complement in disc(R) with respect to the discriminant quadratic form on disc(R). Thus the extension of
index 7 R® R* < Pic(Y); is given by an element of the form

1 3 2
M = gV*KZ +a{?(31 + 2B5 + 333) + ?(Cl + 20, +303)}.

Since M Ky is an integer, we see that a = 4 modulo 7. This determines the divisor M uniquely modulo
R. O
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Lemma 5.17. Assume that Z has three singularities of type %(17 3). Then'Y does not contain a (-1)-curve
(a smooth rational curve with self intersection -1) E satisfying 0 < E(v*Kz) < 9/7.

Proof. Suppose that Y does contain such a (-1)-curve E. From Lemma 5.16 we know the generators over Z

of Pic(Y') s, so we write
E~mM —dL + asAs + a3As + b1 By + by By + b3 B3 + ¢1Cq + ¢c2C5 + ¢3C5

where the coefficients are all integers. The above expression for F and the expressions for M and L from
Lemma 5.16 imply that E(v*Kz) = mM(v*Kz) = 3m/7. Thus the condition 0 < F(v*Kyz) < 9/7 is
equivalent to 0 < m < 3 i.e., 1 < m < 2 because m is an integer. Hence there are two cases: m =1 or 2.

1. Assume that m = 1. Then the expression for E becomes

E~M—d+ LasAs + agAsz + b1 By + by By + b3Bsg + ¢1C1 + ¢c2Cs + ¢3C5.

Computing the intersection number of E with each of the nine curves Ay, As, Az, By, Ba, B3, C1,Co, Cs, and

noting that this number must be non-negative, we get the following system of nine inequalities.

0< FAy = ao, 0< FAy = —2a5 + ag, 0< FA3 =d+ as — 3as,
0< EB; = —2by + by, 0< EBy =b; —2by + b3, 0< EB3 =2+ 2d + by — 3b3,
0<E01=—261+CQ, O<E02201—262+63, 0<E03=—1+4d+62—363.

Using the expression for Ky derived in Lemma 5.13 and applying the adjunction formula to E, we get the

following equality
—1=FEKy = —-3d+ a3 + b3 + c3. (61)

From the system of nine inequalities, we obtain the following three inequalities

2 3 3
asz < gd7 by < ?(2 + 2d), c3 < ?(—1 + 4d). (62)

Indeed, eliminating a; and as from the second and third inequalities of the system of nine inequalities, we
arrive at the first inequality of 62. Eliminating b; and by from the fourth, fifth, and sixth inequalities in the
system, we get the second inequality of 62. Similarly, eliminating ¢; and c¢o from the seventh, eighth, and
ninth inequalities of the system, we get the third inequality of 62.

From the first three inequalities of the system of nine inequalities, we have

d>= —as + 3a3 = 3(—2@2 + a3> + 5ag = dag = 0.

Plugging the inequalities in 62 in the equality 61 gives

2. 3 3
3d—1=a3+b3+03<5d+?(2+2d)+?(—1+4d),

which simplifies to give d < 50. Thus we obtain the following bound on d

0 < d < 50. (63)

Since E is a (-1)-curve, we have E? = —1. Together with the equality 61 this implies E? = EKy . Writing
this equality in terms of the coefficients, we get

3
1+ 3d% + 2d = (4 + 2d)bs + (6d — 2)cs + (a2 Az + azAs)? + (Z biBi>2 + (Z 0101)2. (64)
=1

i=1
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We have the following inequalities for the last three terms in the right hand side of the equality 64

1 \2 5 5
(apAs + azAs)? = —2a2 + 2aza3 — 3a§ = —2((12 — 5043) — 5(1?;, < ——a?

(S08)" = 2= 3"~ 3 30) - 8= -3
i=1

7
3
° 1 \2 3 2 \2 7 7
-2 (01 — 702> — 7(02 — 703) — gcg < —fc?,).

(Z Cici)Q 2 2 3

i=1

Plugging these inequalities into the equality 64, we arrive at the following inequality

5 7, 7
- a2 — gbg — gcg + (44 2d)bs + (6d — 2)cs. (65)

1+3d? +2d <
We claim that there are no integers as, b3, c3, d satisfying the conditions 62, 63, and 65. Keum proves this claim
in his paper in the following way. First, he obtains a list of quadruples (d, as, bs, c3) which solve the equality
61 under the constraints given by 62 and 63 i.e., for each value of d in 63, the equation 3d — 1 = a3 + b3 + c3
is solved in the range given by the inequalities in 62. A list of solutions is generated by a computer program,
which is given in [6], p.14. It turns out that none of the solutions on this list satisfies the inequality 65.

Now assume that m = 2. In this case we have
E ~2M — dL + a3 As + a3As + b1 By + by By + b3Bs + ¢1C1 + caCs + ¢3C3.

Similarly as in the previous case, we obtain a system of nine inequalities in the nine coefficients in the
expression for F

O<12141=(127 O<EA2=—2a2+a3, 0<EA3=CZ+(ZQ—3CL3,
0< EBy=—2b; +by, 0<EBy;=0b; —2by+b3, 0<EB3=4+2d+ by — 3b3,
0SS ECy=-2c1+cy, 0<SECy;=c1—2co+c3, 0<EC3=-2+44d+ co — 3c3.

Applying the adjunction formula to E, we again have
—1=FEKy = —-3d+ a3z + b3 + c3.

Applying the same procedure as done in the case m = 1, we get the following three inequalities

2 3 3
as < gd7 by < ?(4 + 2d), c3 < ?(—2 + 4d). (66)

In this case we obtain the following bound for d
0 <d<65. (67)
We also have the following analog of the inequality 65 in the previous case

7+ 3d% 4 2d < — be gcg + (8 + 2d)b3 + (6d — 4)c3 (68)

D) a3
The same argument as in the case m = 1 shows that there are no solutions satisfying the inequalities 66, 67,

68, and the equality 61. Thus we conclude that there is no (-1)-curve on E satisfying 0 < E(v*Kyz) < 9/7,
which proves the assertion. O

Lemma 5.18. Assume that Z has three singularities of type = (1 3). Then'Y is a minimal surface of Kodaira

dimension 1.
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Proof. From Proposition 5.10 we know that K% = 0. Moreover, statement 2 of Lemma 5.15 says that the
Kodaira dimension of Y is at least 1 i.e., it is either 1 or 2. Suppose Y is not minimal. If Y has Kodaira
dimension 1 then the minimal model Y’ of Y has ¢(Y’) = K2, > 0. However, this is not possible since the
Enriques Kodaira classification theorem states that a minimal surface of Kodaira dimension 1 must have
c? = 0. Hence Y is a surface of general type. Let 1 : Y — Y’ be a birational morphism to the minimal model
Y’ of Y. Note that p contracts all (-1)-curves of ¥ and hence Ky = p*Ky + )., E;, where the E;’s are
effective (not necessarily irreducible) divisors satisfying E? = —1, E;E; = 0 for i # j. Since Y’ is minimal,
Ky is nef and so some positive multiple of u* Ky = Ky — ) . E; is effective. Since v* Ky is nef, we have

(W Ky )(v*Kyz) = (Ky — Z E)(v*Kyz) = 0. (69)

Furthermore, since each E; is a (-1)-curve, applying the adjunction formula gives 2 = —(Ky E; — 1) i.e,
Ky E; = —1 for all 4. This implies that p* Ky = (Ky — )}, E)? =K - 2> Ky Ei+ 3, E? > 0. Thus by

the Algebraic index theorem 3.6, we have
(Ky = Y Ei)(v*Kz) # 0. (70)

The inequalities 69 and 70 together imply that

(Ky — ZEi)(V*Kz) > 0. (71)

Let E be a (-1)-curve on Y. Note that E is not contracted by v because v contracts only the Hirzebruch-Jung
strings on Y corresponding to the three singularities of type %(1, 3) on Z. Since E is effective and v* K is

nef, we have
EW*Kz) > 0. (72)

On the other hand, from inequality 71 we have Ky (v*Kz) > (3, E;)(v*Kz) > E(v*Kyz). Recall that
Ky = v*Kz + D, where D is the exceptional divisor computed in Lemma 5.15 and so Ky (v*Kyz) =
(v*Kz + D)(v*Kz) = (v*Kz)? = K% = 9/7. Together with inequality 72, we get

9

0<EW*Kyz) < =

However, we know from Lemma 5.17 that such a (-1)-curve does not exist on Y. Thus we conclude that YV
does not contain (-1)-curves and hence Y is minimal. Since ¢}(Y) = K2 = 0, it follows that ¥ has Kodaira

dimension 1. This proves the assertion. O

Proof of Proposition 5.14. We know from Lemma 5.15 and Lemma 5.18 that the Y is a minimal elliptic
surface of Kodaira dimension 1. It remains to prove the assertion about the multiplicities of multiple fibres.
Let |F| denote the linear system associated with the general fibre F' of the elliptic fibration. Then we have

F ~nKy, (73)

where n is a positive rational number. Note that Y contains a curve with self intersection -3, for example the
curve As. Using the expression for Ky in Lemma 5.13, we compute A3Ky = 1. Note that since Az and F
are both irreducible effective divisors on Y, the intersection number A3F must be an integer. From 73, it
follows that AsF = nA3Ky = n, hence n must be an integer.

Let mqFy, moFs,..., m,.F,. be multiple fibres of the elliptic fibration having multiplicities my, ms,..., m,
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respectively. Since Y is not a rational surface, we have r > 2. By the canonical bundle formula for elliptic
fibrations ([1], Theorem V.12.1), we have

Ky = -F+ ). (mi—1)F,=(r—1)F - )| F, (74)
i=1 i=1
where = denotes linear equivalence. Note that each m;F; is linearly equivalent to F'. Taking the intersection
product of the right hand side of 74 with A3 and dividing by n, we get

1 "1
Z=r—1 —. 75
—=r +;mi (75)

Since m; > 2 for all i, we have >;_, m% < Z. Now equation 75 implies that r < 3 if n = 2, and because
r = 2, we have r = 2 if n > 3. Since A3F = n = m;A3F;, and A3F; is an integer for all 7, it follows that
each m; divides n. Then analysing 75 further shows that if n = 2, then m; = my = m3 = 2; if n = 3, then
my1 =mg = 3; if n =4, then m; =2, my =4; if n =6, then my =2, my =3;if n =15 or n > 7, then there
is no solution for the m;’s. The case n = 2 and m; = mg = mg = 2 implies that there is a degree 2 map
Az — P! branched at the three points over which the singular fibres lie, which is not possible. This completes
the proof of Proposition 5.14. O

Corollary 5.19. Let X be a fake projective plane with G = Aut(X) = 7 : 3, the unique non-abelian group of
order 21. Let W = X /G and let v: V — W be a minimal resolution. Then W has three singular points of
type %(1, 2) and one singular point of type %(1, 3). Furthermore, V is a minimal elliptic surface of Kodaira
dimension 1 with two multiple fibres and four reducible fibres of type I3. The pair of multiplicities is the same
as that of the minimal resolution of the order 7 quotient of X.

Proof. We can write G as
G={(o,7m|o"=1=1, ro17! = 0%,

Let Z = X /{o) be the order 7 quotient of X and let Y be a minimal resolution of Z. We know from
Proposition 5.14 that Y is a minimal elliptic surface of Kodaira dimension 1 with three singular points of
type %(1, 3). It is straightforward to check that any two points x1,z2 € X belong to the same o-orbit if
an only if 7(z1) and 7(z3) belong to the same o-orbit. Thus the automorphism 7 induces a well-defined
automorphism 7 of Z defined by 7(z) = (w o 7)(z) for all z € Z, where m : X — Z denotes the canonical
projection. Moreover, the three singular points of type %(1, 3) belong to the same 7-orbit in Z. We know
from 5.8 that every order 3 subgroup of G has three fixed points corresponding to three singularities of type
%(1, 2). A non singular point cannot have stabilizer isomorphic to 7 : 3, thus W = Z/{7) has three singular
points of type %(1, 2) and one singular point of type %(1, 3).
Note that the canonical divisor Ky, of W is an ample Q-Cartier divisor, and we have
» K% 3
Ky = W =

From the proofs of Proposition 5.8 and Lemma 5.13 it follows that the canonical divisor Ky of V is given by
1
Ky = V*KW — ?(Al + 2142 + 3A3),

where the divisors A;, As, and Aj are as in Lemma 5.13. This implies that K% = 0. We know from
Proposition 5.14 that ¥ has Kodaira dimension 1, hence V' has Kodaira dimension < 1. Note that the action
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of 7 on Z lifts to Y. Let W/ =Y /{(T) and let f : Y — W’ denote the canonical projection. We know from
Proposition 5.14 that Ky is nef, and since f is branched at three isolated points, we have Ky ~ f* K.
Thus Ky is nef. Since W’ has three singular points of type %(17 2), and since V' is the minimal resolution of
W' it follows that Ky is also nef. This implies that V' is a minimal surface of Kodaira dimension > 0. Note
that

1
(V*Kw)KV = (V*Kw)(V*KW — ?(Al + 245 + 3A3)) = K{%V = % > 0.

Thus Ky is not numerically trivial. This proves that V has Kodaira dimension 1. The elliptic fibration on V'
is given by a multiple of Ky .

Now V has nine smooth rational curves coming from the resolution v : V-— W. The eight (-2)-curves among
them must be contained in fibres of the elliptic fibration. This is possible only if the fibres are the union of
four reducible fibres of type I3 since V' has Picard number 10.

Since W' =Y /(7), Y is a cover of W’ of degree 3 branched along the three singularities of W’ of type %(1,2),
corresponding to the three fixed points of the 7-action on Y. Note that W’ has the structure of an elliptic
fibration with a (-3)-curve that is a multi-section. The (-3)-curve on W’ splits in Y giving three (-3)-curves,
thus the elliptic fibres of W’ do not split in Y. The fibre containing one of the singular points of W’ gives a
fibre of type I7, the fibre of type I3 gives a fibre of type Ig, and the multiple fibres give multiple fibres of the
same multiplicities.

This completes the proof. O
From the proof of Corollary 5.19, we get

Corollary 5.20. Let X be a fake projective plane with Aut(X) =7:3. Let G = Z/7Z < Aul(X), Z = X /G,
and v :Y — Z a minimal resolution. Then the elliptic fibration of Y has three singular fibres of type I; and
one reducible fibre of type Ig.
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