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Preface

The Enriques-Kodaira classification is a classification of compact complex surfaces into ten classes. For each

class, the surfaces in the class can be parametrized by a moduli space. While the moduli spaces for most

of the classes are well understood, the moduli space for the class of surfaces of general type is difficult to

describe explicitly. This is one of the reasons why this class of surfaces is worth exploring. Some well-known

examples of surfaces of general type include the Castelnuovo surfaces, fake projective planes (see Chapter

5), and products of two curves, each having genus at least 2. The Chern numbers of a compact complex

surface of general type satisfy the inequality c21 ď 3c2. This is now a well known classical result known as the

Bogomolov-Miyaoka-Yau inequality, or BMY inequality for short. Surfaces of general type satisfying c21 “ 3c2,

i.e., the extreme case of the BMY inequality, are especially interesting. It was shown by Hirzebruch that

every such surface occurs as the quotient of the unit ball in C2 by the free action of an infinite discrete group.

These ball quotient surfaces have proven tricky to construct and have been a subject of great interest and

research in recent years.

This thesis consists broadly of three parts. In the first part, we study the proof of the Bogomolov-Miyaoka-Yau

inequality following the 1978 article of Miyaoka ”On Chern numbers of surfaces of general type”. We first

discuss some preliminary results that will be used later in the thesis, and then make explicit and more

accessible the proof of every result in Miyaoka’s article. For this part, the main reference, apart from the

article itself, is the book ”Compact complex surfaces” by Barth, Hulek, Peters, and van de Ven (see [1]). This

book is a detailed resource on the (classical) theory of surfaces, and we encourage the interested reader to

follow it.

In the second part of the thesis, we discuss examples of surfaces of general type, focusing mainly on those that

satisfy the equality c21 “ 3c2. We study the construction of such surfaces starting from line arrangements in

the projective plane P2. In this method, the desired surface is constructed as a ’good cover’ of a blow up of the

projective plane P2, branched along an arrangement of divisors. We describe the construction of a Kummer

covering of a blow up of P2 branched along an arrangement of divisors arising from a line arrangement in P2,

and derive conditions for such a surface to satisfy c21 “ 3c2. This construction was introduced by Hirzebruch

in his article ”Arrangements of lines and algebraic surfaces”, although it is not described in as much detail

here. For this part of the thesis, we use the book ”Complex ball quotients and line arrangements in the

projective plane” by P. Tretkoff as the main reference.

The third part of the thesis is dedicated to an interesting class of surfaces of general type satisfying c21 “ 3c2,

the fake projective planes. A fake projective plane is so called because it has the same Betti numbers as the

projective plane P2 but is not isomorphic to it. Fake projective planes have proven difficult to construct and

have been studied extensively in recent years. Prasad and Yeung [11] have shown that many fake projective

planes admit finite automorphism groups. Following this, Keum classified quotients of fake projective planes

by the action of their finite automorphism groups, and their minimal resolutions of singularities, in his article

”Quotients of fake projective planes”. In the thesis we study this article and make explicit the proof of all

results in it.

A natural question that arises is: Can one construct a fake projective plane starting from a line arrangement

in P2, using the method mentioned above? For the complete quadrilateral arrangement discussed in the

thesis, the answer turns out, unfortunately, to be no. However, this question is still worth exploring, possibly

in a more general setting. Another interesting direction to pursue would be studying automorphism groups

of surfaces of general type satisfying c21 “ 3c2 constructed using line arrangements on P2. Are there any such

surfaces admitting finite automorphism groups? If yes, what do their quotients and minimal resolutions look

like?
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0 Notation

The following notation is used throughout the thesis.

OX : structure sheaf of the algebraic variety or complex space X.

detpFq: determinant of the locally free sheaf (or vector bundle) F .

pF : dual sheaf of the locally free sheaf F .

SnF : the n-th symmetric power of F .

PpFq: projective bundle associated to F .

H: divisor associated to the tautological invertible sheaf on PpFq.

epXq: topological Euler characteristic (also called Euler number) of X.

If X is a complete variety, the following notation is used:

cipFq: the i-th Chern class of the locally free sheaf F on X.

rLs: the Cartier divisor associated to an inverticle sheaf L on X.

hipX,Fq: dimension of HipX,Fq.

χpX,Fq: the Euler characteristic of F ; by definition, χpX,Fq “
ř

ip´1qihipX,Fq.

|D|: complete linear system associated to the divisor D on X.

If X is a complete smooth variety, we use the following notation:

Ω1
X : locally free sheaf of holomorphic 1-forms on X.

KX : canonical divisor on X; by definition, OXpKXq “ detΩ1
X .

cipXq: the i-th Chern class of X; by definition, cipXq “ cip
yΩ1
Xq “ p´1qicipΩ

1
Xq. Note that c2pXq “ epXq if

X is a smooth surface.

PicpXq: Picard group of X i.e., the group of isomorphism classes of invertible sheaves on X.

PmpXq: the m-th plurigenus h0pX,OXpmKXqq of X.
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If X is a complete surface, we use the following notation:

pgpXq: the geometric genus h2pX,OXq of X.

qpXq: the irregularity h1pX,OXq of X.

papXq: the arithmetic genus pgpXq ´ qpXq of X.
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1 Basic invariants of complex manifolds

In this section we discuss some important invariants associated to a complex manifold and how these change

under birational transformations. By [1], Corollary III.4.4, every birational map is a composition of finitely

many blow-ups, so it suffices to study how the invariants change under a blow-up at a single point. We begin

with the following fundamental result from [1].

Theorem 1.1 ([1], I.9.1). Let X be a complex manifold of dimension n ě 2, and p : sX Ñ X the blow-up of

X at a point x0. Let E “ p´1px0q be the exceptional divisor on sX, which is isomorphic to Pn´1. Then

1. p induces an isomorphism between the fields of meromorphic functions on X and sX. In particular, if

X (and hence sX) is compact, then X and sX have the same algebraic dimension.

2. p˚OĎX “ OX and Rip˚pOXq “ 0 for i ě 1.

3. p˚ : HipX,OXq Ñ Hip sX,O
ĎXq is an isomorphism for all i ě 0.

4. p˚ : HipX,Zq Ñ Hip pX,Zq is bijective for i “ 1 and injective for i “ 2. Furthermore,

H2p sX,Zq – p˚pH2pX,Zqq ‘ Zteu,

where e “ c1pOĎXpEqq.

5. For every a P H2pX,Zq, we have p!p
˚paq “ a.

6. p˚ : H1pX,OXq Ñ H1p sX,O
ĎXq is injective and thus Picp sXq is isomorphic to the product of PicpXq

and the infinite cyclic group generated by O
ĎXpEq.

7. O
ĎXpKxX

q “ p˚pOXpKXqq bO
ĎXppdimpXq ´ 1qEq.

8. p induces an isomorphism p˚ : ΓpX,OXpmKXqq Ñ Γp sX,O
ĎXpmKĎXqq for all m ě 1, so if X is compact,

Pmp sXq “ PmpXq for m ě 1 and κp sXq “ κpXq.

For a complex surface X, the numbers c21pXq and c2pXq play a central role in the discussion that follows

and so it is important to know how these numbers change if X is blown up at a point.

Lemma 1.2. Let X be a smooth, connected complex surface, and let p : sX Ñ X be the blow-up of X at a

point x0. Then we have

c21p
sXq “ c21pXq ´ 1

c2p sXq “ c2pXq ` 1.

Proof. This is an easy consequence of Theorem 1.1 and Noether’s formula. For a smooth complex surface

Y , we have, by definition, c2pY q “ epY q “
ř4
i“0p´1qibipY q, where bipY q denotes the i-th Betti number of

Y . Poincare duality implies that bipY q “ b4´ipY q, moreover if Y is connected, we have b0pY q “ b4pY q “ 1.

Let E “ p´1px0q be the exceptional divisor on sX. Then E – P1 and π : sXzE Ñ Xztx0u is a biregular map.

Hence sX is also a smooth, connected surface, and statement 4 of Theorem 1.1 implies that b1p sXq “ b1pXq

and b2p sXq “ b2pXq`1. This implies that c2p sXq “ ep sXq “
ř4
i“0 bip

sXq “ 1´b1pXq`b2pXq`1´b3pXq`1 “

c2pXq ` 1.

The holomorphic Euler characteristic χpX,OXq of X is defined as χpX,OXq “
ř

ip´1qih1pX,OXq. From

statement 3 of Theorem 1.1 we get χpX,OXq “ χp sX,O
ĎXq. Noether’s formula says

χpX,OXq “
1

12
pc21pXq ` c2pXqq,
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from which it follows that c21pXq ` c2pXq “ c21p
sXq ` c2p sXq. Since we know that c2p sXq “ c2pXq ` 1, we get

c21p
sXq “ c21pXq ´ 1. This proves the assertion.

Lemma 1.3. Let X be a smooth projective surface. Then

χpX,OXq “ 1` pgpXq ´ qpXq “ 1` papXq.

If X is Kähler then

c2pXq “ 2´ 4qpXq ` b2pXq.

Proof. Recall that χpX,OXq “
ř

ip´1qihipX,OXq “ h0pX,OXq ´ h1pX,OXq ` h2pX,OXq. We also have

hipX,OXq “ dimHipX,Ω0
Xq “ h0,ipXq. Note that h0,0 “ b0 “ 1, and h0,1 “ qpXq and h0,2pXq “ pgpXq by

definition. Hence it follows that χpX,OXq “ 1´ qpXq ` pgpXq.

If X is Kähler, then the first Betti number b1pXq is even i.e., h0,1pXq “ h1,0pXq (see [1], Theorem IV.3.1)

and so b1pXq “ b3pXq “ 2qpXq. Thus it follows that c2pXq “
ř4
i“0 bipXq “ 2´ 4qpXq ` b2pXq. This proves

the assertion.

Remark 1.4. Let X be a smooth complex surface. Any birational transformation of X is a composition of

finitely many blow-ups, and so statement 3 of Theorem 1.1 implies that the holomorphic Euler characteristic

χpX,OXq, geometric genus pgpXq, and irregularity qpXq are invariant under birational transformations of

X. If in addition X is compact and connected, then statement 8 of Theorem 1.1 implies that the plurigenera

PmpXq are also invariant under birational transformations of X for m ě 1.

For any compact, connected, oriented (not necessarily differentiable) manifold X, the index τpXq is defined

as follows. If dimpXq ı 0 mod 4, then set τpXq “ 0. If dimpXq “ 4m, the cup product form defines on

H2mpX,Qq a non-degenerate quadratic form QpXq, and we set τpXq “ τpQpXqq, i.e., τpXq “ b`pXq´b´pXq,

where b`pXq and b´pXq denote the number of positive and negative eigenvalues of Q respectively. Note that

b2mpXq “ b`pXq ` b´pXq. Writing H˚pX,Qq “
ř

iH
ipX,Qq, we can make H˚pX,Qq into a graded ring by

means of the cup product. For any element e P H˚pX,Qq, let tipeq denote the component of e which is in

dimension i. Thus, given an isomorphism HnpX,Qq – Q, tnpeq is a rational number. Let LpXq P H˚pX,Qq
denote the L-class of the tangent bundle of X (see [1], Chapter I.3 and references therein for a more detailed

discussion). We now state an important result due to Hirzebruch.

Theorem 1.5 ([1], Theorem I.3.1 (Thom-Hirzebruch index theorem)). Let X be a compact, connected,

oriented differentiable manifold of dimension 4m. Then,

τpXq “ t4mpLpXqq.

In particular, if m “ 1, and X carries an almost-complex structure, then τpXq “ b`pXq ´ b´pXq “
1
3 pc

2
1pXq ´ 2c2pXqq.

Lemma 1.6 ([1], Lemma IV.2.6). For every compact complex surface X the following inequalities hold:

1. 2h1,0pXq ď h0,1pXq ` h1,0pXq ď 2h0,1pXq

2. 2pgpXq ď b`pXq.

Theorem 1.7 ([1], Theorem IV.2.7). Let X be a compact complex surface. Then

1. if b1pXq is even, then h1,0pXq “ h0,1pXq and b`pXq “ 2pgpXq ` 1;
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2. if b1pXq is odd, then h1,0pXq “ h0,1pXq ´ 1 and b`pXq “ 2pgpXq;

3. qpXq and pgpXq are topological invariants, qpXq of the non-oriented, and pgpXq of the oriented

underlying manifold.

Proof. From the Thom-Hirzebruch theorem (Theorem 1.7) it follows that

b`pXq ´ b´pXq “
1

3
pc21pXq ´ 2c2pXqq. (1)

Using Noether’s formula and Lemma 1.3, we have

1´ qpXq ` pgpXq “
1

12
pc21pXq ` c2pXqq. (2)

Multiplying equation 2 by 4 and subtracting equation 1, we get

4´ 4qpXq ` 4pgpXq ´ b
`pXq ` b´pXq “ c2pXq “ epXq “ 2´ 2b1pXq ` b

`pXq ´ b´pXq,

where we have used b2pXq “ b`pXq ` b´pXq. Rearranging the terms in this equation, we get

pb`pXq ´ 2pgpXqq ` p2qpXq ´ b1pXqq “ 1.

From Lemma 1.6 we know that each term in brackets in the left hand side of the above equation is a non-

negative integer. Thus there are exactly two possibilities, which are statements 1 and 2 of the theorem.

Remark 1.8. Noether’s formula, together with statement 3 of Theorem 1.7 implies that c21pXq is a topological

invariant of the underlying oriented manifold. This is also clear from the Thom-Hirzebruch index theorem.

2 Some tools from algebraic geometry

2.1 Cyclic coverings

We begin with studying covering maps between complex spaces, because these will appear often in the

discussion to follow. Although the meaning of ”covering space of a topological space” depends largely on the

context, we have the following broad definition.

Definition 2.1. A covering space or cover of a topological space X is a topological space Y together with

a continuous map π : Y Ñ X such that every point x P X has an open neighbourhood Ux Ă X such that

π´1pUxq is a disjoint union of open sets in Y , each of which is mapped homeomorphically onto Ux via π.

We can modify Definition 2.1 to suit the situation we are in. For example, suppose X and Y are connected

complex spaces and π : X Ñ Y is a surjective holomorphic map such that all points y P Y have a connected

neighbourhood Vy, with the property that π´1pVyq is a disjoint union of open subsets of X, each of which is

mapped isomorphically onto Vy via π. In this case X is called an analytic covering space of Y and π : X Ñ Y

is the covering map.

A covering map π : X Ñ Y of topological spaces is called finite if for every point y P Y , the fibre π´1pyq

is a discrete, finite subset of X. The fibres are homeomorphic over each connected component of Y . If

Y is connected then the degree of the covering map is defined as the cardinality of a fibre. Let X and Y

be schemes. Then a covering map π : X Ñ Y is called flat if it is flat as a morphism of schemes. Now

suppose that X and Y are complex manifolds of the same dimension. A continuous map π : X Ñ Y is a

branched covering if, away from a closed subspace S of Y , the map π : Xzπ´1pSq Ñ Y zS is a covering map
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as in Definition 2.1, and S has codimension at least 1 in Y . The subspace S Ă Y is called the branch or

ramification locus of π. Note that the cardinality of a fibre over any point in the branch locus is strictly less

than the cardinality of a fibre over any point not in the branch locus.

A cyclic cover is a branched covering space for which the set of covering transformations forms a cyclic group.

Cyclic coverings are a useful tool to construct new examples of surfaces. We study the construction of a

cyclic cover of a complex manifold branched along a divisor. We first consider a local description of the

m-fold cyclic covering of a variety branched along a divisor as given in [8]. Let X be an affine variety and let

s P CpXq be a non-zero regular function. The aim is to construct a variety Y on which the m-th root m
?
s of

s makes sense. To do this, we begin by taking the product X ˆ A1 of X and the affine line. Let t be the

coordinate on A1 and let Y Ă X ˆ A1 be the subvariety defined by the equation tm ´ s “ 0.

ttm ´ s “ 0u “ Y Ă X ˆ A1

X

π
pr1

The natural mapping π : Y Ñ X is a cyclic covering of X brached along the zero divisor D of s. Setting

s1 “ t|Y P CpY q, we have the equality

ps1qm “ π˚s

of functions on Y . Thus we have constructed the desired m-th root of s. Note that the function s1 defines a

divisor D1 on Y which satisfies π˚D “ mD1.

This local construction can be globalized by means of the following result, which is proposition 4.1.6 in [8].

Proposition 2.2 (Cyclic coverings). Let X be a variety and L a line bundle on X. Let m be a positive

integer and let s P ΓpX,Lbmq be a non-zero section defining a divisor D on X. Then there exists a finite flat

covering π : Y Ñ X, where Y is a scheme with the property that the line bundle π˚L has a section

s1 P ΓpY, π˚Lq with ps1qm “ π˚s.

The zero divisor D1 of s1 maps isomorphically to D. Moreover, if X and D are non-singular, so too are Y

and D1.

Proof. This can be proved by taking an affine open covering tUiu of X over which L is locally trivial, and

carrying out the above local construction over each Ui. Since s is a section of the m-th tensor power of the

line bundle L, the resulting local coverings can be glued together. However, this local construction can be

globalized in a more direct manner.

More formally, let L be the total space of the line bundle L and let p : LÑ X be the bundle projection. In

other words, we have L “ SpecOXSymp pLq. Then, there is a tautological section t P ΓpL, p˚Lq. In fact, a

section of p˚L is specified geometrically by giving for each point a P L a vector in the fibre of p over x “ ppaq.

But a itself is such a vector, and we set tpaq “ a. More formally, t is determined by a homomorphism

OL ÝÑ p˚L

of OL-modules, or equivalently, by a mapping

SymOX p
pLq ÝÑ Lb SymOX p

pLq (3)

of quasi-coherent sheaves on X. The term on the left in (3) is naturally a summand of the term on the right,

and the map is the canonical inclusion.
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The proposition now follows, by taking Y Ă L to be the zero divisor of the section

tm ´ p˚s P ΓpL, p˚Lbmq,

and s1 “ t|Y . We then have a finite flat map π : Y Ñ X such that ps1qm “ π˚s P ΓpY, π˚Lbmq, with

s1 P ΓpY, π˚Lq. The other assertions of the proposition follow from the local construction.

As an application, we have the following result, which will be used in the proof of Bogomolov’s lemma

(see Theorem 3.13).

Lemma 2.3. Let X be a non-singular projective variety and L a line bundle on X. Let n be a positive

integer and let f1, f2, f3 P ΓpX,Lbnq be non-zero sections. Then there exists a scheme Y and a finite flat

covering π : Y Ñ X such that π˚fi “ gni , where gi P ΓpY, π˚Lq for i “ 1, 2, 3.

Proof. The sections f1, f2, and f3 define divisors D1, D2, and D3 respectively, on X. Let π1 : X1 Ñ X be

an n-sheeted cyclic covering of X branched along D1 (see Proposition 2.2). Then, there exists a divisor

D11 on X1 given by a section f 11 P ΓpX1, π
˚
1Lq such that π˚1D1 “ nD11, i.e., π˚1 f1 “ pf

1
1q
n. Let D12 “ π˚1D2

and D13 “ π˚1D3. Then D12 and D13 are divisors on X1 defined by the sections f 12 “ π˚1 f2 and f 13 “ π˚1 f3

respectively, where f 12, f
1
3 P ΓpX1, π

˚
1Lq.

Now let π2 : X2 Ñ X1 be an n-sheeted cyclic covering of X1 branched along D12 “ π˚1D2. Then, there is a

divisor D22 on X2 given by a section f22 P ΓpX2, π
˚
2 pπ

˚
1Lqq such that π˚2D

1
2 “ nD22 , i.e., π˚2 f

1
2 “ pf

2
2 q
n. Let

D21 “ π˚2D
1
1 and D23 “ π˚2D

1
3. Then D21 and D23 are divisors on X2 defined by the sections f21 “ π˚2 f

1
1 and

f23 “ π˚2 f
1
3 respectively, where f22 , f

2
3 P ΓpX2, π

˚
2 pπ

˚
1Lqq.

Finally, let π3 : X3 Ñ X2 be an n-sheeted cyclic covering of X2 branched along D23 “ π˚2D
1
3. As before,

there is a divisor D33 on X3 given by a section f33 P ΓpX3, π
˚
3 pπ

˚
2 pπ

˚
1Lqqq such that π˚3D

2
3 “ nD33 , i.e.,

π˚3 f
2
3 “ pf

3
3 q

n. Let D31 “ π˚3D
2
1 and D32 “ π˚3D

2
2 . Then D31 and D32 are divisors on X3 defined by the

sections f31 “ π˚3 f
2
1 and f32 “ π˚3 f

2
2 respectively, where f31 , f

3
2 P ΓpX3, π

˚
3 pπ

˚
2 pπ

˚
1Lqqq.

Now take Y “ X3. Then π “ π1 ˝ π2 ˝ π3 : Y Ñ X is a finite flat covering of X. Moreover, taking

gi “ f3i P ΓpY, π˚Lq we get π˚fi “ gni P ΓpY, π˚Lbnq for i “ 1, 2, 3. Thus the assertion is proved.

2.2 Invariants of good covers

We now discuss coverings branched over subvarieties with transverse intersections. Let X be a complex

surface i.e., a complex manifold of dimension 2. Let tDiu, i P I for some finite index set I, be a set of

smooth, one-dimensional irreducible subvarieties. In a neighbourhood of any point p P Di, we can choose

local coordinates pu, vq on X such that Di is given locally by the equation u “ 0, and u is called a normal

coordinate to Di at p. We assume that for i ‰ j, Di and Dj intersect transversally i.e., for any p P Di XDj ,

we have normal crossing at p. This means that we can assign local coordinates pu, vq at p such that Di is

given locally by u “ 0 and Dj is given locally by v “ 0. Moreover, we assume that no more than two of the

Di intersect at one point i.e.,
Ť

iDi consists of only ordinary double points.

Under these conditions, a good covering of X, as in [13], Def. 3.1, is given by the following definition.

Definition 2.4. Let Y be a complex surface that is a finite covering π : Y Ñ X of X. Suppose that π is

branched along a system tDiu of one-dimensional subvarieties of X intersecting transversally. The covering

is a good covering if, in addition, there are integers N ě 1 and bi ě 2 for all i P I, such that

(i) for all i P I, we have bi|N and there are N{bi points of Y over each point of Diz
Ť

i‰j Di XDj.

(ii) for all i, j P I, i ‰ j and Di XDj ‰ H, we have bibj |N and there are N{bibj over each point of Di XDj .

(iii) over the points not appearing in (i) and (ii), there are N points of Y , and N is called the degree of this

covering.
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The following result gives a local description of a good cover.

Lemma 2.5. Let the setting be as above and let π : Y Ñ X be a good cover of X as in Definition 2.4. Then

we have

(i) Centered at each point q of Y lying over a point of Diz
Ť

i‰j Di XDj, there are local coordinates ps, tq

such that u “ sbi , v “ t are local coordinates centered at πpqq, with u a normal coordinate to Di at

πpqq. The map π is given locally by the quotient of an open neighbourhood of q by the action of Z{biZ by

ps, tq ÞÑ pexpp2πim{biqs, tq for m P Z{biZ;

(ii) Centered at each point q of Y lying over a point of Di XDj, there are local coordinates ps, tq such that

u “ sbi , v “ tbj are local coordinates centered at πpqq, with u a normal coordinate to Di at πpqq and v a

normal coordinate to Dj at πpqq. The map π is given locally by the quotient of an open neighbourhood of q by

the action of pZ{biZq ˆ pZ{bjZq by ps, tq ÞÑ pexpp2πim{biqs, expp2πin{bjqtq for m P Z{biZ, n P Z{bjZ;

(iii) At any point q of Y not appearing in (i) or (ii), the map π is locally biholomorphic.

We now derive expressions for the Euler number and the self-intersection number of the canonical divisor

of a good covering, as given in [13]. These formulae will be useful in constructing examples of surfaces which

satisy the extreme case of the Bogomolov-Miyaoka-Yau inequality. Recall that for a smooth complex surface

X, the second Chern class equals the Eucler characteristic (also called the Euler number), i.e., c2pXq “ epXq.

Let the setting be as in Definition 2.4.

Lemma 2.6. The Euler number of a good covering Y of X of degree N is given by

epY q

N
“
c2pY q

N
“ c2pXq ´

ÿ

i

xiepDiq `
1

2

ÿ

i‰j

xixjDiDj , (4)

where we set xi “ 1´ 1
bi

for all i.

Proof. We compute the Euler number of Y in two parts: first we compute the contribution by the complement

of the ramification locus and then the contribution by the ramification locus.

The Euler characteristic of each divisor Di on X is epDiq and so the total Euler characteristic of all divisors is
ř

i epDiq. Note that in this sum we have counted each intersection point in Di XDj for i ‰ j twice- once on

Di and once on Dj . The total number of intersection points is 1
2

ř

i‰j DiDj . Thus the Euler characteristic of

the branch locus on X is
ř

i epDiq ´
1
2

ř

i‰j DiDj . Since there are N points of Y above each point of X in

the complement of the branch locus, the Euler characteristic of the complement of the ramification locus on

Y is given by

N
´

epXq ´
ÿ

i

epDiq `
1

2

ÿ

i‰j

DiDj

¯

. (5)

Recall that over each point of DizDi XDj for i ‰ j there are N{bi points of Y i.e., over each point of each

divisor Di except the intersection points, there are N{bi points of Y . Thus the contribution to the Euler

characteristic from divisors minus intersection points is
ř

i
N
bi
epDiq ´

ř

i‰j
N
bi
DiDj . Over each intersection

point in Di XDj for i ‰ j there are N{bibj points of Y . Hence the contribution to the Euler characteristic

by intersection points is 1
2

ř

i‰j
N
bibj

DiDj . Thus the contribution of the ramification locus is

N
ÿ

i

1

bi

´

epDiq ´
ÿ

j‰i

DiDj

¯

`
N

2

ÿ

i‰j

1

bibj
DiDj . (6)

Summing the expressions 5 and 6 we get the Euler characteristic of Y , which is given by

c2pY q “ N
´

c2pXq ´
ÿ

i

epDiq `
1

2

ÿ

i‰j

DiDj

¯

`N
ÿ

i

1

bi

´

epDiq ´
ÿ

j‰i

DiDj

¯

`
N

2

ÿ

i‰j

1

bibj
DiDj . (7)
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Rearranging terms in the right hand side of the equation 7 and writing

N
ÿ

i‰j

1

bi
DiDj “

N

2

ÿ

i‰j

1

bi
DiDj `

N

2

ÿ

i‰j

1

bj
DiDj ,

we get

c2pY q “ Nc2pXq ´N
ÿ

i

´

1´
1

bi

¯

epDiq `
N

2

´

ÿ

i‰j

DiDj ´
ÿ

i‰j

1

bi
DiDj ´

ÿ

i‰j

1

bj
DiDj `

ÿ

i‰j

1

bibj
DiDj

¯

“ Nc2pXq ´N
ÿ

i

´

1´
1

bi

¯

epDiq `
N

2

ÿ

i‰j

´

1´
1

bi

¯´

1´
1

bj

¯

DiDj .

Setting xi “ 1´ 1
bi

for all i and dividing the above equation by N , we get

c2pY q

N
“ c2pXq ´

ÿ

i

xiepDiq `
1

2

ÿ

i‰j

xixjDiDj ,

which is the equality 4.

LetR denote the ramification divisor of π on Y . Then the canonical divisor of Y is given byKY “ π˚KX`R

(see for example equation 20 on p.53 in [1]). Note that R is the vanishing locus of the determinant of the

Jacobian of π on Y . We now derive an expression for KY in terms of the branch locus on X, by following

Lemma I.16.1 of [1].

Lemma 2.7. Let the setting be as in Definition 2.4. Then the canonical divisor on Y is given by

KY “ π˚pKX `
ÿ

i

xiDiq, (8)

where xi “ 1´ 1
bi

for all i, as before.

Proof. Let R “
ř

i riRi, where ri are integers for all i, and the Ri are irreducible components of R such that

πpRiq “ Di for all i. We know that at any point y P Ri such that πpyq “ x P DizDi X Dj for i ‰ j, the

branching order of π is bi. Let pu, vq be local coordinates on X centered at x such that Di is given locally by

the equation u “ 0 at x. If Ri is given locally by the equation t “ 0 at y, then we have π˚puq “ tbi . Setting

ω “ du ^ dv, we get π˚pωq “ bit
bi´1dt ^ ds, where s “ π˚pvq. This shows that pt, sq is a local coordinate

system at y and that the zero divisor of π˚pωq is pbi ´ 1qRi. Thus we have ri “ bi ´ 1 for all i. This implies

that

KY “ π˚KX `
ÿ

i

pbi ´ 1qRi. (9)

Since Di is locally given by the equation u “ 0 at x, π˚Di is locally given by π˚puq “ tbi “ 0 at y. Recall

that Ri is locally given by the equation t “ 0 at y, and hence π˚Di “ biRi as divisors on Y . Plugging this

into the equation 9, we get

KY “ π˚KX `
ÿ

i

bi ´ 1

bi
π˚Di.

Setting xi “ 1´ 1
bi
“ bi´1

bi
as before, it follows that

KY “ π˚KX `
ÿ

i

xiπ
˚Di “ π˚pKX `

ÿ

i

xiDiq,

which is the expression 8.
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Since the degree of the map π : Y Ñ X is N , it follows from Lemma 2.7 that the self intersection number

of the canonical class on Y is given by

K2
Y “ NpKX `

ÿ

i

xiDiq
2. (10)

Expressing the formula 10 in terms of the first Chern numbers of X and Y , we have

c21pY q

N
“

´

KX `
ÿ

i

xiDi

¯2

“ c21pXq ` 2
ÿ

i

xiKXDi `
ÿ

i

x2iD
2
i `

ÿ

i‰j

xixjDiDj . (11)

In order to simplify this expression, we use the following well-known result.

Lemma 2.8 (Adjunction formula). Let X be a complex manifold of dimension 2 and D a smooth submanifold

of X of dimension 1. Then

epDq “ ´pKXD `D
2q. (12)

Proof. A proof of the adjunction formula is given in [3], Proposition V.1.5.

Lemma 2.9. Let the setting be as in Definition 2.4. Then the self-intersection number of the canonical

divisor of Y is given by

c21pY q

N
“ c21pXq ´ 2

ÿ

i

xipepDiq `D
2
i q `

ÿ

i

x2iD
2
i `

ÿ

i‰j

xixjDiDj . (13)

Proof. We can add and subtract 2
ř

i xiD
2
i from the right hand side of equation 11, which gives

c21pY q

N
“ c21pXq ` 2

ÿ

i

xipKXDi `D
2
i q ´ 2

ÿ

i

xiD
2
i `

ÿ

i

x2iD
2
i `

ÿ

i‰j

xixjDiDj .

Using the adjunction formula 12, we replace KXDi `D
2
i in the above equality by ´epDiq to get the equality

13. This proves the assertion.

2.3 Construction of a Kummer covering

Let rP2 denote the blow up of P2 at the r-fold (r ě 3) intersection points of a line arrangement in P2 and Y a

good covering of rP2 of degree N as before. A special case occurs when we take the ramification indices of all

divisors on rP2 to be the same positive integer n ě 2. In this case Y is called a Kummer covering of rP2. We

derive the conditions necessary for such a surface Y to satisfy the equality 3c2pY q “ c21pY q in section 7.4.

Now we discuss the construction of a Kummer covering starting from a line arrangement in P2.

Consider an arrangement of k lines in P2, defined by the equations l1 “ 0, l2 “ 0, ..., lk “ 0. We assume

that the arrangement does not form a pencil, i.e., not all of the k lines pass through a single point. Let

φ : P2 Ñ Pk´1 be the map defined by sending a point x P P2 to the point pl1pxq : l2pxq : ... : lkpxqq P Pk´1.

Note that this map is well defined because we have assumed that the arrangement is not a pencil i.e., the li’s

do not all simultaneously vanish, and they are all homogeneous of the same degree. Let ν : Pk´1 Ñ Pk´1

denote the Fermat covering of Pk´1 by itself, i.e., the map given by sending a point px0 : x1 : ... : xk´1q P Pk´1

to the point pxn0 : xn1 : ... : xnk´1q, where we take n to be the ramification index assigned to each line in the

arrangement. It is straightforward to see that the degree of this map is nk´1. We now define the variety X

as follows

P2 ˆPk´1 Pk´1 Ą X “ tpx, yq P P2 ˆPk´1 Pk´1 | φpxq “ νpyqu.

Let π : X Ñ P2 denote projection in the first factor, i.e., the map defined by sending a point px, yq P X to

the point x P P2. Then the following statement is clear.
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Lemma 2.10. The map π : X Ñ P2 defined above is a finite surjective map of degree nk´1. Moreover, this

map is branched exactly along the line arrangement on P2 with ramification index n along each line and nr at

each r-fold intersection point of the arrangement. Any point q in X lying above a point p in P2 is a singular

point if and only if p is an r-fold intersection point of the line arrangement.

Thus if the line arrangement on P2 has r-fold intersection points then X is not smooth. Let ρ : rP2 Ñ P2

denote the blow-up of P2 at the r-fold intersection points of the arrangement. Then the surface rP2 is smooth,

and the new arrangement on rP2 consists of proper transforms of the lines of the arrangement and exceptional

divisors corresponding to the blown up points. Note that this new arrangement of divisors consists of only

simple normal crossings.

Proposition 2.11. There is a smooth surface Y together with a birational map τ : Y Ñ X, and a surjective

morphism σ : Y Ñ rP2 such that the latter is a good covering of rP2 of degree nk´1 in the sense of Definition

2.4. Moreover, σ is branched along the new arrangement, and for each divisor Di in the arrangement,

the ramification index at each point in the set Diz
Ť

i‰j Di X Dj is n, and the ramification index at each

intersection point Di XDj is n2.

The situation is represented by the following commutative diagram.

X Y

P2
rP2

π

τ

σ

ρ

Proof. The existence of Y essentially follows from the proof of [1], Theorem III.6.1. We blow up P2 at all

the r-fold points of the line arrangement (r ě 3) to get rP2 and a new arrangement which consists of only

simple normal crossings. We form the fibre product X ˆP2 rP2 and observe that it is normal, since it is the

fibre product of normal varieties. We set Y “ X ˆP2 rP2, and get a birational map τ : Y Ñ X and a map

σ : Y Ñ rP2, which is a finite covering branched along the new arrangement on rP2. Note that Y is a resolution

of singularities of X, i.e., Y is smooth. Since π : X Ñ P2 has degree nk´1, it follows that σ : Y Ñ rP2 also

has degree nk´1.

To prove the assertion about ramification indices, we consider the affine local picture. Let p be an r-fold

point of the line arrangement on P2 as before, let l1 “ 0, l2 “ 0, ..., lr “ 0 be the equations of the lines

passing through p and let lr`1 “ 0 be a line not passing through p. Then we can take l1
lr`1

and l2
lr`1

as local

coordinates in an open affine neighbourhood U centered at p. The blow up of p “ p0, 0q P U is given by

!´

ru : vs,
´ l1
lr`1

,
l2
lr`1

¯¯

P P1 ˆ U | u
´ l2
lr`1

¯

“ v
´ l1
lr`1

¯)

ÝÑ U

´

ru : vs,
´ l1
lr`1

,
l2
lr`1

¯¯

ÞÝÑ

´ l1
lr`1

,
l2
lr`1

¯

.

The exceptional divisor is P1ˆ p0, 0q, and we have two affine neighbourhoods on the blow up, namely tu ‰ 0u

and tv ‰ 0u. Putting u “ 1, we have l2
lr`1

“ vp l1
lr`1

q. If l1
lr`1

“ 0, then l2
lr`1

“ 0 and so the exceptional

divisor is given by the equation l1
lr`1

“ 0 in this chart. The proper transform of the line l2
lr`1

“ 0 is given by

v “ l2
l1
“ 0 in this chart. Similarly, putting v “ 1 gives l1

lr`1
“ up l2

lr`1
q, which implies that l2

lr`1
“ 0 defines

the exceptional divisor, and u “ l1
l2
“ 0 defines the proper transform of the line l1

lr`1
“ 0 in this chart. Let E

denote the exceptional divisor corresponding to p and let D1 and D2 denote the proper transforms in rP2 of

the lines given by l1 “ 0 and l2 “ 0 respectively. In an open affine neighbourhood of the intersection point
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E XD1, we can take p l1l2 ,
l2
lr`1

q as local coordinates and similarly at E XD2 we can take p l2l1 ,
l1
lr`1

q as local

coordinates. We treat all other intersection points Ei XDj in the new arrangement on rP2 in the same way.

Let q be a singular point in X lying above p. Similarly as before, in an open affine neighbourhood of q we can

take p l1
lr`1

q
1
n “ 0, p l2

lr`1
q

1
n “ 0, ..., p lr

lr`1
q

1
n “ 0 as local equations of curves L11, L

1
2, ..., L

1
r passing through q.

Thus the strict transform of the curve L11 under the birational map τ : Y Ñ X is given locally by p l1
lr`1

q
1
n “ 0

in an open affine subset V of Y . Since τ : Y zτ´1pSingpXqq Ñ XzSingpXq and ρ : rP2zρ´1pSingpP2qq Ñ

P2zSingpP2q are isomorphisms, where SingpXq denotes the set of singular points of X and SingpP2q denotes

the set of singular points of the line arrangement on P2, we have σ|Y zτ´1pSingpXqq “ pρ
´1 ˝π ˝ τq|Y zτ´1pSingpXqq.

This implies that the ramification index of σ along the proper transform D11 of L11 is n. Thus D11 is locally

given by the equation p l1l2 q
1
n “ 0 in V , which implies that the exceptional divisor E1 arising from blowing

up q is given locally by p l2lr1
q

1
n “ 0 in V . It follows that the ramification index along E1 is also n. Since the

ramification index of π at q is nr, we see that E1 maps onto E via σ with degree nr´1. At the intersection

point D11 X E
1, we can take pp l1l2 q

1
n , p l2

lr`1
q

1
n q as local coordinates in V , which implies that the ramification

index at the intersection point D11 X E1 is n2. We treat all other intersection points E1i X D1j in the new

arrangement on Y in the same way.

Now suppose that p P P2 is a regular intersection point of the lines defined by l1 “ 0 and l2 “ 0, and l3 “ 0

is any other line not passing through p. Then in an open affine neighbourhood of p, the lines meeting at

p can be given locally by l1
l3
“ 0 and l2

l3
“ 0, and we can take p l1l3 ,

l2
l3
q as local coordinates at p. A point q

lying above p in X is not singular and is the intersection point of the lines pl1q
1
n “ 0 and pl2q

1
n “ 0. In

an open affine neighbourhood of q, these lines can be locally given by p l1l3 q
1
n “ 0 and p l2l3 q

1
n “ 0, so we can

take pp l1l3 q
1
n , p l1l3 q

1
n q as local coordinates at q. Similarly, it follows that in an open affine neighbourhood of

the intersection point D1 XD2 on rP2, the proper transforms D1 and D2 can be given locally by l1
l3
“ 0 and

l2
l3
“ 0 and we can take p l1l3 ,

l2
l3
q as local coordinates at this point. In an open affine neighbourhood of the

intersection point D11 XD
1
2 on Y , D11 and D12 can be given locally by p l1l3 q

1
n “ 0 and p l2l3 q

1
n “ 0, and so we can

take pp l1l3 q
1
n , p l2l3 q

1
n q as local coordinates at this point. Thus the ramification index of σ at the intersection

point D11 XD
1
2 is n2. The same argument holds for all intersection points D1i XD

1
j on Y.

At any point not on the line arrangement on P2, the cover π : X Ñ P2 is unramified of degree nk´1, hence at

any point on rP2 not on the new arrangement, the cover σ : Y Ñ P2 is also unramified of degree nk´1.

Thus the three conditions of Definition 2.4 are satisfied and we conclude that σ : Y Ñ rP2 is a good covering

of degree nk´1 branched along the new arrangement on rP2, as claimed.

The discussion of Kummer coverings is continued in Section 4.5.

We conclude this discussion by deriving formulae for the Euler characteristic and self intersection number of

an exceptional curve C arising from blowing up a singular point q on X lying above an r-fold intersection

point p of the line arrangement on P2. We also state a result of Hirzebruch, in which he gives a classification

of surfaces constructed using the method described above.

Lemma 2.12. The Euler characteristic epCq of an exceptional curve C described above is given by

epCq “ nr´1p2´ rq ` rnr´2.

Proof. We first determine the contribution to the Euler characteristic from the complement C 1 of the set

S of intersection points on C. We know that away from the intersection points of C with the divisors D1i,

C maps to an exceptional divisor E – P1 on rP2 with degree nr´1. The number of intersection points on E

equals r, so we have

epC 1q “ nr´1pepP1q ´ rq “ nr´1p2´ rq. (14)
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We know that at each intersection point of C with a divisor D1i, the ramification index is n2, so above each

intersection point E XDi on rP2, there are nr´2 points of C. Since the number of intersection points on E is

r, we have

epSq “ rnr´2. (15)

Thus summing the equations 14 and 15, we obtain the Euler charcteristic of C

epCq “ nr´1p2´ rq ` rnr´2.

This completes the proof.

Lemma 2.13. The self intersection number of such an exceptional curve C is given by

C2 “ ´nr´2.

Proof. Let E be the exceptional curve on rP2 to which C is mapped via the map σ : Y Ñ rP2. Note that we

have E2 “ ´1, and since σ has degree nk´1, we get

pσ˚Eq2 “ degpσqE2 “ ´nk´1. (16)

There are nk´1´r singular points of X above an r-fold intersection point of the line arrangement on P2, each

of which when blown up, gives a copy of the exceptional curve C on Y . Thus σ˚E consists of nk´1´r disjoint

copies of C. Together with the equality 16, this implies

C2 “
´nk´1

nk´1´r
“ ´nr´2,

as claimed.

For a line arrangement in P2 which is not a pencil, recall that k denotes the number of lines, tr denotes the

number of r-fold points, and n denotes the ramification index assigned to each divisor in the corresponding

new arrangement on rP2. Consider the following condition

k ě 6, n ě 2, tk “ tk´1 “ tk´2 “ 0. (17)

Now consider a line arrangement satisfying 17 which has exactly two singular intersection points p1 and p2,

lying on a single line L, and suppose L contains no other intersection points. Let u and v denote the number

of lines passing through p1 and p2. Then, such an arrangement satisfies

u` v ´ 1 “ k, u ě 4, v ě 4,

tu “ tv “ 1, t2 “ pu´ 1qpv ´ 1q, tr “ 0 otherwise. (18)

Let Y , rP2, and σ : Y Ñ rP2 be as before. We can now state the following classification result due to Hirzebruch

[4].

Theorem 2.14. Assume the arrangement satisfies 17 and is not of type 18. Then the surface Y is minimal

i.e., does not contain (-1)-curves. For an arrangement of type 18, the divisor σ˚L1 on Y consists of nk´3

disjoint (-1)-curves (each with multiplicity n), where L1 is the proper transform of the line L containing the

two singular points of the arrangement. Blowing down these (-1)-curves gives a minimal surface Y0, which is

a product of two curves C1, C2 with Euler numbers

epC1q “ nu´1p2´ uq ` unu´2, nv´1p2´ vq ` vnv´2.

All the surfaces Y arising from arrangements satisfying 17 are of general type for n ě 3. For k “ 6 and

n “ 2 the surface Y is a K3 surface and for k ě 7 and n “ 2 it is elliptic (of Kodaira dimension ě 0), or of

general type.
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For a proof of this result we refer the reader to [4], p. 127.

2.4 Hirzebruch-Jung singularities

We now discuss exceptional curves on nonsingular surfaces, because they are of fundamental importance

when studying resolutions of surface singularities. We refer to [1], Section III.2 for this part.

A compact, reduced, connected curve C on a nonsingular surface X is called exceptional, if there is a

bimeromorphic map π : X Ñ Y such that C is exceptional for π, i.e., if there is an open neighbourhood

U of C in X, a point y P Y , and a neighbourhood V of y in Y , such that π maps UzC biholomorphically

onto V ztyu, and πpCq “ y. Exceptional curves are characterized by the following result, known as Grauert’s

criterion

Theorem 2.15 ([1], Theorem III.2.1). A reduced, compact, connected curve C with irreducible components

Ci on a smooth surface is exceptional if and only if the intersection matrix pCiCjqij is negative definite.

The following three kinds of exceptional curves are important.

1. Exceptional curves of the first kind. These are non-singular rational curves with self-intersection -1. They

are also known as (-1)-curves. The following result is a useful characterization of (-1)-curves.

Proposition 2.16 ([1], Proposition III.2.2). An irreducible curve C Ă X is a (-1)-curve if and only if

C2 ă 0 and KXC ă 0.

2. Hirzebruch-Jung strings. These are unions C “
Ťr
i“1 Ci of smooth rational curves Ci such that

C2
i ď ´2 for all i,

CiCj “ 1 if |i´ j| “ 1,

CiCj “ 0 if |i´ j| ě 2.

If ei “ C2
i then this configuration is visualized by the dual graph

e1 e2 er´1 er

The intersection matrix
»

—

—

—

—

—

—

–

e1 1 0 . . .

1 e2 1
. . .

0 1 e3
. . .

...
. . .

. . .
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

is negative definite. Concrete examples of such curves are easy to construct. The simplest Hirzebruch-Jung

string is a smooth rational curve with self intersection -2. Such a curve is also known as a (-2)-curve.

3. A-D-E curves. These are exceptional curves C “
Ť

Ci of which all irreducible components (-2)-curves.

The inequality

pCi ` Cjq
2 “ 2pCiCj ´ 2q ă 0 for all i ‰ j

implies that CiCj ď 1 i.e., two such curves can intersect in at most one point and then transversally. Since

the intersection form of C is negative definite, it must be one of the forms described by Dynkin diagram An

with n ě 1, Dn with n ě 4, or E6, E7, or E8 (see [1], Section I.2). Hence these Dynkin diagrams are the dual

graphs of these curves. Note that the curves An are Hirzebruch-Jung strings. A-D-E curves are characterized

by the following result
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Proposition 2.17 ([1], Proposition III.2.5). Let C Ă X be an exceptional curve with KXCi “ 0 for each

irreducible component Ci of C. Then C is an A-D-E curve.

We now turn our attention to singularities that arise from contracting Hirzebruch-Jung strings. These are

known as Hirzebruch-Jung singularities or An,q singularities. We are interested in a particular case of these

singularities, namely, cyclic quotient singularities, which appear in the section 7. We refer to [1], Section III.5

for this part.

Let C “
řr
i“1 Ci with C2

i “ ei ď ´2 for all i, be a Hirzebruch-Jung string. For a sufficiently small X Ą C

there is a (closed, but not necessarily compact) smooth curve C0 which intersects C1 transversally in one point,

without meeting any of the other curves Ci. Similarly, there is a curve Cr`1 intersecting Cr transversally in

one point which does not intersect any other curve Ci. The following graph represents the situation.

C0 C1 C2 Cr´1 Cr Cr`1

Let ni P Z, ni ě 0 for all i “ 0, ..., r ` 1. It follows from [1], Section 3 that there is a holomorphic function ϕ

on X with divisor pϕq “
řr`1
i“0 niCi if and only if

nk1 ` eknk ` nk`1 “ pϕqCk “
r`1
ÿ

i“0

CiCk “ 0

for all k “ 1, ..., r. Given n0 and n1, the coefficients nk, k “ 2, ..., r ` 1 are determined uniquely by the

recursion formula

nk “ |ek´1|nk´1 ´ nk´2. (19)

If n0 ď n1 then it follows by induction that nk ď nk`1 for k “ 1, ..., r. Thus if we determine integers µk, νk

using the recursion formula 19, starting with the initial data µ0 “ 0, µ1 “ 1, and ν0 “ 1, ν1 “ 1, then for

k ě 1 the integers µk, νk will be positive. Hence, we have holomorphic functions g, h on X with divisors

pgq “
r`1
ÿ

i“0

µiCi, phq “
r`1
ÿ

i“0

νiCi.

Notice that the integers µk satisfy

µ2 “ |e1|,
µ3

µ2
“ |e2| ´

1

|e1|
,

µk`1

µk
“ |ek| ´

1

|ek´1| ´
1

¨¨¨´ 1
|e1|

.

The recursion formula 19 implies that gcdpµk`1, µkq “ gcdpµk, µk´1q “ ... “ gcdpµ2, µ1q “ 1. It follows that

µk and µk`1 are coprime, so they may also be defined by the above continued fraction expansion. Putting

n1 “ µr`1, q1 “ µr, the expansion

n1

q1
“ |er| ´

1

|er´1| ´
1

¨¨¨´ 1
|e1|

shows that the self intersection numbers ei are determined by the two integers n1 and q1. Finally, we define a

divisor

pfq “
r`1
ÿ

i“0

λiCi,
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where the integers λi satisfy the recursion formula 19, and λr`1 “ 0, λr “ 1. Here the integers λi are exactly

the integers µi we would have obtained if the index i started at the other end of the Hirzebruch-Jung string

C. Setting λ1 “ q and λ0 “ n, we have

n

q
“ |e1| ´

1

|e2| ´
1

¨¨¨´ 1
|er |

.

We now show that the equality λk ` pn´ qqµk “ nνk holds for all k “ 0, ..., r ` 1 using induction on k. It is

easy to verify that it holds for k “ 0 and 1. The induction hypothesis says that λj ` pn´ qqµj “ nνj for all

j ď k ´ 1. Using equality 19 we have λk “ |ek´1|λk´1 ´ λk´2, and similarly for µk and νk. Together with

the induction hypothesis, this implies

λk ` pn´ qqµk “ nνk, (20)

for all k “ 0, ..., r ` 1. Similarly, using induction on k, we get

λkµk`1 ´ λk`1µk “ n, (21)

for all k “ 0, ..., r`1. Putting k “ r in equation 21 gives n1 “ n, and from equation 20 we get 1`pn´qqq1 “ nνr,

i.e., qq1 “ 1` npq1 ´ νrq. Thus q1 is the unique integer determined by 0 ă q1 ă n, and qq1 ” 1 mod n. For

the functions f , g, and h defined earlier, equation 19 implies that

pfgn´qq “ pfq ` pn´ qqpgq “ nphq “ phnq.

Hence, the functions fgn´q and hn have the same zeros, and so fgn´q{hn is a function in ΓpX,O˚Xq. Then

we have the relation fgn´q “ hn. In other words, by w “ h, z1 “ f , and z2 “ g, X is mapped into the

surface

W “ tpw, z1, z2q P C3 | wn “ z1z
n´q
2 u Ă C3.

Theorem 2.18 ([1], Theorem III.5.1). For 0 ă q ă n, n and q coprime, let C Ă X be a Hirzebruch-Jung

string with self intersection numbers ei satisfying equation 19, and let y P Y be the singularity resulting

from contracting C. Then this singularity is isomorphic to the unique singularity lying over 0 P C3 in the

normalization of the surface W above.

Remark 2.19. This theorem shows in particular that the singularity y P Y (hence the embedding C Ă X)

depends on n and q only. It is thus called the An,q singularity.

We now discuss a particular situation in which Hirzebruch-Jung singularities occur, namely cyclic quotient

singularities. A cyclic quotient singularity is the quotient X “ C2{pZ{nZq of C2 by the action of a finite

cyclic group Z{nZ, n P Z. We denote the elements of Z{nZ by integers k, 0 ď k ă n. Every linear action of

Z{nZ on C2 can be expressed, with respect to suitable coordinates pu1, u2q, as

k

«

u1

u2

ff

“

«

e2πiq1k{n 0

0 e2πiq2k{n

ff«

u1

u2

ff

“

«

e2πiq1k{nu1

e2πiq2k{nu2

ff

with integers q1, q2 satisfying 0 ď qi ă n for i “ 1, 2. The integers q1, q2 are determined uniquely up to

ordering by the action, and are called the weights of the action. If one of them vanishes, the action is

essentially one-dimensional and the quotient is smooth, so we exclude this possibility henceforth. Moreover,

if c “ gcdpn, q1, q2q ą 1, then the action of Z{nZ can be considered as an action of Z{pn{cqZ. So we assume

without loss in generality that gcdpn, q1, q2q “ 1. We use the following notation for i “ 1, 2, as in [1], p.104.

di “ gcdpn, qiq, n “ nidi, qi “ pidi, m “ gcdpn1, n2q, p
1
i the integer with pip

1
i ” 1 mod m, 0 ă p1i ă m, and

q the integer with q ” p1p
1
2 mod m, 0 ă q ă m.
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Proposition 2.20 ([1], Proposition III.5.3). The image of p0, 0q P C2 in the quotient C2{pZ{nZq is a

singularity of type Am,q.

By a result of H. Cartan, every action of a finite group on a manifold can be locally linearized. Applying

this result together with Proposition 2.20, it follows that

Theorem 2.21 ([1], Theorem III.5.4). If the finite cyclic group G acts on a smooth surface X, then the

quotient X{G has only singularities of Hirzebruch-Jung type.

A singularity of type 1
n p1, aq is the quotient C2{pZ{nZq, where the action is given, with respect to

coordinates u1, u2 on C2, by kpu1, u2q “ pe
2πik{nu1, e

2πika{nq. So this is a special case of a cyclic quotient

singularity in which, using the notation above, m “ n and q is the integer with qpa{gcdpn, aqq ” 1 mod n.

Since this is a singularity of type An,q, we know from earlier computations that it results from contracting a

Hirzebruch-Jung string C “
Ťr
i“1 Ci, with self intersections C2

i “ ei, ei ď ´2, given by

n

q
“ |e1| ´

1

|e2| ´
1

¨¨¨´ 1
|er |

.

For example a singularity of type 1
n p1, 1q results from contracting a single curve C with self intersection

C2 “ ´n. We encounter these singularities again when we discuss quotients of fake projective planes in

section 7.

3 The Bogomolov-Miyaoka-Yau inequality

The discussion that follows is based on the article of Miyaoka[10] in which he proves the inequality c21 ď 3c2

of Chern numbers of surfaces of general type, which is now known as the Bogomolov-Miyaoka-Yau inequality.

3.1 Some facts about projective bundles

The setting is as follows. X is a smooth, complete variety and F is a locally free sheaf of rank r over X. PpFq
denotes the projective bundle Projp

Àr
j“0 SjFq, and π : PpFq Ñ X the canonical projection. H denotes the

divisor associated to the tautological invertible sheaf on PpFq. The results appearing in this section are used

as facts throughout Miyaoka’s paper. We refer to [2], Chapter 9 for a more detailed discussion on projective

bundles.

Lemma 3.1. There are natural isomorphisms

π˚OPpFqpnHq – SnF pn ě 0q,

Riπ˚OPpFqpnHq “ 0 pn ě 0, i ą 0q.

Proof. Let U be an affine open subset of X over which F is trivial, i.e., F |U – O‘rU . Then the natural maps

H0pπ˚SnF |π´1U q Ñ H0pOPpFqpnHq|π´1U q are isomorphisms. By definition of the direct image functor, we

have H0pOPpFqpnHq|π´1U q “ H0pπ˚OPpFqpnHq|U q. Thus it follows that π˚OPpFqpnHq – SnF .

We know that HipOPpFqpnHq|π´1U q “ 0 for i ą 0. By definition of higher direct images, we have

Riπ˚OPpFqpnHq|U “ HipOPpFqpnHq|π´1U q. This implies that Riπ˚OPpFqpnHq “ 0 for i ą 0. This completes

the proof.

Lemma 3.2. Any divisor PpFq is linearly equivalent to some divisor of the form mH ` π˚D, where m is an

integer and D is a divisor on X.
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This result follows from the proof of [2], Theorem 9.6.

There are the following natural exact sequences of sheaves

0 Ñ OPpFq Ñ π˚ pF bOPpFqpHq Ñ
{Ω1
PpFq{X Ñ 0 (22)

0 Ñ π˚Ω1
X Ñ Ω1

PpFq Ñ Ω1
PpFq{X Ñ 0 (23)

0 Ñ OPpFqp´Hq Ñ π˚ pF Ñ QÑ 0 (24)

where Q denotes the universal quotient bundle of rank r on PpFq. The exact sequences (22) and (24) are

known as the relative Euler sequence and the tautological exact sequence of PpFq respectively. Hence we get

Lemma 3.3. KPpFq “ π˚prdetpFqs `KX sq ´ rH

Proof. From the short exact sequence (24), it follows that π˚pdetp pFqq “ OPpFqp´Hq b detpQq. From (23) we

get

OPpFqpKPpFqq “ detpΩ1
PpFq{Xq b π

˚detpΩ1
Xq “ detpΩ1

PpFq{Xq b π
˚KX . (25)

Now, we use that {Ω1
PpFq{X “ HomOPpFqpOPpFqp´Hq, Qq “ OPpFqpHq b Q, from which it follows that

detp {Ω1
PpFq{Xq “ OPpFqppr ´ 1qHq b detpQq. Dualizing, and observing that π˚pdetpFqq “ OPpFqpHq b detp pQq,

we get

detpΩ1
PpFq{Xq “ OPpFqp´pr ´ 1qHq b detp pQq “ OPpFqp´rHq b π

˚detpFq. (26)

The equalities (25) and (26) together imply that

OPpFqpKPpFqq “ OPpFqp´rHq b π
˚detpFq b π˚OXpKXq.

Thus observing that π˚detpFq “ π˚OXprdetpFqsq, we get KPpFq “ π˚pKX ` rdetpFqsq ´ rH.

This concludes the proof.

Lemma 3.4 (Grothendieck). We have the following identity in the cohomology group H2rpPpFq,Zq
r
ÿ

j“0

cj1pHqπ
˚cr´jp pFq “ 0

As a consequence, we have

Lemma 3.5. If dimpXq “ rankpFq “ 2, we have the following intersection table

H3 “ c21pFq ´ c2pFq

H2π˚D “ rdetpFqsD

Hπ˚Dπ˚D1 “ DD1,

where D and D1 are divisors on X.

3.2 A fundamental lemma

In the discussion that follows, F will be a locally free sheaf of rank 2 over a complete smooth surface.

Theorem 3.6 (Algebraic Index Theorem). Let X be a complete smooth surface and D1, D2 divisors on X.

If D2
1 ą 0 and D1D2 “ 0 then we have D2

2 ď 0.
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Proof. Since X is a smooth projective manifold, it admits a metric form ω which is a p1, 1q-form and is

pointwise positive definite. Now define

H2
primpX,Qq “ trαs; rα^ ωs “ 0u “ rωsK

leading to the orthogonal direct sum decomposition

H2pX,Qq “ Q ¨ rωs ‘H2
primpX,Qq.

Then, the intersection product is negative definite on H2
primpX,Rq XH1,1. This follows from the fact that for

any real p1, 1q-form α with α ^ ω “ 0 one has α ^ ω ď 0 with equality if and only if α “ 0; and from the

compatibility of the intersection product and the wedge product

ż

X

α^ β “ rαs ¨ rβs

for all closed 2-forms α, β (details omitted).

Note that rωs ¨ rωs ą 0. The above statements imply that the intersection product is negative definite

on rωsK and so the signature of the intersection product is p1, h1,1 ´ 1q on H1,1. Thus it either restricts

non-degenerately to the Neron-Severi group of X (mod torsion) with signature p1, ρ´ 1q, where ρ is the rank

of the Neron-Severi group, or it is semi-negative (with rank one annihilator). Since the Neron-Severi group

always contains the class of an ample divisor, the second possibility is excluded.

Now the assertion of the theorem follows from the fact that two divisors D1 and D2 are homologically

equivalent up to torsion if and only if they are numerically equivalent, i.e. c1pD1q “ c1pD2q if and only if

D1E “ D2E for all divisors E, where c1pDiq denotes the image of Di under the first Chern class map for

i “ 1, 2.

We obtain the following lemma as a corollary.

Lemma 3.7. Let ρ : X 1 Ñ X be a surjective morphism of complete smooth surfaces. Assume that ρpCiq is a

point on X, where Ci is a curve on X 1. Then we have

p
ÿ

i

aiCiq
2 ď 0 pai P Q @iq.

Proof. Since X is a complete non-singular algebraic surface, it is a projective variety. This implies that there

exists an embedding φ : X Ñ PN for some N ě 0. The pullback φ˚OPN p1q is an invertible sheaf associated to

a very ample divisor L on X. Since L is very ample, we have L2 ą 0. Hence |nL| (n " 0) is a base point free

linear system, and so we may assume that nL does not meet the finite subset
Ť

ρpCiq. Indeed, for any section

σ P H0pX,OXpnLqq, the zero divisor of σ defines an element of |nL| and every element of |nL| arises in this

way. Since L is very ample, so is nL. Thus nL defines an embedding φ : X Ñ PN . Now take a hyperplane H

in PN intersecting φpXq but not meeting the the finite subset φp
Ť

ρpCiqq. Then φ˚H P |nL| and does not

meet
Ť

ρpCiq. Since H is the vanishing locus of a section of OPN p1q, and since OXpnLq “ φ˚OPN p1q, φ
˚H is

the vanishing locus of a section in H0pX,OXpnLqq and hence an element of |nL|. Without losing generality

we may assume it to be nL.

Hence it follows that Ciρ
˚L “ 0 and that p

ř

i aiCiqρ
˚L “ 0. Moreover, we have pρ˚Lq2 “ dL2 ą 0, where d

is the mapping degree of ρ. Now the assertion p
ř

i aiCiq
2 ď 0 follows from Theorem 3.6.

Lemma 3.8. Let ρ : X 1 Ñ X be a birational morphism of a complete surface X 1 onto a non-singular surface

X. Then the image ρpΣq of the singular locus Σ of X 1 is a finite subset of X.
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Proof. Let ρ1 : X2 Ñ X 1 be a desingularization of X 1. Then ρ ˝ ρ1 : X2 Ñ X is a birational morphism of

complete non-singular surfaces.

X2
ρ1

ÝÑ X 1
ρ
ÝÑ X

This implies that ρ ˝ ρ1 is a composition of quadratic transformations. Therefore there is a finite subset ∆ of

X such that ρ ˝ ρ1 : X2zpρ ˝ ρ1q´1p∆q Ñ Xz∆ is an isomorphism. Let ψ : Xz∆ Ñ Xzpρ ˝ ρ1q´1p∆q be the

inverse isomorphism. Then ρ1 ˝ ψ is an isomorphism of Xz∆ onto an open subset of X 1.

X2zpρ ˝ ρ1q´1p∆q Xz∆

X 1zρ´1p∆q

„

ρ˝ρ1

ρ1

ψ

„

ρ1˝ψ

ρ

Since the desingularization map ρ1 : X2 Ñ X 1 is surjective, the image of X2zpρ ˝ ρ1q´1p∆q under ρ1 is

X 1zρ´1p∆q. Thus the map ρ ˝ ρ1 : X2zpρ ˝ ρ1q´1p∆q Ñ Xz∆ factorizes as X2zpρ ˝ ρ´1qp∆q Ñ X 1zρ´1p∆q Ñ

Xz∆. We know that this composition is an isomorphism and that the first map ρ1 is surjective, so it follows

that ρ1 : X2 ´ pρ ˝ ρ1q´1p∆q Ñ X 1 ´ ρ´1p∆q must be an isomorphism. Thus ρ1 ˝ψ : Xz∆ Ñ X 1zρ´1p∆q is an

isomorphism. Since X is smooth, we have Σ Ă ρ´1p∆q i.e., ρpΣq Ă ∆. But ∆ is a finite subset of X, so it

follows that ρpΣq is a finite set. This proves the lemma.

Recall that F denotes a locally free sheaf of rank 2 over a complete smooth algebraic surface X,

π : V “ PpFq Ñ X the associated projective bundle and H the divisor associated to the tautological invertible

sheaf on V . Then we have the following

Lemma 3.9 (Fundamental lemma). Assume that an irreducible effective divisor W on V is linearly equivalent

to H ´ π˚D, where D is a divisor on X. Then we have the following inequality

DrdetpFqs ď c2pFq `D2.

Proof. Let i : W Ñ V be the canonical injection. Then π ˝ i : W Ñ X is a birational morphism. Now W is

possibly a singular surface but by Lemma 3.8 we know that the singular locus lies over a finite subset of X.

On the other hand, Hironaka’s theorem implies that there is a sequence of blow-ups

Vs
µs
ÝÑ Vs´1

µs´1
ÝÝÝÑ . . . ÝÑ V1

µ1
ÝÑ V0 “ V

of which each center is non-singular and lies over the singular locus of W , such that the proper transform W 1

of W is a non-singular subvariety in Vs. Set µ “ µ1 ˝ ¨ ¨ ¨ ˝ µs and let E1, ..., Es be the exceptional divisors on

Vs. Then W 1 is linearly equivalent to µ˚pH ´ π˚Dq ´ aiEi, where ai P Z @i. Letting i1 : W 1 Ñ Vs be the

canonical injection, we infer that pi1q˚Ei is an effective divisor whose each component is mapped to a point

via ρ “ π ˝ µ ˝ i1 : W 1 Ñ X.

W 1 Vs V “ PpFq Xi1

ρ“π˝µ˝i1

µ π

Now ρ is a birational morphism of non-singular surfaces, hence ρ is a composition of quadratic transformations.

Thus we have KW 1 “ ρ˚KX `
ř

Ci, where each Ci is a curve on W 1 for which ρpCiq is a point on X. The

equality KW 1 ´ ρ˚KX “
ř

Ci implies that

pKW 1 ´ ρ˚KX ` cipi
1q˚Eiq

2 “ pcipi
1q˚Ei `

ÿ

Cjq
2 ď 0,
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since each term in the parentheses is a curve whose image under ρ is a point in X. Hence from Lemma 3.7

we get the inequality

pKW 1 ´ ρ˚KX ` cipi
1q˚Eiq

2 ď 0, (27)

for any ci P Q. Observing Lemma 3.3, we have KPpFq “ π˚prdetpFqs `KXq ´ 2H since F is locally free of

rank 2. Thus we have KVs “ µ˚KPpFq `
ř

i biEi, where bi P Z and Ei are the exceptional curves. Hence we

have the following equality

KVs “ µ˚p´2H ` π˚KX ` π
˚rdetpFqsq `

ÿ

i

biEi, pbi P Z @iq.

Hence by the adjunction formula KW 1 “ pi1q˚pKVs `W
1q, and using W 1 „ µ˚pH ´ π˚Dq ´ aiEi, we have

KW 1 “ pi1q˚p´µ˚H ` µ˚π˚pKX ` rdetpFqs ´Dq `
ÿ

i

pbi ´ aiqEiq.

Replacing ci by ai ´ bi in inequality (27) we obtain the inequality

pKW 1 ´ ρ˚KX ` cipi
1q˚Eiq

2 “ k “ ppi1q˚µ˚p´H ` π˚rdetpFqs ´ π˚Dqq2 ď 0. (28)

On the other hand, we have

k “ pµ˚p´H ` π˚rdetpFqs ´ π ˚Dqq2pµ˚H ´ µ˚π˚D ´
ÿ

i

biEiq

“ p´H ` π˚rdetpFqs ´ π˚Dq2pH ´ π˚Dq

“ H3 `H2π˚pD ´ 2rdetpFqsq `Hppπ˚rdetpFqsq2 ´ pπ˚Dq2q.

Applying Lemma 3.5, we get

k “ c21pFq ´ c2pFq ´ rdetpFqs2 `DrdetpFqs ´D2.

By definition we have rdetpFqs2 “ c21pFq. Hence, from the inequality (28) we obtain 0 ě k “ ´c2pFq `
DrdetpFqs ´D2 i.e., DrdetpFqs ď c2pFq `D2. This proves the lemma.

3.3 Bogomolov’s Lemma

Lemma 3.10. Let X be a Kähler manifold. Then, for any f P H0pX,Ω1
Xq, we have df “ 0.

Remark 3.11. For compact Kähler manifolds there is the more general fact that dω “ 0 for any global

holomorphic p-form ω.

Proof of Lemma 4.1. Let ω be a Kähler form on X, i.e. ω is a real closed (1,1)-form, and let r be the

dimension of X. Since f is holomorphic 1-form, df is a holomorphic 2-form and
?
´1df ^ d sf ^ p

Źr´2
ωq is a

positive-semidefinite 2r-form which is positive on non-empty open subsets of X unless df ” 0. On the other

hand, Stokes’ theorem implies that

ż

X

?
´1df ^ d sf ^

´

r´2
ľ

ω
¯

“

ż

X

d
´?
´1f ^ d sf ^

´

r´2
ľ

ω
¯¯

“

ż

BX

?
´1f ^ d sf ^

´

r´2
ľ

ω
¯

“ 0.

Thus, it follows that df ” 0, which proves the assertion.

Remark 3.12. Note that if the dimension of X is 2 then the Kähler condition is not necessary.
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A variant of the proof of Lemma 3.10 is given in [12]

Theorem 3.13 (Bogomolov’s lemma). Let X be a non-singular projective variety and L an invertible subsheaf

of the cotangent sheaf Ω1
X . Then any three global sections f1, f2, f3 of Lbn, for any n ą 0, are not algebraically

independent of each other.

Proof. We may assume fi ‰ 0, for i “ 1, 2, 3. From Lemma 2.3 we know that there exists a finite flat covering

β : X 1 Ñ X of X such that β˚fi “ gni P ΓpX 1, β˚Lbnq, where gi P ΓpX 1, β˚Lq, for i “ 1, 2, 3. Recall that the

pullback of an invertible sheaf is invertible, and so β˚L is an invertible sheaf on X 1, and we have the chain

of inclusions β˚L Ă β˚Ω1
X Ă Ω1

X1 . On a sufficiently small open subset U of X 1, pβ˚Lq|U is generated by a

single section, say, λ. Thus we can write gi “ hiλ where hi is a holomorphic function on U , for i “ 1, 2, 3.

Since each gi is a global section of β˚L Ă Ω1
X1 , i.e. gi P H

0pX 1,Ω1
X1q, we have from Lemma 3.10 that dgi “ 0

i.e. dpλhiq “ 0 which implies dhi ^ λ` hidλ “ 0 i.e., dhi ^ λ “ ´hidλ. Hence we have the following equality

of rational forms

d
´hi
hj

¯

^ λ “
´hidhj ´ hjdhi

h2j

¯

^ λ “
´hihjdλ` hihjdλ

h2j
“ 0. (29)

Note that at any point x P U , the stalk pβ˚Lqx is generated by λ. Thus it follows from the equality (29), i.e.

from dp hihj q ^ λ “ 0 that the 1-forms dp hihj q at x are contained in pβ˚Lqx, which is a rank one subsheaf of

Ω1
X1,x.

We claim that if h1,h2, and h3 are algebraically independent of each other, then so are h2

h1
and h3

h1
. Suppose

they are not, then there is a polynomial P P Crt1, t2s such that P ph2

h1
, h3

h1
q “ 0. Multiplying this equality by a

large enough power of h1, we get an equality of the form Qph1, h2, h3q “ 0, where Q P Crt1, t2, t3s. This is a

contradiction to the assumption, and hence the claim holds. Let z1, z2 be local coordinates on U , then h1, h2,

and h3 being algebraically independent of each other means that the set
!´h2

h1
pz1, z2q,

h3
h1
pz1, z2q

¯

P C2
ˇ

ˇ

ˇ
pz1, z2q P U

)

(30)

is not the vanishing locus of any polynomial in Crt1, t2s. Thus the set (30) is an open subset of C2 and

moreover, ph2

h1
, h3

h1
q are local coordinates on this open subset. This implies that dph2

h1
q and dph3

h1
q are linearly

independent and generate a rank two subsheaf of Ω1
X1,x, which is a contradiction.

Hence it follows that the hi’s are algebraically dependent. Recall that β˚fi “ gni “ pλhiq
n for i “ 1, 2, 3,

which implies that the β˚fi’s are algebraically dependent. Since pβ˚fiqpxq “ fipβpxqq for all x P X 1, it follows

that the fi’s are algebraically dependent.

Definition 3.14. The D-dimension κpD,Xq is defined as follows

κpD,Xq “

$

&

%

`

transcendence degree over C of the graded ring RD “
À8

j“0H
0pX,OXpjDqq

˘

´ 1, if RD “ C

´8, if RD “ C.

Theorem 3.13 can be reformulated as follows

Theorem 3.15. Let X be a non-singular projective variety and OXpDq a subsheaf of Ω1
X . Then the

D-dimension of X does not exceed 1.

For a line bundle L (as in Theorem 3.13), let D be the associated divisor, then L – OXpDq and

Lbn – OXpnDq. Thus if no three global sections of Lbn are algebraically independent of each other (for any

n), then the transcendence degree of the ring RD “
À8

j“0H
0pX,OXpjDqq over C does not exceed 2, i.e.,

the D-dimension of X does not exceed 1, and conversely.

Iitaka’s theory of D-dimension implies that Theorem 3.15 is equivalent to
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Theorem 3.16. If OXpDq is contained in the cotangent sheaf Ω1
X of a projective variety X, then there exists

a constant c such that h0pX,OXpDqq ď cn for n " 0.

Proof. A proof of this result is given in [1], Proposition VII.4.2.

As a corollary to Theorem 3.16, we have

Lemma 3.17. Let X be a complete smooth surface, and L an invertible sheaf generated by its global sections.

If OXpDq is contained in Ω1
X , then we have either

DrLs ď 0 (31)

or,

D2 ď 0. (32)

Moreover if D is effective, the inequality (32) holds.

Proof. We assume that DrLs is positive and prove (32). Recall that a line bundle is globally generated if and

only if it is base point free. Since |rLs| is free from base points, we have

ErLs ě 0 (33)

for any effective divisor E. Hence |KX ´ nD| must be empty for n " 0. Indeed, consider an effective divisor

E in |KX ´ nD|, then we have ErLs “ pKX ´ nDqrLs “ KX rLs ´ nDrLs. Since we have assumed DrLs ą 0,

we have that ErLs ă 0 for n " 0, which is a contradiction to the inequality (33). This implies that there is

no effective divisor in |KX ´ nD|, i.e. |KX ´ nD| is empty.

Thus

h2pX,OXpnDqq “ h0pX,OXpKX ´ nDqq “ 0

for large n, where the first equality follows from Serre duality. Hence we get the inequality

cn ě h0pX,OXpnDqq ě χpX,OXpnDqq “
1

2
n2D2 ` linear term in n,

where the first ” ě ” follows from Theorem 3.16 and the second ” ě ” follows from the Riemann-Roch

theorem. But the left hand side of the inequality has cn and the right hand side has 1
2n

2D2 as the leading

term and so cn ě 1
2n

2D2 ` ... implies that we must have D2 ď 0. This is (32).

Now suppose that D is an effective divisor. If D is trivial, then the inequality (32) is automatically satisfied,

so we may assume D is non-trivial. If rLs is a very ample divisor, then we have DrLs ą 0. Following the

arguments in the proof of the first part of the lemma, we get the inequality (32). This completes the proof.

3.4 Chern numbers of surfaces of non-negative Kodaira dimension

The Kodaira dimension κpXq of a non-singular complete variety is defined as the KX -dimension κpKX , Xq.

If X is a surface, RKX “
À8

j“0H
0pX,OXpjKXqq is a finitely generated C-algebra and is independent of

a choice of model of X. Hence κpXq is a birational invariant of X. For a surface X with κpXq ě 0, the

following facts are well-known

1. X has a unique minimal model

2. If sX Ñ X is a generically surjective rational map, then κp sXq ě κpXq.
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3. If X is minimal, then there exists an integer n ą 0, such that OXpnKXq is generated by global sections.

We give a proof of statement 1, and cite references for proofs of staments 2 and 3.

Proof. 1. This follows from [1], Theorem IV.4.5 and Proposition IV.4.6. We first show that every compact

nonsingular surface X has a minimal model. Suppose that X contains a (-1)-curve C and let X 1 be obtained

by contracting C. Now if X 1 contains a (-1)-curve C 1, we obtain another surface by contracting C 1, and so

on. Repeating this process must lead to a surface without (-1)-curves after finitely many steps because, by

statement 4 of Theorem 1.1, the second Betti number decreases by 1 for each blow down, and the second

Betti number is always non-negative.

In order to show that all minimal models of X are isomorphic, we prove the following more general claim:

Let X, Y be two compact connected nonsingular surfaces and f : X Ñ Y a birational map. If KY is nef, then

f is a morphism. If in addition KX is nef, f is an isomorphism.

Suppose that σ : sX Ñ X is the blow up of a point p P X. Let C Ă X be a curve in X containing p

with multiplicity m, and let sC Ă sX be the proper transform of C. Then, sC “ σ˚C ´mE, where E is the

exceptional divisor corresponding to p. We have

K
ĎX
sC “ pσ˚KX ` Eqpσ

˚C ´mEq “ KXC `m ě KXC. (34)

Thus the number KXC does not increase under blowing down, and if KX is nef, any curve sC on sX with

K
ĎX
sC ď ´1 must be mapped to a point in X. If f : X Ñ Y is not a morphism, then we blow X up until

we get a morphism f 1 : X 1 Ñ Y . The morphism f 1 is composed of blow-ups and any curve C 1 in X 1 which

arises from blowing up a point in X is mapped by f 1 to a curve C in Y . Thus C 1 is mapped to a curve
sC in sY , where sY Ñ Y is the first blow up map in the decomposition of f 1. From the equality 34 we get

´1 “ KX1C
1 ě K

sY
sC. Again using 34 we have KY C ď K

sC
sC i.e. KY C ď ´1, which is not possible because

KY is nef by assumption. Hence, f is a morphism. If KX is also nef, then the inverse birational map of f is

also a morphism and so f is an isomorphism.

2. This result is Theorem 6.10 in [14]. It follows from Theorem 2.5 and Lemma 6.3 in the same book. For a

detailed proof, see [14], Lemma 6.3 on p. 66.

3. For a minimal surface X, proving that OXpnKXq is generated by global sections for some n ą 0 is

equivalent to proving that KX is semi-ample i.e., the linear system |nKX | is base point free for some n ą 0.

This is a non-trivial result known as the Abundance theorem, a proof is given in [9], Theorem 1-5-6.

Remark 3.18. Note that statement 1 is not true if the Kodaira dimension is ´8. For example, the blow up

of P1 ˆ P1 in one point can be blown down to get P2.

Proposition 3.19. Let F Ă Ω1
X be a locally free sheaf of rank 2 on X and assume that pdetpFqqbn is

generated by global sections for some n ą 0. If F b OXp´Dq admits a non-trivial global section then the

divisor D satisfies the following numerical condition

DrdetpFqs ď maxpc2pFq, 0q.

Remark 3.20. Such a F exists on X if and only if we have κpXq ě 0. Indeed, the inclusion F Ă Ω1
X implies

that detpFq Ă detpΩ1
Xq “ OXpKXq, and so pdetpFqqbn Ă OXpnKXq. Since pdetpFqqbn is generated by global

sections by assumption, the inclusion pdetpFqqbn Ă OXpnKXq implies that the transcendence degree of RKX
over C is positive i.e., κpXq ě 0. Conversely if κpXq ě 0, then F “ ρ˚Ω1

X1 satisfies the condition of the above
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proposition, where ρ : X Ñ X 1 is the canonical projection of X onto the minimal model X 1 of X. Indeed, if

X 1 is smooth, then Ω1
X1 is is a locally free sheaf of rank 2 on X 1 and so ρ˚Ω1

X1 is a locally free sheaf of rank 2

on X. Since taking determinant commutes with pullback, we have detpρ˚Ω1
X1q “ ρ˚detpΩ1

X1q “ ρ˚OXpKX1q.

Thus pdetpFqqbn “ pρ˚OXpKX1qq
bn “ ρ˚OXpnKX1q. Since X 1 is minimal, we know that OXpnKX1q is

generated by global sections (for large enough n) and so the pullback ρ˚OXpnKX1q is a sheaf generated by

global sections on X.

Proof of Proposition 3.19. Let π : V “ PpFq Ñ X be the projective bundle associated to F . Since OXp´Dq

is locally free, the projection formula can be applied i.e., we have

π˚OV pHq bOXp´Dq – π˚pOV pHq b π
˚OXp´Dqq.

Now using π˚OV pHq – F from Lemma 3.1 and that π˚OXp´Dq “ OV p´π
˚Dq, it follows that

F bOXp´Dq – π˚pOV pHq bOV p´π
˚Dqq “ π˚OV pH ´ π

˚Dq.

By definition of the direct image functor, we have H0pX,π˚OV pH ´ π˚Dqq – H0pV,OV pH ´ π˚Dqq, which

gives a canonical isomorphism

H0pX,F bOXp´Dqq – H0pV,OV pH ´ π
˚Dqq.

Thus if F b OXp´Dq has a non-trivial global section, we have |H ´ π˚D| ‰ H. Let W be an element of

the linear system |H ´ π˚D|. A non-trivial global section of F bOXp´Dq corresponds to an injective map

i : OX Ñ F bOXp´Dq, so we obtain a short exact sequence

0 ÝÑ OX
i
ÝÑ F bOXp´Dq

p
ÝÑ G ÝÑ 0

where G “ pF bOXp´Dqq{OX . Let N be the torsion subsheaf of G and let L “ p´1N be its preimage in

F bOXp´Dq. Note that L is a line bundle and contains OX , which implies that L has a non-trivial global

section. Thus L – OXpD
1q, where D1 is an effective divisor on X. There is an inclusion j : LÑ F bOXp´Dq

which fits into a short exact sequence

0 ÝÑ L j
ÝÑ F bOXp´Dq

q
ÝÑ H ÝÑ 0

where H is a torsion free sheaf. The map j corresponds to a global section of F b OXp´Dq b pL –

FbOXp´D´D
1q. It can be checked that this section has at most isolated zeros. Thus W can be decomposed

as follows

W “W0 ` π
˚D1

where W0 is an irreducible effective divisor which is linearly equivalent to H ´ π˚pD`D1q. Since pdetpFqqbn

is generated by global sections, it defines a morphism φ : X Ñ PN , for some N , such that pdetpFqqbn –
φ˚OPN p1q. Now OPN p1q is ample, so in particular it is nef. Hence the pullback φ˚OPN p1q is nef, which implies

that pdetpFqqbn is nef. Since D1 is effective, we have nD1rdetpFqs ě 0, i.e. D1rdetpFqs ě 0. Hence writing

D2 “ D `D1, we get DrdetpFqs ď D2rdetpFqs. Thus it is sufficient to prove D2rdetpFqs ď maxpc2pFq, 0q.
From Lemma 3.9 it follows that

D2rdetpFqs ď c2pFq ` pD2q2. (35)

Let f be a non-trivial global section of F bOXp´D
2q. Then multiplication by f , i.e., the map OXpD

2q Ñ F
defined on every open set U Ă X by pOXpD

2qqpUq Ñ pF bOXp´D
2qqpUq, s ÞÑ s ¨ f |U , is injective. Since
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F Ă Ω1
X , it follows that OXpD

2q is a subsheaf of Ω1
X in a canonical way. Thus OXpD

2q satisfies the conditions

of Lemma 3.17.

Now from Lemma 3.17 it follows that D2rdetpFqs ď 0 or pD2q2 ď 0. If D2rdetpFqs ď 0 then we are done. If

D2rdetpFqs ą 0 then pD2q2 ď 0 and so from the inequality (35) it follows that D2rdetpFqs ď c2pFq. This

proves the assertion.

Proposition 3.21. If κpXq ě 0 then c2pXq ě 0 and χpX,OXq ě 0.

Proof. Let X 1 be the minimal model of X. Then Remark 3.20 implies that if κpXq ě 0 then F “ ρ˚Ω1
X1 Ă Ω1

X

is a locally free sheaf of rank 2 and pdetpFqqbn “ ρ˚OX1pnKX1q is generated by global sections for some

n ą 0. But this means that pρ˚pnKX1qq
2 “ degpρqn2K2

X1 ě 0, which implies K2
X1 “ c21pX

1q ě 0. At first,

assume that the irregularity qpX 1q vanishes. Then from Lemma 1.3 we have c2pX
1q “ 2´4qpX 1q` b2pX

1q ą 0,

where b2pX
1q denotes the second Betti number of X 1. Hence we get

12χpX,OXq “ 12χpX 1,OX1q “ c21pX
1q ` c2pX

1q ą 0.

The first equality follows from the fact that χ is a birational invariant in characteristic 0 (see Remark 1.4)

and the second equality comes from the Riemann-Roch theorem. Lemma 1.2 says that blowing up a point

increases c2 by 1. Thus we have c2pXq ě c2pX
1q, and the assertion is proved.

Now assume that qpX 1q ą 0. Then from the definition qpX 1q “ h1,0 “ dimpH0pX,Ω1
X1qq, it follows

that F “ Ω1
X1 admits a non-trivial global section. Now F “ Ω1

X1 implies that detpFq “ OX1pKX1q and

pdetpFqqbn “ OX1pnKX1q. Since κpX 1q ě 0 by assumption, we know that OX1pnKX1q is generated by global

sections for some n ą 0 and so F satisfies the conditions of Proposition 3.19. Note that F “ Ω1
X1 is locally

free because X 1 is smooth. Since F admits a non-trivial global section, we know that |H| ‰ H. Let W

be an element of this linear system. Then as in the proof of Proposition 3.19, W can be decomposed as

W “ W0 ` π˚D2, where W0 is an effective and irreducible divisor linearly equivalent to H ´ π˚D2 and

D2 is an effective divisor on X 1. So from Lemma 3.9 it follows that D2rdetpFqs ď c2pFq ` pD2q2 and

since pdetpFqqbn is globally generated for some n ą 0 and D2 is effective, we have D2rdetpFqs ě 0. Since

OX1pD
2q Ă Ω1

X1 as above, and D2 is effective, we can apply Lemma 3.17 to conclude that pD2q2 ď 0. Thus

c2pXq ě c2pX
1q “ c2pΩ

1
X1q “ c2pFq ě ´pD2q2 ě 0.

Moreover, we have

12χpX,OXq “ 12χpX 1,OX1q “ c21pX
1q ` c2pX

1q ě 0.

This completes the proof.

Corollary 3.22. If κpXq “ 2 then χpX,OXq ą 0. In other words, if X is a surface of general type, then the

arithmetic genus papXq is non-negative.

Proof. We claim that if X is a minimal surface of general type, then c21pXq ą 0. Let C be a smooth hyperplane

section of X. Consider the exact sequence

0 Ñ OXpnKX ´ Cq Ñ OXpnKXq Ñ OCpnKXq Ñ 0,

and the associated long exact cohomology sequence. By [1], Theorem I.7.2, there is a c ą 0 such that

h0pX,OXpnKXqq ą cn2 for large n, while the Riemann-Roch theorem for curves implies that h0pC,OCpnKXqq

grows linearly with n. Thus there is an m ą 0 such that there is an effective divisor E in |mKX ´ C|. Since

X is minimal, KX is nef, hence KXE ě 0. We have

m2K2
X “ pmKXqpE ` Cq ě mKXC “ EC ` C2 ě C2 ą 0,
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i.e., c21pXq ą 0 as claimed.

From Proposition 3.21 we know that c2pXq ě 0. But this means that χpX,OXq “
1
12 pc

2
1pXq ` c2pXqq ą 0.

Since χpX 1,OX1q “ χpX,OXq for any surface X 1 birationally equivalent to X, the assertion follows.

Now we study symmetric powers of a locally free subsheaf of the cotangent sheaf of X. The following

result is a consequence of the ”branched covering trick”, [1], Theorem I.18.2. We give a slightly different

proof here.

Lemma 3.23. Let π : V “ PpFq Ñ X be the projective bundle associated to a locally free sheaf F of rank 2

on X and let W be an element of the linear system |mH´π˚D|, where D is a divisor on X. Then there exists

a surjective morphism β of a non-singular surface sX onto X such that β1˚W Ă Ppβ˚Fq can be decomposed

as W1 ` ...`Wm, where Wi is an effective divisor on Ppβ˚Fq linearly equivalent to sH ´ sπ˚Di, sH “ β1˚H

and Di is a divisor on sX. Here β1 : sV “ Ppβ˚Fq Ñ V and sπ : sV Ñ sX denote the morphism of projective

bundles induced by β and the canonical projection respectively.

Following is a diagram of the situation. The square is commutative.

Ppβ˚Fq PpFq

sX X

β1

sπ π

β

Proof. This result follows from the fact that the category of algebraic varieties over C and dominant rational

maps between them is contravariantly equivalent to the category of finitely generated field extensions of C.

More specifically, every dominant map φ : Y Ñ Y 1 of varieties induces a morphism φ˚ : CpY 1q Ñ CpY q of

function fields and conversely, every morphism θ : K Ñ L of function fields induces a dominant rational map

ψθ : Y Ñ Y 1 with K – CpY 1q and L – CpY q.
Let x be the generic point of X. Then, then residue field Cpxq is equal to the the function field CpXq of X.

The fibre π´1pxq is a projective line over Cpxq. Since W P |mH ´ π˚D|, W meets π´1pxq in m points and so

Wx “W X π´1pxq is the vanishing locus of a homogeneous polynomial f “
ř

fiT
i of degree m, where T is

the coordinate on the projective line π´1pxq and fi P Cpxq. Now let K be the splitting field of f , then K

is a finite field extension of CpXq. Then by the contravariant equivalence of categories result, there exists

a variety sX and a rational map β : sX Ñ X which is generically finite and dominant. This ensures that
sX is a surface and moreover that Cp sXq “ K. A rational map of surfaces can be extended to a morphism

after a sequence of blow-ups. Since blowing up preserves function fields up to isomorphism, we may assume

that sX is a non-singular surface and that β : sX Ñ X is a surjective morphism. The morphism β induces

a morphism β1 : Ppβ˚Fq Ñ PpFq of projective bundles (see figure above) and W 1 “ pβ1q˚W is an effective

divisor on Ppβ˚Fq in the linear system |m sH ´ sπ˚β˚D|. Let sx denote the generic point of sX. Then W 1 meets

the fibre sπ´1psxq in m points i.e., W 1
sx “W 1 X sπ´1psxq consists of m points and is the vanishing locus of β˚f .

Since CpXq Ñ Cp sXq is an inclusion, β˚f is just f i.e., β˚f “
ř

fipT
1qi, where T 1 is the coordinate on the

projective line sπ´1psxq. Since f splits in Cp sXq, β˚f can be expressed as a product of m linear polynomials

and hence W 1
sx can be decomposed as W 1

sx “ W
sx,1 ` ... `W

sx,m, where each W
sx,i is the vanishing locus of

a linear polynomial with coefficients in Cp sXq. Since this decomposition holds over the generic point, it

holds everywhere i.e., we can write W 1 “ pβ1q˚W “ W1 ` ... `Wm, where each Wi is an effective divisor

in | sH ´ sπ˚Di|, where Di is a divisor on sX and the Di are such that
ř

Di ” β˚D, where ” denotes linear

equivalence. This completes the proof.
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Theorem 3.24. Let F Ă Ω1
X be a locally free sheaf of rank 2 on a complete non-singular surface X such

that pdetpFqqbn is generated by global sections for some n ą 0. If SmF bOXp´Dq has a non-trivial global

section then the inequality

DrdetpFqs ď maxpmc2pFq, 0q

holds.

Proof. Let f be a global section of SmF b OXp´Dq. We again use that OXp´Dq is locally free and the

projection formula to get an isomorphism

π˚OPpFqpmHq bOXp´Dq – π˚pOPpFqpmHq b π
˚OXp´Dqq.

Using π˚OPpFqpmHq – SmF from Lemma 3.1 and that π˚OXp´Dq – OPpFqp´π
˚Dq, it follows that

SmF bOXp´Dq – π˚pOPpFqpmHq bOPpFqp´π
˚Dqq “ π˚OPpFqpmH ´ π

˚Dq.

Since H0pX,π˚OPpFqpmH ´ π
˚Dqq – H0pPpFq,OPpFqpmH ´ π

˚Dqq, we get a canonical isomorphism

H0pX,SmF bOXp´Dqq – H0pPpFq,OPpFqpmH ´ π
˚Dqq.

Thus, f corresponds uniquely to a global section of OPpFqpmH ´ π˚Dq which defines an effective divisor

linearly equivalent to mH ´ π˚D i.e., a divisor W in the linear system |mH ´ π˚D| on PpFq. From the

proof of Lemma 3.23 we know that there exists a surjective morphism β : sX Ñ X, where sX is a non-singular

surface whose function field Cp sXq is such that β˚f splits into linear factors in Cp sXq. We can write

β˚f “ f1...fm P H
0p sX,β˚SmF bO

ĎXp´β
˚Dqq “ H0p sX,Smβ˚F bO

ĎXp´β
˚Dqq, (36)

with fi P H
0p sX,β˚F bO

ĎXp´Diqq where Di is a divisor on sX, for all i. The equality in (36) follows from the

fact that pullback commutes with taking symmetric powers. Note that there are canonical injections β˚F Ă

β˚Ω1
X Ă Ω1

ĎX
. Since pullback commutes with taking determinant, we have pdetpβ˚Fqqbn – β˚pdetpFqqbn.

Moreover, β˚pdetpFqqbn is generated by global sections because the pullback along a surjective morphism

of a globally generated sheaf is globally generated. Since F is a locally free sheaf of rank 2, so is β˚F , and

β˚F bO
ĎXp´Diq has a non-trivial global section, namely fi, for all i. Thus, the conditions of Proposition

3.19 are satisfied. Applying Proposition 3.19, we get the inequalities

Dirdetpβ˚Fqs ď maxpc2pβ
˚Fq, 0q, (37)

for all i. Since pβ1q˚W decomposes as pβ1q˚W “W1` ...`Wm, where each Wi is an effective divisor linearly

equivalent to sH ´ sπ˚Di, pβ
1q˚W must be linearly equivalent to m sH ´

ř

sπ˚Di “ m sH ´ sπ˚
ř

Di. But W is

linearly equivalent to mH ´ π˚D, which implies that pβ1q˚W is linearly equivalent to pβ1q˚pmH ´ π˚Dq “

mpβ1q˚H´pβ1q˚π˚D “ m sH´sπ˚β˚D. So comparing, we see that sπ˚β˚D “ sπ˚
ř

Di. Since sπ : Ppβ˚Fq Ñ sX

is surjective, sπ˚ : Picp sXq Ñ PicpPpβ˚Fqq is injective, and we get β˚D “
ř

Di. Thus, summing up the

inequalities (37) for all i, we have

β˚Drdetpβ˚Fqs “
`

ÿ

Di

˘

rdetpβ˚Fqs ď maxpmc2pβ
˚Fq, 0q.

Letting d be the mapping degree of β, we have

β˚Drdetpβ˚Fqs “ dDrdetpFqs, c2pβ
˚Fq “ dc2pFq.

Thus β˚Drdetpβ˚Fqs ď maxpmc2pβ
˚Fq, 0q “ maxpmdc2pFq, 0q. So dDrdetpFqs ď maxpmdc2pFq, 0q implies

DrdetpFqs ď maxpmc2pFq, 0q. This completes the proof.
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Theorem 3.25. If X is a non-singular complete surface of general type then the inequality

c21pXq ď 3c2pXq

holds.

Proof. Suppose X is minimal and let X 1 be a surface birationally equivalent to X. We know from Lemma

1.2 that blowing up a point increases c2 by 1, and so c2pX
1q ě c2pXq. But we also know that χpX,OXq “

χpX 1,OX1q, which implies c21pXq ` c2pXq “ c21pXq ` c2pX
1q. Now c2pX

1q ě c2pXq implies c21pX
1q ď c21pXq.

If X satisfies c21pXq ď 3c2pXq, then c21pX
1q ď c21pXq ď 3c2pXq ď 3c2pX

1q. Thus we may assume X to be

minimal.

We consider the problem in two cases

1. c21pXq ď 2c2pXq; in this case there is no question.

2. c21pXq ą 2c2pXq.

In case 2, put

α “
c2pXq

c21pXq
ă

1

2
,

and let δ ą 0 be a sufficiently small rational number. We claim that

h0pX,SmΩ1
X bOXp´mpα` δqKXqq “ 0,

where m is any positive integer such that mpα` δq P Z. We know that if F is a locally free sheaf of rank 2

on X which satisfies the conditions of Theorem 3.24, and if SmF bOXp´Dq has a non-trivial global section,

then the inequality DrdetpFqs ď maxpmc2pFq, 0q holds. In this situation we have D “ mpα ` δqKX and

F “ Ω1
X , so that detpFq “ OXpKXq. Note that m,α, δ ą 0, and since κpXq “ 2 and X is minimal, it follows

from the proof of Corollary 3.22 that K2
X ą 0. Hence we have DrdetpFqs “ mpα` δqK2

X ą 0. Now

mpα` δqK2
X “ m

´c2pXq

c21pXq
` δ

¯

K2
X “ mc2pXq `mδK

2
X “ mc2pFq `mδK2

X ą mc2pFq.

Thus the inequality of Theorem 3.24 is not satisfied, which means SmΩ1
X b OXp´mpα ` δqKXq has no

non-trivial global sections i.e., h0pX,SmΩ1
X bOXp´mpα` δqKXqq “ 0 as claimed.

Serre duality implies that

h2pX,SmΩ1
X bOXp´mpα` δqKXqq “ h0pX,SmΩ1

X bOXp´mp1´ α´ δqKX ´KXqq. (38)

Since α ă 1
2 and δ is small, we have 1´ α´ δ ą α. We claim that

h2pX,SmΩ1
X bOXp´mpα` δqKXqq “ 0,

for any sufficiently large m. From the equality (38), this is equivalent to saying that h0pX,SmΩ1
XbOXp´mp1´

α´ δqKX ´KXqq “ 0. We take F “ Ω1
X and D “ mp1´ α´ δq `KX and apply Theorem 3.24. In this case

we have

DrdetpFqs “ mp1´ α´ δqK2
X `K

2
X ą mαK2

X `K
2
X ,

since 1 ´ α ´ δ ą α. Thus we have mαK2
X `K2

X “ mc2pΩ
1
Xq `K2

X ą mc2pΩ
1
Xq, because K2

X ą 0. The

inequality of Theorem 3.24 is not satisfied, which implies that h0pX,SmΩ1
XbOXp´mp1´α´δqKX´KXqq “ 0
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for a sufficiently large m, as claimed. From the Hirzebruch-Riemann-Roch theorem it follows that the Euler

characteristic χpX,SmΩ1
X bOXp´mpα` δqKXqq is non-positive. On the other hand, we know that

χpX,SmΩ1
X bOXp´mpα` δqKXqq “ χpV,OV pmpH ´ pα` δqπ

˚KXqqq

grows asymptotically as

1

6
pH ´ pα` δqπ˚KXq

3m3,

where V is the projective bundle PpΩ1
Xq and H the tautological line bundle on V . Hence we obtain the

inequality pH ´ pα` δqπ˚KXq
3 ď 0. Letting δ Ñ 0, we have

0 ě pH ´ απ˚KXq
3 (39)

“ H3 ´ 3H2απ˚KX ` 3Hpαπ˚KXq
2 ´ pαπ˚KXq

3 (40)

“ c21pXq ´ c2pXq ´ 3αc21pXq ` 3α2c21pXq. (41)

The equality (41) follows from applying Lemma 3.5 to the equality (40). Putting c2pXq “ αc21pXq in equality

(41), we get

0 ě p1´ α´ 3α` 3α2qc21pXq

“ p1´ αqp1´ 3αqc21pXq.

Since α ă 1
2 and c21pXq ą 0, this implies that 3α ě 1. Thus c21pXq ď 3c2pXq. This proves the theorem.

Following are some easy consequences.

Corollary 3.26. If X is a surface of general type, then c2pXq ą 0.

Proof. If X is a minimal surface of general type, then we know from the proof of Proposition 3.21 that

c21pXq ą 0. From theorem 3.25 we have c21pXq ď 3c2pXq, which implies that c2pXq ą 0. If X 1 is any surface

of general type then c2pX
1q ě c2pXq and so the assertion follows.

Corollary 3.27. If X is a surface of general type, then the inequality papXq ě
1
9c

2
1pXq ´ 1 holds.

Proof. The arithmetic genus pa of a complete smooth algebraic surface X is equal to

papXq “ χpX,OXq ´ 1.

Now χpX,OXq “
1
12 pc

2
1pXq ` c2pXqq implies that

pa “
1

12
pc21pXq ` c2pXqq ´ 1.

From Theorem 3.25 we have the inequality c21pXq ď 3c2pXq for X a surface of general type. Thus c2pXq ě
1
3c

2
1pXq and so papXq ě

1
12 pc

2
1pXq `

1
3c

2
1pXqq ´ 1 i.e.,

papXq ě
1

9
c21pXq ´ 1.
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4 Examples and Applications

We now discuss some examples of surfaces of general type. The results discussed in subsections 4.1, 4.2, and 4.3

are those in subsections 6A, 6B, and 6C respectively, in Miyaoka’s paper [10]. With the exception of subsection

4.3, we study surfaces of general type which satisfy the extreme case of the inequality of Theorem 3.25 i.e,

surfaces whose Chern numbers satisfy c21 “ 3c2. It is known that a surface X of general type satisfies this

equality if and only if the universal cover of X is the complex unit ball B2 “ tpz1, z2q P C2 | |z1|
2 ` |z2|

2 ă 1u.

4.1 Surfaces with c21 “ 3c2 (construction by Borel and Hirzebruch)

The ball B2 is a bounded symmetric domain Up2, 1q{Up2q ˆ Up1q. Suppose that a group G acts freely on B

and that B{G is compact. Then X “ B{G is non singular algebraic surface of general type. Consider the

associated compact symmetric space B1 “ Up3q{Up2q ˆ Up1q, which is also an algebraic variety, and is in

fact isomorphic to the projective plane P2. Hirzebruch found that the Chern numbers of the two algebraic

varieties X and B1 are closely related.

Theorem 4.1 (Hirzebruch). There is a constant t associated to the group G such that

c21pXq “ tc21pP2q, c2pXq “ tc2pP2q.

Since KX is ample, we have c21pXq ą 0. On the other hand, the equalities c21pP2q “ 9, c2pP2q “ 3 imply

that c21pXq “ 3c2pXq.

4.2 Surfaces of which the intersection matrices are positive definite

Let X be an algebraic surface and suppose that the intersection form on H2pX,Qq is positive definite. Then

we have the following result.

Proposition 4.2. We have the equality

pgpXq “ qpXq “ 0, b2pXq “ 1.

In particular, we have c21pXq “ 9 and c2pXq “ 3.

Proof. We set hi,jpXq “ dimHjpX,Ωi
Xq, and let b2pXq denote the second Betti number of X. Note that

b2pXq “ h2,0pXq ` h1,1pXq ` h0,2pXq and moreover that h2,0pXq “ h0,2pXq by Serre duality. We also

have pgpXq “ h2,0pXq, which gives b2pXq “ 2pgpXq ` h1,1pXq. Recall that b2pXq “ dimH2pX,Qq and let

tΓ1, ...,Γi, ...,Γb2u denote a basis of H2pX,Qq. Define b` and b´ to be, respectively, the number of positive

and negative eigenvalues of the symmetric matrix pΓiΓjqij , where ΓiΓj denotes the intersection product of Γi

and Γj . Then from Theorem 1.5 and the paragraph preceding it, we have

b` ´ b´ “ ´
2

3
c2 `

1

3
c21 (42)

b` ` b´ “ b2. (43)

Since we have assumed that the intersection form on H2pX,Qq is positive definite, we have that the matrix

pΓiΓjqij has no negative eigenvalues, i.e., b´ “ 0. Then equation (43) implies b` “ b2pXq. Now, since X is

a non-singular complex surface, we have h1,0pXq “ h0,1pXq, which implies that b1pXq “ h1,0pXq ` h0,1pXq

is even. Thus from statement 1 of Theorem 1.7, we have b` “ 2pgpXq ` 1. It follows that 2pgpXq ` 1 “
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2pgpXq`h
1,1pXq, i.e., h1,1pXq “ 1. On the other hand, equation (42) implies that b2pXq “

1
3 pc

2
1pXq´2c2pXqq.

Hence, applying Theorem 3.25, i.e. the inequality c21 ď 3c2, we have

2pgpXq ` 1 “ b2pXq ď
1

3
c2pXq “

1

3
p2´ 4qpXq ` b2pXqq.

Using b2pXq “ 2pgpXq ` 1 again on the right hand side, we get

2pgpXq ` 1 ď
1

3
p2´ 4qpXq ` 2pgpXq ` 1q “ 1`

1

3
p2pgpXq ´ 4qpXqq.

This gives pgpXq ď ´qpXq. Since pgpXq “ h2,0pXq and qpXq “ h1,0pXq, pgpXq and qpXq are both non-

negative, which implies pgpXq “ qpXq “ 0. Thus b2pXq “ h1,1pXq “ 1 and c2pXq “ 2 ´ 0 ` 1 “ 3. From

equation (42) we get c21pXq “ 9. This proves the assertion.

Corollary 4.3. Let kP2 denote the connected sum of k copies of the complex projective plane P2. Then the

topological manifold kP2 admits a complex structure if and only if k “ 1.

Proof. We know that the Betti numbers b0, b1, b2, b3, b4 of the complex projective plane P2 are 1, 0, 1, 0, 1

respectively. Thus if a complex surface X is homeomorphic to kP2 then b1pXq “ 0 and b2pXq “ k. Moreover,

the intersection form on X is positive or negative definite according to the orientation of X. On the other

hand, since b1pXq “ 0, X is a Kähler manifold or a K3 surface. In any case, the intersection form is not

negative definite. This proves the assertion.

4.3 Surfaces with c21 ď 2c2

Let pp, rq be a pair of integers. If p` r – 0 mod 12 and p ď 2r, then we can construct a surface X such that

c21pXq “ p, and c2pXq “ r as follows. Suppose q is an integer such that 12q “ p` r. Then from p ď 2r we

get the inequalities p ď 8q and r ě 4q. Let C be a smooth curve of genus gpCq “ |q| ` 1, and set

C 1 “

$

&

%

P1 if q ă 0,

a smooth curve of genus 2 if q ě 0.

Consider the surface X 1 “ C ˆ C 1. Let p1 : X 1 Ñ C and p2 : X 1 Ñ C 1 denote the two projections. Then the

canonical divisor of X 1 is given by KX1 “ p˚1KC ` p
˚
2KC1 , where KC and KC1 are the canonical divisors of C

and C 1 respectively (see Exercise II.1.5 in [3]). Thus we have

K2
X1 “ pp

˚
1KC ` p

˚
2KC1q

2 “ pp˚1KCq
2 ` 2pp˚1KCqpp

˚
2KC1q ` pp

˚
2KC1q

2. (44)

Note that degpKCq “ 2gpCq ´ 2, so the support of KC consists of 2gpCq ´ 2 points on C. Similarly, the

support of KC1 consists of 2gpC 1q ´ 2 points on C 1. Thus p˚1KC „ p2gpCq ´ 2qptptu ˆ C 1q „ p2gpCq ´ 2qC 1

and similarly p˚2KC1 „ p2gpC
1q ´ 2qpC ˆ tptuq „ p2gpC 1q ´ 2qC, where „ denotes numerical equivalence.

Plugging this into equation 44, we get

K2
X1 “ p2gpCq ´ 2qC 12 ` 2p2gpCq ´ 2qp2gpC 1q ´ 2qCC 1 ` p2gpC 1q ´ 2q2C2. (45)

Note that for any two points P,Q P C, the fibres p˚1 tP u and p˚1 tQu are algebraically equivalent, which implies

they are numerically equivalent. Moreover, the fibres are disjoint. Since C 1 „ ptP uˆC 1q “ p˚1 tP u „ p˚1 tQu “

ptQu ˆ C 1q, we have C 12 “ pp˚1 tP uq
2 “ pp˚1 tP uqpp

˚
1 tQuq “ ptP u ˆ C 1qptQu ˆ C 1q “ 0. Similarly, we have

C2 “ 0. The fibre of any point P P C meets the fibre of any point P 1 P C 1 at exactly one point in X, namely

pP, P 1q and hence CC 1 “ 1. Thus it follows from equation 45 that

K2
X1 “ 2p2gpCq ´ 2qp2gpC 1q ´ 2q “ 8pgpCq ´ 1qpgpC 1q ´ 1q. (46)
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The Euler characteristic of X is given by epXqepC ˆ C 1q “ epCqepC 1q. We know that epCq “ 2´ 2gpCq and

similarly for C 1. Thus we have c2pX
1q “ epX 1q “ p2 ´ 2gpCqqp2 ´ 2gpC 1qq “ 4pgpCq ´ 1qpgpC 1q ´ 1q. This

implies that

c2pX
1q “

1

2
K2
X1 . (47)

From the equalities 46 and 47 it follows that c21pX
1q “ 8q “ 2c2pX

1q. Now let X be the surface which is the

blow-up of X 1 at 8q ´ p points. Since blowing up a point decreases c21 by 1 and increases c2 by 1, we have

c21pXq “ 8q ´ p8q ´ pq “ p and c2pXq “ 4q ` 8q ´ p “ 12q ´ p “ r. Thus X is a surface with the desired

Chern numbers. Moreover, since κpXq “ κpX 1q “ κpCq ` κpC 1q (see Theorem I.7.3 in [1]), we have

κpXq “

$

’

’

&

’

’

%

´8 if q ă 0,

1 if q “ 0,

2 if q ą 0.

4.4 The complete quadrilateral

It is well-known that the Chern numbers of the projective plane P2 are c21pP2q “ 9 and c2pP2q “ 3 i.e., they

satisfy c21pP2q “ 3c2pP2q. From Theorem 3.25 we have the inequality c21 ď 3c2 for surfaces of general type.

Our goal is to study surfaces of general type which satisfy the extreme case of this inequality i.e., surfaces for

which the equality c21 “ 3c2 holds. This motivates the following definition.

Definition 4.4. The proportionality deviation ProppY q of a complex surface Y is given by

ProppY q “ 3c2pY q ´ c
2
1pY q.

For example, ProppP2q “ 0. The following theorem gives a formula to compute the proportionality

deviation for good coverings (see Definition 2.4) and is a useful computational tool.

Theorem 4.5. Let the setting be as in Definition 2.4. Then for good coverings π : Y Ñ X of degree N , the

proportionality deviation is given by

ProppY q

N
“

3c2pY q ´ c
2
1pY q

N
“ 3c2pXq ´ c

2
1pXq `

ÿ

i

xip´epDiq ` 2D2
i q `

1

2

ÿ

i‰j

xixjDiDj ´
ÿ

i

x2iD
2
i , (48)

where the xi’s are real numbers given by xi “ 1´ 1
bi

for all i, and the bi’s are positive integers as in Definition

2.4.

Proof. The equality 48 follows from combining the equalities 4 and 13.

We now study a line arrangement in P2 which gives rise to a surface Y for which ProppY q vanishes. This

arrangement is known as the complete quadrilateral and it is the arrangement of six lines having four triple

intersection points, labelled 0i for i “ 1, 2, 3, 4, no three of which are collinear (see figure below). Any four

points with this property are equivalent up to a projective transformation. The six lines, labelled Lαβ for
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α, β P t1, 2, 3, 4u, are the six ways of connecting these four points by lines.

01

02

03

04L23

L34

L13

L24L12

L14

This arrangement has three double and four triple intersection points. Any three of its lines not having

a common triple intersection point give an affine coordinate system on an open subset of P2. In suitable

projective coordinates pz0 : z1 : z2q, the arrangement is given by the equation

z0z1z2pz2 ´ z1qpz2 ´ z0qpz0 ´ z1q “ 0.

We now construct a new surface X by blowing up the four triple intersection points of the complete

quadrilateral on P2. Thus the surface X has ten divisors Dαβ , α, β P t0, 1, 2, 3, 4u, six of which are transforms

of the original six lines of the arrangement and the other four are exceptional divisors corresponding to the

blown-up points. For example, the divisor D12 is the proper transform of the line in the original arrangement

passing through the points 03 and 04, while D0i for i “ 1, 2, 3, 4 is the divisor obtained by blowing up the

point 0i (see figure below).

D14D01

D24

D12

D34

D02

D04

D13

D23

D03

The ten divisors have only simple intersection points and there are fifteen such points.

Note that the intersection number of any two lines in the complete quadrilateral is 1. Since each line in the

arrangement is isomorphic to P1, the self-intersection number of each line is 1. We now want to determine

the intersection numbers of all divisors in the blown-up arrangement on X.

Lemma 4.6. The intersection numbers of the ten divisors Dαβ on X are given by

DαβDγδ “

$

’

’

&

’

’

%

1 if tαβu ‰ tγδu and tαβu X tγδu “ H

0 if tαβu ‰ tγδu and tαβu X tγδu ‰ H

´1 if tαβu “ tγδu.

(49)
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Proof. We begin by computing the self-intersection numbers. We have D2
0i “ ´1 for i “ 1, 2, 3, 4 since

the D0i’s are the exceptional divisors. For the other six Dαβ which are proper transforms of the Lαβ , we

have D2
αβ “ pπ

˚Lαβ ´ D0γ ´ D0δq
2, where tαβu X tγδu “ H and π denotes the projection of X onto P2.

Since the exceptional divisors are disjoint, we have D0iD0j “ 0 for i ‰ j and since pπ˚Dqpπ˚D1q “ DD1

for any two divisors D, D1 on P2, we have pπ˚Lαβq
2 “ L2

αβ “ 1. By Serre’s moving lemma we can move

Lαβ away from the points 0γ, 0δ it passes through, and then pullback along π, from which it follows that

pπ˚LαβqD0γ “ pπ
˚LαβqD0δ “ 0. Hence we get

D2
αβ “ pπ

˚Lαβ ´D0γ ´D0δq
2 “ L2

αβ `D
2
0γ `D

2
0δ “ ´1,

for α, β P t1, 2, 3, 4u. Thus we have D2
αβ “ ´1 for all α, β P t0, 1, ..., 4u.

Next, we compute intersection numbers DαβDγδ, where tαβu ‰ tγδu. We already know D0iD0j “ 0 for

i ‰ j. Consider the intersection DαβD0γ , where Dαβ is not an exceptional divisor. We have DαβD0γ “

pπ˚Lαβ ´ D0µ ´ D0νqD0γ “ pπ
˚LαβqD0γ ´ D0µD0γ ´ D0νD0γ . Thus if µ “ γ or ν “ γ, the intersection

number DαβD0γ equals 1, otherwise it equals 0. Finally, consider the intersection DαβDγδ where none of

Dαβ , Dγδ is an exceptional divisor. Hence we get

DαβDγδ “ pπ
˚Lαβ ´D0µ ´D0νqpπ

˚Lγδ ´D0η ´D0ρq

“ LαβLγδ `D0µD0η `D0µD0ρ `D0νD0η `D0νD0ρ.

If tαβu X tγδu ‰ H then the intersection number DαβDγδ equals 0, otherwise it equals 1. To summarize, we

have DαβDγδ “ 1 if tαβu X tγδu “ H and DαβDγδ “ 0 if tαβu X tγδu ‰ H, for all α, β, γ, δ P t0, 1, ..., 4u.

Hence, the intersection numbers are as given in 49 and the assertion is proved.

Since each of the ten divisors Dαβ on X is isomorphic to P1, we have epDαβq “ 2 and hence ´epDαβq `

2D2
αβ “ ´4 for all ten Dαβ . By Lemma 1.2, blowing up a point increases c2 by 1 and decreases c21 by 1. So

we have

3c2pXq ´ c
2
1pXq “ 3pc2pP2q ` 4q ´ pc21pP2q ´ 4q “ 16.

Using Lemma 4.6 together with the formula 48 of Theorem 4.5, we conclude that a good covering Y of X of

degree N satisfies

ProppY q

N
“ 16`

ÿ

´4xαβ `
ÿ

x2αβ `
1

2

ÿ

xαβ

´

ÿ

tαβu‰tγδu

xαβDαβDγδ

¯

. (50)

In order for Y to satisfy the equality c21pY q “ 3c2pY q, we want the right hand side of the equality 50 to

vanish. Thus we want real numbers xαβ which give ProppY q “ 0 when plugged into equation 50.

We now exhibit a case in which ProppY q vanishes. Let µ0, µ1, µ2, µ3, µ4 be real numbers such that µ0`...`µ4 “

2 and let xαβ “ µα ` µβ . Then we have
ÿ

αβ

xαβ “ 8.

Putting this into the equality 50, we get

ProppY q

N
“ ´16`

1

2

ÿ

xαβ

!´

ÿ

tαβu‰tγδu

xαβDαβDγδ

¯

` 2xαβ

)

.

It is easily checked that for every αβ, the term in the parentheses t¨u equals 4. Thus it follows that

ProppY q

N
“ ´16`

1

2

ÿ

αβ

4xαβ “ ´16` 16 “ 0.
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Note however, that we have the additional requirement xαβ “ 1´ 1
bαβ

, where bαβ are positive integers as in

Definition 2.4. We want solutions of ProppY q “ 0 with the additional constraint

bαβ “
1

1´ xαβ
“

1

1´ pµα ` µβq
P Zě1. (51)

There are eight solutions of ProppY q “ 0 with the constraint 51, with 0 ă µα ă 1 and
ř

µα “ 2 which are

given in Table 3.1 in [13]. Each of these eight solutions gives a surface Y which, assuming it exists, is a ball

quotient i.e., it is a surface of general type which satisfies the equality c21pY q “ 3c2pY q. In his paper [5], Kato

has proved that for an arbitrary line arrangement in P2, and any set of integers bi assigned to the divisors Di

on X such that bi ě 2 for all i, there exists a good covering Y of X branched along the new arrangement of

divisors on X, with ramification index bi along the divisor Di. Note that we have discussed the construction

of a good cover in the special case bi “ n for all i, n ě 2, in section 2.3. In this case Y is called a Kummer

covering of X.

In the complete quadrilateral case, the solution µα “
2
5 for all α, and hence bαβ “ 5 for example, gives rise to

a Kummer covering Y of X. We discuss this in more detail in the next section.

4.5 The case of a Kummer covering

Consider an arrangement of k ě 3 lines L1, ..., Lk in P2 which are given by homogeneous linear equations

l1 “ 0, ..., lk “ 0. Assume that not all of the lines pass through a single point, i.e., the arrangement is not a

pencil. Let tr denote the number of points in the arrangement through which r lines pass. Then the number

of regular intersection points is t2 and the number of singular intersection points is
ř

rě3 tr. We blow up

P2 at these
ř

rě3 tr singular points and get a smooth surface X. Let Di denote the proper transform of Li

for i “ 1, ..., k and let Ej be the exceptional divisors corresponding to the blown-up points. Assign to each

Di the ramification ni “ n and to each Ej the ramification mj “ n. We have described in section 2.3 the

construction of a good covering Y of X (see Definition 2.4) of degree N “ nk´1 branched along each Di with

index ni “ n and along each Ej with index mj “ n.

We know from statement 1 of Theorem 1.1 that CpXq “ CpP2q, where CpXq and CpP2q denote the function

fields of X and P2 respectively. Thus the quotient li{lj of two linear polynomials in homogeneous coordinates

is a meromorphic function on X. We consider all the n-th roots n
a

li{lj , i ‰ j. The covering Y is defined by

the property that these n-th roots all become single valued on Y .

The function field of Y is given by

CpY q “ CpXqp n
a

l1{lk, ...,
n
a

lk´1{lkq.

Note that CpY q is a Kummer extension of CpXq of degree nk´1, and hence Y is a Kummer covering of X of

degree nk´1. More formally,

Definition 4.7. A covering π : Y Ñ X is called a Kummer covering if the function field of Y is a Kummer

extension of the function field of X.

Note that the existence of Y is guaranteed by the result of Kato [5], and also by the construction carried

out in section 2.3.

Proposition 4.8. The surface Y satisfies the following equation

n2
´3c2pY q ´ c

2
1pY q

N

¯

“ pn´ 1q2pf0 ´ kq ´ 2pn´ 1qpf1 ´ 2f0q ` 4pf0 ´ t2q. (52)

where f0 “
ř

rě2 tr and f1 “
ř

rě2 rtr.

40



Proof. Multiplying the formula 48 by n2, we get

n2
´3c2pY q ´ c

2
1pY q

N

¯

“ n2p3c2pXq ´ c
2
1pXqq ` n

2
ÿ

i

xip´epDiq ` 2D2
i q `

n2

2

ÿ

i‰j

xixjDiDj ´ n
2
ÿ

i

x2iD
2
i .

Note that the Di in the above equation denote the proper transforms of the original lines in the arrangement

and the exceptional divisors. Since the ramification indices bi are equal to n for all i, we have xi “ 1´ 1
bi
“ 1´ 1

n

for all i. Putting this into the above equation we get

n2
´3c2pY q ´ c

2
1pY q

N

¯

“ n2p3c2pXq ´ c
2
1pXqq ` npn´ 1q

ÿ

i

p´epDiq ` 2D2
i q `

pn´ 1q2

2

ÿ

i‰j

DiDj

´ pn´ 1q2
ÿ

i

D2
i . (53)

We compute each term in the right hand side of the equation 53. The surface X is a blow-up at all the

singular intersection points of the arrangement i.e., points through which r ě 3 lines pass. The number of

such points is
ř

rě3 tr “ f0 ´ t2. By Lemma 1.2 we have

3c2pXq ´ c
2
1pXq “ 4pf0 ´ t2q.

Each divisor Di is isomorphic to P1 and so epDiq “ 2 for all i. The total number of divisors is the number of

lines in the original arrangement plus the number of singular points which is k ` f0 ´ t2. Hence we get

ÿ

i

epDiq “ 2pk ` f0 ´ t2q.

If Di is an exceptional divisor, then D2
i “ ´1. If Di is not an exceptional divisor, then D2

i “ pπ
˚Li ´ Ei1 ´

...´Eir q
2 “ pπ˚Liq

2 `E2
i1
` ...`E2

ir
, where Ei1 , ..., Eir are the exceptional divisors which intersect Di. The

number of such divisors is equal to the number of singular points lying on Li. Letting σi denote the number

of singular points lying on Li, we get D2
i “ 1´ σi. Thus we have

ÿ

i

D2
i “

ÿ

i

p1´ σiq ´ pf0 ´ t2q

“ k ´
ÿ

i

σi ´ pf0 ´ t2q.

Note that
ř

i σi is the number of singular points of the arrangement counted with multiplicity. An r-fold

intersection point is counted r times in the sum- once for each line it lies on. Hence
ř

i σi “
ř

rě3 rtr “ f1´2t2.

Plugging this into the equation above, we get

ÿ

i

D2
i “ k ´ pf1 ´ 2t2q ´ pf0 ´ t2q “ k ´ f0 ´ f1 ` 3t2.

The intersection number DiDj of two divisors is either 1 or 0. If Di and Dj are proper transforms of

lines in the original arrangement meeting at a regular point, or if one of Di, Dj is an exceptional divisor

corresponding to a singular point lying on a line of which the other divisor is the proper transform, then

DiDj “ 1. Otherwise DiDj “ 0. It follows that

ÿ

i‰j

DiDj “ 2pf1 ´ t2q.

Putting everything into the equation 53, we get

n2
´3c2pY q ´ c

2
1pY q

N

¯

“ 4n2pf0 ´ t2q ` npn´ 1qp´4f0 ´ 2f1 ` 8t2q ` pn´ 1q2p´k ` f0 ` 2f1 ´ 4t2q.
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Finally, we write the above equation as a polynomial equation in n´ 1 and arrive at

n2
´3c2pY q ´ c

2
1pY q

N

¯

“ pn´ 1q2pf0 ´ kq ´ 2pn´ 1qpf1 ´ 2f0q ` 4pf0 ´ t2q,

which is the equation 52. This proves the assertion.

We want to apply this result to some known line arrangements in the projective plane. For the complete

quadrilateral discussed in subsection 7.2, we have k “ 6 lines, t2 “ 3 regular intersection points and t3 “ 4

triple intersection points. This gives f0 “ 7 and f1 “ 18. Plugging this into the equation 52, we get

n2
´ProppY q

N

¯

“ pn´ 5q2.

Thus, we get ProppY q “ 0 if n “ 5. In other words, the Kummer covering Y is a ball quotient (see subsection

4.1) for n “ 5. The degree of the covering is N “ nk´1 “ 55.

For the Hesse arrangement (see [13], Chapter 5), we have k “ 12, t2 “ 12, t3 “ 0, and t4 “ 9, which gives

f0 “ 21 and f1 “ 60. Putting this in equation 52, we have

n2
´ProppY q

N

¯

“ 9pn´ 3q2.

Thus a Kummer covering of the blown up Hesse arrangement is a ball quotient for n “ 3. The degree of the

covering in this case is N “ nk´1 “ 311.

For the Ceva(3) arrangement (see [13], Chapter 5) we have k “ 9, t2 “ 0, and t3 “ 12. This gives f0 “ 12

and f1 “ 36. Again, we put this into equation 53 and get

n2
´ProppY q

N

¯

“ 3pn´ 5q2.

The Kummer covering is a ball quotient for n “ 5 and the degree of the covering in this case is N “ nk´1 “ 58.

It easy to see that in each of the three examples, Y is a surface of general type, because we have c21pY q ą 9

for each example. For the complete quadrilateral we have c21pY q “ 32 ¨ 54, for the Hesse arrangement we have

c21pY q “ 24 ¨ 311, and for the Ceva(3) arrangement we have c21pY q “ 32 ¨ 56 ¨ 37.

5 Fake projective planes

In this section we discuss the results in the article of Keum [6]. In this paper he classifies all possible structures

of surfaces which are quotients of fake projective planes by their finite automorphism groups, and their

minimal resolutions. He first considers the case when the automorphism group is of prime order and proves

the following

Theorem 5.1. Let G be a group of automorphisms of a fake projective plane X. Let Z “ X{G and ν : Y Ñ Z

be a minimal resolution. Then the following claims hold

1. If the order of G is 3, then Z has three singular points of type 1
3 p1, 2q, and Y is a minimal surface of

general type with K2
Y “ 3, pgpY q “ 0.

2. If the order of G is 7, then Z has three singular points of type 1
7 p1, 3q, and Y is a minimal elliptic

surface of Kodaira dimension 1 with two multiple fibres. The pair of multiplicities is one of the following

three cases: (2,3), (2,4), (3,3).
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5.1 Preliminary results

A fake projective plane is a compact complex surface which has the same Betti numbers as the complex

projective plane P2, but is not isomorphic to it. There are a number of equivalent characterizations of fake

projective planes, some of which are as follows.

Theorem 5.2. A non-singular compact complex surface X with b1pXq “ 0, b2pXq “ 1 is a fake projective

plane if one the following holds true:

1. X is not isomorphic to P2.

2. X is not homeomorphic to P2.

3. X is not homotopy equivalent to P2.

4. The fundamental group π1pXq is an infinite group.

5. The universal cover of X is a two-dimensional complex ball B2 Ă C2, and X – B2{π1pXq, where

π1pXq Ă PUp2, 1q.

6. The canonical divisor KX is ample.

7. KX is ample, pgpXq “ qpXq “ 0, and K2
X “ c21pXq “ 3c2pXq “ 9.

We begin with the following fundamental result.

Lemma 5.3. Let X be a fake projective plane and C a smooth curve on X. Then epCq ď ´4, or equivalently,

gpCq ě 3.

Proof. Since X is a fake projective plane, we have by definition that b0pXq “ 1, b1pXq “ 0, b2pXq “ 1,

b3pXq “ 0, b4pXq “ 1. Hence we have the equality

c2pXq “ χpXq “
ÿ

i

p´1qibipXq “ 3.

It is known that a complex surface which has even b1 is Kähler. Since b1pXq “ 0, we conclude that X is

Kähler. From Poincare duality and the Hodge decomposition theorem, we know that bk “
ř

i`j“k h
i,j , where

hi,j are the Hodge numbers of X. Note that all the hi,j are non-negative integers and we have hi,j “ hj,i

by Hodge symmetry. This implies that h0,0 “ h1,1 “ h2,2 “ 1 are the only non-zero Hodge numbers. The

arithmetic genus of X is given by papXq “ h2,0 ´ h1,0 “ 0. Since χpOXq “ 1 ` papXq, it follows that

χpOXq “ 1. Applying Noether’s formula, we get 12 “ c21pXq ` c2pXq, which implies that c21pXq “ 9. Hence

X satisfies c21pXq “ 3c2pXq. Since h1,1 “ 1, we have that the Picard number of X is 1. Let H denote the

generator of the Neron-Severi group of X, then the canonical divisor KX is a multiple of H. Any divisor L

on X is ample if and only if nL is ample for some n ě 1. Since L is a multiple of H, we can assume H to be

ample. Hence H2 “ 1. Now K2
X “ 9 implies that KX “ ˘3H. If KX were a negative multiple of H, then by

a result of Hirzebruch and Kodaira, X would be biholomorphic to P2 (see Theorem 3 in [15]). Thus it follows

that KX “ 3H.

Let C be a smooth curve on X, then C „ mH for some positive integer m, where „ denotes numerical

equivalence. Applying the adjunction formula, we get

epCq “ 2´ 2gpCq “ ´CpC `KXq “ ´pm
2 ` 3mq ď ´4.

This implies that 2´ 2gpCq ď ´4, i.e. gpCq ě 3. Hence the assertion is proved.
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A normal projective complex surface is called a Q-homology P2 if it has the same Betti numbers as the

complex projective plane P2. If a Q-homology P2 is non-singular, then it is either P2 or a fake projective

plane, by Theorem 5.2.

Proposition 5.4. Let X be a Q-homology P2 with quotient singularities only and suppose that X admits a

finite group G of automorphisms. Then the quotient X{G is again a Q-homology P2 with quotient singularities

only.

In particular, pgpX{Gq “ qpX{Gq “ 0, c2pX{Gq “ 3, and χpOX{Gq “ 1.

Proof. The canonical map π : X Ñ X{G is finite and surjective. Hence it follows that the pullback

map π˚ : HipX{G,Cq Ñ HipX,Cq is injective, for all i. Since HipX{G,Cq “
À

p`q“iH
p,qpX{Gq and

HipX,Cq “
À

p`q“iH
p,qpXq, the map π˚ is injective on the level of each Hp,q in the Hodge decomposition.

Recall that pgpXq “ dimH2,0pXq “ h2,0 and qpXq “ dimH1,0pXq “ h1,0. Since pgpXq “ qpXq “ 0, the

injectivity of π˚ implies that pgpX{Gq “ qpX{Gq “ 0. Thus we have

χpOX{Gq “ 1´ pgpX{Gq ` qpX{Gq “ 1.

Since b2pXq “ 1, it follows that b2pX{Gq “ 1. Recall that c2pX{Gq “ 2 ´ 4qpX{Gq ` b2pX{Gq “ 3. This

concludes the proof.

Next, we consider fake projective planes with an automorphism of prime order.

Proposition 5.5. Let X be a fake projective plane with an automorphism σ. Assume that the order of σ is

a prime number p. Let Z “ X{xσy and let ν : Y Ñ Z be a minimal resolution. Then the following holds.

1. Z is a Q-homology P2 with KZ ample.

2. pgpY q “ qpY q “ 0.

3. K2
Z “ 9{p.

4. The fixed point set Xσ consists of three points.

Proof. We know from Proposition 5.4 that the quotient surface Z has the same Betti numbers as X and

hence is a Q-homology P2. Moreover, we have pgpZq “ qpZq “ 0. Note that the resolution of singularities

ν : Y Ñ Z is a birational morphism and the irregularity q and geometric genus pg are birational invariants.

The latter statement follows from the fact that R1ν˚OY “ 0 since Z has only rational singularities, and

that 2-forms can be extended along the resolution i.e., ν˚Ω2
Y – Ω2

Z . Thus it follows that Y also satisfies

pgpY q “ qpY q “ 0. This is (2).

Next, we prove (4). Suppose the fixed point locus Xσ consists of n curves C1, ..., Cn and m isolated points.

This implies that the quotient surface Z has m singular points. Since each point has Euler characteristic 1,

we have epXσq “ m`
řn
i“1 epCiq. Note that since σ has order p, the degree of the quotient map π : X Ñ Z

is p. Using a Hurwitz type formula for surfaces, we get

epXq “ pepZq ´ pp´ 1q
´

m`
n
ÿ

i“1

epCiq
¯

. (54)

We know from Proposition 5.4 that epXq “ epZq “ 3. This together with the equality 54 gives

m`
n
ÿ

i“1

epCiq “ 3. (55)
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Let ĂCi denote the normalization of the curve Ci on X. Then it is known that χpCiq “ χpĂCiq ´ ri, where ri is

the number of nodal points on Ci. In particular, χpCiq ď χpĂCiq. Thus observing equation 55 we may assume

that all Ci are smooth curves. From Lemma 5.3 we know that epCiq ď ´4 for all i “ 1, ..., n and so equality

55 implies that

m ě 3` 4n. (56)

It can be concluded from the orbifold Bogomolov-Miyaoka-Yau inequality that a Q-homology P2 with quotient

singularities only cannot have more than five singular points, i.e. m ď 5 (see for example [7]). Then the

inequality 56 implies that n “ 0 and from 55 we get m “ 3 i.e., the fixed point locus Xσ consists of three

isolated points. This is (4).

Note that X is a good cover of Z in the sense of Definition 2.4 and hence we have the following relation

between the canonical divisors KX and KZ (see equation 10).

KX “ π˚
´

KZ `
ÿ

i

xiDi

¯

,

where the numbers xi are as defined earlier and Di are ramification divisors on Z. Although the notion of a

good cover was defined for smooth surfaces, Z has no codimension 1 singularities, and so the above formula

is valid. Since the ramification locus consists only of three isolated points, we have KX „ π˚KZ , where „

denotes numerical equivalence. Thus we have K2
X “ pπ

˚KZq
2 “ degpπqK2

Z “ pK2
Z i.e., K2

Z “ K2
X{p “ 9{p.

This is (3).

Since KX is ample, it follows from the Nakai-Moishezon criterion (or Corollary 1.2.24 in [8]) that π˚KZ is

ample. This further implies that KZ is ample on Z (see Corollary 1.2.28 in [8]) and hence we have the second

part of assertion (1). This concludes the proof.

Corollary 5.6. Let the setting be as in Proposition 5.5. Then p ‰ 2.

Proof. Suppose p “ 2. Then Z “ X{pZ{2Zq has only singularities of type 1
2 p1, 1q. We know that the

exceptional divisor corresponding to such a singularity is a (-2)-curve. Thus KY “ ν˚KZ `
ř

i kiEi, where

ν : Y Ñ Z is the minimal resolution, and each Ei is a (-2)-curve. Applying the adjunction formula to Ei,

we see that 2 “ ´pKY Ei ` E2
i q “ 2ki ` 2, which gives ki “ 0 for all i. This implies that KY „ ν˚KZ .

Since Y is smooth, we know that c2pY q “ epY q “
ř

ip´1qibipY q, and so c2pY q is an integer. Moreover,

χpY,OY q “
ř

ip´1qihipY,OY q is also an integer. Hence using Noether’s formula, it follows that c21pY q “

K2
Y “ 12χpY,OY q ´ c2pY q is an integer. However, since KY „ ν˚KZ , statement 3 of Proposition 5.5 implies

that K2
Y “ K2

Z “ 9{p “ 9{2, which is not an integer. This is a contradiction, hence p ‰ 2.

Prasad and Yeung [11] have given precise possible values for the order p of the automorphism σ. According

to their result, p “ 3 or 7. The goal is to determine in each case the types of singularities of the quotient

surface Z, using the holomorphic Lefschetz fixed point formula.

Lemma 5.7. Let S be a compact complex manifold of dimension 2 with pgpSq “ qpSq “ 0. Assume that

S admits an automorphism σ of prime order p. Let ri for p1 ď i ď p ´ 1q be the number of isolated fixed

points of σ which give singularities of type 1
p p1, iq on the quotient surface. Let C1, ..., Ck be one-dimensional

components of the fixed locus Sσ. Then

1 “
k
ÿ

j“1

´1´ gpCjq

2
`
pp` 1qC2

j

12

¯

`

p´1
ÿ

i“1

airi
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where

ai “
1

p´ 1

´

p´1
ÿ

j“1

1

p1´ ζjqp1´ ζijq

¯

with ζ a primitive p-th root of 1. For example, a1 “ p5´ pq{12 and a2 “ p11´ pq{24.

Proof. This follows from the original holomorphic Lefschetz fixed point formula. A proof is given in [16],

Lemma 1.6 and it is valid for all two-dimensional complex manifolds with pg “ q “ 0.

5.2 The case G contains a normal subgroup of order 3

We now consider fake projective planes X which admit automorphisms of order 3.

Proposition 5.8. Let σ be an automorphism of a fake projective plane X of order 3. Let Z “ X{xσy and

let ν : Y Ñ Z be a minimal resolution. Then Z has three singularities of type 1
3 p1, 2q, and Y is a minimal

surface of general type with K2
Y “ 3, pgpY q “ 0.

Proof. We know from statement (2) of Proposition 5.5 that pgpY q “ qpY q “ 0 and since σ has order p “ 3, it

follows from statement (3) of Proposition 5.5 that K2
Z “ 9{3 “ 3. From statement (4) of the same proposition

we know that the fixed point locus Xσ consists of three points. Suppose that Z has ri singular points of

type 1
p p1, iq. Since Xσ consists of only three isolated points and no curves, the formula in Lemma 5.7 gives

1 “ a1r1 ` a2r2 where

a1 “
1

2

´ 1

p1´ ωq2
`

1

p1´ ω2q2

¯

“
1

6

a2 “
1

2

´ 1

p1´ ωqp1´ ω2q
`

1

p1´ ω2qp1´ ωq

¯

“
1

3
.

Thus we have

1 “
1

6
r1 `

1

3
r2. (57)

Since the total number of singular points is 3, we have r1 ` r2 “ 3. Together with the equality 57 this gives

r1 “ 0 and r2 “ 3. Thus we conclude that Z has three singular points of type 1
3 p1, 2q. Note that each of these

three singularities is of type A3,2 and since 3
2 “ 2´ 1

2 , the exceptional divisor is a Hirzebruch-Jung string

consisting of two curves intersecting in one point, each having self intersection -2. The Dynkin diagram of

the exceptional divisors is

E1 E2 E3 E4 E5 E6

This implies that KY “ ν˚KZ ` k1E1 ` ...` k6E6, where each Ei is a (-2)-curve. Applying the adjunction

formula to E1, we see that 2 “ ´pKY E1 ` E
2
1q “ 2k1 ´ k2 ` 2, which gives 2k1 ´ k2 “ 0. Similarly for E2

we get 2 “ ´pKY E2 ` E2
2q “ 2k2 ´ k1 ` 2 i.e., 2k2 ´ k1 “ 0. This gives k1 “ k2 “ 0, and similarly we get

k3 “ k4 “ k5 “ k6 “ 0. It follows that KY „ ν˚KZ , and hence K2
Y “ K2

Z “ 3. From statement (1) of

Proposition 5.5 we know that KZ is ample, which implies it is semi-ample. This means that |mKZ | is base

point free for some integer m ą 0. Let y P Y be any point. Then there exists a divisor D P |mKZ | not

containing z “ νpyq. It follows that ν˚D P |mν˚KZ | does not contain y. Thus |mν˚KZ | is base point free

and so ν˚KZ is semi-ample. In particular, this means that ν˚KZ is nef and since KY „ ν˚KZ , it follows that

KY is nef. If Y contains a (-1)-curve C, then by the adjunction formula 12 we have that 2 “ ´pKY C ` C
2q,

i.e. KY C “ ´1, which is a contradiction. Hence Y is a minimal surface. Since c21pY q “ K2
Y “ 3, it follows

from the Enriques-Kodaira classification theorem that Y must be of general type.
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Corollary 5.9. Let X be a surface whose automorphism group G is isomorphic to pZ{3Zq2. Let Z “ X{G

and let ν : Y Ñ Z be a minimal resolution. Then Z has four singular points of type 1
3 p1, 2q, and Y is a

minimal surface of general type with K2
Y “ 1, pgpY q “ 0.

Proof. We write the group pZ{3Zq2 as pZ{3Zq2 “ tpa, bq | a, b P t0, 1, 2uu. It has four subgroups isomorphic

to Z{3Z, namely G1 “ tp0, 0q, p1, 0q, p2, 0qu, G2 “ tp0, 0q, p0, 1q, p0, 2qu, G3 “ tp0, 0q, p1, 1q, p2, 2qu, and

G4 “ tp0, 0q, p1, 2q, p2, 1qu. Each subgroup Gi is generated by an automorphism of X of order 3. We know

from Proposition 5.8 that the fixed point locus of an automorphism of order 3 consists of exactly three points,

which correspond to three singularities of type 1
3 p1, 2q on the quotient surface Z. Hence, each subgroup Gi

fixes three isolated points of X corresponding to singularities of type 1
3 p1, 2q on Z.

The stabilizer of any point x P X is either trivial- in which case the G-orbit of x corresponds to a smooth

point in the quotient Z; or isomorphic to Z{3Z, or isomorphic to pZ{3Zq2. Let x P X be a point whose

stabilizer is Gi, for some i P t1, 2, 3, 4u i.e., it is isomorphic to Z{3Z. Then the G-orbit of x consists of three

points. Let y and z be the other two points of X fixed by Gi. Then we claim that y and z are also the other

two points in the orbit of x. Indeed, let σ be an element in GzGi and let x1 “ σx. Then for a non-trivial

element ρ P Gi, we have ρx1 “ ρσx “ σρx “ σx “ x1, where the second equality follows from the fact that

G is an abelian group. Thus ρ fixes x1, and since Gi is generated by ρ, Gi fixes x1. This implies that x1

must be either y or z. Note that if σx “ y, then σ2x “ z because σ2x “ x or σ2x “ y would mean σ P Gi,

a contradiction to the assumption that σ P GzGi. This proves the claim. Now suppose x is a point whose

stabilizer is isomorphic to pZ{3Zq2. Then the orbit of x consists of only the point x. Moreover, x is fixed

by each subgroup Gi, for i “ 1, 2, 3, 4. Each Gi fixes three points of X, which belong to the same G-orbit.

However, since the orbit of x contains only one point, each Gi fixes a single point of X. This is a contradiction

to statement (4) of Proposition 5.5 and so it follows that no point of X has stabilizer isomorphic to pZ{3Zq2.

Thus there are 12 points, each of whose stabilizers is isomorphic to Z{3Z. The fixed point locus of each Gi

consists of three points in the same orbit, corresponding to a singular point of Z of type 1
3 p1, 2q, and hence Z

has 4 singular points of type 1
3 p1, 2q.

The canonical divisor KZ of Z is Q-Cartier and since the ramification locus of the quotient map π : X Ñ Z

consists of only isolated points, we have

KX „ π˚KZ .

Thus we have K2
Z “ K2

X{degpπq “ 9{9 “ 1. Statement (1) of Proposition 5.5 implies that KZ is ample,

and since Z has only singularities of type 1
3 p1, 2q, it follows similarly as in the proof of Proposition 5.8 that

KY „ ν˚KZ . By the same argument as in the proof of Proposition 5.8, we have that KY is nef. Hence Y is

a minimal surface satisfying K2
Y “ K2

Z “ 1 and pgpY q “ 0. This completes the proof.

According to the results of [11], many fake projective planes admit an automorphism of order 3. Thus by

taking quotients of such fake projective planes by the group generated by an order 3 automorphism, new

examples of minimal surfaces of general type Y satisfying K2
Y “ 3, pgpY q “ 0 can be obtained.

5.3 The case G contains a normal subgroup of order 7

In this part we prove the following result and also the classification result of Keum (Proposition 4.6 in [6]).

Proposition 5.10. Let σ be an automorphism of order 7 of a fake projective plane X. Let Z “ X{xσy and

let ν : Y Ñ Z be a minimal resolution. Then Z has three singular points of type 1
7 p1, 3q and K2

Y “ 0.

To prove this we need the following three lemmas.
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Lemma 5.11. Let σ be an automorphism of order 7 of a fake projective plane X. Let Z “ X{xσy and let

ν : Y Ñ Z be a minimal resolution. Then Z has either three singular points of type 1
7 p1, 3q, or two singular

points of type 1
7 p1, 4q, and one singular point of type 1

7 p1, 6q.

Proof. We know from Proposition 5.5 that the fixed point locus Xσ consists of three isolated points and

no curves. Suppose Z has ri singular points of type 1
7 p1, iq. From the formula in Lemma 5.7 we have

1 “
ř6
i“1 airi. After computing the coefficients ai, we get

´r1 ` r2 ` 2r3 ` r4 ` 2r5 ` 4r6 “ 6. (58)

Since the total number of singular points is three, we also have
ř

i ri “ 3. Adding this to the equation 58, we

get

2pr2 ` r4q ` 3pr3 ` r5q ` 5r6 “ 9. (59)

Now if r6 “ 0, then from the equality 59 it follows that r2 ` r4 “ 0 and r3 ` r5 “ 3, hence we get three

singular points of type 1
7 p1, 3q “

1
7 p1, 5q. If r6 “ 1 then it follows that r2 ` r4 “ 2 and r3 ` r5 “ 0, hence we

get one singular point of type 1
7 p1, 6q and two singular points of type 1

7 p1, 2q “
1
7 p1, 4q. This exhausts all

possibilities and so the assertion is proved.

Next, we exclude one of the two possible cases in Lemma 5.11.

Lemma 5.12. Let σ be an automorphism of order 7 of a fake projective plane X. Then σ cannot have a

fixed point corresponding to a singularity of type 1
7 p1, 4q on the quotient Z “ X{xσy.

Proof. Observe that any automorphism ρ of X in xσy can be lifted to an automorphism sρ of the universal

cover B2. However, sρ is not necessarily unique and there is no canonical way to choose such a sρ. Every such

sρ satisfies ρ ˝ π “ π ˝ sρ, where π : B2 Ñ X denotes the projection map. It is easy to check that the set of all

automorphisms sρ of B2 which are lifts of automorphisms of X in xσy i.e., those which satisfy ρ ˝ π “ π ˝ sρ,

ρ P xσy, form a subgroup H of AutpB2q “ PUp2, 1q. We now show that the orbit spaces B2{H and X{xσy are

isomorphic. Consider the map φ : B2{H Ñ X{xσy defined by Hsx ÞÑ xσyπpsxq. Note that φ is well-defined

because for any two points sx and sy in B2 belonging to the same H-orbit, there is a sρ P H such that sρsx “ sy,

and ρ ˝ π “ π ˝ sρ for some ρ P xσy. This means that ρπpsxq “ πpsρsxq “ πpsyq i.e., πpsxq and πpsyq belong to the

same xσy-orbit. In other words, Hsx and Hsy have the same image in X{xσy via φ. Suppose Hsx and Hsy map

to the same orbit xσyx in X{xσy via φ. This means that xσyπpsxq “ xσyπpsyq i.e., πpsxq and πpsyq belong to the

same orbit in X{xσy. This implies that there is a ρ P xσy such that ρπpsxq “ πpsyq. Hence there is a sρ P H

such that ρ˝π “ π ˝ sρ and sρsx “ sy. It follows that sx and sy belong to the same H-orbit i.e. Hsx “ Hsy in B2{H,

so φ is injective. Let xσyx be any orbit in X{xσy. Let sx be any point in the fibre π´1pxq Ă B2. Then the

orbit Hsx in B2{H maps to xσyπpsxq “ xσyx via φ, so φ is surjective as well. Define the inverse map of φ by

ψ : X{xσy Ñ B2{H, xσyx ÞÑ Hsx, where sx is any point in the fibre π´1pxq Ă B2. Note that ψ is well-defined

because it is easy to check that all points in the same fibre belong to the same H-orbit, and for any two

points x, y in X, the fibres π´1pxq and π´1pyq belong to the same H-orbit in B2{H. It is also easily verified

that φ ˝ ψ “ idX{xσy and ψ ˝ φ “ idB2{H . Thus φ and ψ are isomorphisms and we have Z “ X{xσy – B2{H.

Suppose that σ has a fixed point corresponding to a singularity of type 1
7 p1, 4q. Then the group H contains a

matrix M which diagonalizes as

M “

»

—

–

α 0 0

0 αζ 0

0 0 αζ4

fi

ffi

fl
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where ζ “ e2πi{7 is a primitive 7th root of unity and α P C is a complex number.

Following the notation of [11], we may choose the matrix M to be in sΓ, which is contained in a rank 3 division

algebra over the field denoted by l. Hence the numbers

tracepMq “ αp1` ζ ` ζ4q and detpMq “ α3ζ5

must both belong to l. Thus l, being a field, contains tracepMq3{detpMq, which is given by

p1` ζ ` ζ4q3{ζ5 “ 6pζ ` ζ´1q3 ` pζ ` ζ´1q2 ´ 15pζ ` ζ´1q ` 5.

The field generated by this number over Q is Qrζ ` ζ´1s, and this must be contained in l. However, none

of the cases on the final list of Prasad and Yeung[11] has such an l. Thus, Z does not have a fixed point

singularity of the type 1
7 p1, 4q, and the assertion is proved.

A singularity of type 1
7 p1, 3q is an A7,5 singularity. The continued fraction expansion of 7

5 is

7

5
“ 2´

1

2´ 1
3

and so a singularity of type 1
7 p1, 3q results from the contraction of a Hirzebruch-Jung string consisting of

three rational curves, two of which have self intersection -2, and one has self intersection -3. When Z has

three singularities of type 1
7 p1, 3q, we denote by A1, A2, A3; B1, B2, B3; C1, C2, C3 the exceptional curves of

the minimal resolution ν : Y Ñ Z whose Dynkin diagrams are

A1 A2 A3 B1 B2 B3 C1 C2 C3

We take A1, A2, B1, B2, C1, C2 to be the (-2)-curves, and A3, B3, C3 to be the (-3)-curves.

Lemma 5.13. Assume that Z has three singularities of type 1
7 p1, 3q and let ν : Y Ñ Z be the minimal

resolution. Then

KY „ ν˚KZ ´
1

7
pA1 ` 2A2 ` 3A3q ´

1

7
pB1 ` 2B2 ` 3B3q ´

1

7
pC1 ` 2C2 ` 3C3q.

In particular, K2
Y “ 0.

Proof. We have KY “ ν˚KZ`D, where D is the exceptional divisor resulting from the three singular points of

type 1
7 p1, 3q. Hence D is a Q-linear combination of the curves Ai, Bi, Ci for i “ 1, 2, 3. The coefficients can be

uniquely determined by applying the adjunction formula to each curve. We carry out the computations for A1,

A2, and A3, the procedure being identical for the other six curves. Let a1, a2, and a3 be the coefficients of A1,

A2, and A3 respectively, then applying the adjunction formula to A1, we get 2 “ ´pKYA1`A
2
1q “ 2a1´a2`2,

which gives 2a1 ´ a2 “ 0. Applying it to A2 we get 2 “ ´pKYA2 ` A2
2q “ 2a2 ´ a1 ´ a3 ` 2, which gives

2a2 ´ a1 ´ a3 “ 0. Similarly, for A3 we have 2 “ ´pKYA3 `A
2
3q “ 3a3 ´ a2 ` 3, i.e., 3a3 ´ a2 “ ´1. Solving

the three equations for a1, a2, and a3 simultaneously, we get a1 “ ´1
7 , a2 “ ´2

7 and a3 “ ´3
7 . In the

same way, letting b1, b2, b3, c1, c2, c3 denote the coefficients of B1, B2, B3, C1, C2, C3 respectively, we get

b1 “ c1 “ ´
1
7 , b2 “ c2 “ ´

2
7 , and b3 “ c3 “ ´

3
7 . Putting everything together, we have

KY „ ν˚KZ ´
1

7
pA1 ` 2A2 ` 3A3q ´

1

7
pB1 ` 2B2 ` 3B3q ´

1

7
pC1 ` 2C2 ` 3C3q.

It follows that

K2
Y “ pν

˚KZq
2 `

1

49
pA1 ` 2A2 ` 3A3q

2 `
1

49
pB1 ` 2B2 ` 3B3q

2 `
1

49
pC1 ` 2C2 ` 3C3q

2. (60)
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From statement 3 of Proposition 5.5, we have pν˚KZq
2 “ K2

Z “ 9{7. Moreover, we have

1

49
pA1 ` 2A2 ` 3A3q

2 “
1

49
pB1 ` 2B2 ` 3B3q

2 “
1

49
pC1 ` 2C2 ` 3C3q

2 “ ´
3

7
.

Plugging everything into equation 60 we get K2
Y “

9
7 ´

3
7 ´

3
7 ´

3
7 “ 0, and the assertion is proved.

Thus the proof of Proposition 5.10 is complete. To complete the proof of Theorem 5.1 it suffices to prove

the following result

Proposition 5.14. Assume that Z has three singular points of type 1
7 p1, 3q. Then there are the following

three possibilities

1. Y is a minimal elliptic surface of Kodaira dimension 1 with two multiple fibres with multiplicities 2 and

3.

2. Y is a minimal elliptic surface of Kodaira dimension 1 with two multiple fibres with multiplicities 2 and

4.

3. Y is a minimal elliptic surface of Kodaira dimension 1 with two multiple fibres with multiplicities 3 and

3.

The proof of Proposition 5.14 consists of several lemmas.

Lemma 5.15. Assume that Z has three singularities of type 1
7 p1, 3q. Then we have the following

1. ´mKY is not effective for any positive integer m.

2. The Kodaira dimension of Y is at least 1.

Proof. We know that KY “ ν˚KZ `D, where D is the exceptional divisor which was computed in Lemma

5.13. Then for m ě 1, we have

pν˚KZqp´mKY q “ pν
˚KZqp´mpν

˚KZ `Dqq “ ´mpν
˚KZq

2 “ ´mK2
Z “ ´

9

7
m ă 0.

Since KZ is ample, ν˚KZ is nef, and so pν˚KZqp´mKY q ă 0 implies that ´mKY cannot be effective for

m ě 1. This proves statement 1.

We know from statement 2 of Proposition 5.5 that pgpY q “ qpY q “ 0, and by Proposition 5.10 we have

K2
Y “ 0. Thus if Y has Kodaira dimension ď 0, then by the Enriques-Kodaira classification theorem, Y

is either a rational surface or an Enriques surface. We know from Proposition 5.4 that epZq “ 3. Since Z

has three singular points, each of whose exceptional divisor consists of three rational curves on Y , we have

epY q “ c2pY q “ epZq ` 9 “ 12. Since c21pY q “ K2
Y “ 0, applying Noether’s formula gives χpOY q “ 1. The

Riemann-Roch theorem says that

h0pDq ´ h1pDq ` h0pKY ´Dq “ χpOY q `
1

2
pD2 ´KYDq,

where D is a divisor on Y . Taking D “ kKY for k ě 2, we have that h0pKY ´Dq “ h0pp1 ´ kqKY q. We

know from statement 1 that ´mKY is not effective for m ě 1 and so h0pp1´ kqKY q “ 0 for k ě 2. Thus the

Riemann-Roch equation becomes

h0pkKY q “ 1` h1pkKY q ě 1.

This implies that Y is not a rational surface. Since we have pν˚KZqKY “ pν
˚KZq

2 “ K2
Z “ 9{7 ą 0, KY is

not numerically trivial. Hence, Y is not an Enriques surface either. Thus the Kodaira dimension of Y must

be ě 1. This proves statement 2.
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Note that PicpY q – H2pY,Zq. Let PicpY qf denote PicpY q modulo torsion. Then with the intersection

pairing PicpY qf becomes a lattice.

Lemma 5.16. Assume that Z has three singularities of type 1
7 p1, 3q. Then one can choose two Q-divisors

L “
1

7
pA1 ` 2A2 ` 3A3q `

2

7
pB1 ` 2B2 ` 3B3q `

4

7
pC1 ` 2C2 ` 3C3q,

M “
1

3
ν˚KZ ´

2

7
pB1 ` 2B2 ` 3B3q `

1

7
pC1 ` 2C2 ` 3C3q,

such that the lattice PicpY qf is generated over Z by the numerical equivalence classes of M , L, and the eight

curves A2, A3, B1, B2, B3, C1, C2, C3.

Proof. We know from Lemma 5.13 that K2
Y “ 0. Hence Noether’s formula gives c2pY q “ 12, which implies

that the rank of PicpY qf is 10. Since PicpY qf contains an element having self intersection -3, e.g. the curve

A3, it is unimodular and of signature (1,9).

Let R be the sublattice of PicpY qf generated by the numerical equivalence classes of the nine curves

A1, A2, A3, B1, B2, B3, C1, C2, C3. Let sR and RK denote its primitive closure and orthogonal complement

respectively. Note that the rank of RK is 1.

For an integral lattice N , let discpNq denote the discriminant group of N , defined as

discpNq “ HompN,Zq{N.

We have discpRq – pZ{7Zq3. More precisely,

discpRq “ x
1

7
pA1 ` 2A2 ` 3A3q,

1

7
pB1 ` 2B2 ` 3B3q,

1

7
pC1 ` 2C2 ` 3C3qy.

Note that the length, i.e. the minimum number of generators of discpRq is 3. Since the lattice PicpY qf is

unimodular, discp sRq is isomorphic to discpRKq which is of length 1. Hence R must be of index 7 in sR, and

the generator of sR{R is of the form

L “
1

7
pA1 ` 2A2 ` 3A3q `

a

7
pB1 ` 2B2 ` 3B3q `

b

7
pC1 ` 2C2 ` 3C3q.

Since both LKY and K2
Y must be integers, it follows that pa, bq “ p2, 4q or (4,2) modulo 7. Thus, up to

interchanging the Bi’s with the Ci’s, the divisor L has been determined uniquely modulo R.

Now we have discp sRq “ discpRKq – Z{7Z. Note that the integral divisor 7ν˚KZ belongs to RK and

p7ν˚KZq
2 “ 7 ¨ 32. Thus RK is generated by 7

3ν
˚KZ , hence

discpRKq “
A1

3
ν˚KZ

E

.

On the other hand,

discp sRq “ xLyK{xLy “
A3

7
pB1 ` 2B2 ` 3B3q `

2

7
pC1 ` 2C2 ` 3C3q

E

,

where xLy “ sR{R is the isotropic subgroup of discpRq generated by L modulo R and xLyK is its orthogonal

complement in discpRq with respect to the discriminant quadratic form on discpRq. Thus the extension of

index 7 sR‘ RK Ă PicpY qf is given by an element of the form

M “
1

3
ν˚KZ ` a

!3

7
pB1 ` 2B2 ` 3B3q `

2

7
pC1 ` 2C2 ` 3C3q

)

.

Since MKY is an integer, we see that a “ 4 modulo 7. This determines the divisor M uniquely modulo

R.
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Lemma 5.17. Assume that Z has three singularities of type 1
7 p1, 3q. Then Y does not contain a (-1)-curve

(a smooth rational curve with self intersection -1) E satisfying 0 ă Epν˚KZq ă 9{7.

Proof. Suppose that Y does contain such a (-1)-curve E. From Lemma 5.16 we know the generators over Z
of PicpY qf , so we write

E „ mM ´ dL` a2A2 ` a3A3 ` b1B1 ` b2B2 ` b3B3 ` c1C1 ` c2C2 ` c3C3

where the coefficients are all integers. The above expression for E and the expressions for M and L from

Lemma 5.16 imply that Epν˚KZq “ mMpν˚KZq “ 3m{7. Thus the condition 0 ă Epν˚KZq ă 9{7 is

equivalent to 0 ă m ă 3 i.e., 1 ď m ď 2 because m is an integer. Hence there are two cases: m “ 1 or 2.

1. Assume that m “ 1. Then the expression for E becomes

E „M ´ d` La2A2 ` a3A3 ` b1B1 ` b2B2 ` b3B3 ` c1C1 ` c2C2 ` c3C3.

Computing the intersection number of E with each of the nine curves A1, A2, A3, B1, B2, B3, C1, C2, C3, and

noting that this number must be non-negative, we get the following system of nine inequalities.

0 ď EA1 “ a2, 0 ď EA2 “ ´2a2 ` a3, 0 ď EA3 “ d` a2 ´ 3a3,

0 ď EB1 “ ´2b1 ` b2, 0 ď EB2 “ b1 ´ 2b2 ` b3, 0 ď EB3 “ 2` 2d` b2 ´ 3b3,

0 ď EC1 “ ´2c1 ` c2, 0 ď EC2 “ c1 ´ 2c2 ` c3, 0 ď EC3 “ ´1` 4d` c2 ´ 3c3.

Using the expression for KY derived in Lemma 5.13 and applying the adjunction formula to E, we get the

following equality

´1 “ EKY “ ´3d` a3 ` b3 ` c3. (61)

From the system of nine inequalities, we obtain the following three inequalities

a3 ď
2

5
d, b3 ď

3

7
p2` 2dq, c3 ď

3

7
p´1` 4dq. (62)

Indeed, eliminating a1 and a2 from the second and third inequalities of the system of nine inequalities, we

arrive at the first inequality of 62. Eliminating b1 and b2 from the fourth, fifth, and sixth inequalities in the

system, we get the second inequality of 62. Similarly, eliminating c1 and c2 from the seventh, eighth, and

ninth inequalities of the system, we get the third inequality of 62.

From the first three inequalities of the system of nine inequalities, we have

d ě ´a2 ` 3a3 “ 3p´2a2 ` a3q ` 5a2 ě 5a2 ě 0.

Plugging the inequalities in 62 in the equality 61 gives

3d´ 1 “ a3 ` b3 ` c3 ď
2

5
d`

3

7
p2` 2dq `

3

7
p´1` 4dq,

which simplifies to give d ď 50. Thus we obtain the following bound on d

0 ď d ď 50. (63)

Since E is a (-1)-curve, we have E2 “ ´1. Together with the equality 61 this implies E2 “ EKY . Writing

this equality in terms of the coefficients, we get

1` 3d2 ` 2d “ p4` 2dqb3 ` p6d´ 2qc3 ` pa2A2 ` a3A3q
2 `

´

3
ÿ

i“1

biBi

¯2

`

´

3
ÿ

i“1

ciCi

¯2

. (64)
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We have the following inequalities for the last three terms in the right hand side of the equality 64

pa2A2 ` a3A3q
2 “ ´2a22 ` 2a2a3 ´ 3a23 “ ´2

´

a2 ´
1

2
a3

¯2

´
5

2
a23 ď ´

5

2
a23,

´

3
ÿ

i“1

biBi

¯2

“ ´2
´

b1 ´
1

2
b2

¯2

´
3

2

´

b2 ´
2

3
b3

¯2

´
7

3
b23 ď ´

7

3
b23,

´

3
ÿ

i“1

ciCi

¯2

“ ´2
´

c1 ´
1

2
c2

¯2

´
3

2

´

c2 ´
2

3
c3

¯2

´
7

3
c23 ď ´

7

3
c23.

Plugging these inequalities into the equality 64, we arrive at the following inequality

1` 3d2 ` 2d ď ´
5

2
a23 ´

7

3
b23 ´

7

3
c23 ` p4` 2dqb3 ` p6d´ 2qc3. (65)

We claim that there are no integers a3, b3, c3, d satisfying the conditions 62, 63, and 65. Keum proves this claim

in his paper in the following way. First, he obtains a list of quadruples pd, a3, b3, c3q which solve the equality

61 under the constraints given by 62 and 63 i.e., for each value of d in 63, the equation 3d´ 1 “ a3 ` b3 ` c3

is solved in the range given by the inequalities in 62. A list of solutions is generated by a computer program,

which is given in [6], p.14. It turns out that none of the solutions on this list satisfies the inequality 65.

Now assume that m “ 2. In this case we have

E „ 2M ´ dL` a2A2 ` a3A3 ` b1B1 ` b2B2 ` b3B3 ` c1C1 ` c2C2 ` c3C3.

Similarly as in the previous case, we obtain a system of nine inequalities in the nine coefficients in the

expression for E

0 ď EA1 “ a2, 0 ď EA2 “ ´2a2 ` a3, 0 ď EA3 “ d` a2 ´ 3a3,

0 ď EB1 “ ´2b1 ` b2, 0 ď EB2 “ b1 ´ 2b2 ` b3, 0 ď EB3 “ 4` 2d` b2 ´ 3b3,

0 ď EC1 “ ´2c1 ` c2, 0 ď EC2 “ c1 ´ 2c2 ` c3, 0 ď EC3 “ ´2` 4d` c2 ´ 3c3.

Applying the adjunction formula to E, we again have

´1 “ EKY “ ´3d` a3 ` b3 ` c3.

Applying the same procedure as done in the case m “ 1, we get the following three inequalities

a3 ď
2

5
d, b3 ď

3

7
p4` 2dq, c3 ď

3

7
p´2` 4dq. (66)

In this case we obtain the following bound for d

0 ď d ď 65. (67)

We also have the following analog of the inequality 65 in the previous case

7` 3d2 ` 2d ď ´
5

2
a23 ´

7

3
b23 ´

7

3
c23 ` p8` 2dqb3 ` p6d´ 4qc3. (68)

The same argument as in the case m “ 1 shows that there are no solutions satisfying the inequalities 66, 67,

68, and the equality 61. Thus we conclude that there is no (-1)-curve on E satisfying 0 ă Epν˚KZq ă 9{7,

which proves the assertion.

Lemma 5.18. Assume that Z has three singularities of type 1
7 p1, 3q. Then Y is a minimal surface of Kodaira

dimension 1.
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Proof. From Proposition 5.10 we know that K2
Y “ 0. Moreover, statement 2 of Lemma 5.15 says that the

Kodaira dimension of Y is at least 1 i.e., it is either 1 or 2. Suppose Y is not minimal. If Y has Kodaira

dimension 1 then the minimal model Y 1 of Y has c21pY
1q “ K2

Y 1 ą 0. However, this is not possible since the

Enriques Kodaira classification theorem states that a minimal surface of Kodaira dimension 1 must have

c21 “ 0. Hence Y is a surface of general type. Let µ : Y Ñ Y 1 be a birational morphism to the minimal model

Y 1 of Y . Note that µ contracts all (-1)-curves of Y and hence KY “ µ˚KY 1 `
ř

iEi, where the Ei’s are

effective (not necessarily irreducible) divisors satisfying E2
i “ ´1, EiEj “ 0 for i ‰ j. Since Y 1 is minimal,

KY 1 is nef and so some positive multiple of µ˚KY 1 “ KY ´
ř

iEi is effective. Since ν˚KZ is nef, we have

pµ˚KY 1qpν
˚KZq “ pKY ´

ÿ

i

Eiqpν
˚KZq ě 0. (69)

Furthermore, since each Ei is a (-1)-curve, applying the adjunction formula gives 2 “ ´pKY Ei ´ 1q i.e,

KY Ei “ ´1 for all i. This implies that µ˚KY 1 “ pKY ´
ř

iEiq
2 “ K2

Y ´ 2
ř

iKY Ei `
ř

iE
2
i ą 0. Thus by

the Algebraic index theorem 3.6, we have

pKY ´
ÿ

i

Eiqpν
˚KZq ‰ 0. (70)

The inequalities 69 and 70 together imply that

pKY ´
ÿ

i

Eiqpν
˚KZq ą 0. (71)

Let E be a (-1)-curve on Y . Note that E is not contracted by ν because ν contracts only the Hirzebruch-Jung

strings on Y corresponding to the three singularities of type 1
7 p1, 3q on Z. Since E is effective and ν˚KZ is

nef, we have

Epν˚KZq ą 0. (72)

On the other hand, from inequality 71 we have KY pν
˚KZq ą p

ř

iEiqpν
˚KZq ą Epν˚KZq. Recall that

KY “ ν˚KZ ` D, where D is the exceptional divisor computed in Lemma 5.15 and so KY pν
˚KZq “

pν˚KZ `Dqpν
˚KZq “ pν

˚KZq
2 “ K2

Z “ 9{7. Together with inequality 72, we get

0 ă Epν˚KZq ă
9

7
.

However, we know from Lemma 5.17 that such a (-1)-curve does not exist on Y . Thus we conclude that Y

does not contain (-1)-curves and hence Y is minimal. Since c21pY q “ K2
Y “ 0, it follows that Y has Kodaira

dimension 1. This proves the assertion.

Proof of Proposition 5.14. We know from Lemma 5.15 and Lemma 5.18 that the Y is a minimal elliptic

surface of Kodaira dimension 1. It remains to prove the assertion about the multiplicities of multiple fibres.

Let |F | denote the linear system associated with the general fibre F of the elliptic fibration. Then we have

F „ nKY , (73)

where n is a positive rational number. Note that Y contains a curve with self intersection -3, for example the

curve A3. Using the expression for KY in Lemma 5.13, we compute A3KY “ 1. Note that since A3 and F

are both irreducible effective divisors on Y , the intersection number A3F must be an integer. From 73, it

follows that A3F “ nA3KY “ n, hence n must be an integer.

Let m1F1, m2F2,..., mrFr be multiple fibres of the elliptic fibration having multiplicities m1, m2,..., mr
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respectively. Since Y is not a rational surface, we have r ě 2. By the canonical bundle formula for elliptic

fibrations ([1], Theorem V.12.1), we have

KY “ ´F `
r
ÿ

i“1

pmi ´ 1qFi ” pr ´ 1qF ´
r
ÿ

i“1

Fi, (74)

where ” denotes linear equivalence. Note that each miFi is linearly equivalent to F . Taking the intersection

product of the right hand side of 74 with A3 and dividing by n, we get

1

n
“ r ´ 1`

r
ÿ

i“1

1

mi
. (75)

Since mi ě 2 for all i, we have
řr
i“1

1
mi
ď r

2 . Now equation 75 implies that r ď 3 if n “ 2, and because

r ě 2, we have r “ 2 if n ě 3. Since A3F “ n “ miA3Fi, and A3Fi is an integer for all i, it follows that

each mi divides n. Then analysing 75 further shows that if n “ 2, then m1 “ m2 “ m3 “ 2; if n “ 3, then

m1 “ m2 “ 3; if n “ 4, then m1 “ 2, m2 “ 4; if n “ 6, then m1 “ 2, m2 “ 3; if n “ 5 or n ě 7, then there

is no solution for the mi’s. The case n “ 2 and m1 “ m2 “ m3 “ 2 implies that there is a degree 2 map

A3 Ñ P1 branched at the three points over which the singular fibres lie, which is not possible. This completes

the proof of Proposition 5.14.

Corollary 5.19. Let X be a fake projective plane with G “ AutpXq – 7 : 3, the unique non-abelian group of

order 21. Let W “ X{G and let ν : V ÑW be a minimal resolution. Then W has three singular points of

type 1
3 p1, 2q and one singular point of type 1

7 p1, 3q. Furthermore, V is a minimal elliptic surface of Kodaira

dimension 1 with two multiple fibres and four reducible fibres of type I3. The pair of multiplicities is the same

as that of the minimal resolution of the order 7 quotient of X.

Proof. We can write G as

G “ xσ, τ | σ7 “ τ3 “ 1, τστ´1 “ σ2y.

Let Z “ X{xσy be the order 7 quotient of X and let Y be a minimal resolution of Z. We know from

Proposition 5.14 that Y is a minimal elliptic surface of Kodaira dimension 1 with three singular points of

type 1
7 p1, 3q. It is straightforward to check that any two points x1, x2 P X belong to the same σ-orbit if

an only if τpx1q and τpx2q belong to the same σ-orbit. Thus the automorphism τ induces a well-defined

automorphism sτ of Z defined by sτpzq “ pπ ˝ τqpzq for all z P Z, where π : X Ñ Z denotes the canonical

projection. Moreover, the three singular points of type 1
7 p1, 3q belong to the same sτ -orbit in Z. We know

from 5.8 that every order 3 subgroup of G has three fixed points corresponding to three singularities of type
1
3 p1, 2q. A non singular point cannot have stabilizer isomorphic to 7 : 3, thus W “ Z{xsτy has three singular

points of type 1
3 p1, 2q and one singular point of type 1

7 p1, 3q.

Note that the canonical divisor KW of W is an ample Q-Cartier divisor, and we have

K2
W “

K2
X

|G|
“

3

7
.

From the proofs of Proposition 5.8 and Lemma 5.13 it follows that the canonical divisor KV of V is given by

KV “ ν˚KW ´
1

7
pA1 ` 2A2 ` 3A3q,

where the divisors A1, A2, and A3 are as in Lemma 5.13. This implies that K2
V “ 0. We know from

Proposition 5.14 that Y has Kodaira dimension 1, hence V has Kodaira dimension ď 1. Note that the action
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of sτ on Z lifts to Y . Let W 1 “ Y {xsτy and let f : Y ÑW 1 denote the canonical projection. We know from

Proposition 5.14 that KY is nef, and since f is branched at three isolated points, we have KY „ f˚KW 1 .

Thus KW 1 is nef. Since W 1 has three singular points of type 1
3 p1, 2q, and since V is the minimal resolution of

W 1 it follows that KV is also nef. This implies that V is a minimal surface of Kodaira dimension ě 0. Note

that

pν˚KW qKV “ pν
˚KW qpν

˚KW ´
1

7
pA1 ` 2A2 ` 3A3qq “ K2

W “
3

7
ą 0.

Thus KV is not numerically trivial. This proves that V has Kodaira dimension 1. The elliptic fibration on V

is given by a multiple of KV .

Now V has nine smooth rational curves coming from the resolution ν : V ÑW . The eight (-2)-curves among

them must be contained in fibres of the elliptic fibration. This is possible only if the fibres are the union of

four reducible fibres of type I3 since V has Picard number 10.

Since W 1 “ Y {xsτy, Y is a cover of W 1 of degree 3 branched along the three singularities of W 1 of type 1
3 p1, 2q,

corresponding to the three fixed points of the sτ -action on Y . Note that W 1 has the structure of an elliptic

fibration with a (-3)-curve that is a multi-section. The (-3)-curve on W 1 splits in Y giving three (-3)-curves,

thus the elliptic fibres of W 1 do not split in Y . The fibre containing one of the singular points of W 1 gives a

fibre of type I1, the fibre of type I3 gives a fibre of type I9, and the multiple fibres give multiple fibres of the

same multiplicities.

This completes the proof.

From the proof of Corollary 5.19, we get

Corollary 5.20. Let X be a fake projective plane with AutpXq – 7 : 3. Let G – Z{7Z Ă AutpXq, Z “ X{G,

and ν : Y Ñ Z a minimal resolution. Then the elliptic fibration of Y has three singular fibres of type I1 and

one reducible fibre of type I9.
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