

Rem: Let M be semiring (missing additive inverses) Then H-M (w1 respect to +) is a ring.
Then H-M (w1 respect to +) is a ring.
& Ko & a ring:
Ra 2ing, P(R) = iso classes of fin. gen.
projective R-moduler together w1 @ and id 0
PCR) is an abelian monoid. The Grothendieck gp of R denoted Ko(R) is the gp
completion of PCR).
12 R is comm Ko (R) is a comm. suing with
1 = [R].
Becouse P(R) is a com. Serru'ring w/ product &
(the axions are clear)
e.g.: Het R be a field or a PID
=> Over R, every fin. gen. posjecture R-module
e.g.: Let R be a field or a PID Sover R, every fin. gen. posjecture R-module is fee SP(R) = M No (R) = Z
D: Why do we rostrict to fin, gen, proj. modulos
A: (Use Eilenberg-Swindle Prick) [grande leut scheme
Let Res be an infinitely gen. free module.
Let Robe au inspiritely gen. Ber module.

$=$ $P \oplus P^{\infty} \cong P \oplus (Q \oplus P) \oplus (Q \oplus P) \oplus$
$\cong (\text{Re} Q) \oplus (\text{Re} Q) \text{ e}$
$\sim R^{\infty}$
= [P] = 0 for every fin. gen.
=> [P] = 0 for every frin. gen. => KoCR1 = 0 * proj. module
Some useful reduction paperties:
(1) If R = R, x R2 => KOCR 1 = KO(R, 1 x KO(R)
(2) 16 R = luis R; _ Ko(RIO luis Ko (Ri)
(3) IB I CR is a nilpotent ideal
=> K2(R1 = K0(RII).
(4) If R, S are two Morita equivalent rings,
i.e R-mod and S-mod are equivalent as abelieur
categories, then Ko (R) ~ Ko (S).
e.g.: R= Mn(C) is Norita eq. to S. One con check that
MACSI -> Mad(R)
$S^{n+1} \otimes X$
S^** X C X
grises au eq. ef categoises.
so that Ko (S) ~ Ko (Mn (S))

S ho of a scheme
Revisitai q Ko (R):
One con define the Ko of any exact contegues.
(11's an additure contegory that can be authorized
in an abelian one, and coorses a notion of exact seamings
. Let C be exact
Ko (P) = ab. gp. w/ generation [C]
and relations [C] = CB] + CD]
for every short exact sequence 0 = B = C = D = 0 in C
In fact, P(R) is exact (com le embedded in R-m
As every short exact sequence of proj. modules
As every short exact sequence of proj. modules Solib = Ko (R) = Ko (R)
Recall from your alg. Germetry course:
18 X = Spec R.
=> VB (X) (finite loc. free Ox-modules)
equiv. P(R)
Now let x be any scheme
=> VB(X) is an exact contegue
=> UB(X) is an exact contegury (as a subcat. of the ab. contegury of Ox-modules)
OX- modu (0)

The tensor product of v.b. 12 a a biexact function and [E][F] = [E@F]

comm. + outsoc. Sothat Ko (x) is a comm. Ding somm.

Sothat Ko is a functor from schower to comm.

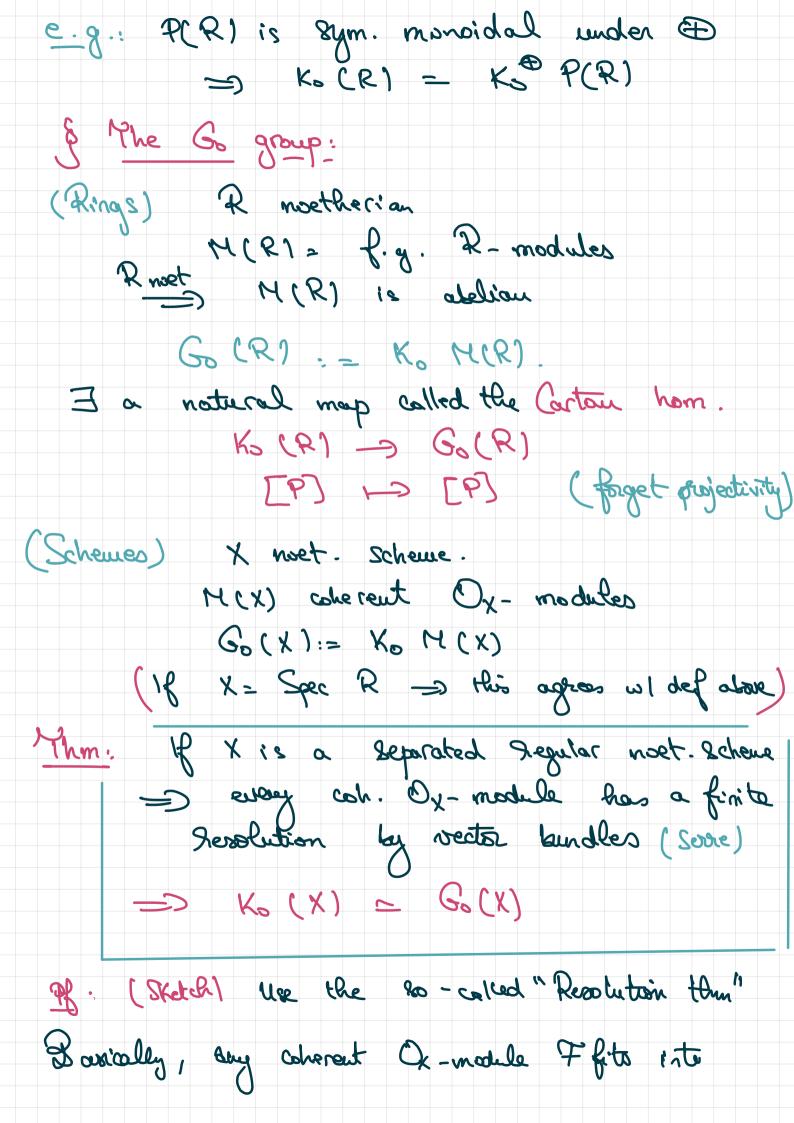
Prings.

Note that exact Sequences of v. b. do not always split.

3 UB(X) is not always a split category. · More abstract prespective: 2 symmetric monoidal category (:e. a d'estinguished object e + 4 basic notural "caherent" isons: e a s \subsection 2 \sub 50 (+04) = (80+) 12 m s 0 + ~ + 0 s.) 2 les = 150 clares of objects in S.

Sisois our abolier monoid w/pood []

+ identify e =) go comp. of Siso is the Brothendieck go



an exact requerce 0 2 En 2 ... En 2 En 3 En 00

8. En 13 En 13 En 10

8. En 13 En 20

8. En 20 Go(x) \Rightarrow [F] = $\sum_{i=0}^{\infty} (-1)^i$ [E;] $\in K_0(X)$ so every elevent in $G_0(X)$ comes from $K_0(X)$ Ronk: Sometimes the Go-gp has letter properties . For example, Go has pushforward for puper maps If $f: X \rightarrow V$ is proper, $\exists s$ well-defined

puch forward map $f* ([F] = \sum_{i=0}^{\infty} (-1)^i (R^i f* F]$ higher direct coherent. Abasever, les direct rioge of a vector bundle is not sharys a voter budle to we cannot defin f. [[2] = [f. E]