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Abstract. If G is a p-adic reductive group with connected center we study
the universal spherical Hecke module M of G associated with a weight V in
characteristic p. We show that the space of invariants of M under a fixed
pro-p Iwahori subgroup of G is free over the spherical Hecke algebra and
that its rank is equal to the order of the Weyl group. Our proof relies on an
acyclicity result for coefficient systems of representations of finite groups of
Lie type in natural characteristic. We then study the action of the spherical
Hecke algebra on suitable spaces of coinvariants of the universal spherical
Hecke module. For the general linear group we obtain that any supersingu-
lar quotient of M is supercuspidal and has trivial smooth dual.
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1 Universal spherical Hecke modules

Let F be a non-archimedean local field with valuation val , valuation ring
o and residue class field k. Let p and q denote the characteristic and the
cardinality of k, respectively. Throughout the article E will denote an alge-
braically closed field containing k.

Let G be an F -split connected reductive F -group with connected center Z,
T a maximal F -split F -torus of G, B a Borel F -subgroup of G containing T
and N the unipotent radical of B. Let Φ denote the root system of (G,T)
and denote by Φ+ the set of positive roots corresponding to B. Let ∆ de-
note the set of simple roots inside Φ+, and letW denote the Weyl group of Φ.

Let x be a fixed hyperspecial point of the Bruhat-Tits building X of G :=
G(F ) which is contained in the apartment corresponding to T := T(F ) (cf.
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[20], §1.10.2). By [20], §3.8.1, there is a smooth o-group scheme G = Gx

whose generic fibre GF is isomorphic to G and whose special fibre Gk is a
k-split connected reductive k-group. Identifying the F -groups G and GF we
may view K := G(o) as a maximal compact open subgroup of G (cf. [20],
§3.2). For the natural action of G on X we then have

K = {g ∈ G | g · x = x}

by [20], §3.4.1.

There is a closed o-subgroup scheme B of G with BF = B and whose special
fibre Bk is a Borel k-subgroup of Gk. As an o-scheme B ∼= N×oT with closed
o-subgroup schemes N and T of G such that NF = N and TF = T. Further,
the special fibers Tk and Nk are, respectively, a maximal k-split k-torus of
Gk and the unipotent radical of Bk. The root systems Φ = Φ(G,T) and
Φ(Gk, Tk) are isomorphic and will henceforth be identified.

By construction, the o-scheme N is the direct product of one dimensional
o-subgroup schemes Nα, α ∈ Φ, whose fibres over F and k are the root
groups of N and Nk, respectively, corresponding to α. The former will be
denoted by Nα.

For any subset I of ∆ we denote by WI the subgroup of W generated by
the simple reflections sα with α ∈ I. Further, PI (resp. PI) denotes the
parabolic subgroup of G (resp. Gk) generated by B (resp. Bk) and WI (cf.
[2], §14.17). Let NI (resp. NI) denote the unipotent radical of PI (resp. PI).
Let MI (resp. MI) denote the Levi subgroup of PI (resp. PI) containing T
(resp. Tk).

Working with the Borel subgroup B of G corresponding to the basis −∆ of
Φ, the opposite versions of the various group schemes above will be marked
with a bar on top, as well.

Let X∗(T) and X∗(T) denote the group of cocharacters and characters of
T, respectively. They are in perfect duality with respect to a natural pair-
ing ⟨·, ·⟩. There is an epimorphism T → X∗(T) of abelian groups which
is characterized by the condition that ⟨t, χ⟩ = val(χ(t)) for all t ∈ T and
χ ∈ X∗(T). Its kernel is the maximal compact subgroup T0 = T ∩K of T .

We let
X∗(T)+ := {λ ∈ X∗(T) | ⟨λ, α⟩ ≥ 0 for all α ∈ ∆}

denote the monoid of dominant cocharacters of T with respect to ∆ and de-
note by T+ its preimage in T . We have T+ = {t ∈ T | tN (o)t−1 ⊆ N (o)} =
{t ∈ T | tN (o)t−1 ⊇ N (o)}, as can be seen by choosing a T -equivariant
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isomorphism of group schemes Ga → Nα for any root α ∈ Φ (cf. [2], Remark
14.4). Similarly, X∗(T)− denotes the monoid of antidominant cocharacters
of T with preimage T− = {t ∈ T | tN (o)t−1 ⊇ N (o)} = {t ∈ T | tN (o)t−1 ⊆
N (o)} in T .

The F -group G/Z is connected and semisimple of adjoint type with T/Z as
a maximal F -split torus. There is a natural identification Φ = Φ(G,T) =
Φ(G/Z,T/Z) of root systems. The monoid X∗(T/Z)+ of dominant cochar-
acters of T/Z is freely generated by the fundamental dominant coweights
(λα)α∈∆, i.e. the fundamental dominant weights of the dual root system Φ̌.

Since Z is connected there is an F -subtorus T′ of T such that the multipli-
cation map Z×T′ → T is an isomorphism (cf. [2], Corollary 8.5). It induces
an isomorphism X∗(T′) ∼= X∗(T/Z) of groups. Consequently, any funda-
mental dominant coweight λα, α ∈ ∆, can be represented by an element
tα ∈ T ′ := T′(F ) such that tα ∈

∩
β∈∆\{α} ker(β). Fixing such representa-

tives once and for all, any element t ∈ T can be written as t = z ·t′0 ·
∏

α∈∆ tnα
α

with uniquely determined elements z ∈ Z := Z(F ), t′0 ∈ T ′∩K and integers
nα, α ∈ ∆. Choosing t′0 = 1 and fixing a set of representatives of Z/Z0 in
Z, Z0 := Z ∩K, we obtain a fixed set of representatives of X∗(T)+ in T+.

Remark 1.1. The fixed representatives chosen above have the following
important property. If I is a subset of ∆ and if t = z ·

∏
α∈I t

nα
α then

the centralizer of t in G contains the groups Nβ(F ) for any root β which
is a linear combination of the elements of ∆ \ I. This follows from t ∈
∩β∈∆\I ker(β) and [2], Remark 14.4.

Let V be an E-vector space carrying an irreducible E-linear representation
of G(k). We view V as a representation of K via inflation along the natural
reduction homomorphism

red : K = G(o) −→ G(k).

Let M := indGK(V ) denote the E-vector space of all compactly supported
maps f : G → V which satisfy f(gh) = h−1f(g) for all g ∈ G and h ∈ K. If
g runs through the elements of G and if v runs through an E-basis of V then
a basis of the E-vector space indGK(V ) is given by the collection of functions
[g, v] with support gK and value v at g. The space M = indGK(V ) carries
an E-linear smooth action of G via (g · f)(g′) := f(g−1g′) for all g, g′ ∈ G.

The E-algebra

H = H(G,K;V ) := EndG(M) = EndG(ind
G
K(V ))

of G-equivariant E-linear endomorphisms of indGK(V ) is called the spherical
Hecke algebra of G associated with V . Note that M is a module over H in
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a natural way.

We let H0 denote the image of the natural homomorphism E[Z] → H of
E-algebras. Note that EndG(k)(V ) is a skew field which is of finite dimen-
sion over E. Since E is algebraically closed, we have EndG(k)(V ) = E. As a
consequence, the group Z0 = Z∩K acts on V via a character ζV : Z0 → E×.

For any dominant cocharacter λ ∈ X∗(T)+ there is a specific element Tλ ∈
H, the so-called Hecke operator associated with λ (cf. [11], proof of Theorem
1.2). In order to define it let

∆(λ) := {α ∈ ∆ | ⟨λ, α⟩ > 0}.

We set Pλ := P∆\∆(λ) and P−λ := P∆\∆(λ) with common Levi subgroup
Mλ = M−λ := M∆\∆(λ).

The unipotent radicals of Pλ and P−λ extend to closed o-subgroup schemes
Nλ andN−λ ofN andN , respectively. As an o-schemeNλ (resp.N−λ) is the
direct product of the root groups Nα (resp. N−α) with α ∈ Φ+ \ [∆\∆(λ)]+.
Here [∆ \∆(λ)]+ denotes the set of all positive roots which are linear com-
binations of the elements of ∆ \∆(λ).

According to [11], Lemma 2.5 (ii), the natural map

V Nλ(k) �
� // V // // VN−λ(k)

is an isomorphism of irreducible representations ofMλ(k). Using the inverse
of this isomorphism we obtain the Mλ(k)-equivariant map

ξλ : V // // VN−λ(k)
∼= V Nλ(k) �

� // V.

If t ∈ T denotes an arbitrary element of T mapping to λ under the natural
map T → X∗(T) then the Hecke operator Tλ ∈ H associated with λ is
defined by

(1) Tλ([g, v]) :=
∑

gKtK=
⨿

gxtK

[gxt, ξλ(x
−1v)] for any g ∈ G, v ∈ V.

That Tλ is well-defined, i.e. is independent of the choice of t and of the rep-
resentatives x, is due to the relation [gx, v] = [g, xv] for g ∈ G, x ∈ K and
v ∈ V , as well as to the relation t−1xt · ξλ(v) = ξλ(xv) for x ∈ K ∩ tKt−1

and v ∈ V (cf. [11], proof of Theorem 1.2).

The following fundamental result is due to Schneider, Teitelbaum, Herzig,
Henniart and Vignéras, in varying degrees of generality (cf. [10], Proposition
2.1). It is a characteristic p version of the classical isomorphism of Satake.
Keep in mind that we assume the center Z of G to be connected.
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Theorem 1.2. If Z0 = Z ∩ K denotes the maximal compact subgroup of
Z and if ζ̃V : Z → E× extends the central character ζV of V then the
homomorphism E[Z] → H0, sending z to ζ̃−1

V (z)z, induces an isomorphism
E[Z/Z0] → H0 of E-algebras. The H0-algebra H is commutative and freely
generated by the Hecke operators Tα, α ∈ ∆. In particular, H is an integral
domain.

Proof. For the structure of H over H0 see [10], Proposition 2.1. Note that
Z/Z0 is a free abelian group of finite rank because Z is an F -split torus.
Thus, H0

∼= E[X±1
1 , . . . , X±1

n ] so that H0 and H are integral domains.

If t ∈ T maps to λ ∈ X∗(T)+ we put

Kt := K ∩ tKt−1 and It := red−1(P−λ(k)).

Denoting byK1 := ker(red) ⊂ K the first congruence subgroup ofK, Propo-
sition 3.8 of [11] shows that we have the decomposition

It = K1Kt.

We shall also set I := red−1(B(k)) which is an Iwahori subgroup of G.

Proposition 1.3. Let α ∈ ∆, and let λ ∈ X∗(T)+ be represented by t ∈ T+.
Letting Wλ and Wλα denote the stabilizers of λ and λα in W , respectively,
we have

ItKtαK ∩KttαK =
⨿

w∈WλWλα/Wλα

ItIwtαK =
⨿

w∈WλWλα/Wλα

ItwtαK.

More precisely, if w ∈ WλWλα then ItIwtαK = ItwtαK ⊆ KttαK. If
w ∈ W with w ̸∈ WλWλα then ItIwtαK ∩KttαK = ∅.

Proof. The disjointness of the required decompositions follows from the
Cartan-Iwahori decomposition G =

⨿
µ∈X∗(T) IµK.

If µ ∈ X∗(T)+ is represented by s ∈ T+ then K =
⨿

w∈W/Wµ
IwKs, as

follows from the Bruhat decomposition G(k) =
⨿

w∈W/Wµ
B(k)wP−µ(k) by

applying red−1. Note that red−1(P−µ(k)) = Is = K1Ks where K1 is normal
in K. As a consequence, KsK =

⨿
w∈W/Wµ

IwsK.

Let C be the chamber of X which is pointwise fixed by I. Further, let
A = X∗(T)R be the apartment of X corresponding to T , and let ρC : X → A
denote the retraction of X to A centered at C. Note that our fixed vertex
x corresponds to the origin of the real vector space X∗(T)R. The restriction
of the metric d from X to A is given by d(µ, ν) = ||µ − ν|| where || · || is
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the norm associated with a W -invariant scalar product ω(·, ·) on X∗(T)R. If
α ∈ ∆ and if α̌ denotes the corresponding coroot then

X∗(T)+ = {λ ∈ X∗(T) | ∀α ∈ ∆ : ω(λ, α̌) ≥ 0}.

If k ∈ K then there is an element s ∈ T and an element b ∈ I with tktαK =
bsK. Let µ denote the image of s in X∗(T), and note that ρ−1

C (µ) = Iµ =
Isx. By [7], Proposition 7.4.20, we have

||λ− µ|| = d(tx, sx) = d(ρC(tx), ρC(bsx)) ≤ d(tx, bsx)

= d((tk−1t−1)tx, (tk−1t−1)bsx) = d(tx, ttαx) = ||λα||.

If ||λ − µ|| < ||λα|| then s ̸∈ KttαK = ∪w∈W IwttαK. Indeed, if w ∈ W
then λ− w−1(λ) is a non-negative real linear combination of the coroots α̌
with α ∈ ∆ (cf. [5], VI.1.6 Proposition 18). Therefore,

||w(λ+ λα)− λ||2 = ||λα + λ− w−1(λ)||2

= ||λα||2 + ||λ− w−1(λ)||2 + 2ω(λα, λ− w−1(λ))

≥ ||λα||2 > ||µ− λ||.

Thus, µ ̸= w(λ+ λα). On the other hand, assume ||λ − µ|| = ||λα||. There
is a labelling of X by ∆ ∪ {0} with the following property. The vertex tx is
of type 0 and if w ∈ W and β ∈ ∆ then the unique neighbor of tx in twC
which is of type β is contained in the line segment [tx, ttwβ x] in A. Let y be

the neighbor of tx in tC which is of type α. Setting z := ρC(tkt
−1y) and

using [7], Proposition 7.4.20 again, we have

d(tx, sx) ≤ d(tx, z) + d(z, sx)

= d(ρC(tkt
−1tx), ρC(tkt

−1y)) + d(ρC(tkt
−1y), ρC(tkt

−1ttαx))

≤ d(tx, y) + d(y, ttαx) = d(tx, ttαx) = ||λα|| = d(tx, sx).

It follows from [7], Proposition 7.4.20 (iii), that z ∈ [tx, sx]. However,
ρC ◦ tkt−1 is a label preserving simplicial map. Therefore, z is a neighbor
of tx in A which is of type α. This implies z ∈ [tx, ttwαx] for some w ∈ W .
Since z ̸= tx it follows that sx is contained in the half line in A through ttwαx
with endpoint tx. The equation ||sx−tx|| = ||λα|| = ||w(λα)|| = ||ttwαx−tx||
then implies that sx = ttwαx and hence sK = ttwαK.

Now if w ∈ W is such that ItwtαK ⊆ KttαK = ∪v∈W IvttαK then there is
an element v ∈ W such that tvtvwα K = ttαK. Computing in X∗(T) this im-
plies λ−v(λ) = vw(λα)−λα. By [5], VI.1.6 Proposition 18, both λ−v(λ) and
λα−vw(λα) are non-negative real linear combinations of the coroots β̌ with
β ∈ ∆. Therefore, v ∈ Wλ, vw ∈ Wλα and hence w = v−1vw ∈ WλWλα .
Conversely, if w = στ with σ ∈ Wλ and τ ∈ Wλα then ttwα = tσtστα =
(ttτα)

σ = (ttα)
σ ∈ KttαK and hence ItwtαK ⊆ ItKtαK ∩ KttαK. Thus,
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ItKtαK ∩KttαK =
⨿

w∈WλWλα/Wλα
ItwtαK.

If w = στ ∈ WλWλα then the above equation ttwα = (ttα)
σ also im-

plies that t and twα lie in the closure of a common Weyl chamber. There-
fore, their lengths in the affine Weyl group add up to the length of ttwα .
It then follows from [21], Theorem 1, that IttwαI = ItItwαI. Therefore,⨿

w∈WλWλα/Wλα
ItIwtαK =

⨿
w∈WλWλα/Wλα

ItwtαK, proving the desired
decompositions.

It remains to see that ItIwtαK ∩ KttαK = ∅ if w ̸∈ WλWλα . If this
intersection is non-empty then the above decompositions imply the existence
of an element v ∈ WλWλα such that ItIwtαK ∩ ItvtαK ̸= ∅. Hence, there
are elements b, b′ ∈ I and k, k′ ∈ K with tbwtαk = b′tvtαk

′, i.e.

bwv−1 = t−1b′t · tvαk′k−1v−1t−v
α ∈ K ∩ (t−1It · tvαKt−v

α )

= (K ∩ t−1It) · (K ∩ tvαKt−v
α ).

The last equality comes from [7], Corollaire 4.3.2, applied to Ω = {x}, Ω′ =
t−1C and Ω′′ = tvαx. As a consequence, wv−1 ∈ I(K ∩ t−1It)(K ∩ tvαKt−v

α ).

It follows from the Iwahori decomposition I = N (o)T0(N (o) ∩ K1) that
K ∩ t−1It = N (o)T0(t

−1(N (o)∩K1)t∩K). Therefore, red(I(K ∩ t−1It)) =
B(k)N∆\∆(λ)(k) = P−λ(k). Since red(K ∩ tvαKt−v

α ) = vP−λα(k)v
−1, we

obtain that the image of wv−1 in G(k) is contained in P−λ(k)vP−λα(k)v
−1 =

P−λ(k)P−λα(k)v
−1. Thus, the image of w in G(k) is contained in the double

coset P−λ(k)P−λα(k). Since G(k) =
⨿

σ∈Wλ\W/Wλα
P−λ(k)σP−λα(k), we

obtain w ∈ WλWλα , in contradiction with our assumption.

Remark 1.4. Let α ∈ ∆. The coweight λα is minuscule, i.e. satisfies
⟨λα, β⟩ ∈ {0,±1} for all β ∈ Φ, if and only if λα = tαx is a neighbor of
x in the apartment A = X∗(T)R of X. In this case Itα = Ktα by [12],
Sublemma 6.8. This gives K = ∪w∈WN (o)wKtα and hence

ItKtαK = ∪w∈W ItN (o)t−1twtαK = ∪w∈W ItwtαK

for all t ∈ T−. This decomposition does generally not hold if λα is not
minuscule. For the root system Φ = G2, for example, let α be the short
positive simple root, and let C be the chamber of X which is pointwise
fixed by I. There is a unique chamber C ′ of X in A containing λα and
sharing a face with C of codimension one (cf. [5], page 276, where λα = ω1).
Thus, t−1

α C ′ is the unique chamber of X in A containing x and sharing
a face with t−1

α C which is of codimension one. Since t−1
α Itα fixes t−1

α C
pointwise, we obtain ρC(t

−1
α Itαx) ⊆ {x, t−1

α x} because the retraction ρC
of X to A centered at C is a simplicial map. However, we cannot have
ρC(t

−1
α Itαx) = {x} because this would imply t−1

α Itα ⊆ K and hence that λα
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was a neighbor of x. As a consequence, It−1
α K ⊆ It−1

α ItαK ⊆ It−1
α KtαK

where apparently −λα ̸∈ −λα +W (λα).

Corollary 1.5. Let α ∈ ∆, and let λ ∈ X∗(T)+ be represented by t ∈ T .
We have

ItKtαK ∩KttαK =
⨿

y∈I/(I∩tKt−1)

(ytKtαK ∩KttαK).

If y ∈ I then ytKtαK ∩KttαK = yKtttαK =
⨿

x∈Kt/Kttα
yxttαK.

Proof. For the disjointness of the first decomposition we need to see that if
x, y ∈ I with xtKtαK ∩ ytKtαK ∩KttαK ̸= ∅ then x−1y ∈ I ∩ tKt−1. It
follows from Proposition 1.3 that tKtαK ∩KttαK = ∪w∈Wλ

tIwtαK.

First we claim that if w ∈ Wλ then tIwtαK ⊆ KtttαK. Indeed, the Iwahori
decomposition I = (N (o)∩K1)T0N (o), as well as the root group decompo-
sitions of N (o) and N (o), imply that w−1Iw = (w−1Iw∩N (o))T0(w

−1Iw∩
N (o)). Since T0(w

−1Iw ∩N (o))tαK = tαK, we obtain

tIwtαK = wt(w−1Iw ∩N (o))tαK ⊆ wtN (o)t−1ttαK ⊆ KtttαK,

because w ∈ Wλ possesses a representative in Kt. As a consequence of this
claim and the above decomposition we obtain

tKtαK ∩KttαK = KtttαK =
⨿

x∈Kt/Kttα

xttαK,

using that Kttα ⊆ Kt by [7], Proposition 4.4.4 (iv). Multiplying through by
y ∈ I, we obtain the second assertion of the corollary. Coming back to our
initial disjointness assertion,

xtKtαK ∩ ytKtαK ∩KttαK = xKtttαK ∩ yKtttαK ̸= ∅

implies that x−1y ∈ (Kt ·ttαK(ttα)
−1 ·Kt)∩K = KtKttαKt = Kt. Therefore,

x−1y ∈ I ∩ tKt−1.

Remark 1.6. The proof of Corollary 1.5 shows that there is in fact no need
to restrict to the elements y of the subgroup I of K. We have KttαK =⨿

y∈K/Kt
(ytKtαK ∩ KttαK) with ytKtαK ∩ KttαK = yKtttαK for any

element y ∈ K. The above weaker formulation of Corollary 1.5 is simply
adjusted to our later needs.

For the following result see also [15], §3.3 Fact 2.
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Proposition 1.7. Let λ ∈ X∗(T)+ be arbitrary. If we view the Mλ(k)-
representation V Nλ(k) as a representation of P−λ(k) by letting N−λ(k) act
trivially, then there is an isomorphism

MK1 = indGK(V )K1 ∼=
⊕

λ∈X∗(T)+
ind

G(k)
P−λ(k)

(V Nλ(k))

of E-linear representations of G(k) ∼= K/K1.

Proof. If a general element λ ∈ X∗(T)+ is represented by t ∈ T+ then
the Cartan decomposition G =

⨿
λ∈X∗(T)+ KtK induces a K-equivariant

decomposition

M = indGK(V ) ∼=
⊕

λ∈X∗(T)+
Mλ,

where Mλ denotes the K-subrepresentation of M consisting of all functions
supported on KtK. The K-representation Mλ is isomorphic to indKKt

(V t)
by sending f ∈ Mλ to the function (h 7→ f(ht)) : K → V t. Here V t denotes
the E-linear representation of Kt whose underlying E-vector space is V and
on which h ∈ Kt acts via v 7→ t−1ht · v. We point out that the isomorphism
Mλ

∼= indKKt
(V t) depends on the choice of the representative t ∈ T of λ. Re-

call, however, that we chose fixed representatives as in the paragraph before
Remark 1.1.

Since K1 is a normal subgroup of K we have

indKKt
(V t)K1 ∼= indKK1Kt

((V t)K1∩Kt) ∼= ind
K/K1

It/K1
((V t)K1∩Kt),

where K/K1
∼= G(k) and K1Kt/K1 = It/K1

∼= P−λ(k). Note that N−λ(o)
acts trivially on (V t)K1∩Kt because t−1N−λ(o)t ⊂ K1. Thus, the action of
P−λ(k) on (V t)K1∩Kt factors through Mλ(k).

Further, Mλ(k) is generated by the images in G(k) of T0 = T ∩K and Nα(o),
α ∈ ±(∆ \∆(λ)), all of which centralize t (cf. Remark 1.1). Therefore, the
action of Mλ(k) on V t agrees with that on V . Now consider the Iwahori
type decomposition

K1 = (N (o) ∩K1)(T ∩K1)(N (o) ∩K1)

in which the two factors on the left are contracted under conjugation with
t−1. As a consequence,

t−1K1t ∩K = t−1(N (o) ∩K1)t(T ∩K1)(t
−1(N (o) ∩K1)t ∩N (o)).

The two factors on the left are contained in K1 and hence act trivially on
V . It remains to note that (V t)K1∩Kt = V t−1K1t∩K and that the image
of t−1(N (o) ∩ K1)t ∩ N (o) in G(k) under the reduction homomorphism is
precisely Nλ(k).
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Let λ ∈ X∗(T)+ be represented by t ∈ T+, and let α ∈ ∆. Since ∆(λ) ⊆
∆(λ + λα) we have Pλ(k) ⊇ Pλ+λα(k). This also follows from the relation
Kttα ⊆ Kt (cf. [7], Proposition 4.4.4 (iv)). We let

prλ : M =
⊕

µ∈X∗(T)+
Mµ −→ Mλ

be the projection onto the component corresponding to λ.

Since the Hecke operators Tα are G-equivariant, the K-subrepresentation
MK1 = indGK(V )K1 of M is an H-submodule. The action of the operators
Tα on this space can partially be made explicit.

Proposition 1.8. If λ ∈ X∗(T)+ and α ∈ ∆ then the diagram

MK1
λ

∼=
��

� � // MK1
prλ+λα

◦Tα // MK1
λ+λα

∼=
��

ind
G(k)
P−λ(k)

(V Nλ(k))
f 7→ξα◦f // ind

G(k)
P−λ−λα (k)(V

Nλ+λα (k))

is commutative. Here the vertical isomorphisms come from Proposition 1.7.

In order to prove this result we need a property of the endomorphisms ξλ
which is partially responsible for the commutativity of the E-algebra H.

Lemma 1.9. If λ, λ′ ∈ X∗(T)+ then ξλ ◦ ξλ′ = ξλ+λ′. In particular, the
E-linear endomorphisms ξλ and ξλ′ of V commute with each other and

ξλ′(V Nλ(k)) = V Nλ(k) ∩ V Nλ′ (k) = V Nλ+λ′ (k).

Proof. We will first show that ξλ and ξλ′ commute with each other. Since
both of them are projections it suffices to show that ker(ξλ) = ker(V →
VN−λ(k)) and im(ξλ) = V Nλ(k) are stable under ξλ′ . This, however, follows
from the fact that ξλ′ is Mλ′(k)-equivariant. Indeed, this equivariance im-
plies that ξλ′(V Nλ(k)) is invariant under the subgroup of G(k) generated by
Nλ′(k) and Mλ′(k)∩Nλ(k). However, this subgroup contains Nλ(k). More
precisely, the product map

(Mλ′(k) ∩Nλ(k))×Nλ′(k) −→ Nλ+λ′(k)

is bijective, whence ξλ′(V Nλ(k)) ⊆ V Nλ+λ′ (k) = V Nλ(k) ∩ V Nλ′ (k).

Finally, the kernel of ξλ is the E-subspace of V generated by all elements of
the form v−nv with v ∈ V and n ∈ N−λ(k). As above, we can write n = mn′

10



with m ∈ Mλ′(k) ∩ N−λ(k) and n′ ∈ N−λ′(k). The Mλ′(k)-equivariance of
ξλ′ then implies

ξλ′(v − nv) = ξλ′(v)−mξλ′(n′v) = ξλ′(v)−mξλ′(v) ∈ ker(ξλ),

where the second equality uses v − n′v ∈ ker(ξλ′).

Thus, ξλ ◦ ξλ′ = ξλ′ ◦ ξλ. In particular, ξλ ◦ ξλ′ is again a projection. Since
it is the identity on V Nλ(k) ∩ V Nλ′ (k) = V Nλ+λ′ (k) = im(ξλ+λ′), it remains
to show that ξλ ◦ ξλ′ is zero on the kernel of ξλ+λ′ . However, N−λ−λ′(k) is
generated by N−λ(k) and N−λ′(k) so that the relation ξλ ◦ ξλ′ = ξλ′ ◦ ξλ
implies (ξλ ◦ ξλ′)(nv) = (ξλ ◦ ξλ′)(v) for all n ∈ N−λ−λ′(k) and v ∈ V .

Proof of Proposition 1.8. Note first that the lower map of the diagram is

well defined, i.e. if f ∈ ind
G(k)
P−λ(k)

(V Nλ(k)) then the map ξα ◦ f : G(k) → V

has image in V Nλ+λα (k) and satisfies (ξα ◦ f)(xy) = y−1(ξα ◦ f)(x) for all
x ∈ G(k) and all y ∈ P−λ−λα(k).

The first assertion follows from Lemma 1.9. For the latter assertion it suf-
fices to show that ξα : V Nλ(k) → V Nλ+λα (k) is P−λ−λα(k)-equivariant for the
actions of P−λ−λα(k) ⊆ P−λ(k) as described in Proposition 1.7. The map
ξα is equivariant with respect to Mλα(k) ⊇ Mλ+λα(k). Further, the group
N−λ−λα(k) is generated by N−λα(k) and N−λ(k)∩Mλα(k) (confer the proof
of Lemma 1.9 with λ′ = λα). It remains to show that the restriction of ξα
to V Nλ(k) is equivariant for the action of N−λα(k).

Let x ∈ N−λα(k) and v ∈ V Nλ(k). If α ∈ ∆(λ) then N−λα(k) ⊆ N−λ(k)
and therefore xv = v for the action as in Proposition 1.7. Since Nλα(k) ⊆
Nλ+λα(k) we also have ξα(v) ∈ V Nλα (k), whence xξα(v) = ξα(v) = ξα(xv). If
α ̸∈ ∆(λ) then x ∈ Mλ(k), and the action of x on V is the usual one. In this
case, the general properties of ξα yield ξα(xv) = ξα(v) because x ∈ N−λα(k).
As seen above, we also have xξα(v) = ξα(v), proving that the map f 7→ ξα◦f
is well-defined.

Let µ ∈ X∗(T)+, x ∈ P−µ(k) and v ∈ V Nµ(k). In analogy with our previous

notation we let [1, v]P−µ(k) ∈ ind
G(k)
P−µ(k)

(V Nµ(k)) denote the function with

support xP−µ(k) and value v at x.

Let λ be represented by t ∈ T+, and let v ∈ V Nλ(k). The lower horizon-
tal map of the diagram is determined by sending [1, v]P−λ(k) to the func-

tion
∑

x∈P−λ(k)/P−λ−λα (k)[x, ξα(x
−1v)]P−λ−λα (k). Under the identifications

of Proposition 1.7 the function [1, v]P−λ(k) correponds to the element of

indGK(V )K1 with support IttK = K1tK and value v at t, i.e. to
∑

y∈It/Kt
[yt, v].

Similarly, for any x ∈ P−λ(k)/P−λ−λα(k)
∼= It/Ittα , [x, ξα(x

−1v)]P−λ−λα (k)

11



corresponds to
∑

y∈Ittα/Kttα
[xyttα, ξα(t

−1x−1tv)] in indGK(V )K1 with sup-

port in xIttαttαK. Thus,
∑

x∈P−λ(k)/P−λ−λα (k)[x, ξα(x
−1v)]P−λ−λα (k) corre-

sponds to the function F := sumx∈It/Ittα
∑

y∈Ittα/Kttα
[xyttα, ξα(t

−1x−1tv)].

On the other hand, since IttK = ItK, Corollary 1.5 implies that

G := prλ+λα
(Tα(

∑
y∈It/Kt

[yt, v])) =
∑

y∈It/Kt

∑
x∈Kt/Kttα

[yxttα, ξα(t
−1x−1tv)].

Let x1, x2 and y run through systems of representatives for Kt/(Kt ∩ Ittα),
(Kt ∩ Ittα)/Kttα and Ittα/(Kt ∩ Ittα), respectively. Note that

It = K1Kt = K1KttαKt = IttαKt

= KtK1 = KtKttαK1 = KtIttα ,

so that the natural maps Kt/(Kt ∩ Ittα) → It/Ittα and Ittα/(Kt ∩ Ittα) →
It/Kt are bijective. As a consequence, we may also regard x1 and y as run-
ning through systems of representatives for It/Ittα and It/Kt, respectively.
Therefore, we have the simultaneous decompositions

It =
⨿

y,x1,x2

yx1x2Kttα , where
⨿
x1,x2

x1x2Kttα = Kt,

=
⨿

y,x1,x2

x1yx2Kttα , where
⨿
y,x2

yx2Kttα = Ittα .

Since It/Kt
∼= K1/(K1 ∩Kt), we may assume all y to be contained in K1.

Now keep x1 fixed and note that x1 acts on K1/(K1 ∩Kt) by conjugation.
This implies that also

⨿
y,x2

(x−1
1 yx1)x2Kttα = Ittα . Thus, for any y and x2

there are y′ and x′2 such that

yx1x2Kttα = x1(x
−1
1 yx1)x2Kttα = x1y

′x′2Kttα .

Now (Kt∩Ittα)/Kttα ⊆ Ittα/Kttα
∼= K1/(K1∩Kttα), so that we may assume

all x2 to be contained in K1, as well. By assumption, v ∈ V t−1K1t∩K is fixed
by t−1x2t. Since t−1K1t ∩ K is normalized by t−1x1t ∈ t−1Kt ∩ K, also
t−1x1tv is fixed by t−1x2t. This yields

G(yx1x2ttα) = ξα(t
−1x−1

2 x−1
1 tv) = ξα(t

−1x−1
1 tv) = F (x1y

′x′2ttα).

By construction, z := (x′2)
−1(y′)−1(x−1

1 yx1)x2 ∈ K1 ∩ Kttα . The relation
Kttα ⊆ Kt then implies t−1zt ∈ Ktα so that

F (yx1x2ttα) = F (x1y
′x′2ttα(ttα)

−1zttα) = (ttα)
−1zttαF (x1y

′x′2ttα)

= t−1
α (t−1zt)tα · ξα(t−1x1tv) = ξα(t

−1zt · t−1x1tv)

= ξα(t
−1x1tv) = F (x1y

′x′2ttα) = G(yx1x2ttα).
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Corollary 1.10. If α ∈ ∆ and λ ∈ X∗(T)+ then the map prλ+λα
◦ Tα :

Mλ → Mλ+λα is injective.

Proof. Since prλ+λα
◦ Tα is K1-equivariant and since K1 is a pro-p group it

suffices to see that the induced map prλ+λα
◦Tα : MK1

λ → MK1
λ+λα

is injective
(cf. [16], Lemma 2.1). By Proposition 1.8 this is equivalent with the injectiv-

ity of the map ind
G(k)
P−λ(k)

(V Nλ(k)) → ind
G(k)
P−λ−λα (k)(V

Nλ+λα (k)), sending f to

ξα ◦ f . Note, however, that if f ̸= 0 then its image as a map G(k) → V Nλ(k)

generates all of V Nλ(k) over E. Indeed, by its equivariance for the action of
P−λ(k) its image generates a subrepresentation of the irreducible Mλ(k)-
representation V Nλ(k). Thus, ξα ◦f = 0 implies f = 0 because ξα is E-linear
and non-zero.

Under certain conditions one even has the following bijectivity result.

Corollary 1.11. If α ∈ ∆ and λ ∈ X∗(T)+ with α ∈ ∆(λ) then the map
prλ+λα

◦ Tα : MK1
λ → MK1

λ+λα
is bijective. In particular, the H-module

MK1 is generated by the sum of all MK1
µ for which µ =

∑
β∈∆ nβλβ with

nβ ∈ {0, 1} for all β ∈ ∆.

Proof. If α ∈ ∆(λ) then ∆(λ) = ∆(λ + λα), P−λ = P−λ−λα and ξα is the
identity on V Nλ(k) = V Nλ+λα (k). Therefore, the first claim follows from
Proposition 1.8. The second assertion is an immediate consequence of the
first one by induction on

∑
β∈∆ nβ. Note that if MK1

λ is contained in the

H-submodule of MK1 generated by the above set of components MK1
µ then

so is MK1
λ+λ′ for any λ′ ∈ X∗(Z) ⊆ X∗(T)+. Indeed, if λ′ is represented by

z ∈ Z then MK1
λ+λ′ = zMK1

λ ⊆ H0M
K1
λ .

Remark 1.12. We warn the reader that the natural inclusion V Nλ+λα (k) ⊆
V Nλ(k) need not be equivariant for the actions of P−λ−λα(k) ⊆ P−λ(k)
described in Proposition 1.7 unless α ∈ ∆(λ). Indeed, if α ̸∈ ∆(λ) then
Mλ(k)∩N−λ−λα(k) contains the root subgroup N−α(k) which acts trivially
on V Nλ+λα (k) but possibly non-trivially on V Nλ(k).

Using the identification made in Proposition 1.8 there is yet another natural
description of the map prλ+λα

◦ Tα : Mλ → Mλ+λα .

Lemma 1.13. Let α ∈ ∆ and λ ∈ X∗(T)+. The diagram

ind
G(k)
P−λ(k)

(V Nλ(k))
f 7→ξα◦f //

∼=
��

ind
G(k)
P−λ−λα (k)(V

Nλ+λα (k))

∼=
��

ind
G(k)
P−λ(k)

(VN−λ(k))
// ind

G(k)
P−λ−λα (k)(VN−λ−λα (k))
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of G(k)-equivariant maps is commutative. Here the actions of P−λ(k) and
P−λ−λα(k) on VN−λ(k) and VN−λ−λα (k), respectively, are the natural ones.
The lower horizonal arrow composes a function with the natural projection
VN−λ(k) → VN−λ−λα (k). Finally, the left (resp. right) vertical arrow is induced

by the Mλ(k)-equivariant isomorphism V Nλ(k) → V → VN−λ(k) (resp. by the

Mλ+λα(k)-equivariant isomorphism V Nλ+λα (k) → V → VN−λ−λα (k)).

Proof. It suffices to show that the two maps

V Nλ(k) �
� // V // // VN−λ(k)

// // VN−λ−λα (k)

and

V Nλ(k)
ξα // V Nλ+λα (k) � � // V // // VN−λ−λα (k)

coincide. The first one simply sends v ∈ V Nλ(k) to its residue class modulo
ker(V → VN−λ−λα

). The second one sends v to the residue class of ξα(v).
However, v = ξα(v) + v − ξα(v) where v − ξα(v) ∈ ker(ξα) = ker(V →
VN−λα (k)) because ξα is a projection. Now N−λα(k) ⊆ N−λ−λα(k) so that
ker(ξα) ⊆ ker(V → VN−λ−λα

).

2 Freeness of the pro-p Iwahori invariants

The E-linear smooth G-representation M = indGK(V ) is a module over its
endomorphism ring H, the latter being freely generated by the Hecke oper-
ators Tα, α ∈ ∆, over the subalgebra H0 (cf. Theorem 1.2).

The structure of M over H was studied in detail by Belläıche-Otwinowska
and Große-Klönne. For G = PGL3 and V = E the trivial representa-
tion, the H-module M is free for any ring E (cf. [1], Théorème 1.5). In a
much wider class of examples, yet assuming F = Qp, Große-Klönne showed
that M ⊗H0,θ E is a free module over H/ ker(θ)H for any homomorphism
θ : H0 → E of E-algebras (cf. [10], Theorem 1.1).

The group I1 := red−1(N (k)) is a pro-p Sylow subgroup of K, a so-called
pro-p Iwahori subgroup. The aim of this section is to show that the H-
submodule M I1 of I1-invariants of M is finitely generated and free without
any restriction on V or F . The structure of M I1 as a module over the
so-called pro-p Iwahori-Hecke algebra was determined by Ollivier (cf. [15],
Lemma 3.6)

Theorem 2.1. For any irreducible E-linear representation V of G(k) the
module M I1 = indGK(V )I1 is finitely generated and free over H = EndG(M).
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Proof. By Corollary 1.11 the H-module MK1 is finitely generated. Since
H is a noetherian ring the submodule M I1 is finitely generated, as well.
By a theorem of Quillen-Suslin (cf. [19], Corollary 7.4) and by [4], II.5.3
Corollaire 2, it now suffices to see that M I1 is flat over H. By [4], II.3.4
Proposition 15 and II.3.2 Corollaire 2, it suffices to show that the torsion
group TorHm

1 (Hm ⊗H M I1 ,Hm/mHm) vanishes for any maximal ideal m of
H. Here Hm denotes the localization of H at m. Further,

TorHm
1 (Hm ⊗H M I1 ,Hm/mHm) ∼= TorH1 (M

I1 ,H/m)

by [3], X.6.6 Proposition 8.

Since E is algebraically closed and H is an E-algebra of finite type any
maximal ideal m of H is the kernel of a uniquely determined homomor-
phism χ : H → E of E-algebras. We denote by θ : H0 → E its restriction
to H0 and set Hθ := H/ ker(θ)H, as well as M I1

θ := M I1/ ker(θ)M I1 .

Putting M ′ :=
⊕

λ∈X∗(T′)+ Mλ ⊆ M we claim that the E-linear map

(2) H0 ⊗E M ′I1 −→ M I1 , φ⊗m 7→ φ(m),

is bijective. Indeed, any set of representatives of Z/Z0 gives rise to an E-
basis of H0 (cf. Theorem 1.2). Now if z ∈ Z then (2) maps Ez ⊗E M ′I1

bijectively onto the subspace of M I1 consisting of all functions supported on
zKT ′K. Since G =

⨿
z∈Z/Z0

zKT ′K the claim follows. In particular, the

H0-module M I1 is free. As a consequence, if P • → M I1 is a free resoluton
of M I1 over H then P • ⊗H Hθ → M I1

θ is a free resolution of M I1
θ over Hθ.

Therefore, we obtain an isomorphism

TorH1 (M
I1 ,H/m) ∼= TorHθ

1 (M I1
θ ,Hθ/mHθ).

We fix an enumeration ∆ = {α1, . . . , αd} of ∆. Since the ordered family
(Tα1 − χ(Tα1), . . . , Tαd

− χ(Tαd
)) is a regular sequence of the ring Hθ

∼=
E[Tα | α ∈ ∆], the groups TorHθ

• (M I1
θ ,Hθ/mHθ) are the homology groups

of the Koszul complex M I1
θ ⊗E

∧•E∆ associated with the above regular se-
quence (cf. [3], X.9.4, page 155). We will show that this complex is acyclic,
i.e. has trivial homology in positive degrees. In an essential way this relies
on an acyclicity result for coefficient systems of representations of the finite
group G(k) of Lie type which will be proved in the following section.

It follows from (2) that that the inclusion M ′I1 ⊆ M I1 induces an E-linear
bijection M ′I1 ∼= M I1

θ . Further, if λ ∈ X∗(T′) and µ ∈ X∗(Z) then M I1
λ and

M I1
µ+λ map isomorphically to the same subspace of M I1

θ . We will therefore

write M I1
θ =

⊕
λ∈X∗(T/Z)+ M I1

λ and denote the projections M I1
θ → M I1

λ by
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prλ as before.

We choose a total ordering ≤ on X∗(T/Z) which refines the dominance
relation and which is compatible with the group structure, i.e. satisfies
µ + λ′ ≤ λ + λ′ for all µ, λ, λ′ ∈ X∗(T/Z) with µ ≤ λ. To give an ex-
plicit example, write X∗(T/Z) ⊆

∑
α∈∆Rα̌ and choose the lexicographical

ordering for the usual ordering of the real numbers on the right. Here α̌
denotes the coroot associated with α ∈ ∆, and the usual dominance relation
is defined by µ ≤ λ if and only if λ− µ ∈

∑
α∈∆R≥0α̌.

For α ∈ ∆ let eα ∈ E∆ be the corresponding standard unit vector. For any
subset J = {αj1 , . . . , αjr} ⊆ ∆ with j1 < . . . < jr set eJ := eαj1

∧ . . .∧eαjr
∈∧r E∆ and ρJ :=

∑
α∈J λα. We endow the Koszul complex M I1

θ ⊗E
∧•E∆

with the following filtration indexed by X∗(T/Z)+. For any λ ∈ X∗(T/Z)+
set

(3) Filλ• := Filλ(M I1
θ ⊗E

•∧
E∆) :=

⊕
J⊆∆,|J|=•

µ∈X∗(T/Z)+,µ+ρJ≤λ

M I1
µ ⊗E EeJ .

Further, set

Filλ−• := Filλ−(M I1
θ ⊗E

•∧
E∆) :=

⊕
J⊆∆,|J|=•

µ∈X∗(T/Z)+,µ+ρJ<λ

M I1
µ ⊗E EeJ .

If f ∈ M I1
λ and J ⊆ ∆ with |J | = r then the boundary maps of the Koszul

complex M I1
θ ⊗E

∧•E∆ are given by

∂r(f ⊗ eJ) =
∑
α∈J

sgn(α, J)(Tα − χ(Tα))(f)⊗ eJ\{α},

where the sign sgn(α, J) := (−1)i if J = {αj1 , . . . , αjr} with j1 < . . . < jr
and α = αji .

Assume that µ ∈ X∗(T/Z)+ is represented by s ∈ T with µ + ρJ ≤ λ ∈
X∗(T/Z)+ for some subset J of ∆. If f ∈ M I1

µ then (1) shows that Tα(f)
is supported on KsKtαK where the latter is a finite union of double cosets
Kt′K such that the image λ′ of t′ in X∗(T/Z) satisfies λ′ ≤ µ + λα for
the usual dominance relation (cf. [7], Proposition 4.4.4 (iii)). Therefore,
the boundary maps ∂• are filtered of degree zero, i.e. leave Filλ• and Filλ−•
invariant. More precisely, (Tα−χ(Tα))(f)⊗eJ\{α} ≡ prµ+λα

◦Tα(f)⊗eJ\{α}
mod Filλ−|J |−1, so that the associated graded complex

gr(M I1
θ ⊗E

•∧
E∆) :=

⊕
λ∈X∗(T/Z)+

Filλ•/Fil
λ−
•︸ ︷︷ ︸

=:grλ•

∼=E M I1
θ ⊗E

•∧
E∆
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is the Koszul complex associated with the family of commuting E-linear en-
domorphisms gr(Tα), α ∈ ∆, of M I1

θ sending f ∈ M I1
λ to (prλ+λα

◦Tα)(f) ∈
M I1

λ+λα
. In particular, this graded Koszul complex is independent of the

character χ. We denote its boundary maps by gr(∂•).

We claim that it suffices to show that this associated graded complex is
acyclic. Since we are not in the rank one situation treated in [13], I.4.2
Theorem 4, this requires an extra argument. The technical problem is that
there are usually infinitely many elements µ ∈ X∗(T/Z)+ with µ ≤ λ for a
given dominant cocharacter λ of T/Z. Further, Filλ−• need not be equal to
Filµ• for any µ < λ.

Let us now prove the claim. If F ∈ ker(∂r) is not equal to zero, write
F =

∑
|J |=r fJ ⊗ eJ . By abuse of notation we call the subset

supp(F ) := {λ+ ρJ | |J | = r, λ ∈ X∗(T/Z)+, prλ(fJ) ̸= 0}

of X∗(T/Z)+ the support of F . Let {µ1, . . . , µN} with 0 = µ1 < . . . < µN be
the finite set of elements of X∗(T/Z)+ which are less than or equal to some
element of supp(F ) for the usual dominance order (not its refinement). Then
µN is the maximal element of supp(F ) so that F ∈ FilµN

r . Denoting by F
the image of F in grµN

r we have F ∈ ker(gr(∂r)). By our assumption, there
is G ∈ grµN

r+1 with F = gr(∂r+1)(G). Choose G ∈
⊕

|J |=r+1M
I1
µN−ρJ

⊗ EeJ

whose image in grµN
r+1 is G. We have F − ∂r+1(G) ∈ FilµN−

r .

On the other hand, we have seen above that the support of ∂r+1(G) is con-
tained in the set of all µ ∈ X∗(T/Z)+ for which µ ≤ µN with respect to the
usual dominance relation (not its refinement). This implies that F−∂r+1(G)
is supported on {µ1, . . . , µN−1} and hence is contained in FilµN−1 . It is pre-
cisely for this conclusion that we require the set {µ1, . . . , µN−1} to be totally
ordered. Note that together with µj , 1 ≤ j ≤ N − 1, the set {µ1, . . . , µN−1}
contains all elements µ ∈ X∗(T/Z)+ which are less than or equal to µj

for the usual dominance relation. If F ′ := F − ∂r+1(G) ∈ ker(∂r) is non-
zero, the analogous procedure for F ′ yields a set {µ′

1, . . . , µ
′
N ′} contained in

{µ1, . . . , µN−1}. We can thus proceed inductively and obtain F ∈ im(∂r+1)
after finitely many steps. Note that Fil0−• = 0. This proves the claim.

We will now show that the graded piece grλ• of our complex is acyclic for
any λ ∈ X∗(T/Z)+. We have

(4) grλ• = [0 −→
⊕

J⊆∆(λ)
|J|=•

M I1
λ−ρJ

⊗E EeJ −→ 0]
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with boundary maps

gr(∂r)(fJ ⊗ eJ) =
∑
α∈J

sgn(α, J)gr(Tα)(fJ)⊗ eJ\{α}.

We will distinguish two cases. First assume that there is α ∈ ∆ with λ −
2λα ∈ X∗(T/Z)+. In particular, α ∈ ∆(λ). For 0 ≤ r < |∆(λ)| we define
the E-linear map ιr : gr

λ
r → grλr+1 as follows. If J ⊆ ∆(λ) with |J | = r and

if fJ ∈ M I1
λ−ρJ

then

ιr(fJ ⊗ eJ) :=

{
sgn(α, J ∪ {α})gr(Tα)

−1(fJ)⊗ eJ∪{α}, if α ̸∈ J,

0 , if α ∈ J.

Note that gr(Tα) : M
I1
λ−ρJ∪{α}

→ M I1
λ−ρJ

is an E-linear isomorphism for any

J not containing α since α ∈ ∆(λ − ρJ∪{α}) by our assumption on λ and
because of Corollary 1.11. We also set ι−1 := 0 and ι|∆(λ)| := 0.

If 0 ≤ r ≤ |∆(λ)| and J ⊆ ∆(λ) with |J | = r then gr(∂r+1)◦ ιr maps fJ ⊗eJ
to 0 if α ∈ J and to∑
β∈J∪{α}

sgn(β, J ∪ {α})sgn(α, J ∪ {α})gr(Tβ)gr(Tα)
−1(fJ)⊗ e(J∪{α})\{β}

if α ̸∈ J . On the other hand, ιr−1 ◦ gr(∂r) maps fJ ⊗ eJ to fJ ⊗ eJ if α ∈ J
and to∑

β∈J
sgn(α, (J \ {β}) ∪ {α})sgn(β, J)gr(Tα)

−1gr(Tβ)(fJ)⊗ e(J\{β})∪{α}

if α ̸∈ J . Now gr(Tα)
−1 commutes with gr(Tβ) whenever it is defined because

gr(Tα) commutes with gr(Tβ). Moreover, if α ̸∈ J and β ∈ J one readily
checks the sign relation

sgn(α, (J \ {β}) ∪ {α})sgn(β, J) = −sgn(β, J ∪ {α})sgn(α, J ∪ {α}).

As a consequence, we obtain gr(∂r+1) ◦ ιr + ιr−1 ◦ gr(∂r) = idgrλr , so that

ι• is a contracting homotopy of the complex grλ• . Therefore, gr
λ
• is even exact.

Now assume that λ − 2λα ̸∈ X∗(T/Z)+ for all α ∈ ∆. In this case we have
λ = ρ∆(λ) and ∆(λ−ρJ) = ∆(λ)\J for all subsets J of ∆(λ). By Proposition

1.7, Proposition 1.8 and Lemma 1.13, the graded piece grλ• can be identified
with the natural complex

0 −→
⊕

J⊆∆(λ)
|J|=•

ind
G(k)
P−λ+ρJ

(k)(VN−λ+ρJ
)N (k) −→ 0.
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Here P−λ+ρJ is opposite to the standard parabolic subgroup of Gk associated
with the subset ∆ \ (∆(λ) \ J). Therefore, we can rewrite this complex as

0 −→
⊕

∆\∆(λ)⊆J⊆∆
|J|−|∆\∆(λ)|=•

ind
G(k)
PJ (k)

(VNJ (k)
)N (k) −→ 0.

In Theorem 3.2 below, complexes of this type will be shown to be acyclic.

The following consequence of the freeness assertion in Theorem 2.1 was first
proved by Herzig, using different methods (cf. [12], Corollary 6.5).

Corollary 2.2. For any irreducible E-linear representation V of G(k) the
H-module M = indGK(V ) is torsion free.

Proof. Since I1 is a pro-p group, it suffices to see that the H-module M I1

is torsion free (cf. [16], Lemma 2.1). By Theorem 2.1 the latter is even
free.

Corollary 2.3. For any irreducible E-linear representation V of G(k) the
rank of M I1 = indGK(V )I1 as a module over the spherical Hecke algebra H is
equal to the order of the Weyl group W .

Proof. We take up the notation of the proof of Theorem 2.1. Choose an
arbitrary character θ : H0 → E of H0 and consider the Koszul complex
(C•, ∂•) = M I1

θ ⊗E
∧•E∆ associated with the family of endomorphisms Tα,

α ∈ ∆, of M I1
θ :=

⊕
λ∈X∗(T/Z)+ M I1

λ . As above, we endow it with a filtra-

tion Filλ• indexed by λ∈X∗(T/Z)+. By the proof of Theorem 2.1 it suffices to
show that the E-vector space C−1 := M I1

θ /
∑

α∈∆ Tα(M
I1
θ ) has dimension

|W |.

We endow C−1 with the quotient filtration induced by Fil0(C•), i.e.

Filλ−1 := (Filλ0 + im(∂0))/ im(∂0) and

Filλ−−1 := (Filλ−0 + im(∂0))/ im(∂0).

All E-linear maps in the exact complex

C2
∂1−→ C1

∂0−→ C0
∂−1−→ C−1 −→ 0

respect the filtrations so that by passing to the graded objects we obtain a
complex

gr(C2)
gr(∂1)−→ gr(C1)

gr(∂0)−→ gr(C0)
gr(∂−1)−→ gr(C−1) −→ 0

of E-vector spaces that we claim to be exact. The exactness at gr(C1) was
shown in the proof of Theorem 2.1. We claim that this implies that ∂0 is
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strict, i.e. that it satisfies im(∂0) ∩ Filλ0 = ∂0(Fil
λ
1) for any λ ∈ X∗(T/Z)+.

Since we are not in the rank one situation treated in [13], I.4.2 Theorem 4(2),
this requires an argument close to the one given in the proof of Theorem 2.1.

Let F =
∑

α∈∆ fα ⊗ eα ∈ C1 be non-zero, define the support supp(F ) ⊆
X∗(T/Z)+ of F as in the proof of Theorem 2.1 and let {µ1, . . . , µN} with
0 = µ1 < . . . < µN be the finite set of elements of X∗(T/Z)+ which are less
than or equal to one of the elements of supp(F ) for the usual dominance
relation (not its refinement). We then have F ∈ FilµN

1 and ∂0(F ) ∈ FilµN
0 .

As seen before, the support of ∂0(F ) is contained in {µ1, . . . , µN}, as well.
Therefore, if ∂0(F ) ∈ FilµN−

0 then ∂0(F ) ∈ Fil
µN−1

0 . Further, the image
of F in grµN

1 is then contained in the kernel of gr(∂0). Hence, there is
G ∈

⊕
|J |=2M

I1
µN−ρJ

⊗E EeJ ⊂ FilµN
2 whose image in grµN

2 maps to the

image of F in grµN
1 under gr(∂1). The support of ∂1(G) is again contained

in {µ1, . . . , µN}. As a consequence, the support of F −∂1(G) is contained in
{µ1, . . . , µN−1}. Since ∂0(F ) = ∂0(F−∂1(G)) we obtain ∂0(F ) ∈ ∂0(Fil

µN−1

1 )
and may replace F by F−∂1(G). Proceeding inductively and using Fil0−0 = 0
the strictness of ∂0 follows after finitely many steps.

Adjusting the proof of [13], I.4.2 Theorem 4(1), in a similar fashion, the
strict exactness of the complex

C1
∂0−→ C0

∂−1−→ C−1 −→ 0

implies the exactness of the associated graded complex, as desired.

Since the filtration Fil−1 of C−1 is exhaustive and Fil0−−1 = 0, the E-vector
spaces C−1 and gr(C−1) have the same dimension. By our above arguments,
this dimension in turn is equal to the dimension of coker(gr(∂0)). By the
proof of Theorem 2.1 and by Corollary 3.3 below we have

dimE [coker(gr(∂0))] =
∑
I⊆∆

∑
I⊆J

(−1)|J |−|I||W/WJ |

=
∑
J⊆∆

(
∑
I⊆J

(−1)|J |−|I|)|W/WJ |.

The summand corresponding to J = ∅ gives |W |. If J ̸= ∅ then

∑
I⊆J

(−1)|J |−|I| =

|J |∑
n=0

(
|J |
n

)
(−1)|J |−n = (1− 1)|J | = 0.
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3 An acyclicity result for finite reductive groups

In order to simplify our notation we will assume in this section that G is
a split connected reductive group over the finite field k of characteristic p
with a maximal k-split k-torus T and a Borel k-subgroup B with unipotent
radical N . As before we denote by Φ the root system of (G, T ) with positive
roots Φ+ corresponding to B, negative roots Φ− and positive simple roots ∆.

For any subset J of ∆ we denote by PJ the standard parabolic subgroup of
G containing B and corresponding to J . In particular, P∅ = B. Let further
NJ denote the unipotent radical of PJ and MJ the Levi subgroup of PJ

containing T . We denote by WJ the subgroup of W generated by the simple
reflections sα with α ∈ J . We denote by JW the set of minimal length coset
representatives of W/WJ . Finally, we denote by B the Borel subgroup of G
opposite to B and by N its unipotent radical.

We write ≤ for the Bruhat ordering of W in which v ≤ w if and only if v
can be written as a subexpression of some reduced expression of w in terms
of the simple reflections sα, α ∈ ∆ (cf. [14], Theorem 5.10). If J ⊆ ∆ and
w ∈ JW , for example, then w ≤ ww′ for any w′ ∈ WJ . This follows from
the fact that the length of ww′ is the sum of the lengths of w and w′.

Let E be any algebraically closed field containing k and let V be any E-linear
irreducible representation of the finite group G(k) of Lie type. According to

[11], Lemma 2.5 (i), the E-vector space V N (k) is one dimensional. We fix a

non-zero element v ∈ V N (k). The crucial fact that we are going to need is
that for any subset J of ∆ the natural map V N (k) → (VNJ (k))

MJ (k)∩N (k) is

bijective (cf. [11], Lemma 2.5 (ii), noting thatN (k) = N J(k)(MJ(k)∩N (k)).
Here VNJ (k) denotes the maximal quotient of V on which NJ(k) acts triv-
ially, viewed as a representation of PJ(k).

For any subset J ⊆ ∆ we have the induced E-linear G(k)-representation
ind

G(k)
PJ (k)

(VNJ (k)). We choose an enumeration W = {w1, . . . , wN} of W such
that if wi ≤ wj for the Bruhat ordering then i ≤ j. It gives rise to the

following filtration Fil•J on ind
G(k)
PJ (k)

(VNJ (k))
N (k):

FiljJ := {f ∈ ind
G(k)
PJ (k)

(VNJ (k))
N (k) | f(B(k)wiB(k)) = 0 for all i < j}

if 1 ≤ j ≤ N and FilN+1
J := 0.

Lemma 3.1. Let J be a subset of ∆. For 1 ≤ j ≤ N the E-vector space
grjJ := FiljJ/Fil

j+1
J is of dimension one if wj ∈ JW and of dimension zero,

otherwise. In particular, the E-dimension of ind
G(k)
PJ (k)

(VNJ (k))
N (k) is equal

to |W/WJ |.
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Proof. If grjJ ̸= 0 then there exists f ∈ ind
G(k)
PJ (k)

(VNJ (k))
N (k) vanishing on

B(k)wiB(k) for i < j but for which f |B(k)wjB(k) ̸= 0. Assume wj ̸∈ JW
and let wi ∈ JW with wjWJ = wiWJ . Then wi ≤ wj with wi ̸= wj and
therefore i < j. In particular, f |B(k)wiB(k) = 0. However, f is PJ(k)-right
equivariant so that even f |B(k)wiPJ(k) = 0. Since PJ(k) contains repre-
sentatives of the elements of WJ we have B(k)wiPJ(k) ⊇ B(k)wjB(k) and
arrive at a contradiction.

Conversely, assume wj ∈ JW . First of all, we claim that in this case there

is a subgroup N j
J (k) of NJ(k) such that

w−1
j N (k)wj ∩ PJ(k) = N j

J (k) · (MJ(k) ∩N (k)).

Indeed, w−1
j N (k)wj = (w−1

j N (k)wj∩N (k)) ·(w−1
j N (k)wj∩N (k)). By [22],

Lemma 3.1.2 (a), we have w−1
j Φ−∩Φ+ ⊆ Φ+ \ [J ]+, where [J ]+ denotes the

set of all positive roots which are linear combinations of the elements of J .
Since Φ+ \ [J ]+ is precisely the set of roots whose corresponding root groups
appear in NJ we obtain N j

J(k) := w−1
j N (k)wj ∩ N (k) ⊆ NJ(k) ⊂ PJ(k).

This also implies w−1
j N (k)wj∩PJ(k) = N j

J (k)·(w
−1
j N (k)wj∩PJ(k)∩N (k)),

where

w−1
j N (k)wj ∩ PJ(k) ∩N (k) = w−1

j N (k)wj ∩MJ(k) ∩N (k).

However, by [22], Lemma 3.1.2 (a), we have −[J ]+ ⊆ w−1
j Φ−. Since MJ∩N

is the direct product of the root subgroups corresponding to the elements of
−[J ]+ we obtain MJ(k) ∩N (k) ⊆ w−1

j N (k)wj , proving our claim.

Next we claim that setting f(xwjy) := y−1v+VNJ (k) if x ∈ N (k), y ∈ PJ(k),

and f(g) := 0 if g ̸∈ N (k)wjPJ(k) = B(k)wjPJ(k), gives a well-defined ele-

ment f of ind
G(k)
PJ (k)

(VNJ (k))
N (k). To see this, note that v+VNJ (k) is invariant

under N j
J (k) · (MJ(k)∩N (k)) = w−1

j N (k)wj ∩PJ(k) because of our above

reasoning. Apparently, f ∈ FiljJ \ Filj+1
J .

On the other hand, the map V N (k) → (VNJ (k))
MJ (k)∩N (k) is bijective, so

that the latter space is of dimension one over E. The same arguments as
above then show that the E-vector space grjJ is at most one dimensional.

For any subset J of ∆ and any element α ∈ ∆ \ J let pr : VNJ∪{α}(k) →
VNJ (k) be the natural PJ(k)-equivariant projection and consider the G(k)-
equivariant map

Tα : ind
G(k)
PJ∪{α}(k)

(VNJ∪{α}(k)) −→ ind
G(k)
PJ (k)

(VNJ (k)), f 7→ pr ◦ f.

22



It is obvious that Tα respects the above filtrations, i.e. satisfies Tα(Fil
j
J∪{α}) ⊆

FiljJ for all 1 ≤ j ≤ N +1. Therefore, it induces a T (k)-equivariant E-linear
map gr(Tα) on the corresponding graded objects.

Let wj ∈ J∪{α}W ⊂ JW . By the proof of Lemma 3.1 there is a commutative
T (k)-equivariant diagram

grjJ∪{α}
gr(Tα) //

∼=
��

grjJ

∼=
��

V
MJ∪{α}(k)∩N (k)

NJ∪{α}(k)

pr // V
MJ (k)∩N (k)
NJ (k)

,

in which the vertical arrows are induced by evaluation at wj . Let φJ :

V
MJ (k)∩N (k)
NJ (k)

→ E be the E-linear isomorphism sending the class of v to 1.
Since pr sends the class of v in VNJ∪{α}(k) to that of v in VNJ (k), there is a

commutative diagram of T (k)-equivariant E-linear maps

gr(Fil•J∪{α})
gr(Tα) //

∼=
��

gr(Fil•J)

∼=
��

E[J∪{α}W ] // E[JW ]

in which the lower horizontal arrow is induced by the inclusion J∪{α}W ⊂
JW . The right vertical arrow sends the class of a function f ∈ FiljJ in grjJ
to (φJ ◦ f)(wj) · wj . The definition of the left vertical arrow is analogous.

Now let I be any subset of ∆ and consider the complex

(5) 0 −→
⊕

I⊆J⊆∆
|J|−|I|=•

ind
G(k)
PJ (k)

(VNJ (k)) −→ 0

for the alternating sum of the natural face maps Tα, α ∈ ∆ \ J , I ⊆ J ⊆ ∆,
with the same sign conventions as in the previous section. For the induced
complex of N (k)-invariants we have the following very general acyclicity
result.

Theorem 3.2. For any subset I of ∆ the complex

(6) 0 −→
⊕

I⊆J⊆∆
|J|−|I|=•

ind
G(k)
PJ (k)

(VNJ (k))
N (k) −→ 0

is acyclic, i.e. has trivial homology in positive degrees.
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Proof. As seen above, the complex (6) admits a decreasing, separated and
exhaustive filtration with only finitely many jumps. By a standard argument
it suffices to prove that the associated graded complex is acyclic (cf. [13],
I.4.2 Theorem 4(5)). By the above remarks, the latter is isomorphic to the
complex

0 −→
⊕

I⊆J⊆∆
|J|−|I|=•

E[JW ] −→ 0

for the alternating sum of the inclusions E[J∪{α}W ] ⊂ E[JW ] whenever
I ⊆ J ⊆ ∆ and α ∈ ∆ \ J . We apply [18], §2 Proposition 6, to the abelian
group E[IW ] and its family of subgroups E[I∪{α}W ], α ∈ ∆ \ I.

If A and B are two subsets of W then we have the obvious relations

E[A ∪B] = E[A] + E[B] and E[A ∩B] = E[A] ∩ E[B]

inside E[W ]. Together with the usual associativity and distributivity rules
for unions and intersections of sets this gives

(
∑
α∈M

E[I∪{α}W ]) ∩ (
∩
β∈N

E[I∪{β}W ]) =
∑
α∈M

(E[I∪{α}W ] ∩ (
∩
β∈N

E[I∪{β}W ]))

for any two subsets M,N of ∆ \ I. According to the proof of [18], §2
Proposition 6, our complex is an acyclic resolution of

∑
α∈∆\I E[I∪{α}W ] as

a subgroup of E[IW ].

Corollary 3.3. For any subset I of ∆ the 0-th homology group of the com-
plex (6) has dimension ∑

I⊆J⊆∆

(−1)|J |−|I||W/WJ |

over E.

Proof. This follows from the dimension formula for exact sequences of finite
dimensional E-vector spaces, as well as from Lemma 3.1 and Theorem 3.2.

Without passing to the graded objects one can still prove the distributivity
property needed to apply [18], §2 Proposition 6, to the proof of Theorem 3.2.
This direct strategy is followed in [9] if V is the trivial representation (cf. [9],
Proposition 3.2.9 and Theorem 7.1.10). It seems more elaborate than our
filtered approach. Since the authors of [9] work over a field of characteristic
zero they can even deduce the acyclicity of the original complex (5) from
the result in Theorem 3.2. This is not possible in natural characteristic, as
we shall now explain.
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If J ⊆ ∆ and α ̸∈ J then NJ∪{α}(k) ⊂ NJ(k), and we have the PJ(k)-

equivariant inclusion V NJ (k) ⊂ V NJ∪{α}(k) ⊂ ind
G(k)
PJ∪{α}(k)

(V NJ∪{α}(k)). By

Frobenius reciprocity it gives rise to a G(k)-equivariant map

Sα : ind
G(k)
PJ (k)

(V NJ (k)) −→ ind
G(k)
PJ∪{α}(k)

(V NJ∪{α}(k)).

For any subset I of ∆ we may then consider the complex

(7) 0 −→
⊕

I⊆J⊆∆
|J|−|I|=•

ind
G(k)
PJ (k)

(V NJ (k)) −→ 0

for the alternating sum of the face maps Sα, α ∈ ∆\J , I ⊆ J ⊆ ∆, with the
same sign conventions as in the previous section. Up to its numbering, this
is the chain complex of the fixed-point sheaf on the spherical building of G
associated with V , as studied by Ronan and Smith (cf. [17], page 322 and
page 324). Although it is generally not acyclic (cf. [17], Section 1, Example
4), we have the following general acyclicity result for the associated complex
of N (k)-coinvariants.

Theorem 3.4. For any subset I of ∆ the complex

(8) 0 −→
⊕

I⊆J⊆∆
|J|−|I|=•

ind
G(k)
PJ (k)

(V NJ (k))N (k) −→ 0

is acyclic, i.e. has trivial homology in positive degrees. Its 0-th homology
group has dimension

∑
I⊆J⊆∆(−1)|J |−|I||W/WJ | over E.

Proof. As in Theorem 3.2 and Corollary 3.3 this can be proved by endowing
the complex (8) with a suitable filtration and by analyzing the associated
graded complex. One can also deduce the assertions directly from Theorem
3.2 and Corollary 3.3 by making use of the following duality argument.

For any finite group H and any finite dimensional E-linear representation W
ofH we denote byW ∗ := HomE(W,E) the E-linear dual ofW endowed with
the contragredient representation of H. Dualizing the inclusion WH ⊆ W
gives rise to a natural E-linear surjection (W ∗)H → (WH)∗. It is in fact
bijective because ((W ∗)H)∗ ⊆ (W ∗∗)H = WH . Further, if H is a subgroup
of some finite group G then the map

(9) indGH(W ∗) −→ indGH(W )∗, F 7→ (f 7→
∑

g∈G/H

F (g)(f(g)),

is a natural G-equivariant bijection. In fact, it is easily seen to be injective
and hence bijective for dimension reasons.
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Now note that the natural map from V into its E-linear double dual V ∗∗ is
a G(k)-equivariant bijection. Therefore, V ∗∗ is irreducible over G(k) and so
must be V ∗. Dualizing the complex (8), the above arguments show that we
obtain a complex of the form

0 −→
⊕

I⊆J⊆∆
|J|−|I|=•

ind
G(k)
PJ (k)

((V ∗)NJ (k))
N (k) −→ 0.

We claim that it coincides with the complex (6) associated with the irre-
ducible G(k)-representation V ∗. This will follow once we can show that the
diagram

ind
G(k)
PJ∪{α}(k)

(V NJ∪{α}(k))∗
S∗
α // ind

G(k)
PJ (k)

(V NJ (k))∗

ind
G(k)
PJ∪{α}(k)

((V ∗)NJ∪{α}(k))

∼=

OO

Tα // ind
G(k)
PJ (k)

((V ∗)NJ (k))

∼=

OO

is commutative for any J ⊆ ∆ and α ̸∈ J . Here the vertical arrows are
as in (9) and use the identifications (V ∗)NJ∪{α}(k)

∼= (V NJ∪{α}(k))∗ and

(V ∗)NJ (k)
∼= (V NJ (k))∗. Further, S∗

α is the transpose of Sα. For the commu-
tativity of the above diagram, it suffices to see that the diagram of natural
maps

(V NJ∪{α}(k))∗ // (V NJ (k))∗

(V ∗)NJ∪{α}(k)
/ /

OO

(V ∗)NJ (k)

OO

is commutative, which is obvious. Since the functor (·)∗ is an exact auto-
equivalence of the category of finite dimensional E-vector spaces, the asser-
tions follow from Theorem 3.2 and Corollary 3.3.

4 Supercuspidality and smooth duals

We turn back to the notation introduced in Section 1. In particular, M =
indGK(V ) is a smooth E-linear representation of G and a module over the
spherical Hecke algebra H = EndG(M).

For any subgroup H of G we denote by MH the space of H-coinvariants of
M , i.e. the largest quotient of M on which H acts trivially. The kernel of
the natural map M → MH will be denoted by M(H). For certain subgroups
H of G, the action of the Hecke operators Tα, α ∈ ∆, on MH simplifies as
follows.
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Lemma 4.1. Let α ∈ ∆ and t ∈ t−1
α T−. If v ∈ V then

Tα([t, v]) ≡
∑

tItαK=
⨿

txtαK

[txtα, ξα(v)] mod M(K1 ∩ N∆\{α}(F )).

Proof. Consider the generalized Bruhat decomposition

G(k) =
⨿

w∈W/W∆\{α}

N (k)wP∆\{α}(k)

of G(k). As in the previous section we denote by ∆\{α}W the set of coset
representatives of W/W∆\{α} which are of minimal length. We then have

N (k)wP∆\{α}(k) =
⨿

n∈N (k)∩wN (k)w−1

nwP∆\{α}(k)

for any w ∈ ∆\{α}W (cf. [2], Lemma 21.14 and Proposition 21.29). Thus,
we obtain

K =
⨿

w∈∆\{α}W

⨿
n∈N (k)∩wN (k)w−1

nwItα

by applying red−1 to the above decomposition of G(k). This in turn yields

KtαK =
⨿

w∈∆\{α}W

⨿
n∈N (k)∩wN (k)w−1

nwItαK,

because Itα = IKtα . For the rest of the proof we fix an arbitrary ele-
ment w ∈ ∆\{α}W with w ̸= 1. As a set, N (k) ∩ wN (k)w−1 is the direct
product of the root groups Nβ(k) with β ∈ Φ− ∩ wΦ+. We claim that
wΦ+ ∩ (Φ− \ [∆ \ {α}]−) ̸= ∅ where [∆ \ {α}]− is the set of all roots which
are negative linear combinations of the elements of ∆ \ {α}.

To see this, let σ ∈ W∆\{α} be such that σw is of minimal length in its
right coset W∆\{α}w. By [22], Lemma 3.1.2 (a), we have σwΦ+ ∩ Φ− ⊆
Φ− \ [∆\{α}]−. Since the right hand side is stable under W∆\{α} we obtain
wΦ+ ∩ σ−1Φ− ⊆ Φ− \ [∆ \ {α}]−, giving the claim unless the left hand side
is empty. This is true if and only if

0 = |wΦ+ ∩ σ−1Φ−| = |σwΦ+ ∩ Φ−|,

which is the length of σw. This is zero if and only if σw = 1 which is
equivalent to w = σ−1 ∈ W∆\{α}. This, however, implies w = 1 because w
is of minimal length in wW∆\{α}. Since we assumed w ̸= 1, the claim follows.

Now choose β ∈ wΦ+ ∩ (Φ− \ [∆ \ {α}]−) and put

N ′(k) :=
∏

γ∈Φ−∩wΦ+

γ ̸=β

Nγ(k).
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By (1) and the above decomposition of KtαK it suffices to show that∑
n∈Nβ(k)

∑
x∈I/(I∩tαKt−1

α )

[tn′nwxtα, ξα(w
−1n−1(n′)−1v)]

is contained inM(K1∩N∆\{α}(F )) for any n′ ∈ N ′(k). Note that the natural
map K1/(K1∩tαKt−1

α ) → I/(I∩tαKt−1
α ) is bijective so that we may choose

the representatives x to lie inK1 and hence to act trivially on V . Since tn′t−1

is contained in N (o) and therefore stabilizes M(K1 ∩N∆\{α}(F )), it suffices
to prove the corresponding statement for∑

n∈Nβ(k)

∑
x∈I/(I∩tαKt−1

α )

[tnwxtα, ξα(w
−1n−1(n′)−1v)]

=
∑

n∈Nβ(k)

tnt−1
∑

x∈I/(I∩tαKt−1
α )

[twxtα, ξα(w
−1n−1(n′)−1v)].

Now tNβ(o)t
−1 ⊆ K1 ∩ N∆\{α}(F ) because t ∈ t−1

α T− and since the root β
is contained in Φ− \ [∆ \ {α}]−, hence has a negative contribution from α.
Therefore, it suffices to show that

0 =
∑

n∈Nβ(k)

[twxtα, ξα(w
−1n−1(n′)−1v)]

= [twxtα, ξα(
∑

n∈Nβ(k)

(w−1nw)w−1(n′)−1v)]

for any x ∈ I. In fact, we shall see that the E-linear endomorphism φ :=
ξα ◦

∑
n∈Nβ(k)

w−1nw of V is zero. Note that∑
n∈Nβ(k)

w−1nw =
∑

n∈Nγ(k)

n

where γ := w−1(β) ∈ Φ+ ∩ w−1Φ− ⊆ Φ+ \ [∆ \ {α}]+, the last inclusion
coming from [22], Lemma 3.1.2 (a). Now Φ+ \ [∆ \ {α}]+ is precisely the
set of roots whose corresponding root groups occur in N∆\{α}. Since the
cardinality of Nγ(k) is a positive power of p and since E is of characteristic

p, the endomorphism φ is zero on V N∆\{α}(k).

On the other hand, V = V N∆\{α}(k) ⊕ ker(ξα) where the kernel of ξα is a
sum of T0-weight spaces of V (confer the proof of [11], Lemma 2.5). Since
the group Nγ(k) is stable under T0, the endomorphism

∑
n∈Nγ(k)

n of V

preserves the T0-weight spaces of V . Therefore, it also preserves ker(ξα).

As an immediate consequence we obtain the following surjectivity result of
Tα, provided that the fundamental dominant coweight λα is minuscule, i.e.
satisfies λα(β̌) ∈ {0, 1} for any β ∈ Φ+.
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Theorem 4.2. If α ∈ ∆ is such that λα is minuscule then the endo-
morphism of MN∆\{α}(F ) induced by Tα is surjective. In particular, the

N∆\{α}(F )-coinvariants of M/Tα(M) and those of M0 := M/
∑

β∈∆ Tβ(M)
are zero.

Proof. Since G = PK, the P -representation M is generated by the E-
subspace V of M = indGK(V ). Since the E-subspace im(Tα)+M(N∆\{α}(F ))

of M is P -stable, it suffices to prove that it contains V . Letting v ∈ V ,
Lemma 4.1 implies that

ξα(v)− Tα([t
−1
α , v]) ∈ M(N∆\{α}(F ))

because t−1
α Itα ⊆ K by our assumption on λα (cf. [12], Sublemma 6.8).

However, v − ξα(v) ∈ ker(ξα) = V (N∆\{α}(k)) ⊂ M(N∆\{α}(F )), so that

v = ξα(v) + v − ξα(v) ≡ Tα([t
−1
α , v]) mod M(N∆\{α}(F )).

The final statements follow from the right exactness of the coinvariance
functor.

We call a (not necessarily irreducible) G-representation π supercuspidal if
the space of coinvariants πU(F ) is equal to zero for the unipotent radical U
of any proper parabolic F -subgroup P of G. By Frobenius reciprocity such a
representation does not admit any non-zero G-equivariant homomorphisms
into representations of the form indGP (σ) where σ is any smooth E-linear
representation of P = P(F ) on which U(F ) acts trivially.

In a more precise form, the following result is due to Herzig (cf. [12], Corol-
lary 1.2).

Theorem 4.3. If the root system Φ is equal to Ad then the G-representation
M0 and all of its quotients are supercuspidal.

Proof. Any proper parabolic F -subgroup of G is G-conjugate to one con-
tained in P∆\{α} for some α ∈ ∆ (cf. [2], Proposition 21.12). By the right
exactness of the coinvariance functor it suffices to show that the space of
N∆\{α}(F )-coinvariants of M0 is zero. This follows from Theorem 4.2, using
that in Φ = Ad any fundamental dominant coweight is minuscule.

A surjectivity statement similar to Theorem 4.2 can be proved for the coin-
variants modulo K1.

Proposition 4.4. If α ∈ ∆ is such that λα is minuscule then im(Tα) +
M(K1) contains all functions in M = indGK(V ) whose support is contained
in Kt−1

α T−K.
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Proof. Since im(Tα) +M(K1) is a K-subrepresentation of M , it suffices to
see that [t−1

α t, v] is contained in im(Tα) + M(K1) for any t ∈ T− and any
v ∈ V .

By Lemma 4.1 the function [t−1
α t, ξα(v)]−Tα([t

−2
α t, v]) is contained inM(K1),

using once again that t−1
α Itα ⊆ K because λα is minuscule. However,

[t−1
α t, v] − [t−1

α t, ξα(v)] = [t−1
α t, v − ξα(v)] where v − ξα(v) ∈ ker(ξα) =

V (N∆\{α}(k)). Thus, there are elements ni ∈ N∆\{α}(o) ⊂ K and vec-
tors vi ∈ V such that v − ξα(v) =

∑
i(1− ni)vi. This yields

[t−1
α t, v − ξα(v)] =

∑
i

(1− t−1
α tnit

−1tα)[t
−1
α t, vi].

Since t−1
α tN∆\{α}(o)t

−1tα ⊂ K1, we obtain [t−1
α t, v]− [t−1

α t, ξα(v)] ∈ M(K1),
proving the proposition.

Recall that if π is a smooth E-linear representation of G then its smooth
dual π̌ is the subrepresentation of the contragredient G-representation π∗ =
HomE(π,E) consisting of all vectors whose stabilizers in G are open.

For the group GL2(Qp) the following statement seems to have first been
proven in an unpublished work of Livné.

Theorem 4.5. Assume that the root system Φ is equal to Ad. The space of
K1-coinvariants of the G-representation M0 = M/

∑
α∈∆ Tα(M) and that

of any of its quotients is zero. In particular, the smooth dual of any of these
G-representations is zero.

Proof. Since Φ = Ad all λα with α ∈ ∆ are minuscule. It follows from
Proposition 4.4 by multiplication with the elements of W that [g, v] ∈∑

α∈∆ im(Tα) + M(K1) for all g ∈ G, v ∈ V except possibly for the
case g ∈ K. Since the K-representation V is irreducible we will have
M =

∑
α∈∆ im(Tα)+M(K1) once we can show that theK-subrepresentation

V of M intersects
∑

α∈∆ im(Tα)+M(K1) non-trivially. However, by Propo-
sition 4.4 again, we have ξα(v) ∈ im(Tα) + M(K1) for any v ∈ V . As a
consequence, the space of K1-coinvariants of M0 and any of its quotients is
zero.

Now let π be any quotient of the G-representation M0. We claim that
π̌K1 = 0 which implies π̌ = 0 because K1 is a pro-p group (cf. [16], Lemma
2.1). Now π̌K1 = (π∗)K1 . However, any K1-invariant linear form π → E
factors through πK1 = 0, hence is the zero map.

Remark 4.6. Theorem 4.5 implies that the smooth duality functor is not an
autoequivalence of the category of E-linear admissible smooth G-represen-
tations once the G-representation M0 admits non-zero admissible quotients.

30



By [6], Theorem 1.5, this is true for G = GL2(F ), for example, and is in
stark contrast to the situation over a field of characteristic zero (cf. [8],
Proposition 2.1.10).
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