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Abstract. We develop a duality theory for admissible smooth representa-
tions of p-adic Lie groups on vector spaces over fields of characteristic p. To
this end we introduce certain higher smooth duality functors and relate our
construction to the Auslander duality of completed group rings. We study
the behavior of smooth duality under tensor products, inflation and induc-
tion, and discuss the dimension theory of smooth mod-p representations of
a p-adic reductive group. Finally, we compute the higher smooth duals of
the irreducible smooth representations of GL2(Qp) in characteristic p and
relate our results to the contragredient operation of Colmez.
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0 Introduction

Let G denote a locally profinite topological group, let E denote a field, and
let Rep∞E (G) denote the category of E-linear smooth G-representations. The
arithmetic interest in the category Rep∞E (G) comes from the fact that if G
is the group of rational points of a connected reductive group over a local
field and if E is the field of complex numbers then the set of isomorphism
classes of the irreducible objects of Rep∞E (G) forms one side of the classical
local Langlands correspondence.

Given an object V of Rep∞E (G), the smooth dual S0(V ) of V is the subspace
of smooth vectors in the E-linear dual V̌ = HomE(V,E) of V endowed
with the contragredient action of G. Over coefficient fields of characteristic
zero the functor S0 restricts to an autoduality of the category Rep∞E (G)a

of admissible smooth E-linear G-representations and is an elementary, yet
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fundamental tool in representation theory.

In view of the recent p-adic and mod-p variants of the local Langlands pro-
gram there is a growing interest in smooth representations in natural char-
acteristic. This means that E has positive characteristic p and that G is
locally a pro-p group. If G is a p-adic Lie group it turns out that the func-
tor S0 is rather useless (cf. Corollary 3.9 and Remark 3.10). The aim of
the present article is to overcome these deficiencies and to develop a useful
duality theory for admissible smooth representations of p-adic Lie groups in
natural characteristic.

In section 1 we study the case of a general locally profinite topological
group G and an arbitrary field E. The Pontryagin duality functor (̌·) =
HomE(·, E) sets up an anti-equivalence between the categories of discrete
and pseudocompact E-vector spaces, respectively. Endowing a smooth E-
linear G-representation with the discrete topology, the pseudocompact E-
vector space V̌ turns out to be a module over a ring Λ(G) generalizing the
completed group ring for compact groups (cf. Theorem 1.5).

Borrowing terminology from [30], §3, we define the notion of a coadmissible
Λ(G)-module and show that the category CG of coadmissible Λ(G)-modules
is anti-equivalent to the category Rep∞E (G)a of admissible smooth E-linear
G-representations via Pontryagin duality (cf. Corollary 1.8). If G is a p-adic
Lie group and if E has characteristic p then an abstract Λ(G)-module is
coadmissible if and only if its underlying Λ(G0)-module is finitely generated
for any compact open subgroup G0 of G (cf. Proposition 1.9).

In section 2 we let p be a prime number different from the characteristic of E
and assume that G is locally a pro-p group. In this situation the functor S0

restricts to an exact autoduality of the category Rep∞E (G)a. Following ideas
of Schneider and Teitelbaum from [31], §1, we explain how to describe the
endofunctor of the category CG induced by S0 via Pontryagin duality. Up
to twisting by the modulus character of G it is given by HomΛ(G)(·,∆(G))
where ∆(G) is the (Λ(G),Λ(G))-bimodule C∞c (G,E)̌ dual to the space of
compactly supported locally constant E-valued functions on G.

From section 3 on we assume that p is a prime number, that G is a finite
dimensional Lie group of dimension d = dim(G) over the field Qp of p-
adic numbers and that the characteristic of the field E is equal to p. The
previous results suggest to study the functors Ei = EiG = ExtiΛ(G)(·,∆(G))

on the category ModΛ(G) of left Λ(G)-modules. By fundamental results of
Lazard and Venjakob the group G admits a compact open subgroup whose
completed group ring over E is Auslander regular of global dimension d (cf.

2



[37], Theorem 3.30 (ii), as well as Theorem 3.1 below). Using a general
duality theorem of Björk and closely following the strategy set forth by
Schneider and Teitelbaum in [31] we define the grade j(M) of a coadmissible
Λ(G)-module M and use it to define a descending filtration

CG = C0
G ⊇ . . . ⊇ CdG ⊇ Cd+1

G = 0

of CG by Serre subcategories such that the functor Ei induces an autodual-
ity of the abelian quotient category CiG/C

i+1
G for 0 ≤ i ≤ d (cf. Theorem 3.5).

If V is an object of Rep∞E (G)a we call d(V ) = d − j(V̌ ) the dimension of
V and introduce standard terminology such as purity, holonomicity and the
property of being Cohen-Macaulay (cf. Definition 3.6). For Cohen-Macaulay
objects the grade is related to the projective dimension over completed group
rings (cf. Remark 3.7). Further, an object is holonomic if and only if its un-
derlying E-vector space is finite dimensional (cf. Proposition 3.8).

The bimodule ∆(G) has the formal properties of a dualizing module in the
sense that Ei(E) = 0 for i 6= d and that Ed(E) = χG is given by an E-
valued smooth character χG of the group G. If i ≥ 0 we define the i-th
smooth duality functor Si : Rep∞E (G)→ Rep∞E (G) by

Si(V ) = SiG(V ) = lim−→
N

ExtiΛ(N)(E, V̌ ),

were N runs through the open subgroups of G. Following ideas of Venjakob
from [37], §5, we prove that for 0 ≤ i ≤ d the diagram of functors

Rep∞E (G)
(̌·) //

χG⊗ES
d−i

��

ModΛ(G)

Ei

��
Rep∞E (G)

(̌·) //ModΛ(G)

commutes up to natural isomorphism. Thus, the δ-functor (Si)i≥0 gives
rise to a d-step duality on the category Rep∞E (G)a of admissible smooth E-
linear G-representations (cf. Theorem 3.14 and Corollary 3.15). Moreover,
an object V ∈ Rep∞E (G)a is Cohen-Macaulay if and only if its higher smooth
duals vanish in all degrees different from d(V ) (cf. Corollary 3.16). Further,
our construction turns out to be compatible with Venjakob’s approach using
local cohomology groups (cf. Remark 3.11 (ii) and Remark 3.17).

In section 4 we study the behavior of the smooth duality functors under
the change of the group G. We first show that they commute with infla-
tion (cf. Theorem 4.1) and that on admissible representations the inflation
functor preserves dimensions and the properties of being holonomic, pure
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and Cohen-Macaulay (cf. Corollary 4.2). For direct products of p-adic Lie
groups and tensor products of admissible representations the higher smooth
duals obey a formula of Künneth type (cf. Theorem 4.3). Therefore, the
tensor product behaves additively with respect to dimensions and preserves
the properties of being holonomic, pure and Cohen-Macaulay (cf. Corollary
4.4). Finally, if H is a closed subgroup of G such that G = G0H for some
compact open subgroup G0 of G then we describe how the smooth duality
functors behave with respect to induction from H to G (cf. Theorem 4.7).
As a consequence, we obtain that the induction functor preserves the grade
and the properties of being pure and Cohen-Macaulay (cf. Corollary 4.8).
We also show that there are natural restriction functors in the setting of
smooth duality.

If G is the group of rational points of a connected reductive group G over
Qp then we use the previous results and classification techniques of Abe,
Henniart, Herzig and Vignéras to give dimension bounds for the irreducible
non-supercuspidal representations of G (cf. Theorem 4.9). It is a major open
question of the theory if there are similar bounds for the supercuspidal rep-
resentations ofG as suggested by the examples in section 5 (cf. Remark 4.10).

In section 5 we explicitly compute the higher smooth duals in a number of
examples. These include the irreducible smooth E-linear representations of
GL2(Qp), as classified by Barthel, Livné and Breuil (cf. [3] and [10]).

In Theorem 5.1 we start by giving an explicit description of the duality
character χG of a p-adic Lie group relying on results of Schneider and Teit-
elbaum from [31]. As a consequence, if G is open in the group of rational
points of a connected reductive group then χG is trivial (cf. Corollary 5.2).
For the group of rational points of a Borel subgroup the duality character
can be computed according to the formula in Corollary 5.3.

In Proposition 5.4 we treat the principal series representations of a p-adic re-
ductive group. They are Cohen-Macaulay and their unique non-zero higher
smooth dual is a principal series representation again. A first result con-
cerning the so-called special representations is contained in Proposition 5.5.
However, we are currently not able to compute their higher smooth duals in
general. Instead, we only treat the example of the Steinberg representation
over E when G = GL2(Qp) and when G = GL3(Qp) (cf. Proposition 5.6 and
Proposition 5.7). These two examples show that irreducible representations
need not be Cohen-Macaulay and that even on Cohen-Macaulay objects the
smooth duality functors do not preserve irreducibility (cf. Remark 5.8 for a
comparison with the case of characteristic zero).

Finally, we show that the supersingular representations of GL2(Qp) over
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E are Cohen-Macaulay of dimension one and that their first smooth dual
is supersingular again (cf. Theorem 5.13). As a consequence of the clas-
sification results of Breuil, Barthel and Livné we thus obtain that every
infinite dimensional irreducible smooth representation of GL2(Qp) over E
is Cohen-Macaulay of dimension one. Further, in contrast to characteristic
zero the supercuspidal representations of GL2(Qp) in characteristic p are not
injective, as was already observed by Paskunas (cf. Remark 5.14). Finally,
our explicit computations show that on the infinite dimensional irreducible
smooth representations of GL2(Qp) over E the first smooth duality functor
S1

GL2(Qp) coincides with the contragredient operation constructed by Colmez

in his work on the p-adic local Langlands correspondence (cf. Remark 5.15).

Acknowledgments. Part of this work was done while the author was a Heisen-
berg fellow of the German Research Foundation (Deutsche Forschungsge-
meinschaft). The support of the DFG is gratefully acknowledged. The
author would also like to thank Julien Hauseux and two anonymous referees
for many valuable comments and corrections.

Conventions and notation. Let G denote a locally profinite topological
group, and let E denote a field. We denote by Rep∞E (G) the category of
smooth E-linear representations of G, i.e. of E-vector spaces with an E-
linear G-action such that the stabilizer of any vector is open in G.
If p is a prime number then by a p-adic Lie group we mean a finite dimen-
sional Lie group over the field Qp of p-adic numbers.
If R is a ring then we denote by ModR the category of left R-modules.

1 Pontryagin duality

The results from Pontryagin duality that we shall need are essentially con-
tained in [17], §2. Certain statements need to be generalized to non-compact
groups, however, so that we will give a brief summary.

Endowing the field E with the discrete topology, it is a pseudocompact ring
in the sense of [19], IV.3. We say that an E-vector space is discrete if it is
endowed with the discrete topology. A topological E-vector space is called
pseudocompact if it is the topological projective limit of finite dimensional
discrete E-vector spaces.

The category of pseudocompact E-vector spaces (with morphisms all con-
tinuous E-linear maps) is abelian (cf. [19], Théorème IV.3.3). In particular,
every continuous E-linear map between pseudocompact E-vector spaces has
a closed image and every continuous E-linear bijection between pseudocom-
pact E-vector spaces is a topological isomorphism.
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If V is a discrete E-vector space and if (Vi)i∈I is the family of its finite
dimensional subspaces then we let V̌ = HomE(V,E) ∼= lim←−i∈I HomE(Vi, E)
be its E-linear dual, viewed as a pseudocompact E-vector space. Conversely,
if M is a pseudocompact E-vector space we let M̌ := Homcont

E (M,E) be the
space of all continuous E-linear forms on M , endowed with the discrete
topology. The following theorem is then immediate.

Theorem 1.1. The functors (̌·) are mutually quasi-inverse equivalences be-
tween the categories of discrete and pseudocompact E-vector spaces. �

If G is compact then we denote by

Λ(G) = EJGK = lim←−
NEG

E[G/N ]

the completed group ring or Iwasawa algebra of G over E. Here N runs
through the family of all normal open subgroups of G and E[G/N ] denotes
the group ring of G/N over E. In this case Λ(G) is naturally a pseudocom-
pact E-algebra.

If G is an arbitrary locally profinite group and if G0 is a fixed compact open
subgroup of G then the (E[G],Λ(G0))-bimodule E[G]⊗E[G0] Λ(G0) admits
a unique E-algebra structure making the maps

(δ 7→ δ ⊗ 1) : E[G]→ E[G]⊗E[G0] Λ(G0) and

(δ′ 7→ 1⊗ δ′) : Λ(G0)→ E[G]⊗E[G0] Λ(G0)

homomorphisms of E-algebras. To see this note that
⊕

g∈G/G0
Λ(G0) →

E[G] ⊗E[G0] Λ(G0), (δg)g∈G/G0
7→
∑

g∈G/G0
gδg, is an isomorphism of right

Λ(G0)-modules. This implies that if N is an open normal subgroup of G0

then the natural map ρNG0
: E[G] ⊗E[N ] Λ(N) → E[G] ⊗E[G0] Λ(G0) is an

isomorphism of (E[G],Λ(N))-bimodules.

In order to construct the desired ring structure on E[G] ⊗E[G0] Λ(G0) it
suffices to see that the right action of G0 extends to an action of G by
automorphisms of left E[G]-modules. Since

(δ ⊗ δ′ 7→ δg ⊗ g−1δg) : E[G]⊗E[G0] Λ(G0)→ E[G]⊗E[g−1G0g] Λ(g−1G0g)

is an isomorphisms of left E[G]-modules we may let

(δ ⊗ δ′) · g = [ρG0∩g−1G0g
G0

◦ (ρG0∩g−1G0g
g−1G0g

)−1](δg ⊗ g−1δ′g).

The uniqueness assertion implies that up to isomorphism the E-algebra
structure on E[G] ⊗E[G0] Λ(G0) does not depend on the choice of G0. In
particular, it coincides with the one considered previously if G is compact.
We will therefore write Λ(G) for the E-algebra E[G]⊗E[G0] Λ(G0).
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Remark 1.2. Let p be a prime number. If E is a complete valued field
extension of Qp and if G is a p-adic Lie group then Λ(G) can be constructed
as a quotient of the E-algebra D(G,E) of locally analytic E-valued distribu-
tions on G (cf. [30], §6, and [31], §1, where Λ(G) is denoted by D∞(G,E)).
It is the E-algebra of locally constant E-valued distributions on G.

We denote by Modpc
Λ(G) the category of pseudocompact E-vector spaces M

carrying an E-linear action of G for which the structure map G×M →M
is jointly continuous, i.e. continuous for the product topology on the left.

The map (g 7→ g−1) : G → G extends to a canonical antiautomorphism
Λ(G) → Λ(G) of E-algebras. In principle, this enables us to identify the
categories of left and right Λ(G)-modules which we will often do. However,
it will sometimes be necessary to distinguish between left and right Λ(G)-
modules. By abuse of terminology, given a pseudocompact E-vector space
with a jointly continuous action of G from the right, we will speak of a right
object of Modpc

Λ(G).

For the following assertions see [16], Lemma 3.1.1, and [17], Lemma 2.2.7.

Lemma 1.3. Let M be a pseudocompact E-vector space carrying an action
of G by continuous E-linear automorphisms. The following assertions are
equivalent.

(i) The structure map G×M →M of the G-action is jointly continuous.

(ii) For any open subgroup H of G the structure map H ×M →M of the
H-action is jointly continuous.

(iii) If G0 is a compact open subgroup of G then the E[G0]-module structure
of M extends to a Λ(G0)-module structure for which the map Λ(G0)×
M → M is jointly continuous and such that M admits a basis of
neighborhoods of 0 consisting of Λ(G0)-submodules. �

By Lemma 1.3 and by the construction of the E-algebra Λ(G) we obtain the
following assertion. A posteriori it justifies our notation Modpc

Λ(G).

Corollary 1.4. If M is an object of Modpc
Λ(G) then the E[G]-module struc-

ture of M uniquely extends to a Λ(G)-module structure. Any morphism in
Modpc

Λ(G) is Λ(G)-linear. If G is compact then Modpc
Λ(G) is the category of

pseudocompact Λ(G)-modules in the sense of [11], page 443. �

In particular, if G0 is a compact open subgroup of G and if M and N are
right and left objects of Modpc

Λ(G), respectively, then we can consider the

complete tensor product M⊗̂Λ(G0)N of M and N over Λ(G0) (cf. [11], page
446). Recall that by [11], Lemma 2.1,

M⊗̂Λ(G0)(·) and (·)⊗̂Λ(G0)N
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are additive, covariant and right exact functors from the category Modpc
Λ(G)

to the category of pseudocompact E-vector spaces. If G = {1} is the triv-
ial group then Λ(G) = Λ(G0) = E and the complete tensor product is exact.

As in [16], Lemma 2.2.7, Theorem 1.1 and Lemma 1.3 imply the following
result.

Theorem 1.5. The functors (̌·) restrict to quasi-inverse equivalences of
categories between Rep∞E (G) and Modpc

Λ(G).

Proof. Let V be an object of Rep∞E (G). By functoriality, G acts on V̌ by
continuous E-linear automorphisms. Let G0 be a compact open subgroup of
G. If Vi is any finite dimensional subspace of V then there is an open normal
subgroup N of G0 which acts trivially on Vi. Thus, V̌i becomes a Λ(G0)-
module via Λ(G0)→ E[G0/N ]. The resulting structure map Λ(G0)×V̌i → V̌i
is jointly continuous. Passing to the projective limit, we see that the E[G0]-
structure of V̌ ∼= lim←−i V̌i extends to a jointly continuous Λ(G0)-structure.

Therefore, Lemma 1.3 implies that V̌ is an object of Modpc
Λ(G).

Conversely, if M ∼= lim←−iM/Mi is an object of Modpc
Λ(G) then Lemma 1.3

allows us to assume that all Mi are G0-stable. Together with G0 ×M →
M also the maps G0 × M/Mi → M/Mi are continuous. Since M/Mi is
discrete and finite dimensional, the action of G0 is trivial upon restriction
to a sufficiently small open subgroup. Therefore, the action of G0 on M̌ ∼=
lim−→i

(M/Mi)̌ and hence that of G is smooth.

Recall that an E-linear smooth representation V of G is called admissible
if the space V N of N -invariants is finite dimensional for any open subgroup
N of G.

Dually, we borrow the terminology from [30], §3, and call an abstract Λ(G)-
module M coadmissible if for any compact open subgroup G0 of G and for
any open normal subgroup N of G0 the E[G0/N ]-module E[G0/N ] ⊗Λ(G0)

M is finitely generated (equivalently, finite dimensional over E) and if the
natural homomorphism

(1) M −→ lim←−
N

E[G0/N ]⊗Λ(G0) M

of Λ(G0)-modules is bijective.

Remark 1.6. Let p be a prime number. If G possesses an open pro-p sub-
group G0 and if the characteristic of E is different from p then the E-algebra
Λ(G0) = lim←−N E[G0/N ] is the inverse limit of noetherian E-algebras with
flat transition maps. Indeed, the group rings E[G0/N ] are finite dimensional
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and semisimple. Thus, Λ(G0) satisfies the algebraic properties of a Fréchet-
Stein algebra in the sense of [30], §3, where the notion of coadmissibility was
introduced for the first time.

The isomorphism (1) allows us to endow a coadmissible Λ(G)-module M
with the structure of a pseudocompact E-vector. Using that any continuous
E-linear bijection between pseudocompact E-vector spaces is a topological
isomorphism one can check that this topology does not depend on the choice
of G0 and that the action of G on M is by continuous E-linear automor-
phisms. It then follows from Lemma 1.3 that a coadmissible Λ(G)-module
M is naturally an object of Modpc

Λ(G).

If M is an object of Modpc
Λ(G) and if H is any subgroup of G then we denote

by MH the largest Hausdorff quotient of M on which H acts trivially. It
is the quotient of M by the closure M(H) of the subspace generated by all
elements of the form hm−m with h ∈ H and m ∈M .

Lemma 1.7. Let M be an object of Modpc
Λ(G). If G0 is a compact open

subgroup of G and if N is a normal open subgroup of G0 then there is a
natural isomorphism E[G0/N ] ⊗Λ(G0) M ∼= MN of Λ(G0)-modules. The
pseudocompact Λ(G)-module M is coadmissible if and only if MN is finite
dimensional over E for any open subgroup N of G. Moreover, an abstract
Λ(G)-module M is coadmissible if and only if the required conditions are
satisfied for at least one compact open subgroup G0 of G.

Proof. We denote by IN the kernel of the homomorphism Λ(G0)→ E[G0/N ].
Since it is open in Λ(G0) and since E[G0] ⊆ Λ(G0) is dense, the kernel of
the homomorphism E[G0] → E[G0/N ] is dense in IN . The latter is the
ideal generated by all elements of the form n− 1 with n ∈ N . This implies
IN ·M ⊆ M(N) because of the continuity of the Λ(G0)-action on M (cf.
Lemma 1.3). By definition IN ·M is a dense subspace of M(N).

On the other hand, the Λ(G0)-bihomomorphism IN×M →M sending (δ,m)
to δ · m is jointly continuous. By the universal property of the complete
tensor product it extends to a continuous E-linear map IN ⊗̂Λ(G0)M → M
of pseudocompact E-vector spaces. Its image is closed and hence equal to
M(N). Now the right exactness of the complete tensor product, together
with [11], Lemma 2.1 (ii), implies that the sequence

IN ⊗̂Λ(G0)M //M // E[G0/N ]⊗Λ(G0) M // 0

is exact. Therefore, MN
∼= E[G0/N ] ⊗Λ(G0) M , as claimed (cf. also [11],

Lemma 4.2 (ii)). This also shows M(N) = IN ·M .
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By Theorem 1.5 the E-linear G-representation M̌ is smooth. In particular,
M̌ = lim−→N

M̌N . It is straightforward to check that (M̌N )̌ ∼= MN . There-

fore, M ∼= ˇ̌M ∼= lim←−N MN , proving the first part of the lemma.

As for the final assertion, if (1) is an isomorphism for some compact open
subgroup G0 of G then M is at least an object of Modpc

Λ(G0). The first
part of the proof then shows that MN is finite dimensional for any open
normal subgroup N of G0 and that the natural map M → lim←−N MN is an
isomorphism. However, for this description of the topology it is clear that
G acts by continuous E-linear automorphisms. Therefore, M is an object
of Modpc

Λ(G). By the first part of the lemma, M is coadmissible.

By Rep∞E (G)a and CG we denote the full subcategories of Rep∞E (G) and
Modpc

Λ(G) consisting of admissible and coadmissible objects, respectively. As
an immediate consequence of Theorem 1.5, Lemma 1.7 and the above rela-
tion (M̌N )̌ ∼= MN one obtains the following result (for a particular situation
see also [30], Theorem 6.6 and its proof).

Corollary 1.8. The functors (̌·) restrict to quasi-inverse equivalences be-
tween the categories Rep∞E (G)a and CG. �

For the situation that we will be interested in most, the notion of coadmis-
sibility has the following alternative characterization.

Proposition 1.9. Let p be a prime number. Assume that G possesses an
open subgroup which is a pro-p group and assume that the characteristic of
E is equal to p.

(i) An object M ∈ Modpc
Λ(G) is coadmissible if and only if the underlying

Λ(G0)-module of M is finitely generated for some and hence for any
compact open subgroup G0 of G.

(ii) If G is a p-adic Lie group then an object M ∈ ModΛ(G) is coadmissible
if and only if the underlying Λ(G0)-module of M is finitely generated
for some and hence for any compact open subgroup G0 of G. In this
case CG is a full Serre subcategory of ModΛ(G).

Proof. By Lemma 1.7 the assertions do not depend on G0. Therefore, we
may assume G0 to be an open pro-p subgroup of G. Since E is of characteris-
tic p the ring Λ(G0) is then local with maximal ideal IG0 = ker(Λ(G0)→ E)
(cf. [27], Proposition 5.2.16 (iii) and its proof).

If M ∈ Modpc
Λ(G) is coadmissible then IG0M is of finite codimension in M

because M/IG0M
∼= E ⊗Λ(G0) M . By the topological Nakayama lemma we

obtain that the underlying Λ(G0)-module of M is finitely generated (cf. [11],
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Corollary 1.5).

Conversely, if M ∈ Modpc
Λ(G) is finitely generated over Λ(G0) then it is also

finitely generated over Λ(N) for any compact open subgroup N of G0. The
right exactness of the functor (·)⊗Λ(N) E implies that MN

∼= E ⊗Λ(N) M is
finite dimensional for any N . Thus, M is coadmissible by Lemma 1.7.

As we shall recall in Theorem 3.1 below, if G is a p-adic Lie group then
the ring Λ(G0) is noetherian. As a consequence, any finitely generated
Λ(G0)-module M is finitely presented. Since any Λ(G0)-linear map between
finitely generated free Λ(G0)-modules is continuous with closed image, M
is naturally a pseudocompact E-vector space. For this canonical topology
the action of G is by continuous automorphisms so that M is coadmissible
by (i). Further, any Λ(G0)-linear map between finitely generated Λ(G0)-
modules is continuous for the canonical topology. As a consequence, CG is
a full subcategory of ModΛ(G).

Remark 1.10. If G possesses an open pro-p subgroup G0 and if the charac-
teristic of E is zero then the Λ(G0)-module V̌ associated with an admissible
smooth E-linear representation V of G is not necessarily finitely generated.
Rather, the representations for which this is true are characterized by a
global multiplicity condition (cf. [32], Proposition 2.1 and its proof).

If M is an E-linear representation of G and if N runs through the set of
open subgroups of G then we denote by

Σ0(M) = Σ0
G(M) := lim−→

N

MN ∈ Rep∞E (G)

the G-subrepresentation of M consisting of all smooth vectors, i.e. of vectors
whose stabilizers in G are open. The endofunctor

S0 = S0
G = Σ0

G ◦ (̌·) : Rep∞E (G) −→ Rep∞E (G)

of the category Rep∞E (G) is called the 0-th smooth dual.

2 Smooth duality in non-natural characteristic

In this section we assume that p is a prime number, that G admits an open
pro-p subgroup G0 and that the characteristic of E is different from p. Fol-
lowing ideas of [31], §1, the endofunctor (̌·) ◦ Σ0 of the category Modpc

Λ(G)
can be described as follows.

Denote by C∞c (G,E) the E-vector space of all compactly supported locally
constant maps G→ E. It carries commuting smooth E-linear left and right
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G-actions by left and right translation, respectively. According to Theorem
1.5 the pseudocompact E-vector space ∆(G) = C∞c (G,E)̌ admits commut-
ing and jointly continuous E-linear actions of G from the left and from the
right. In particular, Corollary 1.4 implies that ∆(G) is a (Λ(G),Λ(G))-
bimodule.

If f ∈ C∞c (G,E) is right invariant under an open subgroup N of G0 then
we set

µG0(f) = (G0 : N)−1
∑

g∈G/N

f(g) ∈ E,

using that the index (G0 : N) is a power of p and therefore invertible in E.
Apparently, µG0(f) is independent of the chosen subgroup N of G0 and we
obtain an element µG0 ∈ ∆(G) satisfying g · µG0 = µG0 for all g ∈ G. Thus,
µG0 is a left Haar measure on G and as in [12], Proposition 3.1, or [38], I.2,
is seen to be unique up to scalars as a G-left invariant element of ∆(G).

We let δG : G→ E× be the locally constant modulus character of G defined
by µG0 · g = δG(g)µG0 for all g ∈ G. We have

δG(g) =
(gG0g

−1 : G0 ∩ gG0g
−1)

(G0 : G0 ∩ gG0g−1)
,

a value which is in fact independent of G0 (cf. [38], I.2.7). We denote
by ∆(G) ⊗E δ−1

G the (Λ(G),Λ(G))-bimodule whose underlying G-action is
defined by

g(δ ⊗ 1)g′ := gδg′ ⊗ δG(g′)−1,

i.e. the left action of Λ(G) is unchanged and the right action of Λ(G) is
twisted by δ−1

G .

As in [31], Lemma 1.4, one shows that the outer square of the diagram

Rep∞E (G)
(̌·)
∼=
//

S0

��

ModpcΛ(G)

forget //

��

ModΛ(G)

HomΛ(G)(·,∆(G)⊗Eδ
−1
G )

��
Rep∞E (G)

(̌·)
∼=
//ModpcΛ(G)

forget //ModΛ(G)

is commutative up to natural isomorphism. A priori, the right vertical func-
tor takes values in the category of abstract left Λ(G)-modules by making use
of the bimodule structure of ∆(G)⊗E δ−1

G . A posteriori, Theorem 1.5 shows
that HomΛ(G)(·,∆(G) ⊗E δ−1

G ) restricts to an endofunctor of the category
Modpc

Λ(G). This is the vertical arrow in the middle.
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Under our assumptions on G and E, the category Rep∞E (G)a of admissi-
ble smooth E-linear G-representations is abelian and the 0-th smooth dual
S0 restricts to an exact anti-equivalence of Rep∞E (G)a (cf. [38], Proposition
I.4.18).

It follows from Corollary 1.8 that the functor HomΛ(G)(·,∆(G)⊗E δ−1
G ) re-

spects coadmissibility and is exact. The latter property was given an al-
gebraic explanation in [31], Proposition 2.4. Namely, the left Λ(G)-module
∆(G) is injective. This statement can be reduced to the selfinjectivity of
the ring Λ(G0) which is in fact isomorphic to a direct product of finite di-
mensional simple E-algebras (cf. the proof of [31], Proposition 2.4).

3 Smooth duality in natural characteristic

In this section we will assume that p is a prime number, E is a field of
characteristic p and G is a Lie group of finite dimension d = dim(G) over
the field Qp of p-adic numbers.

The (Λ(G),Λ(G))-bimodules C∞c (G,E) and ∆(G) = C∞c (G,E)̌ are defined
as in the previous section. Given an object M ∈ ModΛ(G) we set

Ei(M) = EiG(M) = ExtiΛ(G)(M,∆(G)).

Again the right Λ(G)-action on ∆(G) gives rise to a right Λ(G)-action on
Ei(M). We will view Ei(M) as a left Λ(G)-module through the canonical
antiautomorphism of Λ(G) and hence view Ei as an endofunctor of the cat-
egory ModΛ(G).

The results of the previous section suggest that in order to define a good no-
tion of smooth duality in natural characteristic one has to study the functor
E0 = HomΛ(G)( · ,∆(G)) and its derivatives Ei. Their behavior is governed
by the Auslander duality for completed group rings with p-torsion coeffi-
cients. For compact groups this was worked out by Venjakob in [37]. We
shall closely follow ideas of Schneider and Teitelbaum from [31] to extend
these results to the general case.

For the notion of Auslander regularity we refer to [23], III.2.1. Recall that by
[15], Theorem 8.32, the p-adic Lie group G admits a compact open subgroup
G0 which is a uniform pro-p group in the sense of [15], Definition 4.1. The
first assertion of the following theorem is due to Lazard (cf. [25], Chapitre
V, Proposition 2.2.4). In a more general form the second result is due to
Venjakob (cf. [37], Theorem 3.30 (ii) and the remarks following its proof).
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Theorem 3.1. If G0 is a compact open subgroup of G then the ring Λ(G0)
is noetherian. If moreover G0 is a uniform pro-p group then the ring Λ(G0)
is Auslander regular of global dimension d = dim(G) = dim(G0).

Proof. We may assume that G0 is a uniform pro-p group. Let IG0 denote
the maximal ideal of the local ring Λ(G0) (cf. [27], Proposition 5.2.16 (iii)
and its proof). The ring Λ(G0) is separated and complete for its IG0-adic
topology and the graded ring associated with the IG0-adic filtration of Λ(G0)
is isomorphic to a polynomial ring in d variables over E (cf. [15], Theorem
7.24). It follows from [23], II.2.2 Proposition 1, III.2.2 Theorem 5, III.2.3
Theorem 5 and III.2.4 Example 1, that Λ(G0) is a noetherian Auslander
regular domain of finite global dimension d.

If G is compact then the following result can be found in [24], Lemma 2.3.
By following the arguments of [31], Lemma 2.2, it can be proved for any
locally profinite topological group G.

Proposition 3.2. Let G0 be a compact open subgroup of G, and let M be
a Λ(G)-module. If ` = `G,G0 : ∆(G) ∼=

∏
g∈G/G0

gΛ(G0) −→ Λ(G0) denotes
the projection onto the component corresponding to the trivial coset gG0 =
G0 then the map HomΛ(G)(M,∆(G))→ HomΛ(G0)(M,Λ(G0)) sending ϕ to
` ◦ ϕ is an isomorphism of Λ(G0)-modules. In particular, there are natural
isomorphisms

ExtiΛ(G)(M,∆(G))
∼ // ExtiΛ(G0)(M,Λ(G0))

of Λ(G0)-modules for all i ≥ 0. �

Corollary 3.3. For any integer i ≥ 0 the functor Ei : ModΛ(G) → ModΛ(G)

preserves coadmissibility, i.e. it restricts to a functor Ei : CG → CG.

Proof. Let G0 be a compact open subgroup of G, and let M ∈ CG. According
to Theorem 3.1 the ring Λ(G0) is noetherian. Since M is finitely generated
over Λ(G0) (cf. Proposition 1.9 (ii)) this implies that M admits a free reso-
lution P • by finitely generated free Λ(G0)-modules P i. By Proposition 3.2
the underlying Λ(G0)-module of Ei(M) is isomorphic to the i-th cohomol-
ogy group of the complex HomΛ(G0)(P

•,Λ(G0)), hence is finitely generated.
By Proposition 1.9 (ii) the Λ(G)-module Ei(M) is coadmissible.

For any Λ(G)-module M we denote by

j(M) = jG(M) = min{i ≥ 0 |Ei(M) 6= 0}

the grade or codimension of M over Λ(G). If M = 0 then it is infinite
but otherwise is finite (cf. [23], Chapter III, §2, 2.1). If M is non-zero and
coadmissible then Proposition 3.2 and Theorem 3.1 show that j(M) ≤ d =
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dim(G) and that j(M) = jG0(M) is equal to the grade of M over Λ(G0) for
any compact open subgroup G0 of G. We call

d(M) = dG(M) = d− j(M)

the dimension of M over Λ(G).

Let G0 be an open subgroup of G which is a uniform pro-p group. Since the
ring Λ(G0) is Auslander regular (cf. Theorem 3.1), any finitely generated
Λ(G0)-module M admits a filtration

0 = F d+1(M) ⊆ F d(M) ⊆ . . . ⊆ F 0(M) = M

by Λ(G0)-submodules which is characterized by the property that a sub-
module M ′ ⊆ M satisfies M ′ ⊆ F i(M) if and only if jG0(M ′) ≥ i (cf. [4],
Chapter 2, Theorem 4.15). It is called the dimension filtration of M . If
M 6= 0 then

(2) jG0(M) = max{i ≥ 0 |F i(M) = M}

by [23], III.2.1 Proposition 5.

If N is an open subgroup of G0 then the dimension filtration of M over
Λ(N) coincides with that over Λ(G0). Indeed, denoting these filtrations by
F •N (M) and F •G0

(M), respectively, we have i ≤ jN (F iN (M)) = jG0(F iN (M))

whence F iN (M) ⊆ F iG0
(M) and similarly F iG0

(M) ⊆ F iN (M). Using this
invariance property of the dimension filtration, the proof of the following
proposition is formally the same as that of [30], Proposition 8.11.

Proposition 3.4. Let M be a coadmissible Λ(G)-module.

(i) The dimension filtration F •(M) of M with respect to any open uniform
pro-p subgroup G0 of M consists of coadmissible Λ(G)-submodules of
M which are independent of the choice of G0.

(ii) If M ′ is a Λ(G)-submodule of M then j(M ′) ≥ i if and only if M ′ ⊆
F i(M).

(iii) We have j(M) = max{i ≥ 0 |F i(M) = M}.

(iv) All nonzero Λ(G)-submodules of F i(M)/F i+1(M) have grade i. �

Recall that CG is a Serre subcategory of ModΛ(G) and hence is abelian (cf.
Proposition 1.9 (ii)). If 0→M ′ →M →M ′′ → 0 is a short exact sequence
of coadmissible Λ(G)-modules then

(3) j(M) = min{j(M ′), j(M ′′)}
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by [23], III.2.1 Corollary 6. For 0 ≤ i ≤ d + 1 we denote by CiG the full
subcategory of CG consisting of all objects M with j(M) ≥ i. We have
CG = C0

G, Cd+1
G = 0, and (3) implies that Ci+1

G is a Serre subcategory of CiG
for 0 ≤ i ≤ d. Hence we may form the abelian quotient category CiG/C

i+1
G .

Let i ≥ 0 and consider the functor Ei : CG → CG of Corollary 3.3. Let G0 be
an open subgroup of G which is a uniform pro-p group. By Proposition 3.2
and the Auslander regularity of Λ(G0) the functor Ei factors through the
embedding CiG ⊆ CG. Further, if M ∈ Ci+1

G then Ei(M) = 0 by definition

of the grade. Therefore, the functor CiG ↪→ CG
Ei

−→ CiG → CiG/C
i+1
G induces a

functor CiG/C
i+1
G → CiG/C

i+1
G that will again be denoted by Ei.

Theorem 3.5. If 0 ≤ i ≤ d then the functor Ei : CiG/C
i+1
G → CiG/C

i+1
G is an

equivalence of abelian categories which is quasi-inverse to itself.

Proof. If G is a uniform pro-p group then the ring Λ(G) is Auslander regular
(cf. Theorem 3.1). In this case, the statement in question is a more general
d-step duality theorem for Auslander-Gorenstein rings (cf. [2], Theorem 1.2).

In the general case let M ∈ CG. Following the arguments of the proof of
[31], Proposition 4.3, consider the isomorphism

RHomΛ(G)(RHomΛ(G)(M,∆(G)),∆(G))
∼= RHomΛ(G0)(RHomΛ(G0)(M,∆(G0)),∆(G0))

of complexes of Λ(G0)-modules coming from Proposition 3.2. The properties
of Λ(G0) then show that the natural map

M −→ RHomΛ(G)(RHomΛ(G)(M,∆(G)),∆(G))

is a quasi-isomorphism of complexes of Λ(G)-modules. One can then argue
as in the proof of [31], Proposition 5.2. In fact, the hypercohomology spec-
tral sequence for the composition RHomΛ(G)(RHomΛ(G)(M,∆(G)),∆(G))
coincides with the spectral sequence (0-2) in [2] if M is viewed as an object
of CG0 . Therefore, the exact sequence

0 // F iG0
(M)/F i+1

G0
(M) // EiG0

(EiG0
(M)) // Qi+2(M) // 0

F i(M)/F i+1(M) Ei(Ei(M))

considered in [2], (0-3), is an exact sequence in CG. This can also be proved
directly using the naturality of the spectral sequence and using the G-
stability of the dimension filtration (cf. Proposition 3.4). Since j(N) =
jG0(N) for any N ∈ CG, the arguments in the proof of [2], Theorem 1.2,
show that M = F i(M) → F i(M)/F i+1(M) → Ei(Ei(M)) induces an iso-
morphism M ∼= Ei(Ei(M)) in CiG/C

i+1
G for any M ∈ CiG.
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If V is an object of Rep∞E (G) then V̌ ∈ ModΛ(G) and we call

j(V ) = j(V̌ ) and d(V ) = d(V̌ )

the grade and the dimension of V , respectively. For 0 ≤ i ≤ d+ 1 we denote
by Rep∞E (G)ai the full subcategory of Rep∞E (G)a consisting of all objects V
with j(V ) ≥ i. This gives rise to a descending filtration

Rep∞E (G)a = Rep∞E (G)a0 ⊇ Rep∞E (G)a1 ⊇ . . . ⊇ Rep∞E (G)ad+1 = 0

of the category Rep∞E (G)a by Serre subcategories such that (̌·) restricts to
an equivalence Rep∞E (G)ai

∼= CiG (cf. Corollary 1.8).

Definition 3.6. Let M ∈ CG and V ∈ Rep∞E (G)a.

(i) We call M holonomic (resp. pure, resp. Cohen-Macaulay) if j(M) ≥ d
(resp. if F j(M)+1(M) = 0, resp. if Ei(M) = 0 for i 6= j(M)).

(ii) We call V holonomic (resp. pure, resp. Cohen-Macaulay) if the object
V̌ ∈ CG is holonomic (resp. pure, resp. Cohen-Macaulay).

Remark 3.7. By definition any holonomic object is Cohen-Macaulay, and
by [37], Proposition 3.5 (v) and Proposition 3.9, any Cohen-Macaulay object
is pure. Further, since j(M) = jG0(M) for any compact open subgroup G0

of G, a non-zero coadmissible Λ(G)-module M is Cohen-Macaulay if and
only if its grade is equal to its projective dimension over Λ(G0).

Proposition 3.8. An object of CG or Rep∞E (G)a is holonomic if and only
if its underlying E-vector space is finite dimensional.

Proof. Let M ∈ CG be holonomic, and let G0 be an open subgroup of G
which is a uniform pro-p group. Since j(M) = jG0(M) the underlying
Λ(G0)-module is holonomic, as well, hence is of finite length over Λ(G0) (cf.
Theorem 3.1 and [2], Corollary 1.3, or [23], III.4.2 Theorem 3 (2)). Since
Λ(G0) is a local ring with residue field E, the only simple Λ(G0)-module is
E with the trivial action of G0. Thus, dimE(M) <∞.

Conversely, if M ∈ CG is of finite dimension over E then it is of finite length
over Λ(G0). Thus, it is a finite successive extension of the trivial Λ(G0)-
module E. Using (3) it suffices to show that E is holonomic over Λ(G0).
This in turn follows from Lazard’s result that G0 is a Poincaré duality group
at p (cf. [35], Theorem 5.1.5). This statement can be formulated as

(4) Hi
cont(G0,ZpJG0K) ∼=

{
0 , 0 ≤ i < d
Zp, i = d.

Note that there are isomorphisms Hi
cont(G0,ZpJG0K) ∼= ExtiZpJG0K(Zp,ZpJG0K)

for all i ≥ 0 by [25], Chapitre V, Théorème 3.2.7. Instead of deriving the
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analogous statement over the field E from (4) we simply refer to [23], III.2.5
Theorem 2, stating that jG0(E) is equal to the grade of the gr(Λ(G0))-
module E where gr(Λ(G0)) denotes the graded ring associated with the
maximal adic filtration on Λ(G0). Since gr(Λ(G0)) ∼= E[X1, . . . , Xd] is iso-
morphic to a polynomial ring in d variables X1, . . . , Xd over E (cf. [15], The-
orem 7.24), we need to see that the E[X1, . . . , Xd]-module E with Xi ·E = 0
for 1 ≤ i ≤ d is holonomic. This is a well-known result (cf. [7], X.1.4
Corollaire 1) that can also be deduced from a theorem of Roos (cf. [23],
III.4.1 Theorem 7). Since ExtdΛ(G0)(E,Λ(G0)) is an E-linear subquotient of

Extdgr(Λ(G0))(E, gr(Λ(G0))) (cf. [23], III.2.2 Proposition 4) we actually obtain

(5) ExtiΛ(G0)(E,Λ(G0)) ∼=
{

0 , 0 ≤ i < d
E, i = d.

The statements involving V follow from the fact that V is finite dimensional
if and only if V̌ is.

As a consequence we have the following result. It shows that the 0-th
smooth duality functor does not yield much information about the category
Rep∞E (G)a in natural characteristic.

Proposition 3.9. If V ∈ Rep∞E (G)a then S0(V ) = F d(V̌ ) is finite dimen-
sional over E. In particular, if V is irreducible and not finite dimensional
over E then S0(V ) = 0. The largest full subcategory of Rep∞E (G)a on which
the 0-th smooth dual S0 restricts to an anti-equivalence of categories is the
category of finite dimensional smooth representations of G over E. Via
Pontryagin duality it is anti-equivalent to the category CdG.

Proof. Let G0 be a compact open subgroup of G. If v̌ ∈ S0(V ) then Λ(G0)·v̌
is a Λ(G0)-submodule of S0(V ) which is of finite dimension over E. By
Proposition 3.8 it is holonomic, hence is contained in F d(V̌ ) (cf. Proposition
3.4). This shows S0(V ) ⊆ F d(V̌ ).

Conversely, F d(V̌ ) is holonomic, hence is of finite dimension over E by
Proposition 3.8. On the other hand, the Λ(G)-module F d(V̌ ) is coadmissi-
ble, hence is a pseudocompact E-vector space. Alternatively, it is easy to see
that any finite dimensional E-subspace of a pseudocompact E-vector space
is automatically closed and pseudocompact. In particular, this applies to
F d(V̌ ) inside V̌ . At any rate, the subspace topology of F d(V̌ ) induced by
V̌ is discrete, and by Lemma 1.1 the action of G0 on F d(V̌ ) is smooth. As
a consequence, F d(V̌ ) ⊆ S0(V ).

If V is irreducible then V̌ is a simple Λ(G)-module (cf. Corollary 1.8 and
Proposition 1.9 (ii)). If V is not finite dimensional then neither is V̌ and we
must have F d(V̌ ) = 0 because F d(V̌ ) is a holonomic Λ(G)-submodule of V̌
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and hence is finite dimensional over E (cf. Proposition 3.4 and Proposition
3.8). Thus, also S0(V ) = 0.

Remark 3.10. Apparently, S0(V ) is always a Λ(G)-submodule of V̌ , and
the vanishing result of Proposition 3.9 can be proved without referring to
Proposition 3.8. Namely, we have S0(V ) = lim−→N

V̌ N where N runs through
the open normal subgroups of some compact open subgroup G0 of G. Since
the ring Λ(G0) is noetherian (cf. Theorem 3.1) and since the Λ(G0)-module
V̌ is finitely generated (cf. Proposition 1.9) so is S0(V ). Therefore, there
is an open normal subgroup N of G0 such that S0(V ) = V̌ N . However,
this implies that S0(V ) is finitely generated over E[G0/N ], hence is finite
dimensional over E. If V ∈ Rep∞E (G)a is irreducible and infinite dimensional
then the Λ(G)-submodule S0(V ) of the simple Λ(G)-module V̌ must be zero.

We shall now explain how the d-step duality of Theorem 3.5 can be inter-
preted in terms of S0 and suitable higher smooth duality functors. In the
case of a compact group G this was shown by Venjakob in [37], §5, using lo-
cal cohomology groups. We shall slightly reformulate his results and extend
them to the case of possibly non-compact groups.

If N1 and N2 are open subgroups of G with N1 ⊆ N2 then the restriction
of scalars ModΛ(N2) → ModΛ(N1) is exact and therefore induces a mor-

phism (ExtiΛ(N2)(E, ·))i≥0 → (ExtiΛ(N1)(E, ·))i≥0 of δ-functors ModΛ(N2) →
ModΛ(N1), where E carries the trivial action of N1 and N2. Since Λ(N2) is a
finitely generated free Λ(N1)-module, the restriction of scalars ModΛ(N2) →
ModΛ(N1) preserves projective objects and both δ-functors can be computed
from a projective resolution of E over Λ(N2). This will be of importance
later.

If M ∈ ModΛ(G) and if i ≥ 0 we set

Σi(M) = Σi
G(M) = lim−→

N

ExtiΛ(N)(E,M),

where the limit is taken over the directed family of all open subgroups N of
G and takes values in the category of E-vector spaces.

Given an open subgroup N of G and an element g ∈ G, conjugation by
g induces an isomorphism c(g) : Λ(N) → Λ(gNg−1) of E-subalgebras of
Λ(G). Restriction of scalars c(g)∗ : ModΛ(N) → ModΛ(gNg−1) along c(g) is
an equivalence of abelian categories. If M ∈ ModΛ(G) then (m 7→ gm) :
c(g)∗(M)→M is an isomorphism of Λ(gNg−1)-modules. Since c(g)∗(E) =
E over Λ(gNg−1) we obtain E-linear isomorphisms

ExtiΛ(N)(E,M) ∼= ExtiΛ(gNg−1)(c(g)∗(E), c(g)∗(M)) ∼= ExtiΛ(gNg−1)(E,M),
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which are trivial if g ∈ N . Indeed, for i = 0 and g ∈ N this is the restriction
of the map g : M →M to MN →MgNg−1

= MN . In general, one uses that
ExtiΛ(N)(E,M) is the i-th cohomology group of (I•)N where M → I• is an
injective resolution of M in ModΛ(N).

In this way we obtain a smooth E-linear action of G on Σi(M) and regard
Σi as a functor ModΛ(G) → Rep∞E (G). Note that for i = 0 evaluation at

1 ∈ E induces a G-equivariant isomorphism Σ0(M) = lim−→N
MN so that our

notation is consistent with that introduced at the end of section 1.

Remark 3.11. (i) In a different setting the functors Σi were considered
by Lazard and called the stable cohomology groups of G (cf. [25],
Chapitre V, Théorème 2.4.10 and Théorème 3.2.7).

(ii) If G0 is an open subgroup of G which is a uniform pro-p group then one
can also consider the i-th local cohomology groups Hi

m(M) of a Λ(G0)-
module M in the sense of [37], section 5. It will become clear later
that the Λ(G0)-modules Σi(M) and Hi

m(M) are isomorphic whenever
M is coadmissible (cf. Remark 3.17).

(iii) The exactness of the inductive limit functor shows that the family
(Σi)i≥0 is a δ-functor ModΛ(G) → Rep∞E (G).

Definition 3.12. For i ≥ 0 the functor Si = SiG = Σi ◦ (̌·) : Rep∞E (G) →
Rep∞E (G) is called the i-th smooth duality functor.

By Proposition 3.2 and (5) we have

dimE E
i(E) =

{
0, 0 ≤ i < d
1, i = d.

We denote by χG : G → E× the smooth character of G affording the left
Λ(G)-module structure of Ed(E) and call χG the duality character of G.
We have χG|G0 = χG0 for any open subgroup G0 of G (cf. Proposition 3.2).
In particular, χG is trivial upon restriction to any open pro-p subgroup of G.

Recall that C∞c (G,E) may be seen as a (Λ(G),Λ(G))-bimodule through the
smooth actions of G by left and right translation. Twisting the left action
by χG and leaving the right action unchanged one obtains a (Λ(G),Λ(G))-
bimodule that we denote by χG ⊗E C∞c (G,E).

For any i ≥ 0 the left Λ(G)-module Σi(Λ(G)) ∈ Rep∞E (G) ⊆ ModΛ(G)

admits a commuting right Λ(G)-action induced functorially from the right
Λ(G)-action on Λ(G). In this way, we may view Σi(Λ(G)) as a (Λ(G),Λ(G))-
bimodule, as well. In a different guise, the following results are contained in
[37], Lemma 5.3 and Lemma 5.5.
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Proposition 3.13. The functors Σi : ModΛ(G) → Rep∞E (G) commute with
direct sums and direct limits. As (Λ(G),Λ(G))-bimodules we have

Σi(Λ(G)) ∼=
{

0 , i 6= d
χG ⊗E C∞c (G,E), i = d.

Proof. If N is a compact open subgroup of G then Λ(N) is a noetherian ring
(cf. Theorem 3.1). Therefore, E admits a resolution by finitely generated
free Λ(N)-modules. As a consequence, the functors ExtiΛ(N)(E, ·) and hence

the functors Σi commute with direct sums and direct limits.

Since the left Λ(N)-module Λ(G) ∼= ⊕g∈N\GΛ(N)g is free, we get Σi(Λ(G)) =
0 for i 6= d from Proposition 3.8. Further, the isomorphism

ExtdΛ(N)(E,Λ(G)) ∼=
⊕

g∈N\G

ExtdΛ(N)(E,Λ(N))g

shows that the right G-representation ExtdΛ(N)(E,Λ(G)) is isomorphic to

the right G-representation indGN (χ−1
N ) consisting of all compactly supported

functions f : G → ExtdΛ(N)(E,Λ(N)) satisfying f(ng) = f(g)n−1. An ex-

plicit isomorphism is given by sending f to
∑

g∈N\G f(g) · g. It is checked

directly that the restriction map ExtdΛ(N)(E,Λ(G)) → ExtdΛ(N ′)(E,Λ(G))

corresponds to the natural inclusion indGN (χ−1
N ) → indGN ′(χ

−1
N ′ ), noting that

χN |N ′ = χN ′ whenever N ′ is an open subgroup of N . Since χN is triv-
ial for any open pro-p subgroup N of G, passage to the limit shows that
Σd(Λ(G)) ∼= C∞c (G,E) as a right Λ(G)-module.

It now remains to exhibit the smooth left action of G. In doing so we
identify Σd(Λ(G)) and C∞c (G,E) as E-vector spaces. If γ ∈ G then left
multiplication by γ on Σd(Λ(G)) is induced by left multiplication with γ
on Λ(G). It maps the subspace ExtdΛ(N)(E,Λ(N))g bijectively onto the

subspace ExtdΛ(γNγ−1)(E,Λ(γNγ−1))γg. Taking g = 1 and composing with

left translation by γ−1 we obtain an E-linear isomorphism

EdG(E) ∼= ExtdΛ(N)(E,Λ(N)) −→ ExtdΛ(γNγ−1)(E,Λ(γNγ−1)) ∼= EdG(E)

of EdG(E) = ExtdΛ(G)(E,∆(G)). It can be written as the composition of two
E-linear automorphisms the first of which is induced by left γ-multiplication
on ∆(G) and by γ-conjugation on G. By the usual argument, it is trivial
(cf. [27], Proposition 1.6.2). The second one is right multiplication by γ−1,
hence is multiplication with χG(γ).

Overall, we obtain that left multiplication with γ on Σd(Λ(G)) ∼= C∞c (G,E)
maps the characteristic function of Ng to the characteristic function of
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γNγ−1γg = γNg multiplied by χG(γ). This proves the claim concerning
the left G-action on Σd(Λ(G)).

By χ−1
G ⊗E∆(G) we denote the (Λ(G),Λ(G))-bimodule obtained by twisting

the left Λ(G)-action by χ−1
G and by leaving the right Λ(G)-action unchanged.

For the following central result see also [37], Theorem 5.6, whose proof is
formally the same.

Theorem 3.14. For any Λ(G)-module M and any integer i ≥ 0 there are
natural Λ(G)-linear isomorphisms

Σi(M)ˇ ∼= Extd−iΛ(G)(M,χ−1
G ⊗E ∆(G)).

Proof. Since (Σi)i≥0 is a δ-functor (cf. Remark 3.11 (iii)) with Σi = 0 for

i > d and since the functor Rep∞E (G)
(̌·)−→ Modpc

Λ(G)

forget−→ ModΛ(G) is exact,

the functor (̌·) ◦ Σd : ModΛ(G) → ModΛ(G) is right exact. By Proposition

3.13 and the properties of (̌·) = HomE(·, E) it transforms arbitrary direct
sums into direct products.

Let M ∈ ModΛ(G). If m ∈ M , ξ ∈ Σd(M )̌ and if cm : Λ(G) → M denotes
the Λ(G)-linear map defined by cm(λ) := λ · m then one defines ϕM (ξ) ∈
HomΛ(G)(M,Σd(Λ(G))̌ ) ∼= HomΛ(G)(M,χ−1

G ⊗E∆(G)) (cf. Proposition 3.13)

as ((̌·) ◦ Σd)(cm)(ξ). In this way one obtains a natural transformation

ϕ : (̌·) ◦ Σd → HomΛ(G)(·, χ−1
G ⊗E ∆(G))

which is an isomorphism of functors. Indeed, since both functors transform
direct sums into direct products and since ϕΛ(G) is obviously bijective, ϕM
is bijective whenever M is free. If M is arbitrary and if F1 → F0 →M → 0
is a presentation of M by free Λ(G)-modules then the right exactness of the
functors imply that ϕM is bijective, as well.

By the universal property of derived functors ϕ extends to a morphism
((̌·) ◦ Σd−i)i≥0 → (ExtiΛ(G)(·, χ

−1
G ⊗E ∆(G)))i≥0 of δ-functors. To show that

it is an isomorphism it suffices to see that ((̌·)◦Σd−i)i≥0 is coeffaceable. This
follows from Proposition 3.13.

Corollary 3.15. For any 0 ≤ i ≤ d the diagram

Rep∞E (G)
(̌·) //

χG⊗ES
d−i

��

ModΛ(G)

Ei

��
Rep∞E (G)

(̌·) //ModΛ(G)
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is commutative up to natural isomorphism. In particular, the higher smooth
duality functors (Si)i≥0 respect admissibility. Moreover, the functor Sd−i

induces an endofunctor of the category Rep∞E (G)ai /Rep∞E (G)ai+1 which is
quasi-inverse to itself.

Proof. For any Λ(G)-module M there is a natural isomorphism

(6) ExtiΛ(G)(M,χ−1
G ⊗E ∆(G)) ∼= Ei(χG ⊗E M)

of left Λ(G)-modules. Further, one checks that there is a natural isomor-
phism χG ⊗E Si(V ) ∼= Si(χ−1

G ⊗E V ) in Rep∞E (G). Theorem 3.14 then
shows that the functors χG ⊗E Sd−i and Ei correspond to each other un-
der Pontryagin duality. Since the endofunctor χG ⊗E (·) of the category
Rep∞E (G) preserves admissibility, it follows from Corollary 3.3 that so do
the functors Si. Moreover, twisting by a smooth character does not change
the grade, so that the functors χG ⊗E (·) and χ−1

G ⊗E (·) preserve the cate-
gories Rep∞E (G)ai and CiG, respectively. Since (χG⊗E Sd−i)◦ (χG⊗E Sd−i) ∼=
Sd−i ◦ Sd−i, Theorem 3.5 implies that Sd−i induces an autoduality of the
category Rep∞E (G)ai /Rep∞E (G)ai+1.

Corollary 3.16. If V ∈ Rep∞E (G)a then d(V ) = max{i ≥ 0 | Si(V ) 6= 0}.
In particular, V is holonomic (and hence finite dimensional over E) if and
only if Si(V ) = 0 for all i > 0. More generally, V is Cohen-Macaulay if and
only if Si(V ) = 0 for all i 6= d(V ).

Proof. Since the dimension is stable under twisting by a smooth character,
the assertions follow from Proposition 3.8, Theorem 3.14 and (6).

Remark 3.17. Let G0 be an open subgroup G0 of G which is a uniform
pro-p group, and let M be a coadmissible Λ(G)-module. Theorem 3.14,
Proposition 3.2 and [37], Theorem 5.6, show that the underlying Λ(G0)-
module of Σi(M) is isomorphic to the i-th local cohomology group of the
finitely generated Λ(G0)-module M considered in [37], section 5. Thus, our
construction is compatible with the one given by Venjakob.

Remark 3.18. We note that in the theory of admissible locally analytic G-
representations as developed by Schneider and Teitelbaum a natural analog
of the functors Si is not known to exist (cf. [31], end of §4).

4 Functoriality

In this section we continue to assume that p is a prime number, that E
is a field of characteristic p and that G is a p-adic Lie group of dimension
d = dim(G). We are going to study the behavior of the Auslander duality
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functors (Ei)i≥0 and the higher smooth duality functors (Si)i≥0 under in-
flation, induction and tensor products.

Let H be a closed and normal subgroup of G. Restriction of scalars along
the canonical ring homomorphism Λ(G) → Λ(G/H) gives rise to functors
ModΛ(G/H) → ModΛ(G), Modpc

Λ(G/H) → Modpc
Λ(G) and CG/H → CG which

are called inflation and which will be denoted by inf. Likewise, the group
homomorphism G→ G/H gives rises to functors Rep∞E (G/H)→ Rep∞E (G)
and Rep∞E (G/H)a → Rep∞E (G)a which are called inflation, as well, and
which will likewise be denoted by inf. Apparently, the diagram

(7) Rep∞E (G/H)
(̌·) //

inf

��

Modpc
Λ(G/H)

inf

��
Rep∞E (G)

(̌·) //Modpc
Λ(G)

of functors is commutative up to natural isomorphism.

Theorem 4.1. If H is a closed normal subgroup of G and if i ≥ 0 then
there is a natural isomorphism

inf ◦SiG/H ∼= SiG ◦ inf

of functors Rep∞E (G/H)→ Rep∞E (G).

Proof. By Theorem 1.5 and the commutativity of (7) we may equivalently
construct an isomorphism of functors inf ◦Σi

G/H
∼= Σi

G ◦ inf from Modpc
Λ(G/H)

to Modpc
Λ(G). For the sake of brevity, we will omit the inflation functors from

the notation. The rough idea of our proof is that in the direct limit suitable
Hochschild-Serre spectral sequences degenerate.

Let us first assume that G is compact. Let Q• → E → 0 be a resolution of
E by finitely generated free Λ(G)-modules, and let P • → E → 0 be a resolu-
tion of E by finitely generated free Λ(G/H)-modules (cf. Theorem 3.1). Let
further (Gk)k≥0 be a basis of neighborhoods of the identity of G consisting
of open normal subgroups. Setting Hk := H ∩ Gk, the family (Hk)k≥0 is a
basis of neighborhoods of the identity of H consisting of open subgroups of
H which are normal in G.

Let M ∈ Modpc
Λ(G/H) and write M = lim←−i∈IM/Mi where (Mi)i∈I is a basis

of neighborhoods of zero in M consisting of open Λ(G/H)-submodules. For
any s ≥ 0 and any ` ≥ 0 there is an E-linear isomorphism

Homcont
Λ(H`)

(Qs,M) ∼= lim←−
i∈I

Homcont
Λ(H`)

(Qs,M/Mi).
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Since any continuous Λ(H`)-linear map Qs →M/Mi factors through a finite
dimensional discrete quotient of Qs, the G-action on Homcont

Λ(H`)
(Qs,M/Mi)

is smooth and gives rise to a module structure over Λ(G). Therefore,
Homcont

Λ(H`)
(Qs,M) is naturally a Λ(G)-module. We may therefore consider

the double complex

C•,• = (Cr,s)r,s≥0 = lim−→
k≥0

lim−→
`≥0

HomΛ(Gk)(P
r,Homcont

Λ(H`)
(Qs,M)).

There are two spectral sequences associated with C•,• which converge to the
cohomology of the associated total complex. The initial terms are

Ep,q2 = Hp((HqCr,•)r≥0) and (Ep,q2 )′ = Hq((HpC•,s)s≥0),

respectively. Since the resolution Q• → E → 0 consists of finitely generated
Λ(G)-modules, all its homomorphisms are automatically continuous homo-
morphisms of pseudocompact Λ(H`)-modules. Further, the Λ(H`)-modules
Qs are projective in Modpc

Λ(H`)
(cf. [11], Lemma 4.5). By the usual argu-

ment, the cohomology of the complex Homcont
Λ(H`)

(Q•,M) can be computed

from any projective resolution of E in Modpc
Λ(H`)

. Since the ring Λ(H`) is

noetherian, there is a resolution R• → E → 0 of E consisting of finitely
generated free Λ(H`)-modules. It is automatically a projective resolution of
E in Modpc

Λ(H`)
and we have HomΛ(H`)(R

q,M) = Homcont
Λ(H`)

(Rq,M) for any

q ≥ 0. Thus, Hq Homcont
Λ(H`)

(Q•,M) ∼= ExtqΛ(H`)
(E,M) and therefore

Hq Cr,• ∼= lim−→
`≥0

lim−→
k≥`

Hq HomΛ(Gk)(P
r,Homcont

Λ(H`)
(Q•,M))

= lim−→
`≥0

lim−→
k≥`

Hq HomΛ(Gk/Hk)(P
r,Homcont

Λ(H`)
(Q•,M))

∼= lim−→
`≥0

lim−→
k≥`

HomΛ(Gk/Hk)(P
r,ExtqΛ(H`)

(E,M))

∼= lim−→
`≥0

lim−→
k≥0

HomΛ(Gk)(P
r,ExtqΛ(H`)

(E,M))

because for k ≥ ` the action of Hk on Homcont
Λ(H`)

(Q•,M) is trivial and be-

cause the Λ(Gk/Hk)-module P r is projective.

Since the Λ(Gk)-module P r is finitely generated, the natural homomorphism

(8) lim−→
`≥0

HomΛ(Gk)(P
r,ExtqΛ(H`)

(E,M)) −→ HomΛ(Gk)(P
r,Σq

H(M))

is injective. Moreover, the action of H on M is trivial so that the map

HomΛ(H`)(R
•, E)⊗E M −→ HomΛ(H`)(R

•,M)

ϕ⊗m 7→ (r 7→ ϕ(r)m)
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is a well-defined isomorphism of complexes. Thus, Σq
H(M) ∼= Σq

H(E)⊗EM is
zero for q > 0 by Theorem 3.14 and (5). As a consequence of the injectivity
of (8) the spectral sequence degenerates. Since Ext0

Λ(H`)
(E,M) ∼= M over

Λ(Gk) independently of ` its limit terms are

Ep02 = lim−→
k≥0

Hp HomΛ(Gk)(P
•,M)

= lim−→
k≥0

Hp HomΛ(Gk/Hk)(P
•,M) = Σp

G/H(M).

In order to compute the initial terms (Epq2 )′ of the second spectral sequence
we fix k, `, s ≥ 0 and claim that the functor HomΛ(Gk)(·,Homcont

Λ(H`)
(Qs,M))

on the category of finitely generated Λ(G/H)-modules into the category of
E-vector spaces is exact. To see this we may assume Qs = Λ(G) to be free
of rank one over Λ(G).

In this case, the projection Λ(G) → Λ(G/H`) induces an isomorphism
Homcont

E (Λ(G/H`),M) → Homcont
Λ(H`)

(Λ(G),M) of Λ(G)-modules. Writing

M = lim←−i∈IM/Mi as above, there is an isomorphism of functors

HomΛ(Gk)(·,Homcont
E (Λ(G/H`),M)) ∼=

lim←−
i

HomΛ(Gk)(·,Homcont
E (Λ(G/H`),M/Mi)).

We endow any of the Λ(G)-modules Homcont
E (Λ(G/H`),M/Mi) with the dis-

crete topology and note that the action of G is smooth because any contin-
uous homomorphism factors through a finite dimensional discrete quotient.

If f : P → Homcont
E (Λ(G/H`),M/Mi) is a homomorphism of abstract Λ(G)-

modules where P is finitely generated then the image of f is Gm-invariant
for some m ≥ k. As in the proof of Lemma 1.7 let IGm be the kernel of the
projection Λ(Gk)→ E[Gk/Gm]. By Theorem 3.1 it is generated by finitely
many elements of the form g − 1 with g ∈ Gm. Hence the open submodule
IGmP is contained in the kernel of f . This shows that f is automatically
continuous. By [11], Lemma 2.1 (ii) and Lemma 2.4, there are isomorphisms

HomΛ(Gk)(P,Homcont
E (Λ(G/H`),M/Mi))

= Homcont
Λ(Gk/(Gk∩H`))

(P,Homcont
E (Λ(G/H`),M/Mi))

∼= Homcont
E (P ⊗̂Λ(Gk/(Gk∩H`))Λ(G/H`),M/Mi)

∼= Homcont
E (P ⊗Λ(Gk/(Gk∩H`)) Λ(G/H`),M/Mi)

of Λ(G)-modules which are natural in P . Passing to the projective limit
over i we obtain an isomorphism of functors

HomΛ(Gk)(·,Homcont
Λ(H`)

(Λ(G),M)) ∼=
Homcont

E ((·)⊗Λ(Gk/(Gk∩H`)) Λ(G/H`),M)

26



from CG/H to the category of E-vector spaces. Since Λ(G/H`) is a free mod-
ule over Λ(Gk/(Gk ∩H`)) our claim will be proved once we can show that
the functor Homcont

E (·,M) on CG/H is exact. However, M ∼= Homcont
E (M̌,E)

is isomorphic in Modpc
E to a direct product of copies of E. Therefore, as

a functor from CG/H to the category of E-vector spaces, Homcont
E (·,M) is

isomorphic to a direct product of copies of the duality functor (̌·).

Thus, also the second spectral sequence degenerates with limit terms

(E0q
2 )′ = lim−→

`≥0

lim−→
k≥0

Hq HomΛ(Gk)(E,Homcont
Λ(H`)

(Q•,M))

∼= lim−→
k≥0

lim−→
`≥0

Hq Homcont
Λ(GkH`)

(Q•,M)

∼= lim−→
k≥0

ExtqΛ(Gk)(E,M) = Σq
G(M).

The construction of the above spectral sequence is functorial in M and so is
the resulting isomorphism Σi

G(M) ∼= Σi
G/H(M). If G is no longer assumed

to be compact note that Σi
G(M) ∼= Σi

G0
(M) and Σi

G/H(M) ∼= Σi
G0/H0

(M)
as G0-representations for any compact open subgroup G0 of G if H0 =
H ∩ G0. The above functoriality result can then be used to see that the
G0-equivariant isomorphism Σi

G(M) ∼= Σi
G0

(M) ∼= Σi
G0/H0

(M) ∼= Σi
G/H(M)

is actually G-equivariant.

Corollary 4.2. Let H be a closed normal subgroup of G and let V be an
object of Rep∞E (G/H)a. We have

dG(inf(V )) = dG/H(V ).

Further, V is holonomic (resp. pure, resp. Cohen-Macaulay) over G/H if
and only if inf(V ) is holonomic (resp. pure, resp. Cohen-Macaulay) over G.

Proof. We may assume that G and H are pro-p groups, hence have trivial
duality characters. Since dim(G) = dim(G/H) + dim(H), Corollary 1.8,
Corollary 3.15 and Theorem 4.1 show that for any i ≥ 0 there is an isomor-

phism of functors EiG ◦ inf ∼= inf ◦Ei−dim(H)
G/H from CG/H to CG. Using the

characterization of purity given in [23], III.4.2 Theorem 6, this implies all
assertions of the corollary.

Next we will discuss tensor products. Let G1 and G2 be p-adic Lie groups
and let Vi ∈ Rep∞E (Gi) for i ∈ {1, 2}. Via the diagonal action the tensor
product V1 ⊗E V2 becomes an object of Rep∞E (G1 × G2). The smooth E-
linear (G1 × G2)-representation V1 ⊗E V2 is admissible if V1 and V2 are
admissible smooth E-linear representations of G1 and G2, respectively. The
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converse holds if V1 and V2 are non-zero. There is a (G1×G2)-biequivariant
isomorphism

C∞c (G1 ×G2, E) ∼= C∞c (G1, E)⊗E C∞c (G2, E).

Likewise, if Mi ∈ Modpc
Λ(Gi)

for i ∈ {1, 2} then the diagonal action of G1×G2

on M1 ×M2 is jointly continuous for the product topology and extends to
a jointly continuous action on the complete tensor product M1⊗̂EM2. In
particular, M1⊗̂EM2 ∈ Modpc

Λ(G1×G2) is a module over Λ(G1 ×G2).

The formation of tensor products is compatible with Pontryagin duality in
the sense that there are natural isomorphisms

(9) (V1 ⊗E V2)ˇ ∼= V̌1⊗̂V̌2 and (M1⊗̂EM2)ˇ ∼= M̌1 ⊗E M̌2

in Modpc
Λ(G1×G2) and Rep∞E (G1 × G2), respectively. For example, we have

∆(G1 ×G2) ∼= ∆(G1)⊗̂E∆(G2).

If Mi ∈ CGi then the Λ(G1×G2)-module M1⊗̂EM2 is coadmissible, as follows
from the exactness of the complete tensor product over E. Using (9) and
Corollary 1.5 this also follows from the corresponding statement for smooth
representations.

Theorem 4.3. If M1 and M2 are coadmissible modules over Λ(G1) and
Λ(G2), respectively, and if i ≥ 0, then the coadmissible Λ(G1 ×G2)-module
EiG1×G2

(M1⊗̂EM2) admits a finite filtration by Λ(G1×G2)-submodules whose

associated graded module is isomorphic to
⊕

p+q=iE
p
G1

(M1)⊗̂EEqG2
(M2).

Proof. Using Proposition 3.2 one can reduce to the case that both G1 and
G2 are compact and hence that M1 and M2 are finitely generated over Λ(G1)
and Λ(G2), respectively (cf. Proposition 1.9).

For i ∈ {1, 2} let P •i → Mi → 0 be resolutions by finitely generated free
modules over Λ(Gi) (cf. Theorem 3.1). The total complex T (P •1 ⊗̂P •2 ) is then
a resolution of M1⊗̂EM2 by finitely generated free Λ(G1×G2)-modules. Re-
call once again that the complete tensor product over E is exact.

Let us consider the spectral sequence associated with the double complex
HomΛ(G1×G2)(P

•
1 ⊗̂EP •2 ,Λ(G1 × G2)). Since HomΛ(G1×G2)(·,Λ(G1 × G2))

commutes with finite direct sums, the total complex of this double com-
plex is given by HomΛ(G1×G2)(T (P •1 ⊗̂P •2 ),Λ(G1×G2)). Therefore, the limit
terms of the spectral sequence are isomorphic to EiG1×G2

(M1⊗̂EM2).
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In order to compute the initial terms of the spectral sequence we note that
there is an isomorphism

HomΛ(G1×G2)(P
•
1 ⊗̂EP •2 ,Λ(G1 ×G2)) ∼=

HomΛ(G1)(P
•
1 ,Λ(G1))⊗̂E HomΛ(G2)(P

•
2 ,Λ(G2))

of complexes of pseudocompact Λ(G1×G2)-modules. It is given by sending
ϕ1⊗̂ϕ2 to the map ϕ with ϕ(p1⊗̂p2) := ϕ1(p1)⊗̂ϕ2(p2) ∈ Λ(G1)⊗̂EΛ(G2) ∼=
Λ(G1 ×G2).

The exactness of (·)⊗̂E(·) implies that the initial terms of the spectral se-
quence are given by Epq2

∼= EpG1
(M1)⊗̂EEqG2

(M2). Further, the arguments
leading to the usual Künneth formula show that the spectral sequence de-
generates at E2. Therefore, the filtration of EiG1×G2

(M1⊗̂EM2) arising from
the spectral sequence is as required.

Corollary 4.4. For i ∈ {1, 2} let Vi ∈ Rep∞E (Gi)
a be non-zero. We have

dG1×G2(V1 ⊗E V2) = dG1(V1) + dG2(V2).

Further, V1 ⊗E V2 is holonomic (resp. pure, resp. Cohen-Macaulay) over
G1 × G2 if and only if V1 and V2 are holonomic (resp. pure, resp. Cohen-
Macaulay) over G1 and G2, respectively.

Proof. Since dim(G1 × G2) = dim(G1) + dim(G2) all assertions are direct
consequences of (9), Theorem 4.3 and [23], III.4.2 Theorem 6.

Finally, we treat a special type of induction functors. Let H be a closed
subgroup of G, and let V ∈ Rep∞E (H). The compact induction indGH(V ) ∈
Rep∞E (G) is the E-vector space of all maps f : G → V whose support is
compact modulo H and which satisfy f(gh) = h−1f(g) for all h ∈ H and
all g ∈ G. The action of G on indGH(V ) is given by left translation, i.e.
by (gf)(g′) = f(g−1g′) for all g, g′ ∈ G. In this way we obtain a functor
indGH : Rep∞E (H) → Rep∞E (G). If the quotient space G/H is compact then
it preserves admissibility (cf. [38], I.5.6). Further, the compact induction
functors are transitive in the sense that if K is a closed subgroup of H then
the functors indGK and indGH ◦ indKH are naturally isomorphic (cf. [38], I.5.3).

In order to translate the induction functor to the dual side, we assume that
G is compact and let M ∈ Modpc

Λ(H). We define the pseudocompact E-vector

space Λ(G)⊗̂Λ(H)M as the quotient of Λ(G)⊗̂EM by the closure U of the
kernel of the natural map Λ(G)⊗E M → Λ(G)⊗Λ(H) M .

The structure map Λ(G)× Λ(G) → Λ(G) of the pseudocompact left Λ(G)-
module Λ(G) gives rise to a continuous E-linear map Λ(G)⊗̂EΛ(G)→ Λ(G).
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Taking the complete tensor product with M over E we obtain a continuous
E-linear map

Λ(G)⊗̂EΛ(G)⊗̂EM −→ Λ(G)⊗̂EM

whose restriction to Λ(G)⊗̂EU takes values in U . Therefore, it induces a
continuous E-linear map

Λ(G)⊗̂E(Λ(G)⊗̂Λ(H)M) −→ Λ(G)⊗̂Λ(H)M.

According to Lemma 1.3 this makes Λ(G)⊗̂Λ(H)M an object of Modpc
Λ(G).

Apparently, Λ(G)⊗̂Λ(H)(·) : Modpc
Λ(H) → Modpc

Λ(G) is a functor.

Lemma 4.5. Let G be compact, let H be a closed subgroup of G, and let
M ∈ Modpc

Λ(H).

(i) The complete tensor product Λ(G)⊗̂Λ(H)M coincides with that of [11],
p. 446, i.e. Λ(G)⊗̂Λ(H)M ∼= lim←−X,Y (Λ(G)/X) ⊗Λ(H) (M/Y ) where X

and Y run through the open Λ(H)-submodules of Λ(G) and M , respec-
tively.

(ii) Up to natural isomorphism the diagram

Rep∞E (H)
(̌·) //

indG
H

��

Modpc
Λ(H)

Λ(G)⊗̂Λ(H)(·)
��

Rep∞E (G)
(̌·)
//Modpc

Λ(G)

of functors is commutative.

Proof. As for (i), note that Λ(G)⊗̂Λ(H)M as defined above is a pseudo-
compact E-vector space together with a continuous Λ(H)-bihomomorphism
Λ(G) ×M → Λ(G)⊗̂EM → Λ(G)⊗̂Λ(H)M . We show that it satisfies the
universal property considered in [11], p. 446. Let f : Λ(G) ×M → C be a
continuous Λ(H)-bihomomorphism into a pseudocompact E-vector space C.
By the universal property of ⊗̂E it gives rise to a unique continuous E-linear
map g : Λ(G)⊗̂EM → C satisfying g(δλ⊗m) = g(δ⊗λm) for all δ ∈ Λ(G),
λ ∈ Λ(H) and m ∈ M . Since the kernel of g is closed we obtain U ⊆
ker(g). Therefore, g induces a unique continuous Λ(H)-bihomomorphism
h : Λ(G)⊗̂Λ(H)M → C whose composition with Λ(G)×M → Λ(G)⊗̂Λ(H)M
is equal to f .

As for (ii), let V ∈ Rep∞E (H) and consider the exact sequence

0 −→ U −→ Λ(G)⊗̂EV̌ −→ Λ(G)⊗̂Λ(H)V̌ −→ 0
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in Modpc
Λ(G). Applying the functor (̌·) we obtain the exact sequence

0 −→ (Λ(G)⊗̂Λ(H)V̌ )ˇ−→ (Λ(G)⊗̂EV̌ )ˇ−→ Ǔ −→ 0

in Rep∞E (G) where (Λ(G)⊗̂EV̌ )̌ ∼= C∞c (G,E) ⊗E V ∼= C∞c (G,V ) by (9).
Therefore, it suffices to see that f ∈ indGH(V ) ⊆ C∞c (G,V ) ∼= (Λ(G)⊗̂EV̌ )̌
if and only if U ⊆ ker(f). Using that E[G] ⊆ Λ(G) is dense, this is readily
checked.

Under the special circumstances encountered in the situation of parabolic
induction, the previous results extend to possibly non-compact groups.

Proposition 4.6. Let H be a closed subgroup of G and assume that there
is a compact open subgroup G0 of G with G = G0H. The functors indGH :
Rep∞E (H) → Rep∞E (G) and Λ(G) ⊗Λ(H) (·) : ModΛ(H) → ModΛ(G) respect
admissibility and coadmissibility, respectively. There is an isomorphism of
functors

(̌·) ◦ indGH
∼= Λ(G)⊗Λ(H) (̌·) : Rep∞E (H)a → CG.

Proof. That the functor indGH preserves admissibility is true whenever the
quotient G/H is compact (cf. [38], I.5.6). Set H0 = G0 ∩ H. As G0\G ∼=
H0\H as right H-spaces, the decompositions

Λ(G) ∼=
⊕

h∈H0\H

Λ(G0)h and Λ(H) ∼=
⊕

h∈H0\H

Λ(H0)h

show that the natural map Λ(G0) ⊗Λ(H0) Λ(H) → Λ(G) is an isomorphism
of (Λ(G0),Λ(H))-bimodules. Thus, Λ(G) ⊗Λ(H) M ∼= Λ(G0) ⊗Λ(H0) M as
Λ(G0)-modules, proving that the functor Λ(G)⊗Λ(H) (·) preserves coadmis-
sibility (cf. Proposition 1.9 (ii)).

If V is an object of Rep∞E (H) then evaluation at 1 ∈ G is an H-equivariant
homomorphism indGH(V ) → V . It induces a homomorphism V̌ → indGH(V )̌
of Λ(H)-modules and hence a homomorphism Λ(G)⊗Λ(H) V̌ → indGH(V )̌ of
Λ(G)-modules. We need to see that it is bijective if V is admissible.

Note that restriction to G0 is a G0-equivariant isomorphism indGH(V ) ∼=
indG0

H0
(V ). As seen above, Λ(G) ⊗Λ(H) V̌ ∼= Λ(G0) ⊗Λ(H0) V̌ over Λ(G0).

Thus, we may assume G = G0 to be compact. In this case, V̌ is finitely
generated over Λ(H) (cf. Proposition 1.9) and Λ(G)⊗Λ(H)V̌ ∼= Λ(G)⊗̂Λ(H)V̌
by [11], Lemma 2.1 (ii). With these identifications the bijectivity of the
above map was shown in the course of the proof of Lemma 4.5 (ii).

For compact groups, part (i) of the following theorem is contained in [28],
Lemma 5.5.
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Theorem 4.7. Let H be a closed subgroup of G and assume that there is a
compact open subgroup G0 of G such that G = G0H.

(i) For any integer i ≥ 0 there is an isomorphism of functors

Λ(G)⊗Λ(H) E
i
H(·) ∼= EiG(Λ(G)⊗Λ(H) (·)) : CH → CG.

(ii) For any integer i ≥ 0 there is an isomorphism of functors

χG ⊗E (Si ◦ indGH) ∼= indGH ◦ (χH ⊗E Si−dim(G/H))

from Rep∞E (H)a to Rep∞E (G)a.

Proof. As for (i), set H0 = H∩G0 and consider the (Λ(G0),Λ(H))-bimodule
isomorphism Λ(G0)⊗Λ(H0) Λ(H)→ Λ(G). By the proof of [28], Lemma 5.5,
the Λ(H0)-module Λ(G0) is flat. As a consequence, the Λ(H)-module Λ(G)
is flat and the functor Λ(G)⊗Λ(H) (·) : CH → CG of Proposition 4.6 is exact.
One can then directly follow the arguments of [31], Lemma 6.3 (ii) and
Proposition 6.4, to see that the natural Λ(G)-linear maps

ExtiΛ(G)(Λ(G)⊗Λ(H) M,∆(G))
ϕ−→ ExtiΛ(H)(M,∆(G)) and

Λ(G)⊗Λ(H) ExtiΛ(H)(M,∆(H))
ψ−→ ExtiΛ(H)(M,∆(G))

are both bijective. Assertion (ii) follows from (i), Proposition 4.6 and Corol-
lary 3.15.

The following statements are immediate consequences of Theorem 4.7. The
purity assertion follows from [23], III.4.2 Theorem 6.

Corollary 4.8. Let H be a closed subgroup of G and assume that there is
a compact open subgroup G0 of G with G = G0H. If V ∈ Rep∞E (H)a then

jG(indGH(V )) = jH(V ) and dG(indGH(V )) = dH(V ) + dim(G/H).

Moreover, V is pure (resp. Cohen-Macaulay) over H if and only if indGH(V )
is pure (resp. Cohen-Macaulay) over G. �

If H is a closed subgroup of G we finally denote by res : Rep∞E (G) →
Rep∞E (H) the restriction functor. There is a natural transformation

(10) res ◦ SiG −→ SiH ◦ res

of δ-functors that we call restriction, too, and which is constructed as fol-
lows. Fix a compact open subgroup G0 of G and let Q• → E → 0 be
a resolution of E be finitely generated free Λ(G0)-modules. Given V ∈
Rep∞E (G) the G-representation SiG(V ) is the i-th cohomology group of the
complex lim−→N

HomΛ(N)(Q
•, V̌ ) where N runs through the open subgroups
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of G0. Note that HomΛ(N)(Q
•, V̌ ) = Homcont

Λ(N)(Q
•, V̌ ) for any N because

the Λ(N)-modules Q• are finitely generated and free. By the arguments
given in the proof of Theorem 4.1 the cohomology groups of the complex
Homcont

Λ(H∩N)(Q
•, V̌ ) are canonically isomorphic to Ext•Λ(H∩N)(E, V̌ ). Thus,

the natural transformation (10) is simply induced by the natural transfor-
mations Homcont

Λ(N)(Q
•, ·)→ Homcont

Λ(H∩N)(Q
•, ·).

For the rest of this section we let G be a connected reductive group over Qp

and G = G(Qp) its group of Qp-rational points. We set

c(G) = min
P$G
{dim(N)}

where P runs through the set of proper parabolic Qp-subgroups of G and N
denotes the unipotent radical of P. If G is Qp-split then by [5], Proposition
14.18, the constant c(G) depends only on the root system Φ of G. Indeed,
if ∆ = {α1, . . . , αr} denotes a basis of Φ and if 1 ≤ i ≤ r then we let Ψi

be the set of positive roots whose expressions in terms of ∆ have a non-zero
contribution from αi. We then have

c(G) = min
1≤i≤r

{|Ψi|}.

If G is Qp-split and Φ is irreducible then the values of c(G) can be read off
from the tables in [9] and [34], Appendix. We record them in the following
list.

Φ A` B` C` D` E6 E7 E8 F4 G2

c(G) ` 2`− 1 2`− 1 2`− 2 16 27 57 15 5

Given a parabolic Qp-subgroup P of G we denote by P = MN its Levi decom-
position and by P , M and N the groups of Qp-rational points of P, M and N,
respectively. Following standard terminology, an E-linear irreducible admis-
sible smooth G-representation V is called supercuspidal if it is not isomorphic
to any subquotient of indGP (σ) where P is a proper parabolic Qp-subgroup of
G and where σ is an E-linear admissible smooth M -representation viewed as
a representation of P via inflation along P → P/N ∼= M (cf. [1], I.3). Note
that as one of the main results of [1], a representation is supercuspidal if and
only if it is supersingular in the sense of [1], I.5 (cf. [loc.cit.], I.5 Theorem
5).

Theorem 4.9. Let G = G(Qp) be as above.

(i) If P = MN is a parabolic Qp-subgroup of G and if σ is a supercusp-
idal representation of M then any subquotient V of indGP (σ) satisfies
dG(V ) ≤ dim(G/P ) + dM (σ).
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(ii) If V ∈ Rep∞E (G)a is irreducible and not supercuspidal then either V is
finite dimensional over E or c(G) ≤ d(V ).

Proof. If V is a subquotient of indGP (σ) then dG(V ) ≤ dG(indGP (σ)) by (3).
It follows from the general theory of reductive groups over local fields that
G = G0P for some compact open subgroup G0 of G (cf. [36], 3.3.2). Further,
since N acts trivially on σ we obtain

(11) dG(indGP (σ)) = dP (σ) + dim(G/P ) = dM (σ) + dim(G/P )

from Corollary 4.2 and Corollary 4.8. This proves assertion (i).

Under the assumptions of (ii) we make use of a deep classification result of
Abe, Henniart, Herzig and Vignéras (cf. [1], Theorem I.3.3 and Corollary
II.7.2) building on previous work of Herzig and Abe. If the root system is
irreducible there are two possible cases. Either V is isomorphic to a repre-
sentation of the form indGP (σ) for some proper parabolic Qp-subgroup P of
G . In this case (11) shows that V has dimension greater than or equal to
dim(G/P ) = dim(N) ≥ c(G). Since V is not supercuspidal, the only other
possibility is that V is a twist of a generalized Steinberg representation cor-
responding to a parabolic Qp-subgroup P of G. This is infinite dimensional
if and only if P 6= G. In this case the assertion follows from Proposition 5.5
below.

Remark 4.10. (i) The results of this section together with the above
mentioned classification results show that in order to determine the
dimensions of the objects of Rep∞E (G)a which are of finite length it
suffices to consider supercuspidal representations. In the next section
we are going to treat the case G = GL2(Qp).

(ii) If the root system of G is reducible or if V is supercuspidal we do not
know if there are dimension bounds as in Theorem 4.9. If G = G1×G2

is the direct product of two non-trivial connected semisimple Qp-split
groups G1 and G2, for example, and if V = V1 ⊗E V2 where V1 is a
supercuspidal G1-representation and V2 is the Steinberg representation
of G2, then V is irreducible but not supercuspidal. By Corollary 4.4
we have dG(V ) = dG1(V1) + dG2(V2) so that we are confronted with
the same problem as in (i).

5 Examples

We continue to assume that p is a prime number, that E is a field of char-
acteristic p and that G is a p-adic Lie group of dimension d = dim(G). As
a first result we will give an explicit description of the duality character χG
of G. Let g denote the Lie algebra of G over Qp endowed with the adjoint
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action of G. It gives rise to the Qp-valued character
∧d g of G. As in section

2 we denote by δG : G → Q×p the locally constant modulus character of G

and define the Qp-valued character dG of G by dG =
∧d g⊗Qp δG.

The following theorem shows how to describe the duality character χG in
terms of the character dG. Its proof relies heavily on results of Schneider
and Teitelbaum and shows a partial compatibility with the duality theory
for locally analytic representations developed in [31].

Theorem 5.1. The character dG takes values in Z×p . The duality character

χG of G coincides with the composition of d−1
G : G→ Z×p with the canonical

homomorphisms Z×p → F×p → E×.

Proof. If | · | denotes the normalized absolute value of Qp then δG = |
∧d g|

by [8], III.3.16, Corollaire à la Proposition 55. This proves the first assertion.

As in section 1 one can define the Iwasawa algebra ΛZp(G) of G with coef-
ficients in Zp and the bimodule ∆Zp(G) ∼=

∏
g∈G/G0

gΛZp(G0) over ΛZp(G).
In this situation, the analog of Proposition 3.2 holds true with formally the
same proof (relying once again on [24], Lemma 2.3 and [31], Lemma 2.2).
The formation of ΛZp(G), ∆Zp(G) and ExtdΛZp (G)(Zp,∆Zp(G)) commutes

with reduction modulo p. Indeed, the cases of ΛZp(G) and ∆Zp(G) are both
formally reduced to the standard fact that ΛZp(G0)/pΛZp(G0) ∼= ΛFp(G0)
for any profinite group G0. For the extension groups one is reduced to the
case that G is a uniform pro-p group by using Proposition 3.2 and its ana-
log over Zp. In this case, the ΛZp(G)-module Zp admits a Zp-linearly split
resolution by finitely generated free ΛZp(G)-modules (cf. [25], Chapitre V,
(2.2.2.3)). Since it is Zp-split, this resolution remains exact after reduction
modulo p. Moreover, the extension groups Ext•ΛZp (G)(Zp,ΛZp(G)) are free

Zp-modules because G is a Poincaré duality group (cf. [35], Theorem 5.1.5).
By standard arguments we obtain that the formation of extension groups
commutes with reduction modulo p, as claimed. As a consequence, it suf-
fices to see that the left action ofG on ExtdΛZp (G)(Zp,∆Zp(G)) is given by d−1

G .

We make free use of the notation introduced in [31]. In particular, D(G,Qp)
denotes the Qp-algebra of locally analytic Qp-valued distributions on G
and DQp(G) = Can

c (G,Qp)
′
b as a (D(G,Qp), D(G,Qp))-bimodule. By the

proof of [31], Proposition 6.5, the right action of G on DQp(G) makes

ExtdD(G,Qp)(Qp,DQp(G)) a left D(G,Qp)-module of Qp-dimension one on

which the action of G is given by the character d−1
G . Further, by [31],

Proposition 2.3 we have the analog of our Proposition 3.2, i.e. for any com-
pact open subgroup N of G there is a natural D(N,Qp)-linear isomorphism
ExtdD(G,Qp)(Qp,DQp(G)) → ExtdD(N,Qp)(Qp, D(N,Qp)). In particular, the
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Qp-vector space on the right is one dimensional with its left N -action given
by d−1

G |N = d−1
N . Arguing as in Proposition 3.13, there is an isomorphism

lim−→
N

ExtdD(N,Qp)(Qp, D(G,Qp)) ∼= d−1
G ⊗Qp C

∞
c (G,Qp)

of left and right G-representations.

Let N be any compact open subgroup of G. We note that there is a ho-
momorphism ΛZp(N)⊗Zp Qp → D(N,Qp) of Qp-algebras which is faithfully
flat by [30], Theorem 5.2. Since the ring ΛZp(N) is noetherian (cf. [25],
Chapitre V, Proposition 2.2.4), the trivial ΛZp(N)-module Zp admits a res-
olution P • → Zp → 0 by finitely generated free ΛZp(N)-modules P i. As is
shown in the proof of [31], Proposition 6.5, the induced complex

D(N,Qp)⊗ΛZp (N) P
• −→ D(N,Qp)⊗ΛZp (N) Zp −→ 0

is an exact resolution of the trivial D(N,Qp)-module D(N,Qp)⊗ΛZp (N)Zp ∼=
Qp by finitely generated free D(N,Qp)-modules. On the other hand, there
is a G-biequivariant homomorphism

lim−→
N

ExtdΛZp (N)(Zp,ΛZp(G))⊗Zp Qp −→ lim−→
N

ExtdD(N,Qp)(Qp, D(G,Qp)).

It is the direct limit of the homomorphisms

(12) ExtdΛZp (N)(Zp,ΛZp(G))⊗Zp Qp −→ ExtdD(N,Qp)(Qp, D(G,Qp)),

coming from the (ΛZp(G),ΛZp(G))-bimodule homomorphisms ΛZp(G) →
D(G,Qp) and the natural isomorphisms

HomΛZp (N)(P
•, D(G,Qp)) ∼= HomD(N,Qp)(D(N,Qp)⊗ΛZp (N) P

•, D(G,Qp)).

By Proposition 3.13 it suffices to show that the maps in (12) are bijective.
By decomposing ΛZp(G) and D(G,Qp) into direct sums of free modules over
ΛZp(N) and D(N,Qp), respectively, we are further reduced to showing that
the natural map

(13) ExtdΛZp (N)(Zp,ΛZp(N))⊗Zp Qp −→ ExtdD(N,Qp)(Qp, D(N,Qp))

is bijective. However, this is just the canonical map

ExtdΛZp (N)(Zp,ΛZp(N))⊗Zp Qp(14)

−→ D(N,Qp)⊗ΛZp (N) ExtdΛZp (N)(Zp,ΛZp(N))

into the base extension followed by the canonical isomorphism

D(N,Qp)⊗ΛZp (N) ExtdΛZp (N)(Zp,ΛZp(N)) ∼= ExtdD(N,Qp)(Qp, D(N,Qp))
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(cf. [6], Chapitre X, §6, No. 7, Proposition 10 (b); here we use once more
that D(N,Qp)⊗ΛZp (N)Zp ∼= Qp). As recalled above, the ring homomorphism

ΛZp(N)⊗ZpQp → D(N,Qp) is faithfully flat, whence the map (14) is injective
and so is the map (13). Now we may assume that N is an open uniform
pro-p subgroup of G. In this case N is a Poincaré duality group by [35],
Theorem 5.1.5, and both sides of (13) are one dimensional vector spaces over
Qp. This completes the proof.

Corollary 5.2. If G is open in the group of Qp-rational points of a connected
reductive group over Qp then the duality character χG of G is trivial.

Proof. Let g denote the Lie algebra of G. It is the direct sum of its center
and its derived Lie algebra. Therefore, the adjoint action of g on

∧d g is
trivial. Since the action of G on

∧d g is algebraic, it is trivial by Zariski
density. By Theorem 5.1 the character χG = (

∧d g ⊗Qp |
∧d g|)−1 is then

trivial, too.

In what follows we assume that G = G(Qp) is the group of Qp-rational
points of a connected reductive algebraic group G over Qp. As before we
denote by P a parabolic Qp-subgroup of G with Levi decomposition P = MN
and denote by P , M and N the respective groups of Qp-rational points.

Corollary 5.3. If G is Qp-split and if P is a Qp-Borel subgroup of G with
associated set of positive roots Φ+ then

χP (mn) =
∏
α∈Φ+

α(m)−1|α(m)|−1 mod p

for all m ∈M and n ∈ N .

Proof. Since N is the union of its open pro-p subgroups the restriction of χP
to N is trivial. Therefore, the assertion is a direct consequence of Theorem
5.1 and the weight space decomposition of the Lie algebra of G.

As our next example, we compute the higher smooth duals of the principal
series representations of G. Let χ be a smooth E-valued character of M ∼=
P/N , viewed as a smooth E-valued character of P via inflation. Taking
into account Theorem 5.1 the following result is formally the same as [31],
Proposition 6.5. It is a direct consequence of Corollary 3.16, Theorem 4.7,
Corollary 4.8 and Corollary 5.2.

Proposition 5.4. The smooth principal series representation indGP (χ) of G
over E is Cohen-Macaulay of dimension dim(G/P ). The smooth E-linear

G-representation S
dim(G/P )
G (indGP (χ)) is isomorphic to indGP (χPχ

−1). �

37



By E we also denote the trivial E-valued character of P . The special repre-
sentation SpP (G,E) of G with respect to P is defined by the exact sequence⊕

P$Q

indGQ(E) −→ indGP (E) −→ SpP (G,E) −→ 0,

in which the left hand sum runs over the set of groups of Qp-rational points
of the parabolic Qp-subgroups of G properly containing P.

Proposition 5.5. The special representation SpP (G,E) is pure of dimen-
sion dim(G/P ). The surjection indGP (E) → SpP (G,E) induces an isomor-
phism in the quotient category Rep∞E (G)adim(P )/Rep∞E (G)adim(P )+1.

Proof. Since indGP (E) is Cohen-Macaulay of dimension dim(G/P ) (cf. Propo-
sition 5.4), the Λ(G)-module indGP (E)̌ is pure of grade dim(P ) (cf. Remark
3.7). It follows from [23], III.4.2 Proposition 9, that so is its submodule
SpP (G,E)̌ . LetW denote the kernel of the surjection indGP (E)→ SpP (G,E)
so that W̌ is a Λ(G)-submodule of ⊕P$QindGQ(E)̌ . By (3) and Proposition

5.4 we have j(W̌ ) ≥ minP$Q dim(Q) > dim(P ). Thus, W̌ ∈ Cdim(P )+1
G and

W ∈ Rep∞E (G)adim(P )+1.

The special representations SpP (G,E) were shown to be irreducible by
Große-Klönne (cf. [20], Corollary 4.3), Herzig (cf. [22], Theorem 7.2) and
Ly (cf. [26], Théorème 3.1). If P is a Borel subgroup of G then the special
representation SpP (G,E) is usually called the Steinberg representation of G
over E and will be denoted by StG.

Proposition 5.6. If G = GL3(Qp) then the Steinberg representation of G
over E is not Cohen-Macaulay.

Proof. We let P1 and P2 be the groups of Qp-rational points of the two
distinct proper parabolic subgroups of G which properly contain a fixed
Borel subgroup P. Since P1 and P2 generate the group G there is an exact
sequence

0 −→ E −→ indGP1
(E)⊕ indGP2

(E) −→ indGP (E) −→ StG −→ 0

in Rep∞E (G)a. As above, we denote by W the kernel of the surjection
indGP (E)→ StG and consider the short exact sequence

0 −→ E −→ indGP1
(E)⊕ indGP2

(E) −→W −→ 0.

Using Corollary 3.16 and Proposition 5.4, the long exact sequence obtained
by applying the δ-functor (SiG)i≥0 yields

S1
G(W ) ∼= E,

S2
G(W ) ∼= indGP1

(χP1)⊕ indGP2
(χP2) and

SiG(W ) = 0 for i 6∈ {1, 2}.
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Moreover, by Proposition 5.4 we have

Si(indGP (E)) ∼=

{
0, if i 6= dim(G/P ) = 3,

indGP (χP ), if i = 3.

Considering the short exact sequence 0 → W → indGP (E) → StG → 0 and
analyzing the associated long exact sequence we obtain Si(StG) = 0 for
i 6∈ {2, 3}, S2(StG) ∼= E, as well as a short exact sequence

0 −→ indGP1
(χP1)⊕ indGP2

(χP2) −→ S3(StG) −→ indGP (χP ) −→ 0

In particular, StG is not Cohen-Macaulay.

Proposition 5.7. If G = GL2(Qp) then the Steinberg representation of G
is Cohen-Macaulay of dimension one. Up to isomorphism, S1

G(StG) is the
unique non-split extension

0 −→ E −→ S1
G(StG) −→ indGP (χP ) −→ 0

of E and indGP (χP ).

Proof. Consider the exact sequence 0 → E → indGP (E) → StG → 0. Using
Corollary 3.16, Proposition 5.4 and analyzing the associated long exact se-
quence obtained by applying the δ-functor (SiG)i≥0 we obtain SiG(StG) = 0
unless i = 1. In particular, the Steinberg representation of GL2(Qp) over E
is Cohen-Macaulay. For i = 1 we obtain a short exact sequence

0 −→ E −→ S1
G(StG) −→ indGP (χP ) −→ 0.

If this sequence was split we would obtain S1S1(StG) ∼= indGP (E) by Corol-
lary 3.16 and Proposition 5.4. However, S1S1(StG) ∼= StG by Corollary
3.15 and [37], Proposition 3.9, because StG is Cohen-Macaulay of dimension
one. Now the Steinberg representation is irreducible whereas indGP (E) is not.
Thus, we arrive at a contradiction. Finally, note that up to isomorphism
there is only one non-split extension as above (cf. Proposition 5.3 and [18],
Proposition 4.3.13 (2), bearing in mind the different conventions concerning
indGP which are used in [17] and [18]).

Remark 5.8. Over fields of characteristic zero the Steinberg representation
is known to be self-dual, i.e. isomorphic to its 0-th smooth dual (cf. [12],
§9.10 for the case of GL2). Proposition 5.6 and Proposition 5.7 show that its
behavior in natural characteristic is different. More importantly, we find that
even on Cohen-Macaulay representations the smooth duality functors do not
preserve irreducibility. Further, the higher smooth duals of an irreducible
representation are not necessarily concentrated in a single degree. Both
phenomena are in contrast to the Zelevinsky conjecture in characteristic zero
(cf. [33], Theorem III.3.1 and Corollary III.3.2) which is also formulated in
terms of certain Ext-duals.
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Let now again G be an arbitrary p-adic Lie group and let G0 be a (not
necessarily compact) open subgroup of G. Given an E-linear representation
V of G0 we denote by IGG0

(V ) the E-vector space of functions f : G → V
satisfying f(gh) = h−1f(g) for all g ∈ G and h ∈ G0. Left translation by
elements of G gives IGG0

(V ) the structure of an E-linear G-representation.

If V ∈ Rep∞E (G0) we let IndGG0
(V ) := S0(IGG0

(V )) ∈ Rep∞E (G) denote the

subspace of smooth vectors in IGG0
(V ). Recall that we defined indGG0

(V )

to be the G-subrepresentation of IGG0
(V ) consisting of all functions whose

support is compact modulo G0. Since the G0-representation V is smooth
we automatically have indGG0

(V ) ⊆ IndGG0
(V ). If G/G0 is compact then

indGG0
(V ) = IndGG0

(V ) = IGG0
(V ).

Lemma 5.9. Let G0 be an open subgroup of G. If V ∈ Rep∞E (G0) then the
G-representation indGG0

(V )̌ is isomorphic to IGG0
(V̌ ). In particular, the latter

is naturally an object of Modpc
Λ(G) and there is an isomorphism S0

G ◦ indGG0
∼=

IndGG0
◦ S0

G0
of functors Rep∞E (G0)→ Rep∞E (G).

Proof. We define the E-bilinear map 〈·, ·〉 : indGG0
(V ) × IGG0

(V̌ ) → E by
〈f, F 〉 :=

∑
g∈G/G0

F (g)(f(g)). It gives rise to a G-equivariant E-linear map

IGG0
(V̌ ) → indGG0

(V )̌ . Evaluation at a fixed system of coset representatives

of G/G0 yields E-linear isomorphisms indGG0
(V ) ∼= ⊕g∈G/G0

V and IGG0
(V̌ ) ∼=∏

g∈G/G0
V̌ under which the above G-homomorphism corresponds to the

isomorphism
∏
g∈G/G0

V̌ ∼= (⊕g∈G/G0
V )̌ . This proves the first assertion.

The second assertion is a consequence of the obvious relation Σ0
G(IGG0

(V̌ )) =

IndGG0
(Σ0

G0
(V̌ )).

Remark 5.10. If G0 is open of finite index in G then the functors indGG0
and

IndGG0
on Rep∞E (G0) coincide. Further, for any smooth E-valued character χ

of G there is an isomorphism of functors χ⊗E indGG0
(·) ∼= indGG0

(χ|G0 ⊗E (·))
(cf. [38], §I.5.2). In this special situation the statement of the preceding
lemma is in accordance with that of Theorem 4.7 (ii) for i = 0.

Finally, we treat the supersingular representations of G = GL2(Qp) con-
structed by Barthel and Livné (cf. [3]) and classified by Breuil (cf. [10]). Let
Z ∼= Q×p denote the center of G = GL2(Qp). Set G0 = Z ·GL2(Zp) and let
V denote a finite dimensional E-linear representation of GL2(Fp). We view
V as a smooth representation of G0 via inflation along GL2(Zp)→ GL2(Fp)
and by letting p ∈ Z act trivially. Set

w =

(
0 1
1 0

)
, α =

(
p 0
0 1

)
and Gn = G0 ∩ αnG0α

−n

for any n ∈ Z. We let K0 = GL2(Zp) and for m ≥ 1 denote by Km the
kernel of the reduction homomorphism GL2(Zp) → GL2(Zp/pmZp). By T
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we denote the subgroup of G consisting of diagonal matrices. By N and
N we denote the subgroups of G consisting of upper and lower triangular
unipotent matrices, respectively. Setting

T0 = T ∩G0, Nn = αn(N ∩G0)α−n and Nn = α−n(N ∩G0)αn

we have the Iwahori decomposition Gn = N0T0Nn whenever n ≥ 1. Further,
wαw−1Z = α−1Z and G0 = G−1

∐
N0wG−1 so that

(15) G0αG0 = G0α
−1G0 = α−1G0

∐
N0wα

−1G0 = α−1G0

∐
N0αG0.

Multiplying by αn from the left we obtain αnG0αG0 = αn−1G0
∐
Nnα

n+1G0

for all n ∈ Z.

Theorem 5.11. Assume G = GL2(Qp). If G0 and V are as above then
SiG(indGG0

(V )) = 0 for any integer i ≥ 2.

Proof. By Lemma 5.9 we have indGG0
(V )̌ ∼= IGG0

(V̌ ) and need to see that

Σi(IGG0
(V̌ ) = 0 for i ≥ 2.

For any integer n we denote by V̌n the αnG0α
−n-representation whose under-

lying E-vector space is V̌ and such that (αngα−n)v̌ = gv̌ for all g ∈ G0 and
v̌ ∈ V̌ . With this notation the Cartan decomposition G =

∐
n≥0G0α

nG0 in-

duces the G0-equivariant Mackey decomposition IGG0
(V̌ ) ∼=

∏
n≥0 indG0

Gn
(V̌n),

sending a function f ∈ IGG0
(V̌ ) to the family (fn)n≥0 of functions fn ∈

indG0
Gn

(V̌n) defined by fn(g) = f(gαn). For any integer m ≥ 0 it induces the
decomposition

(16) ExtiΛ(Km)(E, I
G
G0

(V̌ )) ∼=
∏
n≥0

ExtiΛ(Km)(E, indG0
Gn

(V̌n)).

Since Km is normal in G0 and indG0
Gn
∼= indG0

GnKm
◦ indGnKm

Gn
, the exactness

of the induction functors implies

(17) ExtiΛ(Km)(E, indG0
Gn

(V̌n)) ∼= indG0
GnKm

(ExtiΛ(Km)(E, indGnKm
Gn

(V̌n))).

Further, restriction to Km induces a Λ(Km)-linear bijection indGnKm
Gn

(V̌n) ∼=
indKm

Gn∩Km
(V̌n) so that by Shapiro’s lemma

(18) ExtiΛ(Km)(E, indGnKm
Gn

(V̌n)) ∼= ExtiΛ(Gn∩Km)(E, V̌n).

Let ` ≥ m. Under the identifications (16), (17) and (18) the restriction
map ExtiΛ(Km)(E, I

G
G0

(V̌ )) → ExtiΛ(K`)
(E, IGG0

(V̌ )) is the direct product of
the maps

indG0
GnKm

(ExtiΛ(Gn∩Km)(E, V̌n)) −→ indG0
GnK`

(ExtiΛ(Gn∩K`)
(E, V̌n)),
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obtained by composing a function on the left with the GnK`-equivariant re-
striction map ExtiΛ(Gn∩Km)(E, V̌n)→ ExtiΛ(Gn∩K`)

(E, V̌n). We will see that
if i ≥ 2 then there is an integer ` such that these restriction maps are zero
for all n ≥ 0.

By Proposition 3.8 have lim−→`≥m ExtiΛ(Gn∩K`)
(E, V̌n) = 0 for i ≥ 1 and each

n ≥ 0 individually. However, the vanishing of this direct limit might not
be uniform in n. Note that all occurring extension groups are finite dimen-
sional over E so that we can at least choose ` > m with the property that
the above restriction maps are zero for all n < m. We claim that if i ≥ 2
and n ≥ m then the restriction map is zero for ` = m+1. This will complete
the proof.

Setting Tm = Km ∩ T and assuming m ≥ 1 we have the decomposition
Km = NmTmNm. If n ≥ m then we also have the decomposition Gn∩Km =
NmTmNn. Conjugation with α−n yields α−n(Gn ∩ Km)αn = Nm+nTmN0

and therefore

ExtiΛ(Gn∩Km)(E, V̌n) ∼= ExtiΛ(Umn)(E, V̌ ) with Umn = Nm+nTmN0.

If m ≥ 2 then Km is a uniform pro-p group (cf. [15], Theorem 5.2). In the
particular case of GL2(Qp) the same is true of the groups Umn if 2 ≤ m ≤ n.
Indeed, by [15], Theorem 4.5, it suffices to show that Umn is powerful, i.e.
that every commutator is contained in the closure of the subgroup generated
by the pε-th powers of Umn. Here ε = 1 or ε = 2 according to whether p
is odd or even. Since the groups Nm+n, Tm and N0 are commutative, it
suffices to check the following finite number of cases. Letting c ∈ pm+nZp,
a, d ∈ 1 + pmZp and b ∈ Zp we have[(

1 0
c 1

)
,

(
a 0
0 d

)]
=

(
1 0

(1− d
a)c 1

)
∈ N2m+n = N

pm

m+n,[(
1 b
0 1

)
,

(
a 0
0 d

)]
=

(
1 (1− a

d)b
0 1

)
∈ Nm = Npm

0 , and[(
1 0
c 1

)
,

(
1 b
0 1

)]
=

(
1 + bc b2c
−c2b 1 + bc+ (bc)2

)
∈ α−nKm+nα

n,

where α−nKm+nα
n = α−n(Nm+nTm+nNm+n)αn ⊆ α−n(N

pε

mT
pε
m Npε

n )αn ⊆
Up

ε

mn.

This result allows us to determine the E-vector spaces ExtiΛ(Umn)(E, V̌ ) for

any i ≥ 0. We let m denote the maximal ideal of the ring Λ(Umn) and endow
Λ(Umn), V and V̌ with their m-adic filtrations. Denoting by gr(Λ(Umn)),
gr(V ) and gr(V̌ ) the associated graded objects there is a functorial isomor-
phism

Tor
Λ(Umn)
i (E, V ) ∼= Tor

gr(Λ(Umn))
i (E, gr(V ))
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(cf. [21], Theorem 3.3’). Dually, we obtain functorial isomorphisms

ExtiΛ(Umn)(E, V̌ ) ∼= Extigr(Λ(Umn))(E, gr(V̌ ))

for all i ≥ 0. Note that m is the augmentation ideal of Λ(Umn). We let ν
and ν denote topological generators of Nm+n and N0, respectively, and let
τ1 and τ2 denote topological generators of Tm. Sending u, x, y and z to
the classes of 1− ν, 1− τ1, 1− τ2 and 1− ν in m/m2, respectively, induces
an isomorphism E[u, x, y, z] ∼= gr(Λ(Umn)) of graded E-algebras (cf. [15],
Theorem 7.24). Since Nn+m and Tm act trivially on V̌ , the elements u, x
and y annihilate gr(V̌ ). Therefore, gr(V̌ ) can also be computed through
the adic filtration of Λ(N0). By the Künneth formula we obtain E-linear
isomorphisms

ExtiΛ(Umn)(E, V̌ )

∼= ⊕r+s=i Extr
gr(Λ(Nm+nTm))

(E,E)⊗E Extsgr(Λ(N0))(E, gr(V̌ ))

∼= ⊕r+s=i(
r∧

Ext1
gr(Λ(Nm+nTm))

(E,E))⊗E Extsgr(Λ(N0))(E, gr(V̌ ))

∼= ⊕r+s=i(
r∧

Ext1
Λ(Nm+nTm)

(E,E))⊗E ExtsΛ(N0)(E, V̌ )

for all i ≥ 0 which are compatible with restriction. Note that (Nm+nTm)p =
Nm+n+1Tm+1 so that the restriction map

Ext1
Λ(Nm+nTm)

(E,E)
∼= // Hom(Nm+nTm, E)

��
Ext1

Λ(Nm+n+1Tm+1)
(E,E)

∼= // Hom(Nm+n+1Tm+1, E)

is trivial because E has characteristic p. Since dim(N0) = 1 the claim
follows.

Remark 5.12. The final arguments given in the above proof imply more
generally that for n > m ≥ 2 and any integer i ≥ 1 the restriction map
ExtiΛ(Gn∩Km)(E, V̌n) → ExtiΛ(Nn)(E, V̌n) is surjective and that its kernel

coincides with the kernel of the restriction map ExtiΛ(Gn∩Km)(E, V̌n) →
ExtiΛ(Gn∩Km+1)(E, V̌n).

We keep the assumption G = GL2(Qp) and from now on assume that V is
irreducible over G0. We recall the construction of the G-equivariant Hecke
operator T = TV on indGG0

(V ) given in [3], section 3. The composition of
the natural maps V N0 ↪→ V → VN0

is bijective. It induces an E-linear

endomorphism U = UV : V → VN0

∼= V N0 ↪→ V of V . For g ∈ G and v ∈ V
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we denote by [g, v] ∈ indGG0
(V ) the function with support gG0 and value v

at g. The operator T is then determined by the formula

T ([g, v]) =
∑

G0αG0=
∐
xαG0

[gxα,U(x−1v)](19)

= [gwα,U(wv)] +
∑

n∈N0/N1

[gnα,U(n−1v)],

where we made use of the decomposition (15). By [3], Proposition 4, and
[10], Théorème 1.1, the G-representation

πV = indGG0
(V )/T (indGG0

(V ))

is irreducible and by [3], Theorem 34, any supersingular smooth E-linear
representation of G = GL2(Qp) with trivial action of p ∈ Z ⊂ G0 is of this
form. Note that indGG0

(V ) and hence πV admit central characters which
are equal to the central character of V . The character of G obtained by
composition with the determinant map det : G → Q×p ∼= Z will be denoted
by δV : G→ E×.

Theorem 5.13. If G = GL2(Qp) and if V is an irreducible representation of
G0 as above then the supersingular G-representation πV is Cohen-Macaulay
of dimension one. There are isomorphisms

S1
G(πV ) ∼= πV̌

∼= πV ⊗E δ−1
V

of E-linear smooth G-representations.

Proof. By Lemma 5.9 we have S0
G(indGG0

(V )) ∼= IndGG0
(V̌ ). Identifying

F ∈ IndGG0
(V̌ ) with the infinite sum

∑
g∈G/G0

[g, F (g)] our first claim is that

the operator S0
G(TV ) is given by S0

G(TV )(F ) =
∑

g∈G/G0
TV̌ ([g, F (g)]). Note

that S0
G(TV ) is obtained from the Pontryagin dual ŤV of TV by restriction to

the subspace of smooth vectors in IGG0
(V̌ ). By continuity, ŤV commutes with

infinite sum expansions as above, and hence so does S0
G(TV ). Moreover, by

formula (19) the operator TV̌ has a unique extension to IGG0
(V̌ ) commuting

with infinite sums as above. Therefore, it suffices to see that the restriction
of S0

G(TV ) to indGG0
(V̌ ) agrees with TV̌ . In fact, this will show that more

generally ŤV = TV̌ as G-equivariant endomorphisms of IGG0
(V̌ ).

Note that UV is a projection whose image is V N0 and whose kernel coincides
with the kernel of the natural map V → VN0

. Since the analogous charac-

terization holds for UV̌ and since wN0w = N0 one deduces that UV̌ is the
transpose of the endomorphism wUw of V . We also note that if y ∈ G0 has
the property that αyαG0 = G0 then yG1 = wG1. Indeed, the decomposition
(15) shows that otherwise αyαG0 ⊆ αN0αG0 ⊆ N0α

2G0 which has trivial
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intersection with G0 by the Cartan decomposition.

Now let g, h ∈ G, v ∈ V and v̌ ∈ V̌ . Using the pairing introduced in the
proof of Lemma 5.9 we have

〈[g, v], S0
G(TV )([h, v̌])〉 = 〈TV ([g, v]), [h, v̌]〉

=
∑

G0αG0=
∐

x xαG0

〈[gxα,UV (x−1v)], [h, v̌]〉.

The latter sum is zero unless hG0 ⊆ gG0αG0. Assuming hx0 = gxα with
x, x0 ∈ G0 and using [h, v̌] = [hx0, x

−1
0 v̌] we obtain 〈[gxα,UV (x−1v)], [h, v̌]〉 =

v̌(x0UV (x−1v)). On the other hand, we have

〈[g, v], TV̌ ([h, v̌])〉 =
∑

G0αG0=
∐

x xαG0

〈[g, v], [hxα,UV̌ (x−1v̌)]〉,

which is zero unless gG0 ⊆ hG0αG0. Note that the conditions gG0 ⊆
hG0αG0 and hG0 ⊆ gG0αG0 are equivalent. Indeed, noting that G0αG0

contains α−1 ∈ wαwZ and hence is invariant under inversion, the conditions
are equivalent to G0h

−1gG0 = G0αG0 = (G0αG0)−1 = G0g
−1hG0. In this

case we may write gy0 = hyα with y, y0 ∈ G0 and obtain 〈[g, v], TV̌ ([h, v̌])〉 =
UV̌ (y−1v̌)(y−1

0 v). Since αx−1
0 yα = x−1y0 ∈ G0, our above remark implies

that we may assume x−1
0 y = x−1y0 = w. Since UV̌ is the transpose of wUV w

this yields

UV̌ (y−1v̌)(y−1
0 v) = v̌(ywUV (wy−1

0 v)) = v̌(x0UV (x−1v)),

thus proving our claim.

Let us write IGG0
(V̌ ) ∼=

∏
n≥0 In where In is the subspace of functions sup-

ported on G0α
nG0. The decomposition of αnG0αG0 given before Theorem

5.11 shows that we have TV̌ = T+
V̌

+ T−
V̌

where T+
V̌

:
∏
n≥0 In →

∏
n≥0 In is

G0-equivariant and homogeneous of degree 1 given by

T+
V̌

([gαn, v̌]) =
∑

x∈N0/N1

[gαnxα,UV̌ (x−1v̌)]

and T−
V̌

factors through the projection
∏
n≥0 In →

∏
n≥1 In such that the

resulting G0-equivariant map
∏
n≥1 In →

∏
n≥0 In is homogeneous of degree

−1 given by
T−
V̌

([gαn, v̌]) = [gαn−1, wUV̌ (wv̌)].

Our second claim is that T+
V̌

is injective. It suffices to show that the in-
duced map In → In+1 is injective for any n ≥ 0. In fact, this is part of the
proof of the injectivity of TV̌ on indGG0

(V̌ ). Let us recall the argument. Let
F ∈ In and write F =

∑
y[yα

n, F (yαn)] where G0α
nG0 =

∐
y yα

nG0. Since
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Gn+1 ⊆ Gn one sees that yαnN0αG0∩y′αnN0αG0 = ∅ for all y 6= y′ as above.
Thus, G0α

nN0αG0 =
∐
y

∐
x∈N0/N1

yαnxαG0. Therefore, T+
V̌

(F ) = 0 im-

plies UV̌ (x−1F (yαn)) = 0 for all x and y. Assuming F (yαn) 6= 0 this vector
spans a nonzero N0-invariant subspace of V̌ . Since the action of N0 factors
through the p-group N0/N1 this subspace contains a nonzero N0-invariant
vector. However, this vector must be contained in the kernel of UV̌ , contra-
dicting the fact that UV̌ is the identity on V̌ N0 .

Taking up the notation of the proof of Theorem 5.11 and using [38], I.5.6,
there are G0-equivariant isomorphisms

IKm
n
∼= indG0

GnKm
(V̌ Km∩Gn
n ) for all n,m ≥ 0.

If n ≥ m then Gn ∩ Km = NmTmNn. Conjugating with α−n we see
that V̌ Km∩Gn

n = V̌ N0 is independent of n ≥ m. Further, if n ≥ m then
Gn+1Km = GnKm = N0T0Nm and we obtain that the finite dimensions of
IKm
n and IKm

n+1 coincide. As a consequence of the above injectivity statement,

the map T+
V̌

: IKm
n → IKm

n+1 is bijective whenever n ≥ m.

On the other hand, we claim that for n > m ≥ 1 the map T−
V̌

: IKm
n → IKm

n−1

is zero. Note first that for n ≥ m and F ∈ IKm
n we have F (G0α

n) ⊆
V̌ N0 . Indeed, if y ∈ G0 then yNny

−1 ⊆ Km because Nn ⊆ Km and
because Km is normal in G0. Given x ∈ N0 this implies xF (yαn) =
F (yαnx−1α−ny−1yαn) = F (yαn). If V is not a twist of the trivial rep-
resentation then the required vanishing statement follows from the fact that
wV̌ N0 = V̌ N0 is contained in the kernel of UV̌ . Namely, UV̌ is a projection
with image V̌ N0 , ker(UV̌ ) is a direct sum of T0-weight spaces and the weight

spaces V̌ N0 and V̌ N0 are distinct unless V̌ is a character. In the latter case,
write

F =
∑

g∈G0/Gn−1

∑
x∈Gn−1/Gn

[gxαn, F (gxαn)].

Note that the natural map Nn−1/Nn → Gn−1/Gn is bijective. Further,
the Km-invariance of F implies F (gxαn) = F (gxg−1gαn) = F (gαn) for all
x ∈ Nn−1 because gxg−1 ∈ Kn−1 ⊆ Km if n > m. As a consequence, we
obtain

T−
V̌

(F ) =
∑

g∈G0/Gn−1

∑
x∈Nn−1/Nn

[gαn−1, α−(n−1)xαn−1wUV̌ (wF (gxαn))]

=
∑

g∈G0/Gn−1

∑
x∈Nn−1/Nn

[gαn−1, F (gαn)] = 0,

because if V̌ is a character then UV̌ is the identity, the action of N0 =
α−(n−1)Nn−1α

n on V̌ is trivial and p = (Nn−1 : Nn) is zero in E.
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Our next claim is that S0
G(TV ) is injective. Let F ∈ S0

G(indGG0
(V )) ∼=

IndGG0
(V̌ ) be contained in the kernel of S0

G(TV ) and choose m ≥ 0 such
that F ∈ IGG0

(V̌ )Km . Writing F = (Fn)n≥0 with Fn ∈ IKm
n we have

0 = S0
G(TV )(F ) = (T−

V̌
(F1), T+

V̌
(F0) + T−

V̌
(F2), . . .).

However, if n > m > 0 then T+
V̌

(Fn−2) + T−
V̌

(Fn) = T+
V̌

(Fn−2) by the above

vanishing result on T−
V̌

. Therefore, the injectivity of T+
V̌

yields Fn−2 = 0
and hence Fn = 0 for all n ≥ m − 1. As a consequence, the component of
S0
G(TV )(F ) in degree m− 2 reads 0 = T+

V̌
(Fm−3) +T−

V̌
(Fm−1) = T+

V̌
(Fm−3).

The same arguments and downward induction imply F = 0, as claimed. In
particular, we obtain S0

G(πV ) = 0, as was predicted by Proposition 3.9.

Since the restriction of S0
G(TV ) to indGG0

(V̌ ) ⊆ S0
G(indGG0

(V )) coincides with
TV̌ we obtain a G-equivariant map πV̌ → coker(S0

G(TV )) that we claim to
be a bijection. Let again F = (Fn)n≥0 with Fn ∈ IGG0

(V̌ )Km for all n ≥ 0.
The surjectivity of the above map will follow once we show that the ele-
ment H = (Hn)n≥0 with Hn = 0 for 0 ≤ n ≤ m + 1 and Hn = Fn for
n > m+ 1 is contained in the image of S0

G(TV ). According to the bijectivity
result on T+

V̌
there are elements H ′n ∈ IKm

n with T+
V̌

(H ′n) = Hn+1 for all

n ≥ m + 1. Setting H ′n = 0 for n ≤ m and H ′ = (H ′n)n≥0 ∈ IGG0
(V̌ )Km we

have S0
G(TV )(H ′) = T+

V̌
(H ′) + T−

V̌
(H ′) = T+

V̌
(H ′) = H because of the above

vanishing property of T−
V̌

.

Now assume S0
G(TV )(F ) ∈ indGG0

(V̌ ). The injectivity of the above map will

follow once we can show that F ∈ indGG0
(V̌ ). Since S0

G(TV )(F ) is zero in
almost all components this follows from the same arguments that we used
in order to prove the injectivity of S0

G(TV ).

Finally, we show that the map S1
G(TV ) is bijective. Note that as G0-

equivariant maps we have

S1
G(TV ) = Σ1

G(ŤV ) = Σ1
G(TV̌ ) = Σ1

G0
(T+
V̌

) + Σ1
G0

(T−
V̌

).

As a first step we will prove that Σ1
G0

(T+
V̌

) = 0. Let

[F ] ∈ S1
G(indGG0

(V )) = lim−→
m

Ext1
Λ(Km)(E, I

G
G0

(V̌ )) ∼= lim−→
m

∏
n≥0

Ext1
Λ(Km)(E, In)

be represented by F = (Fn)n≥0 ∈
∏
n≥0 Ext1

Λ(Km−1)(E, In) with m > 2. Let

F ′ be the element obtained by replacing Fn by zero for all n ≤ m. Note
that

∏
n≤m In is a finite dimensional G0-representation and consequently

has a trivial Σ1
G0

by Proposition 3.8 and Corollary 3.16. This implies that
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[F ] = [F ′] and that it suffices to prove the triviality of the map

Ext1
Λ(Km−1)(E, In) // Ext1

Λ(Km)(E, In)

��
Ext1

Λ(Km)(E, In+1) // Ext1
Λ(Km+1)(E, In+1)

for all n > m > 2. Here the vertical arrows are restriction and the horizontal
arrow is induced by T+

V̌
. Since GnKi = Gn+1Ki for m− 1 ≤ i ≤ m+ 1 the

proof of Theorem 5.11 and Remark 5.12 show that equivalently we need to
prove the triviality of the map

Ext1
Λ(Nn)(E, V̌n) −→ Ext1

Λ(Nn+1)(E, V̌n+1),

induced by T+
V̌

. It is given by the compatible pair of homomorphisms

Nn+1 ↪→ Nn and UV̌ : V̌n → V̌n+1. If V is one dimensional then Nn (resp.
Nn+1) acts trivially on V̌n (resp. on V̌n+1) and UV̌ is the identity map. In
this case, the above restriction map can be identified with the restriction
map Hom(Nn, E) −→ Hom(Nn+1, E) which is zero because Nn+1 = Np

n

and because E has characteristic p. In general, Poincaré duality shows that
there is an isomorphism Ext1

Λ(Nn)(E, V̌n) ∼= (V̌n)Nn , sending the class of a

crossed homomorphism Nn → V̌n to the class of its value at a topological
generator of Nn. Composing with UV̌ the corresponding crossed homomor-

phism Nn+1 → V̌n+1 takes values in V̌
Nn+1

n+1 . As recalled above, if V is not

one dimensional then the image of V̌
Nn+1

n+1 in (V̌n+1)Nn+1 is zero, as claimed.

On the other hand, the map Σ1
G0

(T−
V̌

) is bijective. Proceeding as above it
suffices to prove the bijectivity of the map

(20) Ext1
Λ(Nn)(E, V̌n) −→ Ext1

Λ(Nn−1)(E, V̌n−1),

induced by T−
V̌

if n > m > 2. In order to make this map explicit, note first

that wUV̌ w : V̌n → V̌n−1 is Nn-equivariant. In fact, if x ∈ Nn and v̌ ∈ V̌n
then (wxw − 1)wv̌ ∈ ker(UV̌ ) so that wUV̌ (wxv̌) = wUV̌ (wv̌) = xwUV̌ (wv̌)

because Nn acts trivially on V̌n−1. Therefore, T−
V̌

: ind
Nn−1

Nn
(V̌n) → V̌n−1

is the composition of ind
Nn−1

Nn
(wUV̌ w) and the norm map ind

Nn−1

Nn
(V̌n−1)→

V̌n−1. Using the behavior of the norm map under the isomorphism

Ext1
Λ(Nn−1)(E, ind

Nn−1

Nn
(V̌n)) ∼= Ext1

Λ(Nn)(E, V̌n)

of Shapiro’s lemma (cf. [27], Proposition 1.6.4) we obtain that the map
(20) is the composition of Ext1

Λ(Nn)(E,wUV̌ w) and the corestriction map

cor : Ext1
Λ(Nn)(E, V̌n−1)→ Ext1

Λ(Nn−1)(E, V̌n−1).
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We let x0 be a fixed topological generator of Nn−1 so that the elements xi0 for
0 ≤ i ≤ p−1 form a set of representatives of Nn−1/Nn and xp0 is a topological

generator of Nn. Further, we let v̌ be a non-zero element of V̌ Nn
n = V̌

Nn−1

n−1 .

Recall from above that we have isomorphisms Ext1
Λ(Nn)(E, V̌n) ∼= (V̌n)Nn

∼=
V̌ Nn
n under which v̌ is represented by a cocyle f with f(xp0) = v̌. The cocyle

cor(wUV̌ w ◦ f) satisfies

cor(wUV̌ w ◦ f)(x0)=

p−2∑
i=0

x−i0 wUV̌ (wf(xi0x0x
−(i+1)
0 )) + x

−(p−1)
0 wUV̌ (wf(xp0))

= x
−(p−1)
0 wUV̌ (wv̌) = x0v̌.

Here the first equality comes from the definition of the corestriction map
on the level of cochains (cf. [27], Chapter I, §5, p. 46). The second equality
follows from f(1) = 0 because f is a cocyle. The third equality follows from

the fact that UV̌ is the identity on V̌ N0 = wV̌ N0 and that x−p0 ∈ Nn acts
trivially on V̌n−1. Now the image of x0v̌ in (V̌n−1)Nn−1 is the same as that
of v̌, hence is non-zero. This proves the injectivity and hence the bijectivity
of the map (20). It also completes the prove of the bijectivity of the map
S1
G(TV̌ ).

Let us now analyze the long exact sequence obtained by applying the δ-
functor (SiG)i≥0 to the short exact sequence

0 −→ indGG0
(V )

TV−→ indGG0
(V ) −→ πV −→ 0,

noting that TV is injective by [3], Theorem 19. We have already seen that
S0
G(TV ) is injective and hence that S0

G(πV ) = 0. Further, SiG(πV ) = 0 for
i ≥ 2 by Theorem 5.11 and because S1

G(TV ) is bijective. Therefore, the long
exact sequence simply reads

0 // S0
G(indGG0

(V ))
S0
G(TV )

// S0
G(indGG0

(V )) // S1
G(πV ) // 0,

and S1
G(πV ) ∼= coker(S0

G(TV )) ∼= coker(TV̌ ) = πV̌ , as seen above.

For the final formula πV̌
∼= πV ⊗E δ−1

V note that V̌ and V ⊗E δ−1
V are irre-

ducibleG0-representations. Let ω : T0 → E× denote the highest weight of V ,
i.e. the character affording the T0-action on V N0 . There are T0-equivariant
isomorphisms

V̌ N0 ∼= (VN0)ˇ ∼= (V N0)ˇ ∼= (ω−1)−1 = ω.

Note that we extended the central character of V to a character of G through
the determinant map. As a consequence, the central characters of V̌ and
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V ⊗E δ−1
V are both equal to δ−1

V . By the classification of the irreducible G0-
representations in [3], Proposition 4, the G0-representations V̌ and V ⊗E δ−1

V

are isomorphic. As a direct consequence, the operators UV̌ and UV ⊗E 1
correspond to each other. This implies that under the G-equivariant iso-
morphisms

indGG0
(V̌ ) ∼= indGG0

(V ⊗E δ−1
V ) ∼= indGG0

(V )⊗E δ−1
V

the operator TV̌ corresponds to TV ⊗E 1. This yields the final formula
πV̌
∼= πV ⊗E δ−1

V .

Remark 5.14. As recalled above, the smooth E-linear GL2(Qp)-represen-
tation πV is irreducible, admissible and supersingular. By [3], Corollary 36,
πV is supercuspidal. On the other hand, Corollary 1.8, Remark 3.7 and
Theorem 5.13 show that πV is not an injective object in Rep∞E (GL2(Qp)).
Once again, this phenomenon is in contrast to the theory of smooth repre-
sentations in characteristic zero (cf. [13], Theorem 5.4.1) and in more precise
form was already observed by Paskunas (cf. [29], Theorem 1.1).

Remark 5.15. In his work on the p-adic local Langlands correspondence
Colmez constructed a contragredient operation on smooth GL2(Qp)-represen-
tations with p-torsion coefficients (cf. [14], IV.4.5). Under the p-adic lo-
cal Langlands correspondence it gives rise to the usual duality operation
on (ϕ,Γ)-modules with p-torsion coefficients (cf. [14], Théorème IV.4.15).
Our results in Proposition 5.4, Proposition 5.7 and Theorem 5.13, together
with the corresponding formulae in [14], Proposition IV.4.18, show that
on the infinite dimensional irreducible smooth E-linear representations of
GL2(Qp) Colmez’ contragredient coincides with the first smooth duality
functor S1

GL2(Qp).
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tion of irreducible admissible mod p representations of p-adic reductive
groups, J. AMS 30 (2), 2017, pp. 495–559

[2] K. Ajitabh, S.P. Smith, J.J. Zhang: Auslander-Gorenstein Rings,
Communications Algebra 26 (7), 1998, pp. 2159–2180
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