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Abstract. Let G be a p-divisible formal group law over an algebraically closed
field of characteristic p. We show that certain equivariant vector bundles on the
universal deformation space of G give rise to pseudocompact modules over the
Iwasawa algebra of the automorphism group of G. Passing to global rigid ana-
lytic sections, we obtain representations which are topologically dual to locally
analytic representations. In studying these, one is led to the consideration of
divided power completions of universal enveloping algebras. The latter seem to
constitute a novel tool in p-adic representation theory.
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0 Introduction

Let p be a prime number, and let k be an algebraically closed field of charac-
teristic p. Let W = W (k) denote the ring of Witt vectors with coefficients in
k, and let K denote the quotient field of W . We fix a p-divisible commutative
formal group law G of height h over k and denote by R := Rdef

G the universal
deformation ring of G representing isomorphism classes of deformations of G to
complete noetherian local W -algebras with residue class field k. Denote by G
the universal deformation of G to R and by Lie(G) the Lie algebra of G. For
any integer m, the m-th tensor power Lie(G)⊗m of Lie(G) can be viewed as the
space of global sections of a vector bundle on the universal deformation space
Spf(R) which is equivariant for a natural action of the automorphism group
Γ := Aut(G) of G.

If G is of dimension one, then the formal scheme Spf(R) is known as the mod-
uli space of Lubin-Tate. It plays a crucial role in Harris’ and Taylor’s con-
struction of the local Langlands correspondence for GLh(Qp). Moreover, the
Γ-representations Lie(G)⊗m and their cohomology figure prominently in stable
homotopy theory (cf. the introduction to [7]). Still assuming G to be one di-
mensional, a detailed study of the Γ-representation R was given in [13]. For
h = 2 it led to the computation of the continuous Γ-cohomology of R, relying
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on the foundational work of Devinatz, Gross, Hopkins and Yu. The only prior
analysis of p-adic representations stemming from equivariant vector bundles on
deformation spaces of p-divisible formal groups concern the p-adic symmetric
spaces of Drinfeld. These were studied extensively by Morita, Orlik, Schneider
and Teitelbaum (cf. [18], [24] and our remarks at the end of section 2).

The aim of the present article is to generalize and strengthen some of the results
of Gross and Hopkins in [9] and of the author in [13]. To this end, section 1 and
the first part of section 2 give a survey of the theory of p-divisible commutative
formal group laws. This includes the classification results of Dieudonné, Lazard
and Manin, as well as the deformation theoretic results of Cartier, Lubin, Tate
and Umemura. It follows from the work of Dieudonné and Manin that the group
Γ is a compact Lie group over Qp (cf. Corollary 1.4).

In the second part of section 2, we prove that the action of Γ on Lie(G)⊗m

extends to the Iwasawa algebra Λ := W JΓK of Γ over W . This gives Lie(G)⊗m

the structure of a pseudocompact module over Λ (cf. Corollary 2.5 and Theorem
2.6). In section 3, we pass to the global rigid analytic sections (Lie(G)⊗m)rig of
our vector bundles and show that the action of Γ extends to a continuous action
of the locally analytic distribution algebra D(Γ) of Γ over K. As a consequence,
the action of Γ on the strong continuous K-linear dual of (Lie(G)⊗m)rig is lo-
cally analytic in the sense of Schneider and Teitelbaum (cf. Theorem 3.4 and
Theorem 3.5).

We note that the continuity and the differentiability of the action of Γ on Rrig

were first proven by Gross and Hopkins if G is of dimension one (cf. [9], Proposi-
tion 19.2 and Proposition 24.2). Using the structure theory of the algebra D(Γ),
we arrive at a more precise result for arbitrary m and G, avoiding the use of
the period morphism. Our approach essentially relies on a basic lifting lemma
for endomorphisms of G which is also at the heart of the strategy followed by
Gross and Hopkins (cf. Lemma 2.2 and Proposition 2.3).

A major question that we have to leave open concerns the coadmissibility of
the D(Γ)-modules (Lie(G)⊗m)rig in the sense of [23], section 6. Taking sections
over suitable affinoid subdomains of Spf(R)rig, it is related to the finiteness
properties of the resulting Banach spaces as modules over certain Banach com-
pletions of Λ ⊗W K. In section 4, we assume G to be of dimension one and
consider the restriction of (Lie(G)⊗m)rig to an affinoid subdomain of Spf(R)rig

over which the period morphism of Gross and Hopkins is an open immersion.
By spelling out the action of the Lie algebra of Γ, we show that one naturally
obtains a continuous module over a complete divided power enveloping algebra
Ûdp
K (̊g) constructed by Kostant (cf. Theorem 4.5). Here g̊ is a Chevalley order

in the split form of the Lie algebra of Γ. If h = 2 and m ≥ −1 then in fact
(Lie(G)⊗m)rig gives rise to a cyclic module over Ûdp

K (̊g) (cf. Theorem 4.6). This
result might indicate that (Lie(G)⊗m)rig does not give rise to a coherent sheaf
for the Fréchet-Stein structure of D(Γ) considered in [23], section 5 (cf. Remark
4.7).

In [9], Gross and Hopkins consider formal modules of dimension one and finite
height over the valuation ring o of an arbitrary non-archimedean local field. The
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case of p-divisible formal groups corresponds to the case o = Zp. However, nei-
ther the deformation theory nor the theory of the period morphism have been
worked out in detail for formal o-modules of dimension strictly greater than one.
This is why we restrict to one dimensional formal groups in section 4 and to
p-divisible formal groups throughout.

Conventions and notation. If S is a commutative unital ring, if r is a posi-
tive integer, and if X = (X1, . . . , Xr) is a family of indeterminates, then we
denote by SJXK = SJX1, . . . , XrK the ring of formal power series in the vari-
ables X1, . . . , Xr over S. We write f = f(X) = f(X1, . . . , Xr) for an element
f ∈ SJXK. If n = (n1, . . . , nr) ∈ Nr is an r-tuple of non-negative integers then
we set |n| := n1 + . . .+ nr and Xn := Xn1

1 · · ·Xnr
r . If i and j are elements of a

set then we denote by δij the Kronecker symbol with value 1 ∈ S if i = j and
0 ∈ S if i ̸= j. If h is a Lie algebra over S then we denote by U(h) the universal
enveloping algebra of h over S. Throughout the article, p will denote a fixed
prime number.

1 Formal group laws

Let R be a commutative unital ring, and let d be a positive integer. A d-
dimensional commutative formal group law (subsequently abbreviated to formal
group) is a d-tuple G = (G1, . . . , Gd) of formal power series Gi ∈ RJX,Y K =
RJX1, . . . , Xd, Y1, . . . , YdK, satisfying

(F1) Gi(X, 0) = Xi,

(F2) Gi(X,Y ) = Gi(Y,X), and

(F3) Gi(G(X,Y ), Z) = Gi(X,G(Y, Z))

for all 1 ≤ i ≤ d. It follows from the formal implicit function theorem (cf. [11],
A.4.7) that for a given d-dimensional commutative formal group G there exists
a unique d-tuple ιG ∈ RJXKd of formal power series with trivial constant terms
such that

Gi(X, ιG(X)) = 0 for all 1 ≤ i ≤ d

(cf. also [27], Korollar 1.5). Thus, if S is a commutative R-algebra, and if I
is an ideal of S such that S is I-adically complete, then the set Id becomes a
commutative group with unit element (0, . . . , 0) via

x+G y := G(x, y) and − x := ιG(x).

Example 1.1. Let R = Z and d = 1. The formal group Ĝa(X,Y ) = X + Y
is called the one dimensional additive formal group. We have ιĜa

(X) = −X.

The formal group Ĝm(X,Y ) = (1+X)(1+Y )− 1 is called the one dimensional
multiplicative formal group. We have ιĜm

(X) =
∑∞

n=1(−X)n.

Let G and H be formal groups over R of dimensions d and e, respectively. A
homomorphism from G to H is an e-tuple φ = (φ1, . . . , φe) of power series
φi ∈ RJXK = RJX1, . . . , XdK in d-variables over R with trivial constant terms,
satisfying

φ(G(X,Y )) = H(φ(X), φ(Y )).

3



If φ : G → G′ and ψ : G′ → G′′ are homomorphisms of formal groups then we
define ψ ◦ φ through (ψ ◦ φ)(X) := ψ(φ(X)). This is a homomorphism from
G to G′′. We let End(G) denote the set of endomorphisms of a d-dimensional
commutative formal group G over R, i.e. of homomorphisms from G to G. It
is a ring with unit 1G = X = (X1, . . . , Xd), in which addition and multipli-
cation are defined by (φ +G ψ)(X) := G(φ(X), ψ(X)), (−φ)(X) := ιG(φ(X))
and ψ · φ := ψ ◦ φ. In particular, End(G) is a Z-module. Given m ∈ Z, we
denote by [m]G ∈ RJXKd the corresponding endomorphism of G. We denote by
Aut(G) the automorphism group of G, i.e. the group of units of the ring End(G).

Denoting by (X) the ideal of RJXK generated by X1, . . . , Xd, the free R-module

Lie(G) := HomR((X)/(X)2, R)

of rank d = dim(G) is called the Lie algebra of G (or its tangent space at 1G).
It is an R-Lie algebra for the trivial Lie bracket. Non-commutative Lie algebras
occur only for non-commutative formal groups (cf. [27], Kapitel I.7). An R-basis
of Lie(G) is given by the linear forms ( ∂

∂Xi
)1≤i≤d sending f + (X)2 to ∂f

∂Xi
(0).

Here ∂f
∂Xi

denotes the formal derivative of the power series f with respect to the
variable Xi.

Any homomorphism φ : G → H of formal groups as above gives rise to an
R-linear ring homomorphism φ∗ : RJY1, . . . , YeK → RJX1, . . . , XdK, determined
by φ∗(Yi) = φi for all 1 ≤ i ≤ e. It is called the comorphism of φ. It maps (Y )
to (X), hence (Y )2 to (X)2, and therefore induces an R-linear map

Lie(φ) : Lie(G) −→ Lie(H)

via Lie(φ)(δ)(h + (Y )2) := δ(φ∗(h) + (X)2). In the R-bases ( ∂
∂Xi

)i (resp.

( ∂
∂Yj

)j) of Lie(G) (resp. Lie(H)), the map Lie(φ) is given by the Jacobian matrix

( ∂φi

∂Xj
(0))i,j ∈ Re×d of φ. If φ : G → G′ and ψ : G′ → G′′ are homomorphisms

of formal groups, then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗ and Lie(ψ ◦ φ) = Lie(ψ) ◦ Lie(φ). If
H = G then one can use (F1) to show that the map (φ 7→ Lie(φ)) : End(G)→
EndR(Lie(G)) is a homomorphism of rings. In particular, Lie(G) becomes a
module over End(G) and we have Lie([m]G) = m · idLie(G) for any integer m.

If p is a prime number and if R is a complete noetherian local ring of residue
characteristic p, then a homomorphism φ : G→ H of formal groups is called an
isogeny if the comorphism φ∗ makes RJXK a finite free module over RJY K (cf.
[25], section 2.2). Of course, this can only happen if d = e. A formal group G
over a complete noetherian local ring R with residue characteristic p is called
p-divisible, if the homomorphism [p]G : G → G is an isogeny. In this case the
rank of RJXK over itself via [p]∗G is a power of p, say ph (cf. [25], section 2.2;
this result can also be deduced from [27], Satz 5.3). The integer h =: ht(G) is
called the height of the p-divisible formal group G.

If R = k is a perfect field of characteristic p, the necessary tools to effectively
study the category of p-divisible commutative formal groups over k were first
developed by Dieudonné (cf. [6], Chapter III). His methods were later general-
ized by Cartier in order to describe commutative formal groups over arbitrary
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rings (cf. [16], Chapters III & IV, or [27], Chapters III & IV).

Sticking to the case of a perfect field k of characteristic p, we denote by W :=
W (k) the ring of Witt vectors over k. Let σ = (x 7→ xp) denote the Frobenius
automorphism of k, as well as its unique lift to a ring automorphism ofW . Recall
that a σ−1-crystal over k is a pair (M,V ), consisting of a finitely generated free
W -module M and a map V :M →M which is σ−1-linear, i.e. which is additive
and satisfies

V (am) = σ−1(a)V (m) for all a ∈W, m ∈M.

We shall be interested in those σ−1-crystals (M,V ) which satisfy the following
two extra conditions (here D stands for Dieudonné):

(D1) pM ⊆ V (M)

(D2) V mod p is a nilpotent endomorphism of M/pM

For the following fundamental result cf. [27], page 109.

Theorem 1.2 (Dieudonné). If k is a perfect field of characteristic p then the
category of p-divisible commutative formal groups over k is equivalent to the
category of σ−1-crystals over k, satisfying (D1) and (D2). □

Let W [F, V ] be the non-commutative ring generated by two elements F and V
over W subject to the relations

V F = FV = p, V a = σ−1(a)V and Fa = σ(a)F for all a ∈W.

The equivalence of Theorem 1.2 associates with a p-divisible commutative for-
mal group G its (covariant) Cartier-Dieudonné moduleMG. This is a V -adically
separated and complete module over W [V, F ] such that the action of V is injec-
tive. Since G is p-divisible, also the action of F is injective, and the underlying
W -module of MG is finitely generated and free. In particular, the pair (MG, V )
is a σ−1-crystal over k, satisfying pMG = V FMG ⊆ VMG, i.e. condition (D1).
Condition (D2) follows from the V -adic completeness ofMG. We also note that
V and F give rise to a short exact sequence

0 // MG/FMG
V // MG/pMG

// MG/VMG
// 0,

of k-vector spaces in which dimk(MG/pMG) = ht(G) and dimk(MG/VMG) =
dim(G).

Conversely, if (M,V ) is a σ−1-crystal over k satisfying (D1), then V is injective.
In fact, (D1) implies that V becomes surjective (and hence bijective) over the
quotient field K ofW . Setting F := V −1p, theW -moduleM becomes a module
over W [F, V ] which is V -adically separated and complete if condition (D2) is
satisfied.

Recall that a σ−1-isocrystal over k is a pair (N, f) consisting of a finite dimen-
sional K-vector space N and a σ−1-linear bijection f : N → N . If (M,V ) is
a σ−1-crystal over k which satisfies (D1) then (M ⊗W K,V ⊗ idK) is a σ−1-
isocrystal over k. The σ−1-isocrystal which in this way is associated with the
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Cartier-Dieudonné module of a p-disivible commutative formal group G over
k, classifies G up to isogeny (cf. [27], Satz 5.26 and the remarks on page 110;
alternatively, consult [6], Chapter IV.1).

Given integers r and s with r > 0, consider the σ−1-isocrystal over k given by
(K[t]/(tr−ps), t◦σ). Here K[t] denotes the usual commutative polynomial ring
in the variable t over K on which σ acts coefficientwise. If k is algebraically
closed, we have the following fundamental classification result of Dieudonné and
Manin (cf. [27], Satz 6.29, [6], Chapter IV.4, and [16], Proposition VI.7.42).

Theorem 1.3 (Dieudonné-Manin). If k is an algebraically closed field of char-
acteristic p then the category of σ−1-isocrystals over k is semisimple. The simple
objects are given by the σ−1-isocrystals (K[t]/(tr − ps), t ◦σ), where r and s are
relatively prime integers with r > 0. □

To a pair (r, s) of integers as in Theorem 1.3 corresponds a particular p-divisible
commutative formal group Grs over k inside the isogeny class determined by
the σ−1-isocrystal (K[t]/(tr−ps), t◦σ). According to [16], Proposition VI.7.42,
the endomorphism ring of Grs is isomorphic to the maximal order of the central
division algebra of invariant s

r + Z ∈ Q/Z and dimension r2 over Qp.

Corollary 1.4. If G is a p-divisible commutative formal group over an alge-
braically closed field k of characteristic p then the endomorphism ring End(G) of
G is an order in a finite dimensional semisimple Qp-algebra. Endowing End(G)
with the p-adic topology and the automorphism group Aut(G) of G with the
induced topology, Aut(G) is a compact Lie group over Qp.

Proof. That End(G) is a p-adically separated and torsion free Zp-module can
easily be proved directly, using that G is p-divisible. It also follows from the fact
that the Cartier-Dieudonné module of G is free over W . According to Theorem
1.3 and the subsequent remarks there are central division algebras D1, . . . , Dn

over Qp and natural numbers m1, . . . ,mn such that

End(G)⊗Zp Qp ≃ Mat(m1 ×m1, D1)× . . .×Mat(mn ×mn, Dn)

asQp-algebras. Since End(G) is p-adically separated, it is bounded in End(G)⊗Zp

Qp. Thus, it is a lattice in a finite dimensional Qp-vector space and must be
finitely generated over Zp. This proves the first assertion. Endowing End(G)
with the p-adic topology, it becomes a topological Zp-algebra and Aut(G) be-
comes a compact topological group for the subspace topology. By the above
arguments, it is isomorphic to an open subgroup of

∏n
i=1 GLmi(Di), hence nat-

urally carries the structure of a Lie group over Qp.

2 Deformation problems and Iwasawa modules

We continue to denote by k a fixed algebraically closed field of characteristic p.
We also fix a p-divisible commutative formal group G of dimension d over k.
Denote by W = W (k) the ring of Witt vectors of k and by Ck the category of
complete noetherian commutative local W -algebras with residue class field k.
Let R be an object of Ck and let m be the maximal ideal of R. A deformation
of G to R is a pair (G′, ρG′), where G′ is commutative formal group over R
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and ρG′ : G → G′ modm is an isomorphism of formal groups over k. Two
deformations (G′, ρG′) and (G′′, ρG′′) of G to R are said to be isomorphic if
there is an isomorphism f : G′ → G′′ of formal groups over R such that the
diagram

G′ modm

f modm

��

G

ρG′

::tttttttttt

ρG′′ $$J
JJ

JJ
JJ

JJ

G′′ modm

is commutative. Let DefG denote the functor from Ck to the category Sets
of sets which associates with an object R of Ck the set of isomorphism classes
of deformations of G to R. If dim(G) = 1, then the following theorem was
first proved by Lubin and Tate (cf. [17], Theorem 3.1), building on the work of
Lazard. It was later generalized by Cartier und Umemura, independently (cf.
[5] and [26]).

Theorem 2.1. The functor DefG : Ck → Sets is representable, i.e. there is an
object Rdef

G of Ck and a deformation G of G to Rdef
G with the following universal

property. For any object R of Ck and any deformation (G′, ρG′) of G to R there
is a unique W -linear local ring homomorphism φ : Rdef

G → R and a unique
isomorphism [φ] : φ∗(G, ρG) ≃ (G′, ρG′) of deformations of G to R.∗ If h =
ht(G) and d = dim(G) denote the height and the dimension of G, respectively,
then the W -algebra Rdef

G is non-canonically isomorphic to the power series ring
W Ju1, . . . , u(h−d)dK in (h− d)d variables over W . □

It follows from the universal property of the deformation (G, ρG) that the au-
tomorphism group Aut(G) of G acts on the universal deformation ring Rdef

G

by W -linear local ring automorphisms. Indeed, given γ ∈ Aut(G), there is a
unique W -linear local ring endomorphism γ of Rdef

G and a unique isomorphism
[γ] : γ∗(G, ρG) ≃ (G, ρG ◦ γ) of deformations of G to Rdef

G . It follows from
the uniqueness that the resulting map Aut(G) → End(Rdef

G ) factors through a
homomorphism

Aut(G) −→ Aut(Rdef
G )

of groups. It is this type of representation that we are concerned with in this
article. To ease notation we shall denote by

R := Rdef
G

the universal deformation ring of our fixed p-divisible commutative formal group
G over k. Let m denote the maximal ideal of R. For any non-negative integer
n we denote by Gn := Gmodmn+1 the reduction of the universal deformation
G modulo the ideal mn+1 of R. We have G ≃ G0 via ρG.

Lemma 2.2. If n is a non-negative integer then the homomorphism of rings
End(Gn+1)→ End(Gn), induced by reduction modulo mn+1, is injective.

∗Here φ∗(G, ρG) = (φ∗(G), ρG), where φ∗G is obtained by applying φ to the coefficients of
G. Since φ induces an isomorphism between the residue class fields of Rdef

G and R, we may
identify GmodmRdef

G
and φ∗Gmodm.
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Proof. The formal group Gn+1 is p-divisible because the comorphism [p]∗Gn+1

is finite and free. Indeed, it is so after reduction modulo m, and one can use
[3], III.2.1 Proposition 14 and III.5.3 Théorème 1, to conclude. Since the ideal
mn+1(R/mn+2) of R/mn+2 is nilpotent, the claim follows from the rigidity the-
orem in [27], Satz 5.30.

The preceding lemma allows us to regard all endomorphism rings End(Gn) as
subrings of End(G0). The main technical result of this section is the following
assertion.

Proposition 2.3. For any non-negative integer n the subring End(Gn) of
End(G0) contains p

n End(G0).

Proof. We proceed by induction on n, the case n = 0 being trivial. Let n ≥ 1
and assume the assertion to be true for n − 1. Set Rn := R/mn+1. Let
φ ∈ pn−1 End(G0) ⊆ End(Gn−1) and choose a family φ̃ ∈ RnJXKd of power
series with trivial constant terms such that φ̃modmnRn = φ. The d-tuple of
power series [p]Gn ◦ φ̃ is then a lift of pφ. We claim that it is an endomorphism
of Gn.

Note first that [p]Gn ◦ φ̃ depends only on φ and not on the choice of a lift φ̃.
Indeed, if φ̃′ is a second lift of φ with trivial constant terms, set ψ := φ̃′ − φ̃.
Setting χ := (φ̃ + ψ) −Gn φ̃, we have φ̃′ = φ̃ +Gn χ. Further, the power series
χ satisfies χmodmn = φ −Gn−1

φ = 0, hence has coefficients in mnRn. Since
pmn ⊆ mn+1 and (mn)m ⊆ mn+1 for any integer m ≥ 2, we have [p]Gn ◦ χ = 0
and hence

[p]Gn ◦ φ̃′ = [p]Gn(φ̃+Gn χ) = ([p]Gn ◦ φ̃) +Gn ([p]Gn ◦ χ) = [p]Gn ◦ φ̃,

as desired.

If η ∈ RnJXKd is a family of power series with trivial constant terms, set
δη := δη(X,Y ) := η(X +Gn Y ) −Gn η(X) −Gn η(Y ). Since φ̃ reduces to an
endomorphism of Gn−1, the power series δφ̃ has coefficients in mn. As above,
this implies [p]Gn ◦ δφ̃ = 0 and thus

δ[p]Gn◦φ̃ = ([p]Gn ◦ φ̃)(X +Gn Y )−Gn ([p]Gn ◦ φ̃)(X)−Gn ([p]Gn ◦ φ̃)(Y )

= [p]Gn(δφ̃) = 0.

As a consequence, [p]Gn ◦ φ̃ ∈ End(Gn), and thus pφ ∈ End(Gn). Since φ was
arbitrary, we obtain the desired inclusion pn End(G0) ⊆ End(Gn).

According to Corollary 1.4, the group Aut(G) is a profinite topological group.
A basis of open neighborhoods of its identity is given by the subgroups 1 +
pn End(G) with n ≥ 1. If m denotes the maximal ideal of the local ring R, the
W -algebra R is a topological ring for the m-adic topology. We are now ready
to prove the following result, a particular case of which was treated in [13],
Proposition 3.1. The argument is borrowed from the proof of [9], Lemma 19.3.
Let us put

Γ := Γ0 := Aut(G) and Γn := 1 + pn End(G) for n ≥ 1.
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Theorem 2.4. The action of Γ on R = Rdef
G is continuous in the sense that

the map ((γ, f) 7→ γ(f)) : Γ×R→ R is a continuous map of topological spaces.
Here Γ×R carries the product topology. If n is a non-negative integer then the
induced action of Γn on R/mn+1 is trivial.

Proof. As in the proof of [13], Proposition 3.1, it suffices to prove the second
statement. Let γ ∈ Γn and consider the deformation (Gn, ρG ◦ γ) of G to
Rn = R/mn+1. Denote by prn : R → Rn the natural projection and let γn
denote the unique ring homomorphism γn : R → Rn for which there exists an
isomorphism of deformations [γn] : (γn)∗(G, ρG) ≃ (Gn, ρG ◦ γ) (cf. Theorem
2.1). Note that also the ring homomorphism prn ◦ γ : R → Rn admits an iso-
morphism of deformations (prn◦γ)∗(G, ρG) ≃ (Gn, ρG◦γ), namely the reduction
of [γ] modulo mn+1. By uniqueness, we must have γn = prn ◦ γ and [γn] = [γ]
mod mn+1.

Since the map (σ 7→ ρG ◦ σ ◦ ρ−1
G ) is a ring isomorphism End(G) → End(G0),

Proposition 2.3 shows that ρG ◦ γ ◦ ρ−1
G ∈ Aut(Gn) and therefore defines an

isomorphism of deformations (prn)∗(G, ρG) = (Gn, ρG) ≃ (Gn, ρG ◦ γ). By
uniqueness again, we must have γn = prn ◦ γ = prn. This implies that γ acts
trivially on Rn and that [γ] mod mn+1 = ρG ◦ γ ◦ ρ−1

G .

If H is a profinite topological group then we denote by

Λ(H) :=W JHK := lim←−
n≥1, N⊴oH

(W/pnW )[H/N ]

the Iwasawa algebra (or completed group ring) of H over W . The above projec-
tive limit runs over all positive integers n and over all open normal subgroups
N of H. If n and n′ are positive integers with n′ ≤ n, and if N and N ′

are two open normal subgroups of H with N ⊆ N ′, then the transition map
(W/pnW )[H/N ] → (W/pn

′
W )[H/N ′] is the natural homomorphism of group

rings induced by the surjective homomorphism H/N → H/N ′ of groups and
the surjective ring homomorphism W/pnW → W/pn

′
W . Endowing each ring

(W/pnW )[H/N ] with the discrete topology, Λ(H) is a topological ring for the
projective limit topology. It is a pseudocompact ring in the terminology of [4],
page 442, because each of the rings (W/pnW )[H/N ] is Artinian. Recall that
a complete Hausdorff topological Λ(H)-module M is called pseudocompact, if
it admits a basis (Mi)i∈I of open neighborhoods of zero such that each Mi is
a Λ(H)- submodule of M for which the Λ(H)-module M/Mi has finite length.
For brevity, we will set

Λ := Λ(Aut(G)).

Corollary 2.5. The action of Aut(G) on R = Rdef
G extends to an action of Λ

and gives R the structure of a pseudocompact Λ-module.

Proof. Since R is m-adically separated and complete, we may consider the nat-
ural isomorphism

R ≃ lim←−
n≥0

R/mn+1.

According to Theorem 2.4, the action of the group ring W [Aut(G)] on R/mn+1

factors through (W/pn+1W )[Aut(G)/(1+pn End(G))] where 1+pn End(G) is an
open normal subgroup of Aut(G). Thus, R/mn+1 can be viewed as a Λ-module
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via the natural ring homomorphism Λ→ (W/pn+1W )[Aut(G)/(1+pn End(G))].
The transition maps in the above projective limit are then Λ-equivariant. This
proves the first assertion.

As for the second assertion, the ideals mn+1 of R are open and Λ-stable, being
the kernels of the Λ-equivariant projections R→ R/mn+1. They form a basis of
open neighborhoods of zero of R, and the quotients R/mn+1 are even of finite
length over W ⊆ Λ.

Let Lie(G) denote the Lie algebra of the universal deformation G of G. This is a
free module of rank d = dim(G) over R. Given γ ∈ Aut(G), we extend the ring
automorphism γ : R → R to an automorphism γ : RJXK → RJXK by setting
γ(Xi) = Xi for all 1 ≤ i ≤ d. It induces a homomorphism γ : Lie(G)→ Lie(γ∗G)
of additive groups. We define γ̃ : Lie(G)→ Lie(G) as the composite of the two
additive maps

Lie(G)
γ // Lie(γ∗G)

Lie([γ]) // Lie(G),

with [γ] : γ∗G → G as above. Given a second element γ′ ∈ Aut(G), we define
γ′ : Lie(γ∗G) → Lie(γ′∗(γ∗G)) as before. Further, γ′∗[γ] : γ′∗(γ∗G) → γ′∗G
denotes the homomorphism obtained by applying γ′ ∈ Aut(R) to the coefficients
of [γ] ∈ RJXKd. One readily checks that the diagram

Lie(γ∗G)
Lie([γ]) //

γ′

��

Lie(G)

γ′

��
Lie(γ′∗(γ∗G))

Lie(γ′
∗[γ])

// Lie(γ′∗G)

is commutative. Further, the uniqueness assertion in Theorem 2.1 implies that
[γ′γ] = [γ′] ◦ γ′∗[γ]. Therefore,

(γ′γ)∼ = Lie([γ′γ]) ◦ (γ′γ) = Lie([γ′]) ◦ Lie(γ′∗[γ]) ◦ γ′ ◦ γ
= Lie([γ′]) ◦ (γ′ ◦ Lie([γ]) ◦ (γ′)−1) ◦ γ′ ◦ γ = γ̃′ ◦ γ̃.

As a consequence, we obtain an action of Aut(G) on the additive group Lie(G)
which is semilinear for the action on R in the sense that

γ̃(f · δ) = γ(f) · γ̃(δ) for all f ∈ R, δ ∈ Lie(G).

To ease notation, we will again write γ(δ) for γ̃(δ).

Given a positive integer m we denote by Lie(G)⊗m the m-fold tensor product of
Lie(G) over R with itself. This is a free R-module of rank dm with a semilinear
action of Aut(G) defined by

γ(δ1 ⊗ · · · ⊗ δm) := γ(δ1)⊗ · · · ⊗ γ(δm).

We also set Lie(G)⊗0 := R and Lie(G)⊗m := HomR(Lie(G)⊗(−m), R) if m is a
negative integer. In the latter case Lie(G)⊗m is a free R-module of rank d−m

with a semilinear action of Aut(G) defined through

γ(φ)(δ1 ⊗ · · · ⊗ δ−m) := γ(φ(γ−1(δ1)⊗ · · · ⊗ γ−1(δ−m))).

10



For any integer m we endow the R-module Lie(G)⊗m with the m-adic topology
for which it is Hausdorff and complete. By the semilinearity of the Aut(G)-
action, the R-submodules mn Lie(G)⊗m are Aut(G)-stable for any non-negative
integer n.

As an easy consequence of Proposition 2.3 and Theorem 2.4, we obtain the
following result.

Theorem 2.6. Let m and n be integers with n ≥ 0. The action of Aut(G) on
Lie(G)⊗m is continuous in the sense that the structure map Aut(G)×Lie(G)⊗m →
Lie(G)⊗m of the action is continuous. Here the left hand side carries the
product topology. The induced action of 1 + p2n+1 End(G) on the quotient
Lie(G)⊗m/mn+1 Lie(G)⊗m is trivial. In particular, the action of Aut(G) on
Lie(G)⊗m extends to an action of Λ and gives Lie(G)⊗m the structure of a
pseudocompact Λ-module.

Proof. As in the proof of Theorem 2.4 and Corollary 2.5, it suffices to show
that the action of 1 + p2n+1 End(G) on Lie(G)⊗m/mn+1 Lie(G)⊗m is trivial.
By definition of the action and Theorem 2.4 we may assume m = 1. Setting
Gn = G mod mn+1, as before, we have Lie(G)/mn+1 Lie(G) = Lie(Gn). Since
2n + 1 ≥ n, Theorem 2.4 and its proof show that the map γ mod mn+1 :
Lie(Gn)→ Lie(Gn) is given by Lie(ρG ◦ γ ◦ ρ−1

G ) where ρG ◦ γ ◦ ρ−1
G is contained

in 1 + p2n+1 End(G0) ⊆ 1 + pn+1 End(Gn) (cf. Proposition 2.3). Therefore, it
suffices to show that the natural action of 1 + pn+1 End(Gn) ⊂ End(Gn) on
Lie(Gn) is trivial. However, if φ ∈ End(Gn) and if δ ∈ Lie(Gn), then

Lie(1 + pn+1φ)(δ) = δ + pn+1 Lie(φ)(δ) = δ,

because pn+1 ∈ mn+1.

Before we continue, let us point out an important variant of the deforma-
tion problem considered above. It concerns the moduli problems considered
by Rapoport and Zink (cf. [19]).

Let G be a fixed p-divisible group over the algebraically closed field k of char-
acteristic p, i.e. an fppf -group scheme over Spec(k) for which multiplication by
p is an epimorphism. Denoting by Nilp the category of W -schemes on which p
is locally nilpotent, letMG : Nilp → Sets denote the set valued functor which
associates to an object S of Nilp the set of isomorphism classes of pairs (G′, ρG′),
where G′ is a p-divisible group over S and ρG′ : GS → G′

S
is a quasi-isogeny

(cf. [19], Definition 2.8). Here S denotes the closed subscheme of S defined
by the sheaf of ideals pOS . According to [19], Theorem 2.16, the functor MG

is represented by a formal scheme which is locally formally of finite type over
Spf(W ). If G is a p-divisible one dimensional commutative formal group law
as in section 1, thenMG is the disjoint union of open subschemesMn

G, n ∈ Z,
which are non-canonically isomorphic to Spf(Rdef

G ) (cf. [19], Proposition 3.79).
The reason is that any quasi-isogeny of height zero between one dimensional
p-divisible formal group laws over k is an isomorphism.

One can generalize the moduli problem even further by considering deforma-
tions of p-divisible groups with additional structures such as polarizations or
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actions by maximal orders in finite dimensional semisimple Qp-algebras (cf.
[19], Definition 3.21). The corresponding deformation functors are again rep-
resentable, as was proven by Rapoport and Zink (cf. [19], Theorem 3.25). An
important example was studied by Drinfeld (cf. [19], 3.58). The generic fiber of
the representing formal scheme is known as Drinfeld’s upper half space over K.
Instead of continuous representations of Aut(G) as in Theorem 2.4, it gives rise
to an important class of p-adic locally analytic representations in the sense of
Schneider and Teitelbaum. This particular class of representations was studied
extensively by Morita, Orlik, Schneider and Teitelbaum (cf. [18] and [24]). It
found arithmetic applications to the de Rham cohomology of varieties which
are p-adically uniformized by Drinfeld’s upper half space (cf. [12]). In the next
section we shall see that the deformation spaces we consider here give rise to
locally analytic representations, as well.

3 Rigidification and local analyticity

We keep the notation of the previous section and denote by k an algebraically
closed field of characteristic p and by G a fixed commutative p-divisible formal
group over k. Let h and d denote the height and the dimension of G, respec-
tively. We denote by W the ring of Witt vectors of k and by K the quotient
field of W . We let R = Rdef

G denote the universal deformation ring of G (cf.
Theorem 2.1).

According to Theorem 2.1, the rigidification Spf(R)rig of the formal scheme
Spf(R) in the sense of Berthelot (cf. [10], section 7) is isomorphic to the (h−d)d-
dimensional rigid analytic open unit polydisc B̊(h−d)d

K over K. We let

Rrig := O(Spf(R)rig)

denote the ring of global rigid analytic functions on Spf(R)rig. Any isomorphism
R ≃W JuK of local W -algebras extends to an isomorphism

Rrig ≃ {
∑

α∈N(h−d)d

cαu
α | cα ∈ K and lim

|α|→∞
|cα|r|α| = 0 for all 0 < r < 1}

of K-algebras, where | · | denotes the p-adic absolute value on K. This allows
us to view Rrig as a topological K-Fréchet algebra whose topology is defined by
the family of norms || · ||ℓ, given by

||
∑
α

cαu
α||ℓ := sup

α
{|cα|p−|α|/ℓ}

for any positive integer ℓ. Letting Rrig
ℓ denote the completion of Rrig with

respect to the norm || · ||ℓ, the K-algebra Rrig
ℓ can be identified with the ring of

rigid analytic functions on the affinoid subdomain

B(h−d)d
ℓ := {x ∈ Spf(R)rig | |ui(x)| ≤ p−1/ℓ for all 1 ≤ i ≤ (h− d)d}

of Spf(R)rig. Further, Rrig ≃ lim←−ℓ
Rrig

ℓ is the topological projective limit of the

K-Banach algebras Rrig
ℓ . In fact, by a cofinality argument and [1], 6.1.3 Theorem
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1, Rrig is the topological projective limit of the system of affinoid K-algebras
corresponding to any nested admissible open affinoid covering of Spf(R)rig.

By functoriality, the automorphism group Γ = Aut(G) of G acts on Spf(R)rig

by automorphisms of rigid analytic K-varieties. This gives rise to an action of
Γ on Rrig by K-linear ring automorphisms. By the above cofinality argument,
any of these automorphisms is continuous. The goal of this section is to show
that the induced action on the strong topological K-linear dual of Rrig is locally
analytic in the sense of Schneider and Teitelbaum (cf. [22], page 451).

Fix an algebraic closureKalg ofK. According to [10], Lemma 7.19, the maximal
ideals of the ring RK := R ⊗W K are in bijection with the points of Spf(R)rig.
It follows from [1], 7.1.1 Proposition 1, that the latter are in bijection with the
Gal(Kalg|K)-orbits of

B̊(h−d)d
K (Kalg) := {x ∈ (Kalg)(h−d)d | |xi| < 1 for all 1 ≤ i ≤ (h− d)d}.

A point x representing one of these orbits corresponds to the kernel of the surjec-
tive K-linear ring homomorphism RK → K(x) := K(x1, . . . , x(h−d)d) ⊆ Kalg,
sending f(u) to f(x).

The following result constitutes the technical heart of this section. It is a
straightforward generalization of [9], Lemma 19.3.

Proposition 3.1. Let n and ℓ be integers with n ≥ 0 and ℓ ≥ 1. If γ ∈ Γn and
if f ∈ Rrig then ||γ(f)− f ||ℓ ≤ p−n/ℓ||f ||ℓ.
Proof. First assume f = ui for some 1 ≤ i ≤ (h− d)d. If

B(h−d)d
ℓ (Kalg) := {x ∈ (Kalg)(h−d)d | |xi| ≤ p−1/ℓ for all 1 ≤ i ≤ (h− d)d},

then ||g||ℓ = sup{|g(x)| | x ∈ B(h−d)d
ℓ (Kalg)} for any g ∈ Rrig. Thus, we

need to see that if x ∈ B(h−d)d
ℓ (Kalg) and if y := x · γ = γ(u)(x), then

|xi − yi| ≤ p−(n+1)/ℓ.

Denoting byW alg the valuation ring of Kalg, consider the commutative diagram

R
γ //

""D
DD

DD
DD

D R

||zz
zz
zz
zz

W alg

of homomorphisms of W -algebras, in which the left and right oblique arrow is
given by evaluation at y and x, respectively. Choosing z ∈ W alg with |z| =
p−1/ℓ, we have xj ∈ zW alg for any j. Further, p ∈ zW alg because ℓ ≥ 1. As a
consequence, the right oblique arrow maps mR to zW alg. Note that γ(uj) ∈ mR,
so that we obtain yj = uj(x · γ) = γ(uj)(x) ∈ zW alg, as well. Therefore, also
the left oblique arrow maps mR to zW alg. Now consider the induced diagram

R/mn+1
R

γ //

&&NN
NNN

NNN
NNN

R/mn+1
R

xxppp
ppp

ppp
pp

W alg/(zn+1).
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According to Theorem 2.4, the upper horizontal arrow is the identity. It follows
that xi − yi ∈ zn+1W alg, i.e. |xi − yi| ≤ p−(n+1)/ℓ, as required. In particular,

γ stabilizes B(h−d)d
ℓ (Kalg) and therefore is an isometry for the norm ||·||ℓ on Rrig.

To prove the proposition, the continuity of γ allows us to assume f = uα for
some α ∈ N(h−d)d. The assertion is trivial for |α| = 0. If |α| > 0 choose an
index i with αi > 0. Define β through βj := αj if j ̸= i and βi := αi − 1. If

x ∈ B(h−d)d
ℓ (Kalg) and if y = x · γ, then

|γ(uα)(x)− uα(x)| = |yα − xα| = |yiyβ − xixβ |
≤ max{|yi||yβ − xβ |, |yi − xi||xβ |}.

Here |yi||yβ−xβ | ≤ p−1/ℓ||γ(uβ)−uβ ||ℓ ≤ p−(n+1)/ℓ||uβ ||ℓ = p−n/ℓ||uα||ℓ by the
induction hypothesis. Further, |yi − xi||xβ | ≤ p−(n+1)/ℓp−|β|/ℓ = p−n/ℓ||uα||ℓ,
as seen above. Thus, we obtain |γ(uα)(x) − uα(x)| ≤ p−n/ℓ||uα||ℓ for all x ∈
B(h−d)d
ℓ (Kalg). This proves the proposition.

A topological group is a Lie group over Qp if and only if it contains an open
subgroup which is a uniform pro-p group (cf. [8], Definition 4.1 and Theorem
8.32). For the compact p-adic Lie group Γ = Aut(G) we have the following
more precise result. We let

ε := 1 if p > 2 and ε := 2 if p = 2.

Lemma 3.2. For any non-negative integer n we have Γpn

ε = Γε+n. The open
subgroup Γε+n of Γ is a uniform pro-p group.

Proof. As for the first assertion, the proofs of [8], Lemma 5.1 and Theorem 5.2,
can be copied word by word on replacing Md(Zp) by End(G) and GLd(Zp) by
Aut(G). Further, Γε+n is a powerful pro-p group by [8], Theorem 3.6 (i) and
the remark after Definition 3.1. That it is uniform follows from [8], Theorem
3.6 (ii), and the first assertion.

Fix an integer n ≥ ε. By Lemma 3.2 and [8], Theorem 3.6, the group Γn/Γn+1 is
a finite dimensional Fp-vector space. Choosing elements γ1, . . . , γr ∈ Γn whose
images modulo Γn+1 form an Fp-basis of Γn/Γn+1, [8], Theorem 4.9, shows that
(γ1, . . . , γr) is an ordered basis of Γn in the sense that the map Zr

p → Γn, sending

λ to γλ1
1 · · · γλr

r , is a homeomorphism.

Set bi := γi − 1 ∈ Λ(Γn) and b
α := bα1

1 · · · bαr
r for any α ∈ Nr. By [8], Theorem

7.20, any element δ ∈ Λ(Γn) admits a unique expansion of the form

λ =
∑
α∈Nr

dαb
α with dα ∈W for all α ∈ Nr.

For any ℓ ≥ 1 this allows us to define theK-norm ||·||ℓ on the algebra Λ(Γn)K :=
Λ(Γn)⊗W K through

||
∑
α

dαb
α||ℓ := sup

α
{|dα|p−ε|α|/ℓ}.
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Remark 3.3. A more accurate notation would be the symbol || · ||(n)ℓ for the
above norm on Λ(Γn)K . It does generally not coincide with the restriction of

|| · ||(m)
ℓ to Λ(Γn)K ⊆ Λ(Γm)K if n ≥ m. However, there is an explicit rescaling

relation between the families of norms (|| · ||(n)ℓ )ℓ and (|| · ||(m)
ℓ )ℓ on Λ(Γn)K (cf.

[20], Proposition 6.2). Since we will never work with two different groups Γn

and Γm at once, we decided to ease notation and use the somewhat ambiguous
symbol || · ||ℓ.

By [20], Proposition 2.1 and [23], Proposition 4.2, the norm || · ||ℓ on Λ(Γn)K is
submultiplicative whenever ℓ ≥ 1. As a consequence, the completion

Λ(Γn)K,ℓ = {
∑
α

dαb
α | dα ∈ K, lim

|α|→∞
|dα|p−ε|α|/ℓ = 0}

of Λ(Γn)K with respect to || · ||ℓ is a K-Banach algebra. The natural inclusions
Λ(Γn)K,ℓ+1 → Λ(Γn)K,ℓ endow the projective limit

D(Γn) := lim←−
ℓ

Λ(Γn)K,ℓ

with the structure of a K-Fréchet algebra. As is explained in [23], section 4, a
theorem of Amice allows us to identify it with the algebra of K-valued locally
analytic distributions on Γn. Similarly, we denote by D(Γ) the algebra of K-
valued locally analytic distributions on Γ (cf. [22], section 2).

Theorem 3.4. For any integer ℓ ≥ 1 the action of Γε on Rrig extends to
Rrig

ℓ and makes Rrig
ℓ a topological Banach module over the K-Banach algebra

Λ(Γε)K,ℓ. The action of Γ on Rrig extends to a jointly continuous action of the
K-Fréchet algebra D(Γ). The action of Γ on the strong continuous K-linear
dual (Rrig)′b of Rrig is locally analytic in the sense of [22], page 451.

Proof. First, we prove by induction on |α| that ||bαf ||ℓ ≤ ||bα||ℓ||f ||ℓ for any
f ∈ Rrig. This is clear if |α| = 0. Otherwise, let i be the minimal index with
αi > 0 and define β through βj = αj if j ̸= i and βi := αi − 1. In this case,
Proposition 3.1 and the induction hypothesis imply

||bαf ||ℓ = ||(γi − 1)bβf ||ℓ ≤ p−ε/ℓ||bβf ||ℓ
≤ p−ε/ℓp−ε|β|/ℓ||f ||ℓ = ||bα||ℓ||f ||ℓ,

as required. This immediately gives ||λ · f ||ℓ ≤ ||λ||ℓ||f ||ℓ for all λ ∈ Λ(Γε)K
and f ∈ RK . Thus, the multiplication map Λ(Γε)K × RK → RK is continu-
ous, if Λ(Γε)K and RK are endowed with the respective || · ||ℓ-topologies, and
if the left hand side carries the product topology. Since RK is dense in Rrig

ℓ ,

we obtain a map Λ(Γε)K,ℓ × Rrig
ℓ → Rrig

ℓ by passing to completions. By con-

tinuity, it gives Rrig
ℓ the structure of a topological Banach module over Λ(Γε)K,ℓ.

Passing to the projective limit, we obtain a continuous mapD(Γε)×Rrig → Rrig,
giving Rrig the structure of a jointly continuous module over D(Γε). Since D(Γ)
is topologically isomorphic to the locally convex direct sum ⊕γΓε∈Γ/Γε

γD(Γε)
(cf. [22], page 447 bottom), Rrig is a jointly continuous module over D(Γ).
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It follows from [21], Proposition 19.9 and the arguments proving the claim on
page 98, that the K-Fréchet space Rrig is nuclear. Therefore, [22], Corollary
3.4, implies that the locally convex K-vector space (Rrig)′b is of compact type
and that the action of Γ obtained by dualizing is locally analytic.

Using Theorem 2.6, the preceding result can be generalized as follows. Fixing
an integer m, the free R-module Lie(G)⊗m gives rise to a locally free coherent

sheaf on Spf(R). For any positive integer ℓ we denote by (Lie(G)⊗m)rigℓ the

sections of its rigidification over the affinoid subdomain B(h−d)d
ℓ of Spf(R)rig.

This is a free Rrig
ℓ -module for which the natural Rrig

ℓ -linear map

Rrig
ℓ ⊗R Lie(G)⊗m −→ (Lie(G)⊗m)rigℓ

is bijective (cf. [10], 7.1.11). We denote by (Lie(G)⊗m)rig the space of global
sections of the rigidification of Lie(G)⊗m over Spf(R)rig. This is a free Rrig-
module for which the natural Rrig-linear maps

(1) Rrig ⊗R Lie(G)⊗m −→ (Lie(G)⊗m)rig −→ lim←−
ℓ

(Lie(G)⊗m)rigℓ

are bijective. Further, (Lie(G)⊗m)rig ≃ (Lie(G)rig)⊗m, where the latter tensor
products and dualities are with respect to Rrig.

By functoriality, the group Γ = Aut(G) acts on (Lie(G)⊗m)rig in such a way that
the left map in (1) becomes Γ-equivariant for the diagonal action on the left. In
particular, it is semilinear for the action of Γ on Rrig. We endow (Lie(G)⊗m)rig

and (Lie(G)⊗m)rigℓ with the natural topologies of finitely generated modules over

Rrig and Rrig
ℓ , respectively. This makes them a nuclear K-Fréchet space and

a K-Banach space, respectively. The right map in (1) is then a topological
isomorphism for the projective limit topology on the right. With the same
cofinality argument as for Rrig one can show that any element of Γ acts on
(Lie(G)⊗m)rig through a continuous K-linear automorphism.

Theorem 3.5. Let m be an integer. For any integer ℓ ≥ 1 the action of Γ2ε−1

on (Lie(G)⊗m)rig extends to (Lie(G)⊗m)rigℓ and makes (Lie(G)⊗m)rigℓ a topologi-
cal Banach module over the K-Banach algebra Λ(Γ2ε−1)K,ℓ. The action of Γ on
(Lie(G)⊗m)rig extends to a jointly continuous action of the K-Fréchet algebra
D(Γ). The action of Γ on the strong continuous K-linear dual [(Lie(G)⊗m)rig]′b
of (Lie(G)⊗m)rig is locally analytic.

Proof. Set Mm
ℓ := (Lie(G)⊗m)rigℓ . Any R-basis (δ1, . . . , δs) of Lie(G)⊗m can be

viewed as an Rrig
ℓ -basis ofMm

ℓ . WritingMm
ℓ = ⊕s

i=1R
rig
ℓ δi, the topology ofMm

ℓ

is defined by the norm

||
s∑

i=1

fiδi||ℓ = sup
i
{||fi||ℓ} if f1, . . . , fs ∈ Rrig

ℓ .

We choose an ordered basis (γ1, . . . , γr) of Γ2ε−1 and let bi := γi − 1 be
as before. By induction on |α| we will first prove the fundamental estimate
||bαδ||ℓ ≤ ||bα||ℓ||δ||ℓ for all α ∈ Nr and δ ∈ (Lie(G)⊗m)rig. As in the proof
of Theorem 3.4 this is reduced to the case |α| = 1, i.e. bα = γi − 1 for some
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1 ≤ i ≤ r. Further, we may assume δ = fδj for some f ∈ Rrig and 1 ≤ j ≤ s.

There are elements r1, . . . , rs ∈ R such that γi(δj) =
∑s

ν=1 rνδν . According to
Theorem 2.6 we have (γi − 1)(δj) ∈ mε Lie(G)⊗m, i.e. rj − 1 ∈ mε and rν ∈ mε

for ν ̸= j. We claim that ||r||ℓ ≤ p−c/ℓ for any integer c ≥ 0 and any element
r ∈ mc. Indeed, this is clear for c = 0. For general c, the ideal mc of R
is generated by all elements of the form pauβ with a ∈ N, β ∈ N(h−d)d and
a+ |β| = c. Since ℓ ≥ 1 we have |pa| = p−a ≤ p−a/ℓ, and the claim follows from
the multiplicativity of the norm || · ||ℓ on R. Now

||(γi − 1)(fδj)||ℓ ≤ max{||(γi − 1)(f) · γi(δj)||ℓ, ||f · (γi − 1)(δj)||ℓ}

= max{||
∑
ν

(γi − 1)(f)rνδν ||ℓ, ||f ||ℓ||δj −
∑
ν

rνδν ||ℓ},

where ||(γi − 1)(f) · rν ||ℓ ≤ ||(γi − 1)(f)||ℓ ≤ p(2ε−1)/ℓ||f ||ℓ by Proposition
3.1. Here p(2ε−1)/ℓ ≤ p−ε/ℓ = ||γi − 1||ℓ. Moreover, ||rj − 1||ℓ ≤ p−ε/ℓ and
||rν ||ℓ ≤ p−ε/ℓ if ν ̸= j by the above claim. This finishes the proof of the funda-
mental estimate.

As an immediate consequence, we obtain that ||λ · δ||ℓ ≤ ||λ||ℓ||δ||ℓ for any
λ ∈ Λ(Γ2ε−1)K and any δ ∈ Lie(G)⊗m ⊗W K. The proof proceeds now as in
Theorem 3.4.

According to [23], Theorem 4.10, the projective system (Λ(Γ2ε−1)K,ℓ)ℓ of K-
Banach algebras endow their projective limit D(Γ2ε−1) with the structure of
a K-Fréchet-Stein algebra. In the terminology of [23], section 8, the fam-

ily ((Lie(G)⊗m)rigℓ )ℓ is a sheaf over (D(Γ2ε−1), (|| · ||ℓ)ℓ) with global sections
(Lie(G)⊗m)rig for any integer m. One of the main open questions in this set-
ting is whether this sheaf is coherent, i.e. whether the Λ(Γ2ε−1)K,ℓ-modules

(Lie(G)⊗m)rigℓ are finitely generated and whether the natural maps

Λ(Γ2ε−1)K,ℓ ⊗Λ(Γ2ε−1)K,ℓ+1
(Lie(G)⊗m)rigℓ+1 −→ (Lie(G)⊗m)rigℓ

are always bijective. This would amount to the admissibility of the locally
analytic Γ-representation [(Lie(G)⊗m)rig]′b in the sense of [23], section 6. Nothing
in this direction is known. In the next section, however, we will have a closer
look at the case dim(G) = 1 and ℓ = 1. We will see that in order to obtain
finitely generated objects, one might be forced to introduce yet another type of
Banach algebras.

4 Non-commutative divided power envelopes

In this final section we assume that our fixed p-divisible formal group G over
the algebraically closed field k of characteristic p is of dimension one. If h de-
notes the height of G then the endomorphism ring of G is isomorphic to the
maximal order oD of the central Qp-division algebra D of invariant 1

h + Z (cf.
[9], Proposition 13.10). In the following we will identify End(G) and oD (resp.
Aut(G) and o∗D). We will also exclude the trivial case h = 1. We continue to
denote by R = Rdef

G the universal deformation ring of G (cf. Theorem 2.1).
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Consider the period morphism Φ : Spf(R)rig → Ph−1
K of Gross and Hopkins,

where Ph−1
K denotes the rigid analytic projective space of dimension h− 1 over

K (cf. [9], section 23). In projective coordinates Φ can be defined by Φ(x) =
[φ0(x) : . . . : φh−1(x)] where φ0, . . . , φh−1 ∈ Rrig are certain global rigid analytic
functions on Spf(R)rig without any common zero. The power series expansions
of the functions φi in suitable coordinates u1, . . . , uh−1 can be written down
explicitly by means of a closed formula of Yu (cf. [13], Proposition 1.5 and
Remark 1.6). According to [9], Lemma 23.14, the function φ0 does not have

any zeroes on Bh−1
1 ⊂ Spf(R)rig, hence is a unit in Rrig

1 . We set

wi :=
φi

φ0
∈ Rrig

1 for 1 ≤ i ≤ h− 1.

By [9], Lemma 23.14, any element f ∈ Rrig
1 admits a unique expansion of the

form f =
∑

α∈Nh−1 dαw
α with dα ∈ K and lim|α|→∞ |dα|p−|α| = 0. Further, Φ

restricts to an isomorphism Φ : Bh−1
1 → Φ(Bh−1

1 ) (cf. [9], Corollary 23.15).

Denote by Qph the unramified extension of degree h of Qp and by Zph its val-
uation ring. It was shown by Devinatz, Gross and Hopkins, that there exists
an explicit closed embedding o∗D ↪→ GLh(Qph) of Lie groups over Qp such that
Φ is o∗D-equivariant (cf. [13], Proposition 1.3 and Remark 1.4). Here o∗D acts
on Spf(R)rig through the identification o∗D ≃ Aut(G), and it acts by fractional
linear transformations on Ph−1

K via the embedding o∗D ↪→ GLh(Qph).

The morphism Φ is constructed in such a way that Φ∗OPh−1
K

(1) = Lie(G)rig. It

follows from general properties of the inverse image functor that Φ∗OPh−1
K

(m) =

(Lie(G)⊗m)rig for any integer m. Restricting to Bh−1
1 , we obtain an o∗D-equi-

variant and Rrig
1 -linear isomorphism (Lie(G)⊗m)rig1 ≃ Rrig

1 · φm
0 of free Rrig

1 -
modules of rank one.

We denote by d the Lie algebra of the Lie group o∗D over Qp. It is isomorphic to
the Lie algebra associated with the associative Qp-algebra D. According to [22],
page 450, the universal enveloping algebra UK(d) := U(d ⊗Qp K) of d over K
embeds into the locally analytic distribution algebra D(Γ2ε−1). Together with
the natural map D(Γ2ε−1)→ Λ(Γ2ε−1)K,1, Theorem 3.5 allows us to view

Mm
1 := (Lie(G)⊗m)rig1

as a module over UK(d) ≃ U(g⊗Q
ph
K) =: UK(g), where g := d⊗Qp Qph ≃ glh

as Lie algebras over Qph . Explicitly, the action of an element x ∈ g on Mm
1 is

given by

x(δ) =
d

dt
(exp(tx)(δ))|t=0.

Here exp : g // GLh(Qph) is the usual exponential map which is defined

locally around zero in g. Further, a sufficiently small open subgroup of GLh(Qph)

acts on Mm
1 through the isomorphism Mm

1 ≃ OPh−1
K

(m)(Φ(Bh−1
1 )). Writing an

element x ∈ g as a matrix x = (ars)0≤r,s≤h−1 with coefficients ars ∈ Qph , fix
indices 0 ≤ i, j ≤ h− 1 and denote by xij the matrix with entry 1 at the place
(i, j) and zero everywhere else. In the following we will formally put w0 := 1.
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Lemma 4.1. Let i, j and m be integers with 0 ≤ i, j ≤ h− 1. If f ∈ Rrig
1 then

xij(fφ
m
0 ) =


wi

∂f
∂wj

φm
0 , if j ̸= 0,

(mf −
∑h−1

ℓ=1 wℓ
∂f
∂wℓ

)φm
0 , if i = j = 0,

wi(mf −
∑h−1

ℓ=1 wℓ
∂f
∂wℓ

)φm
0 , if i > j = 0.

Proof. If i = j and if t is sufficiently close to zero in Qph then exp(txii) is the
diagonal matrix with entry exp(t) at the place (i, i) and 1 everywhere else on
the diagonal. Recall that GLh(Qph) acts by fractional linear transformations

on the projective coordinates φ0, . . . , φh−1 of Ph−1
K . Thus, exp(txii)(wℓ) = wℓ if

ℓ ̸= i ̸= 0, exp(txii)(wi) = exp(t)wi if i ̸= 0, and exp(tx00)(wℓ) =
1

exp(t)wℓ for all

1 ≤ ℓ ≤ h− 1.

If i ̸= j then exp(txij) = 1 + txij in GLh(Qph). Thus, exp(txij)(wℓ) = wℓ if
ℓ ̸= j ̸= 0, exp(txij)(wj) = wj + twi if j ̸= 0, and exp(txi0)(wℓ) = wℓ/(1 + twi)
for all 1 ≤ ℓ ≤ h− 1. Writing f = f(w1, . . . , wh−1) we have

exp(txij)(fφ
m
0 ) = f(exp(txij)(w1), . . . , exp(txij)(wh−1)) · exp(txij)(φ0)

m.

Here exp(txij)(φ0) = φ0 if j ̸= 0, exp(tx00)(φ0) = exp(t)φ0 and exp(txi0)(φ0) =
φ0 + tφi if 1 ≤ i ≤ h− 1. It is now an exercise in elementary calculus to derive
the desired formulae.

Note that (Lie(G)⊗m)rig is a D(Γ2ε−1)-stable K-subspace of Mm
1 and hence is

g-stable. If m = 0 then Lemma 4.1 shows that in order to describe the g-action
in the coordinates u1, . . . , uh−1, one essentially has to compute the functional
matrix

F := (
∂ui
∂wj

)1≤i,j≤h−1.

Proposition 4.2. The matrix A := (∂φi

∂uj
φ0 − ∂φ0

∂uj
φi)1≤i,j≤h−1 over Rrig is

invertible over the localization Rrig
φ0

. We have F = φ2
0A

−1, which is a matrix

with entries in φ0R
rig. Moreover, we have

∑h−1
j=1 φj

∂ui

∂wj
∈ φ2

0R
rig for any index

1 ≤ i ≤ h− 1.

Proof. Let B := (∂φi

∂uj
)0≤i,j≤h−1 with ∂φi

∂u0
:= φi. We have B ∈ GLh(R

rig) by a

result of Gross and Hopkins (cf. [9], Corollary 21.17). Setting

N :=


1 0 · · · 0
−φ1 φ0 0
...

. . .

−φh−1 0 φ0

 , we have NB =


φ0

∂φ0

∂u1
· · · ∂φ0

∂uh−1

0
... A
0

 .

This already shows that A is invertible over Rrig
φ0

. Denoting by c0, . . . , ch−1 the

columns of B−1 = (cij)i,j ∈ GLh(R
rig), we obtain

(φ−1
0

h−1∑
j=0

φjcj , φ
−1
0 c1, . . . , φ

−1
0 ch−1) = B−1N−1 =


φ−1
0 ∗ · · · ∗
0
... A−1

0

 .
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By the chain rain rule we have

δij =
∂wi

∂wj
=

h−1∑
ℓ=1

∂wi

∂uℓ
· ∂uℓ
∂wj

=
h−1∑
ℓ=1

φ−2
0 (

∂φi

∂uℓ
φ0 −

∂φ0

∂uℓ
φi)

∂uℓ
∂wj

,

so that F = φ2
0A

−1. As seen above, the right hand side has entries in φ0R
rig.

Further, we have
∑h−1

j=1 φj
∂ui

∂wj
=

∑h−1
j=1 φjφ0cij = −φ2

0ci0 ∈ φ2
0R

rig for any

index 1 ≤ i ≤ h− 1.

Together with Lemma 4.1, Proposition 4.2 shows that x(ui) ∈ Rrig for any x ∈ g
and any 1 ≤ i ≤ h − 1, as was clear a priori. For h = 2, Lemma 4.1 and
Proposition 4.2 reprove [9], formula (25.14).

Coming back to the g-module Mm
1 for general m, consider the subalgebra slh

of g over Qph . Let t denote the Cartan subalgebra of diagonal matrices in slh,
and let {ε1, . . . , εh−1} ⊂ t∗ denote the basis of the root system of (slh, t) given
by εi(diag(t0, . . . , th−1)) := ti−1 − ti. We let λ1 ∈ t∗ denote the fundamental

dominant weight defined by λ1 := 1
h

∑h−1
i=1 (h− i)εi. We have

λ1(diag(t0, . . . , th−1)) =
1

h

h−1∑
i=1

(h− i)(ti−1 − ti) =
1

h
((h− 1)t0 −

h−1∑
i=1

ti) = t0

for any element diag(t0, . . . , th−1) ∈ t ⊂ slh.

Proposition 4.3. For any integer m ≥ 0, the subspace W :=
∑

|α|≤mK ·wαφm
0

of Mm
1 is g-stable. The action of slh on W is irreducible. More precisely, W is

the irreducible slh-representation of highest weight m · λ1.

Proof. It follows from Lemma 4.1 that W is stable under any element xij with
j ̸= 0 or i = j = 0. If 1 ≤ i ≤ h− 1 and if n is a non-negative integer then

xni0(w
αφm

0 ) = [

n−1∏
ℓ=0

(m− |α| − ℓ)] · wαwn
i φ

m
0 ,

as follows from Lemma 4.1 by induction. Therefore, xi0(w
αφm

0 ) = 0 if |α| = m.
If |α| < m then xi0(w

α) has degree |α|+1 ≤ m. This proves that W is g-stable.

The above formula also shows that W is generated by φm
0 as an slh-representa-

tion. If fφm
0 ∈W is non-zero, then Lemma 4.1 shows that (xα1

01 · · · x
αh−1

0(h−1))(fφ
m
0 )

is a non-zero scalar multiple of φm
0 for a suitable multi-index α. Therefore, the

slh-representation W is irreducible.

Finally, if x = diag(t0, . . . , th−1) ∈ t then x(wαφm
0 ) = (t0(m−|α|)+

∑h−1
i=1 αiti) ·

wαφm
0 by Lemma 4.1. Here,

t0(m− |α|) +
h−1∑
i=1

αiti = t0m+
h−1∑
i=1

αi(ti − t0) = (m · λ1 −
h−1∑
i=1

αi

i∑
ℓ=1

εℓ)(x).

This shows that m · λ1 is the highest weight of the slh-representation W .
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Remark 4.4. The statement of Proposition 4.3 can be deduced from a stronger
result of Gross and Hopkins. Namely, if m = 1 then Lie(G)rig contains an h-
dimensional algebraic representation of o∗D (cf. [9], Proposition 23.2). Under

the restriction map Lie(G)rig → Lie(G)rig1 , the derived representation of g =
d⊗Qp Qph maps isomorphically to the g-representation W above.

We will now see that the action of g on Mm
1 naturally extends to a certain

divided power completion of the universal enveloping algebra UK(g). Note that
if i, j, r and s are indices between 0 and h− 1, then xij · xrs = δjrxis in g ≃ glh.
Therefore,

[xij , xrs] = δjrxis − δisxrj =


0, if j ̸= r and i ̸= s,

xis, if j = r and i ̸= s,

−xrj , if j ̸= r and i = s,

xii − xjj , if j = r and i = s.

Setting x′ij := pδ0i−δ0j xij , one readily checks that the same relations hold on
replacing xij by x′ij and xrs by x′rs everywhere. It follows that the elements x′ij
span a free Zph -Lie subalgebra of g that we denote by g̊. Since ad(x′ij)

2 = 0 if
i ̸= j, and since (εi+1 − εj)([x′ij , x′ij ]) = 2 if i < j, it follows from [2], VIII.12.7
Théorème 2 (iii), that the W -lattice g̊ of g is the base extension from Z to W
of a Chevalley order of g in the sense of [2], VIII.12.7 Définition 2.

For 0 ≤ i ≤ h− 1 and n ≥ 0 we set(
x′ii
n

)
:=

x′ii(x
′
ii − 1) · · · (x′ii − n+ 1)

n!
∈ UK(g).

We let U denote theW -subalgebra of UK(g) generated by the elements (x′ij)
n/n!

for i ̸= j and n ≥ 0, as well as by the elements
(
x′ii
n

)
for 0 ≤ i ≤ h−1 and n ≥ 0.

It follows from [2], VIII.7.12 Théorème 3, that U is a free W -module and that
a W -basis of U is given by the elements

bℓmn := (
∏
i<j

(x′ij)
ℓij

ℓij !
) · (

h−1∏
i=0

(
x′ii
mi

)
) · (

∏
i>j

(x′ij)
nij

nij !
)

with ℓ = (ℓij), n = (nij) ∈ Nh(h−1)/2 and m = (mi) ∈ Nh. Here the products
of the x′ij for i < j and i > j have to be taken in a fixed but arbitrary ordering
of the factors. For split semisimple Lie algebras these constructions and state-
ments are due to Kostant (cf. [14], Theorem 1, where U is denoted by B).

We denote by Û the p-adic completion of the ring U and set

Ûdp
K (̊g) := Û ⊗W K.

According to the above freeness result, any element of Ûdp
K (̊g) can be written

uniquely in the form
∑

ℓ,m,n dℓmnbℓmn with coefficients dℓmn ∈ K satisfying

dℓmn → 0 as |ℓ|+ |m|+ |n| → ∞. Therefore, Ûdp
K (̊g) is a K-algebra containing

UK(g). We view it as a K-Banach algebra with unit ball Û and call it the
complete divided power enveloping algebra of g̊.
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Theorem 4.5. For any integer m the action of g on (Lie(G)⊗m)rig1 extends to

a continuous action of Ûdp
K (̊g).

Proof. The ring of continuous K-linear endomorphisms ofMm
1 = (Lie(G)⊗m)rig1

is a K-Banach algebra for the operator norm. Since the latter is submultiplica-
tive, the set of endomorphisms with operator norm less than or equal to one is
a p-adically separated and complete W -algebra. Therefore, it suffices to prove

that any element of the form (x′ij)
n/n!, i ̸= j, or

(
x′ii
n

)
, 0 ≤ i ≤ h − 1, has

operator norm less than or equal to one on Mm
1 whenever n ≥ 0. If α ∈ Nh−1

and 0 ≤ i, j ≤ h− 1 then

(2) xnij(w
αφm

0 ) =



αn
j w

αφm
0 , if i = j ̸= 0,

(m− |α|)nwαφm
0 , if i = j = 0,

n!
(
αj

n

)
wαw−n

j wn
i φ

m
0 , if i ̸= j ̸= 0,

n!
(
m−|α|

n

)
wαwn

i φ
m
0 , if i ̸= j = 0,

as follows from Lemma 4.1 by induction. Here the generalized binomial coeffi-
cients are defined by (

x

n

)
:=

x(x− 1) · · · (x− n+ 1)

n!
∈ Z

for any integer x. Now ||(
∑

α dαw
α)φm

0 ||1 = supα{|dα|p−|α|}. Bearing in mind
our convention w0 = 1, we obtain the claim for (x′ij)

n/n! if i ̸= j. If 0 ≤ i ≤ h−1
then we obtain (

x′ii
n

)
(wαφm

0 ) =

{ (
αi

n

)
wαφm

0 , if i ̸= 0,(
m−|α|

n

)
wαφm

0 , if i = 0.

This completes the proof.

Theorem 4.6. Let m be an integer and set c := w
max{−1,m}+1
1 φm

0 . The U(g)-

submodule U(g) · c of (Lie(G)⊗m)rig1 is dense. If h = 2 and m ≥ −1 then

Ûdp
K (̊g) · c = (Lie(G)⊗m)rig1 .

Proof. Equation (2) shows that x
max{−1,m}+1
01 xα1

10 · · · x
αh−1

(h−1)0 ·c is a non-zero scalar
multiple of wαφm

0 . Thus, K[w] · φm
0 ⊂ UK(g) · c, proving the first assertion.

If h = 2 and m ≥ −1 let us be more precise. Setting m′ := max{−1,m} + 1,
w := w1 and x := x′10, we have xn · c = (−1)nn!p−nwn+m′

φm
0 for any n ≥ 0

because
(−1

n

)
= (−1)n. If f =

∑
n≥0 dnw

n ∈ Rrig
1 then dnp

n → 0 in K.

Therefore, λ :=
∑

n≥0 dn+m′(−p)n xn

n! converges in Ûdp
K (̊g) and we have fφm

0 −
λ · c =

∑m′−1
n=0 dnw

nφm
0 . The latter is contained in K[w] · φm

0 ⊂ UK(g) · c, as
seen above.

Remark 4.7. By a result of Lazard, the image of UK(g) ≃ UK(d) in Λ(Γ2ε−1)K,1

is dense (cf. [15], Chapitre IV, Théorème 3.2.5). We state without proof that

the completion of UK(g) for the norm || · ||1 embeds continuously into Ûdp
K (̊g).

However, a formal series like
∑

n≥0 p
n (x′10)

n

n! =
∑

n≥0
xn10
n! does not converge in

Λ(Γ2ε−1)K,1. Therefore, one might have doubts whether Mm
1 is still finitely

generated over Λ(Γ2ε−1)K,1.
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[2] N. Bourbaki: Groupes et Algèbres de Lie, Chapitres 7 et 8, Springer,
2006
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