Bebysminor W.S. 2025/26 - Talk o INTRODUCTION

1. What is K-theory

A family of abelian groups, indexed are U, osseriated to some nathemotical doject E ~ 1 Kn(E) 3 new + some functionistity main god of the ring with mit R see ne IN. Se lder Service: Sudy fliers def and some populies some X category (symmetric manside, exact, Woldhousen, so) ve just tæk doort of topological space it beday, for: udivolion for development of the subject, introduce some hondopical books . It is difficult to compute, but for finite feeds is known (talk 10) · Hos convections with Geometric Toplogis, Algebraic Geometry, Number Theory 2. History I) Grotherdieck lak 500: (Tolk 1) finite locally free

Ox-rodules

K(X) := C(E) isom. closs of $\frac{1}{X}$ degelorate vector budge of finite P(X) > 2< (E]-(E')-(E") for 0→E'→E→E'→0 SES> on also rings: (E)(E')=(EØE') (P)(P')=(PorP') K(R) := < (P) ibon. closs of Plig. proj R-mod >2

< (| P @ P2) - 1 b2) - (b2) > R commissione 112

Ko(Spech) because

- · oly. v.b. / Speck on f.g. poj R-mod
- · any SES of lig. noj R-mad Splits, i.e. 0→ P → P → P"→ 0 SES ⇒ P = P'@P"

(tuis is equivalent to her cardition Pl proj.)

Relation to lutersection Theory: X smooth alg. voriety /p file
there exists a ring how $Ch: K_{o}(X) \longrightarrow Ch^{2}(X) = \bigoplus Ch^{2}(X) \otimes_{2} \mathbb{Q}$ Chern diabeter Chan grap Chi(X) = $2^{1}(X)$ / $\sim \infty$
$\lim_{x \to \infty} \sup_{x \to \infty} \frac{1}{(1+ix)} = \frac{1}{2}i(x)$
Chern character Chan grap CH(X) = E(X) (~) not
dgelmoic cycles
FX = DZ
tcx rukept
st. cho(x) = CH*(x) a is an iso. (Tolk 2-3)
St. cha: Ko(X) = CH*(X) a is an iso. (Tolk 2-3)
T) Atiugh Bett, Hiskbruch '600: do les audosous replacina
Y sales y some and liquidate has so
I) Atiyah, Bett, Hinsebruch '60s: do ken and gow replacing X schene ~ X procompet Housdonff by Sp.
L olgebraic v.b -> L val a couplex topological v.b.
<u> </u>
it's a sofficient condition for:
~> topological K-theory:
~ tologodrop K-mont:
KO(X):=<(E) isom. closs of & topological v.b. of fink IK >2
(KU) < (EBE2)-(E,)-(E)>
(HD)
In this topological context we have ten following vice facts:
(consider les red cose, but andogous result hold in les carplex cose)
JUST deude it K(X)
There exists a bijection:
andopy VB/R(X) (X, BO(M))
and the rect budges/x
play! net vere bridles/x cout ups X -> BO(n) = Gross_ =
= lim (gross)
1°EN → ED WIND WAR DE LESSES DE BE
JEN JEN vuivered u.b. I subspaces of IR
$X \xrightarrow{1} Bo(n)$
for doesn't depend on the hondopy type of f!
,

```
(x,x0) powled top sp i: {x.3 c. x
                       ~ K(X) \xrightarrow{c} K(no) = \chi \overline{\chi}(X) := Kee(i)
rank of leve (F) - (i+F)
red u.b. over
                                                F. ______
 the pint to
                                                                (En) 6-3
                                                                    b traine u.b. of rank n
                       ~ K(X) = K(X) @ Z
               \sim K(X) = K(XT)
 ► he has K(X) \xrightarrow{\Gamma K} (X, LL) \qquad \widehat{F}(X) := Ker(\Gamma K)
                     - K(X) = \(\X\) \(\X\)
              Note: If X is comeded, for any divide of x. EX,
                                              & K(X) = K(X)
            We can express K(X) in hums of handopy:
                         VBIR (X) is ~ lin VBIR (X) is
                                            (E) - (EOE1)
      Foot: UB' (X) induces em VB' (X) - K(X)
                                  (E) - (E) - (En)
                                   IF x is compact, it is an iso,
       ~ \(\hat{k}(\times) \= \lim \VB_{\rangle}(\times) \= \lim \(\hat{k}(\times) \= \lim \(\hat{k}(\times) \= \lim \\\ \hat{k}(\times) \\\ \hat{k}(\times) \= \lim \\\ \hat{k}(\times) \= \lim \\\ \hat{k}(\times) \\\ \hat{k}(\times) \= \lim \\\ \hat{k}(\times) \\\
```

Use X carpect =: BO

```
~ K(X) \cong \mathcal{E}(X) \oplus [X, \mathcal{U}] \cong [X, BO] \oplus [X, \mathcal{U}] \cong [X, BO \times \mathcal{U}].
                                           > + tere modinery of honology theory!
            This jurifies ku following definitions:
                                 For any (X, 20) procompact Housdon of pointed by sp, define
                                                                                                                                                                                                                                                                             is K(x) for X
                                                                                      \tilde{\mathcal{K}}^{\circ}(X) := \{X, Box \mathcal{V}\}_{*} \cong \{X, Bo\} (someted, compete
                                                                                                                    hondrofy classes of powed maps
                                                                                      \widetilde{K}^{-n}(X) := \widetilde{K}^{0}(\widetilde{\Sigma}^{n}X) no \Sigma = Suspension :
                                                                           handofy cot of good pointed top sp. (D): pointed top sp.

The cx. Cou-conplex

The p sp.

The p sp.

The pointed top sp.

The p sp.

                                                                                                   E: HTop, — HTop, Cleases of powled raps

los a right adjoint
                                                                                                                           HTq. - HTq.: I loop spoce
                                                                                                      ludeed Z=S'A_ ~ JZ = Map (S', _)
                                                                                                                                                                  Smed poded upporte space
will be the pole: Houdopy groups of (X, X_0):

Some point

in the seminar...

The (X) := [S^n, X]_* = [S^
                                                                                                                        \pi_{n}(x) := [S^{n}(x)]_{*} = [S^{n}(x)]_{*} = [S^{n+1}(x)]_{*} = \pi_{n-1}(x)
                                                                    prot powed!
                            For ACX closed \sim 1 \times 1_A := 1 \times 1_A \times 1_A = 0
                                                                                                                                                                                                                                                                                                     is a pointed
                                                                                                                                                                                                                                                                                                  tap. sp.
                                                           ~ K_(X'V) := K_(X/V) U30
                                haropoon: K_{\nu}(X) := K_{\nu}(X^{\prime} \phi) \cong K_{\nu}(X^{+})
                              The nodinery of hondopy becomes allows to get the following:
                                    A C'X - Ci is an handopy cofiber
                                                                                                                                                                                                                                                                                      Latice
                                                                                                                                                                                                                                                                                        Cic 2 Ci+
                                                                  T in general, gren g:(x, no) - (7, yo)
                                                                                  ported mop, an hondors fiber is
                                                                                                                      x \xrightarrow{g} x \longrightarrow C_{g} C_{g} := C_{X} \cap f_{A} =
                                                                                                                                                                                                                                                  CX = 200 cone
                                                                               1+ 15 s.t. for any (7,6)
                                    ... -> (53x, 2+) -(54, 2) -- (5x, 2) -- (8, 2) -> (4, 2) -> (x, 2),
```

is long exact sequer of powed sets (of dollar graps, if)

Toking [_, BOX ?], u get a long exoct sequere of dollion graps:

Horeare, K(X,A) defines a finction X: Poir — Absolishing de les propulies of a generalised admindages.

Heavy. -> Mus los a precise def... just day frust tree min

feature is to love the above long exact sequences

► (real) Bot periodicity theorem: | There is a pointed boundary equalities 1280 = Box &

This allow to extend by $\mathbb{Z}[X]$, $\mathbb{Z}[X]$

for all NEW, S.t. they one puisdic of pried 8

For the capter cox everything is autogors.

The carplex Both periodicity states that there exists a pointed handopy equiplence $52BU = BU \times V$.

-> Q: Cou be defined higher X-groups, fantil, olso for schenes and rings, which fit is long exact sequences? Boss: $K_{\Lambda}(R) := GL(R)^{ab}$ $GL(R) = \lim_{N \to \infty} GL_{\Lambda}(R)$ $GL(R) := GL(R)^{ab}$ $GL_{\Lambda}(R)$ $GL(R) := \lim_{N \to \infty} GL_{\Lambda}(R)$ $GL(R) := \lim_{N \to \infty} GL_{\Lambda}(R)$ $GL_{\Lambda}(R) := \lim_{N \to \infty} GL_{\Lambda}(R)$ $GL_{\Lambda}(R) := \lim_{N \to \infty} GL_{\Lambda}(R)$

To Top in a contract the

For ICR ideal, where also defined the relative groups $K_{-}(R,T)$ i=0,1,2, and proved that they fit in the exact sequence

K₂(R,I) - K₂(R) - K₂(R/I)

locoliohon

sk₁(R,I) - K₄(R) - K₄(R/I)

sk₂(R,I) - K₄(R) - K₄(R/I)

k₄(R,I) - K₆(R) - K₆(R/I)

where it general.

Boss des defined vegdire K-theony of rings

Kn(R) and Kn(R,I) for neo

which allow to continue the exact sequence as

the right.

For R reglar moetherian, they are variet and

the exact sequence and wifer —10 are the right.

* I decided to ust pt this in the pagname because

the general definition of regalise K-groups (which

we use to define for example negative K-groups of a

share) involve none complicated madninery (toplaged spectros

of toplogical spaces and their handopy graps The Nell)

For X region nochresion shares they among.

Anyway, he aware that they exist!

· Quilleu: definition of ole higher degebroic K-groups general idea: in order la datoin localitation sequence, exploit topological modinery of hondery fiber to produce long exort sequences:

dud of hondopy fiber:

toudopy coffee $f:(X,x_0) \rightarrow (Y,y_0)$ cout up $\longrightarrow f = \{(x,x) \in X \times Y^{(0,1)} \mid \pi(1) = g(e)\}$ explained diae! $\longrightarrow F_1 \rightarrow X \rightarrow Y$ is $(\bot Y^{(0,1)} \mid \pi(1) = g(e)\}$

 $\cdots \rightarrow [f'\mathcal{U}_{1}] \rightarrow$

is a long exact seperce of pointed sets. Toking (2, 70)=(5°0), we get (ving ter odjunction E-152) ... ~ Tr2(X)~ Tr((Fp)~ Tr((Y)~ Tr((X)~ Tr)(X)~ Tro(Y)~ Tro(X)

The idea to define higher K-graps of R is to construct a toploquel space K(R) K-space of R)

and defre

 $K_{\Lambda}(R) := \pi_{\Lambda}(K(R))$

* Topological spectra one a godget for which neghve housely graps on defined and allow to extend the long exact sequere on the right.

1st outcome: +-construction (Tolk 6)

Ring ~> BGL(R)+ ~> Kn(R):= Tn(BCTL(R)+xko(R)) K(R) := BGL(R)+xKo(R)

H is an ad-hoc construction text allows b recover Ko(R) K,(R) K,(R)

For more deloits want he presculdion of he corresponding

But for sculures? And more general constructions?

Already in he def of Ko, we can see that Ko(x)

is an example of Ko(A) for it an exact adegory

(A = VB(X) cot of objective vector bundles 1x)

intrinially, a adegory with a

union of least sequence.

end outcome: Q-construction (Tolk7)

A exact category ~ K(A) ~ K(A):=The (K(A)) Noro

BQA

two B" is fee clossifying spec construction of suell cot.

(Tolk 5)

For L = P(R) cot of f.g. paj. R-mod, we get back the higher K-groups defined with he t-cousemacron; this is he "t=Q" - Theorem.

It is a conclusion of a more arread theorem that

14 15 a comblemy of a more general treasure tent componers be Q - construction to be S'S - construction (Talk 6)

· Waldhousen:

Already for the definition of Ko, one can see that should exist a valion of "K-graps of a densed category"

3rd outcome: S-coustmethou

€ Woldhauxu cot. ~ K(€) ~ K_n(€):= π_n(K_n(€)) no.0

inhitrely, a colegory.

with w.€. and coffordian.

Typical example: auch)

carpor of down complexes of

on obelian degry it.

Also his can be pared to coincide with K-groups dotoired with the Q-construction for exact idegaries (any exact idegary has a natural structure of weldhouse integrang)

> SKO(XX) - KO(X) - KO(X) - doesn't end who o'n guene!

to Thomson also defred a topological spectrum

from weld howsen construction (from Quiller

construction terey weren't able to define it!)

and extended tru done localization sequere

also for regions dry ress.

This gives a mandrian for woldhamen construction,

even if we won't see that in the semina.

Thewhere I think that woldhouser construction

will be useful to understand the modern

point of new on K-neary with the language of

so-chegories. (Talk IV)