Non-cuspidal representations of $\mathrm{GL}_{2}(F)$

Marc Kohlhaw

Notation

- F non-archimedean local field with ring of integers \mathfrak{o} and residue field k
- $G=\mathrm{GL}_{2}(F) \supset B=N \rtimes T$ where B is the standard Borel, T the standard torus and N the unipotent radical of B

Recall

If $\sigma \in \operatorname{Rep}(T)$ then we can inflate it to a representation of B along the quotient map $B \rightarrow B / N=T$ which we still call σ. Since $B \backslash G$ is compact, the Duality Theorem (see Talk 3, Thm. 5.6) tells us that

$$
\left(\operatorname{Ind}_{B}^{G} \sigma\right)^{\vee} \cong \operatorname{Ind}_{B}^{G}\left(\delta_{B}^{-1} \otimes \sigma^{\vee}\right)
$$

where $\delta_{B}\left(\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right)\right)=\left\|a^{-1} b\right\|$ is the modular character of B.

The Jacquet module

Construction. Let $(\pi, V) \in \operatorname{Rep}(G)$. Define $V(N) \subseteq V$ to be the \mathbf{C}-subvector space spanned by the vectors $v-\pi(n) v, n \in N, v \in V$. Set $V_{N}:=V / V(N)$. This is the unique maximal quotient of V on which N acts trivially. It admits an action of $B / N=T$. The resulting representation $\left(\pi_{N}, V_{N}\right)$ is called the Jacquet module of (π, V). We obtain a functor

$$
\begin{aligned}
\operatorname{Rep}(G) & \rightarrow \operatorname{Rep}(T) \\
(\pi, V) & \mapsto\left(\pi_{N}, V_{N}\right)
\end{aligned}
$$

which is exact and additive.
Proposition 1. Let $(\pi, V) \in \operatorname{Rep}(G)$ irreducible. The following are equivalent:
(i) The Jacquet module of (π, V) is non-zero,
(ii) π is equivalent to a subrepresentation of $\operatorname{Ind}_{B}^{G} \chi$ for some character χ of T.

Proof. Let χ be a character of T, viewed as a representation of B trivial on N. By Frobenius reciprocity,

$$
\operatorname{Hom}_{G}\left(\pi, \operatorname{Ind}_{B}^{G} \chi\right) \cong \operatorname{Hom}_{B}(\pi, \chi)
$$

Since χ is trivial on N, any B-homomorphism $\pi \rightarrow \chi$ factors through the map $\pi \rightarrow \pi_{N}$ (as a map of T-representations), hence

$$
\operatorname{Hom}_{G}\left(\pi, \operatorname{Ind}_{B}^{G} \chi\right) \cong \operatorname{Hom}_{T}\left(\pi_{N}, \chi\right)
$$

Thus, if π embeds into $\operatorname{Ind}_{B}^{G} \chi$ then clearly π_{N} is non-zero, showing that (ii) implies (i).
For the converse, suppose that $V_{N} \neq 0$. If we can show that it admits an irreducible T-quotient then we are done. Indeed, such a representation is necessarily onedimensional (cf. Talk 2, Cor. 21), i.e. a character, say χ. The quotient map $\pi_{N} \rightarrow \chi$ corresponds to a nontrivial map $\pi \rightarrow \operatorname{Ind}_{B}^{G} \chi$ by Frobenius reciprocity, which is an embedding since π is irreducible.
It remains to construct such a quotient. Let $0 \neq v \in V$. Since V is irreducible over G, its translates $\pi(g) v, g \in G$, span V over \mathbf{C}. On the other hand, since π is smooth, v is fixed by some compact open subgroup K^{\prime} of $K_{0}:=\mathrm{GL}_{2}(\mathfrak{o})$. As K_{0} / K^{\prime} is finite, there are only finitely many distinct elements $\pi(k) v, k \in K_{0}$, say v_{1}, \ldots, v_{r}. By the Iwasawa decomposition $G=B K_{0}$ (see Talk 3, Prop. 2.1) these vectors generate V over B, hence their images generate V_{N} over T, so that V_{N} is finitely generated as a T-representation. Let $\left\{u_{1}, \ldots, u_{t}\right\}, t \geq 1$, be a minimal generating set. By Zorn's lemma there exists a T-subspace $U \subseteq V_{N}$ containing u_{1}, \ldots, u_{t-1} which is maximal for the property that $u_{t} \notin U$. Therefore, $U \subseteq V_{N}$ is a maximal T-subspace, so that V_{N} / U is irreducible.

Definition. An irreducible smooth representation (π, V) of G is called cuspidal if V_{N} is zero. Otherwise π is called non-cuspidal or to be in the principal series.

Proposition 2. Any non-cuspidal representation of G is admissible.
Proof. Passing to subrepresentations preserves admissibility, hence by Prop. 1 it suffices to show that if χ is a character of T then $\operatorname{Ind}_{B}^{G} \chi$ is admissible.

Write $\operatorname{Ind}_{B}^{G} \chi=(\Sigma, X)$ (cf. Talk 2, Construction on p. 8f.) and let $K \subseteq K_{0}=\mathrm{GL}_{2}(\mathfrak{o})$ be a compact open subgroup. The space X^{K} of K-fixed points in X consists of functions $f: G \rightarrow \mathbf{C}$ such that

$$
\begin{equation*}
f(b g k)=\chi(b) f(g) \quad \forall b \in B, g \in G, k \in K . \tag{*}
\end{equation*}
$$

By the Iwasawa decomposition, $B \backslash G / K$ is finite, and on each double coset $B g K$ there is at most one function (up to scalar) satisfying (*). It follows that X^{K} is finitedimensional.

More Notation

- Let $(\pi, V) \in \operatorname{Rep}(G)$ and ϕ a character of F^{\times}. The twist $(\phi \pi, V) \in \operatorname{Rep}(G)$ of π by ϕ is defined via

$$
\phi \pi(g):=\phi(\operatorname{det} g) \pi(g), \quad g \in G .
$$

- Let $\chi=\chi_{1} \otimes \chi_{2}$ be a character of T and ϕ a character of F^{\times}. The twist $\phi \cdot \chi$ of χ by ϕ is the character of T defined by

$$
\phi \cdot \chi:=\phi \chi_{1} \otimes \phi \chi_{2} .
$$

This is compatible with twists of G-representations in the sense that there is a canonical isomorphism

$$
\operatorname{Ind}_{B}^{G}(\phi \cdot \chi) \cong \phi \operatorname{Ind}_{B}^{G} \chi .
$$

- Let $\sigma \in \operatorname{Rep}(T)$. We define

$$
\iota_{B}^{G} \sigma:=\operatorname{Ind}_{B}^{G}\left(\delta_{B}^{-1 / 2} \otimes \sigma\right) .
$$

This defines a functor $\operatorname{Rep}(T) \rightarrow \operatorname{Rep}(G)$ called normalized smooth induction. The Duality Theorem then reads

$$
\left(\iota_{B}^{G} \sigma\right)^{\vee} \cong \iota_{B}^{G}\left(\sigma^{\vee}\right)
$$

The following result explains the structure of the Jacquet module of an induced representation.

Lemma 3 (Restriction-Induction). Let $\sigma \in \operatorname{Rep}(T)$. There is a short exact sequence of T-representations

$$
0 \rightarrow \sigma^{w} \otimes \delta_{B}^{-1} \rightarrow\left(\operatorname{Ind}_{B}^{G} \sigma\right)_{N} \rightarrow \sigma \rightarrow 0
$$

where $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is the permutation matrix and $\sigma^{w}(t):=\sigma\left(w t w^{-1}\right), t \in T$.
The main result needed for the classification is
Theorem 4 (Irreducibility Criterion). Let $\chi=\chi_{1} \otimes \chi_{2}$ be a character of T. Then
(i) $\operatorname{Ind}_{B}^{G} \chi$ is reducible iff $\chi=\phi \cdot \mathbb{1}_{T}$ or $\phi \cdot \delta_{B}^{-1}$ for some character ϕ of F^{\times}.
(i)' $\iota_{B}^{G} \chi$ is reducible iff $\chi=\phi \cdot \delta_{B}^{ \pm 1 / 2}$ for some character ϕ of F^{\times}.
(ii) Suppose that $\operatorname{Ind}_{B}^{G} \chi$ is reducible. Then
(a) its G-composition length is 2 ,
(b) one composition factor is one-dimensional, the other is infinite-dimensional,
(c) it admits a one-dimensional G-subrepresentation iff $\chi=\phi \cdot \mathbb{1}_{T}$ for some character ϕ of F^{\times},
(d) it admits a one-dimensional G-quotient iff $\chi=\phi \cdot \delta_{B}^{-1}$ for some character ϕ of F^{\times}.

Remark. A smooth representation (π, V) of G has a composition series if there is a chain of G-subspaces

$$
V=V_{0} \supset V_{1} \supset \cdots \supset V_{l}=0
$$

such that V_{j} / V_{j+1} is irreducible for each j. The subquotients V_{j} / V_{j+1} are called the composition factors, and the composition length of π is the number of factors. It is independent of the composition series.

We need the following result on homomorphisms between induced representations:
Proposition 5. Let χ, ξ be characters of T. Then

$$
\operatorname{dim}_{\mathbf{C}} \operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G} \chi, \operatorname{Ind}_{B}^{G} \xi\right)= \begin{cases}1 & \text { if } \xi=\chi \text { or } \chi^{w} \delta_{B}^{-1} \\ 0 & \text { else. }\end{cases}
$$

Proof. By Frobenius reciprocity,

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G} \chi, \operatorname{Ind}_{B}^{G} \xi\right) \cong \operatorname{Hom}_{T}\left(\left(\operatorname{Ind}_{B}^{G} \chi\right)_{N}, \xi\right) .
$$

By Restriction-Induction, there is a short exact sequence of T-representations

$$
0 \rightarrow \chi^{w} \delta_{B}^{-1} \rightarrow\left(\operatorname{Ind}_{B}^{G} \chi\right)_{N} \rightarrow \chi \rightarrow 0 .
$$

If $\chi \neq \chi^{w} \delta_{B}^{-1}$ then this sequence splits and we are done. On the other hand, if $\chi=\chi^{w} \delta_{B}^{-1}$ then $\operatorname{Ind}_{B}^{G} \chi$ is irreducible by Thm. 4 and we are also done.

Remark. Prop. 5 gives a counter-example to the converse of Schur's Lemma for representations of locally profinite groups: $\operatorname{End}_{G}\left(\operatorname{Ind}_{B}^{G} \mathbb{1}_{T}\right)$ is one-dimensional, but $\operatorname{Ind}_{B}^{G} \mathbb{1}_{T}$ is not irreducible: It admits the trivial G-representation $\mathbb{1}_{G}$ as a one-dimensional subrepresentation with embedding $\mathbb{1}_{G} \rightarrow \operatorname{Ind}_{B}^{G} \mathbb{1}_{T}$ given by the constant functions. This leads us to

The Steinberg representation

The irreducible G-quotient of $\operatorname{Ind}_{B}^{G} \mathbb{1}_{T}$ is called the Steinberg representation of G, denoted St_{G}, i.e. it is defined by the short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{1}_{G} \rightarrow \operatorname{Ind}_{B}^{G} \mathbb{1}_{T} \rightarrow \mathrm{St}_{G} \rightarrow 0 \tag{*}
\end{equation*}
$$

By twisting with a character ϕ of F^{\times}we obtain the special representations $\phi \cdot \mathrm{St}_{G}$ of G :

$$
0 \rightarrow \phi \cdot \mathbb{1}_{G} \rightarrow \operatorname{Ind}_{B}^{G}\left(\phi \cdot \mathbb{1}_{T}\right) \rightarrow \phi \cdot \mathrm{St}_{G} \rightarrow 0
$$

Taking the smooth dual of (*) we get

$$
0 \rightarrow \mathrm{St}_{G}^{\vee} \rightarrow \operatorname{Ind}_{B}^{G} \delta_{B}^{-1} \rightarrow \mathbb{1}_{G} \rightarrow 0
$$

Prop. 4 implies $\mathrm{St}_{G} \cong \mathrm{St}_{G}^{\vee}$. Indeed, there is a nontrivial map $\operatorname{Ind}_{B}^{G} \mathbb{1}_{T} \rightarrow \operatorname{Ind}_{B}^{G} \delta_{B}^{-1}$. It must contain $\mathbb{1}_{G}$ in its kernel because otherwise $\operatorname{Ind}_{B}^{G} \delta_{B}^{-1}$ would admit a one-dimensional subrepresentation which by the Irreducibility Criterion is not the case. Thus we get an induced map $\mathrm{St}_{G} \rightarrow \operatorname{Ind}_{B}^{G} \delta_{B}^{-1}$. Its image is irreducible, hence contained in St_{G}^{\vee}, giving a nontrivial map $\mathrm{St}_{G} \rightarrow \mathrm{St}_{G}^{\vee}$ which is an isomorphism since St_{G}^{\vee} is irreducible.

Theorem 6 (Classification Theorem). The following is a complete list of the isomorphism classes of irreducible non-cuspidal representations of G :
(i) the irreducible induced representations $\iota_{B}^{G} \chi$, where $\chi \neq \phi \cdot \delta_{B}^{ \pm 1 / 2}$ for any character ϕ of F^{\times},
(ii) the one-dimensional representations $\phi \circ$ det, where ϕ is a character of F^{\times},
(iii) the special representations $\phi \cdot \mathrm{St}_{G}$, where ϕ is a character of F^{\times}.

The classes in this list are all distinct except that, in (i), we have $\iota_{B}^{G} \chi \cong \iota_{B}^{G} \chi^{w}$.

