Runh: The groups appearing above are pairwise non-isomerphie, since: ii) Gm = Gn (=) R=S (one can chech this on) R-points $(ii) \mathcal{D}(SL_2) = \mathcal{D}(GL_2) = SL_2 \qquad \mathcal{D}(PGL_2) = PGL_2$ $(iii) Z(SL_2) = \mu_2 , Z(GL_2) = G_m, Z(PGL_2) = e$ \$2. Cocharacters and limits in algebraic groups Let X be a separated alg. k-scheme and assume that we have an cetion $G_{un} \times X \xrightarrow{\mathcal{M}} X$ Given x (R) we have an orbit map pix: Gm, R -> XR If mx extends (nec. uniquely) to a map $A_R^4 \xrightarrow{\mu_x} X_R$, we say that $\lim_{t\to\infty} t \propto \epsilon \chi(R)$ exists and it is given by $\mu_{\chi}(0)$. Now let G be an alg. group/k (almays affine), 1: Gon > G a cocharacter; then it defines an action $G_m \times G \rightarrow G$ via inner automorphisms, i.e. t.g ~ 2(t) g 2(t)]. Def: in the above setting we let $ii Z(\lambda) := C_G(Im(\lambda)) = G^{Gm}$ (ii) $P(\lambda)(R) := dg \in G(R) | lim t g exists f$ $(iii) \quad \forall (\lambda) \ (R) := \{g \in G(R) \mid \lim_{t \to 0} t \cdot g \text{ exists and equals } 4_{R} \in G(R) \}$ Pup 1 : In the above setting we have : (a) Z(L), P(L), U(L) define algebraic subgroups of G and U(L) is a normal unipotent subgroup of P(L). (b) Z(L), P(L), U(L) are provoth; P(L) (resp. U(L)) is the unque smooth Assume that G is smooth, then: algebraic subgroup of G st $P(\lambda)(k) = dg(G(k)) | \lim_{t \to 0} t \cdot g = x \cdot s \cdot t \cdot f$ $(\text{resp. UH})(k) = \{g \in G(k) \mid \lim_{t \to 0} \frac{t \cdot g}{t - 0} = 1_k \}$ (C) The multiplication map U(1) ×1 Z(1) - P(1) is an iso of alg. guryns " " U(-1) × P(1) -> (is an open immertion of (d) ~ algebraic varieties (c) G connected $\Rightarrow \mathcal{I}(\lambda), \mathcal{P}(\lambda), \mathcal{V}(\lambda)$ are connected and $\mathcal{V}(\lambda), \mathcal{I}(\lambda), \mathcal{V}(-\lambda)$ generate GPF: Omitted, cf. [M], section 13.d.

\$3. Reductive groups of semisrimple rank 1

Learning: Let G be a smooth convected scans; mple nonsolvable algebraic group of rank 4.
Fix an inverse is in the same is the sense is and the sense is an eleanest of NG(T) (R) which adds on T as the the sense is an eleanest of NG(T) (R) which adds on T as the the sense is an eleanest of NG(T) (R) which adds on T as the the sense is an eleanest of NG(T) (R) which adds on T as the the sense is an eleanest of NG(T) (R) which adds on T as the the sense is an eleanest of NG(T) (R) which adds on T as the the sense is sensitively and convected
$$\Rightarrow \exists B^+ \subseteq G$$
 for eleanest G , we deduce that $U(-A) \subseteq B^-$.
(b) Since G is not solvable and concented $\Rightarrow \exists B^+ \subseteq G$ for elean above G , we deduce that $U(-A) \subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(d) head (these' table) NG(T) (R) adds transitively on the set B^+ (R) of board order that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^-$.
(c) head that $U(-A) \not\subseteq B^+$ and $U(A) \not\subseteq B^+$.
(c) head that $G is solvable end for a nontrivial ection.
(F) is horize fourt that $G is solvable end group over k ; if C admits a nontrivial ection.
(F) is now fourt that $G is solvable end group over k ; if the ends it map is a solvable of $G is for a f$$$$

Thus is is a additive neurolivable grapp, TSG maximal torus; TFAE:
(a) G has a custimple rank a
(b) T the wordty in two Boul subjects
(c) dim (G) = A (wordt G2 G/B, who G B Boul subjects
(d) there is an injecty G/R(G)
$$\rightarrow$$
 PGL2
(e) dim (G) = A (wordt G2 G/B, who G B Boul subjects
(f) there is an injecty G/R(G) \rightarrow PGL2
(f) there is an injecty G/R(G) \rightarrow PGL2
(g) there is due is a subject G bag G/R(G) and atoms that G is sometimple
(f) (a) \Rightarrow (b) we can subject G bag G/R(G) and atoms that G is sometimple
finanticely on the set of Barl subjects containing T \Rightarrow at most 2 of there.
there is due to of there, in (b) follows.
Lemma 2 (b) \Rightarrow at least two of there, in (b) follows.
Lemma 7 (b) \Rightarrow at least two of there is due to that there are exactly two of them
for the atom of T on B, and we know that there are exactly two of them
for the atom of T on B, and we know that there are exactly two of them
for the atom of T on B, and we know that there are exactly two of them
for the atom of T on B, and we know that there are exactly two of them
for the atom of T on B, and we know that there are exactly two of them
for the atom of T on B, and we know that there are exactly two of them
for the atom of T on B, and we know that there are exactly two of them
for the atom of C on B is a non-to-there of $G \Rightarrow$ (lemma 3)
 $B \uparrow f^2 \Rightarrow$ we get a homomorphorm $G \Rightarrow$ Aut(f^4) \uparrow PGL2 with
R(G) $\in (M B)^0$ and $G \Rightarrow$ into the induct to be observed.
Finally, $\overline{g}: G_{L(G)} \rightarrow FGL_2$ is an ingery because by (H) we see that
 $R(G) \Rightarrow$ (a) $P(t_L = \frac{GL_2}{R(G_L)} = \frac{GL_2}{R(G_L)}$ is seen. Simple of rank 4.
(d) \Rightarrow (a) $P(t_L = \frac{GL_2}{R(G_L)} = \frac{GL_2}{R(G_L)}$ is seen. Simple of rank 4.
Since we have an stopping $G'_{E(G)} \rightarrow FGL_2$ in the above proof atomly arbitiches
 $ker y = Z(G)$. Indeed time y is any edive we see that $Q(Z(G)) \leq Z(FGL_2)=$
 $ker y = Z(G)$. Indeed time y is any edive we see that $Q(Z(G)) \leq Z(FGL_2)=$
 $ker y \in Z(G)$. Indeed time y is any edive we see that $P(Z(G)) \leq Z(FGL_2)=$
 $ker y \in Z(G$

Prop 5: SLZ is simply connected (is every isogeny G-, SLZ with G smooth and conn. and with diagonalizable kererel is an isour orphism) and the projection may SLZ ->> PGLZ is the universal covering of PGLZ (in particular, since SLz and PGLz are also perfect, it holds that, for every q: G -> PGLz isogeny of connected group varieties with diagonal. Table hence, there exists a virigine $\alpha: SL_2 \rightarrow G \text{ st} \qquad \begin{array}{c} SL_2 \\ \exists ! \alpha & \downarrow \\ G \rightarrow & PGL_2 \end{array}$ Pf: Assume Gr Lis PGL2 is an irogeny with Gram und coun and keny diagonalitable. Then G is reductive (Ru(G) mays isomorphically outo its image in PGLZ, which is turiel). Pick TEG max torus. As in the previous remark, by regidity kerges Z(G) -> kerge ET and There maps irom onto a max torus in PGL2, to here I Gun => T = Gun and hery = µn for some n. We claim that n <2. The element $\left[\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right] \in P(GL_2(\mathbb{R})$ normaliter the diagonal tarks in PGL2 and acts on it as $t \mapsto t^{-1}$. Hence a lift to $G(\mathbb{R})$ of a suitable conjugate on $\left[\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right]$ normaliter T and acts on it as $t \mapsto t^{-1}$. Since key is central, the action is trivial on key $\Rightarrow n \leq 2$. Now if $G \rightarrow SL_2$ is an isogeny with G smooth and count. and with diag, knuel, then $G \rightarrow SL_2 \rightarrow SL_2$ has degree at most 2, so $G \rightarrow SL_2$ must be an isomorphism (Slz ->>> PGLz has already deg. 2)

Proof of the A We have produced on exact requerce: $e \rightarrow Z(G) \rightarrow G \xrightarrow{-9} P4L_2 \rightarrow e$ We have produced on exact requerce: $e \rightarrow Z(G) \rightarrow G \xrightarrow{-9} P4L_2 \rightarrow e$ when we can alway that q maps the maximal true T onto the dragonal when we can alway that q maps the maximal true of DG (early to ree). towns in P4L2. T':= $(T \cap DG)_t$ is a maximal true of DG (early to ree). towns in P4L2. T':= $(T \cap DG)_t$ is a maximal true of DG (early to ree). towns in P4L2. T':= $(T \cap DG)_t$ is a maximal true of DG (early to ree). 91_{DG} : $DG \rightarrow P4L_2$. Note that DG is not solvable (otherwise G would be 91_{DG} : $DG \rightarrow P4L_2$. Note that DG is not solvable (otherwise G vould be 91_{DG} : $DG \rightarrow P4L_2$. Note that DG is not solvable (otherwise G vould be 91_{DG} : $DG \rightarrow P4L_2$. Note that DG is not solvable (otherwise G vould be 91_{DG} : $DG \rightarrow P4L_2$. Note that DG is not solvable (otherwise G vould be 91_{DG} : $DG \rightarrow P4L_2$. Note that DG is not solvable (otherwise G vould be 91_{DG} : $DG \rightarrow P4L_2$. Note that DG is finite. Indeed dwore a faithful up. $G \stackrel{c}{\subseteq} GLV$, neuall that $R(G) = Z(G)_t$ (max torus in Z(G)). Since R(G) torus, we can diagonalize its action on V, thence $V = V_{A}$, $\Theta \stackrel{c}{\longrightarrow} \Theta V_{A2}$. $\chi_i \in X(R(G))$

with
$$\chi_{i} \neq \chi_{i}$$
 if $i \neq j$. Choosing a suitable basis of V we see that the images
of elements $t \in \mathbb{R}(G)(\mathbb{R})$ and of the form $\begin{pmatrix} A_{2} & 0 \\ 0 & A_{n} \end{pmatrix} = A_{i} = \begin{pmatrix} \chi_{i}(t) \\ \chi_{i}(t) \end{pmatrix}$
Images of elements of $DG(\mathbb{R})$ lie in $\begin{pmatrix} SU \chi_{2}(k) & 0 \\ 0 & SU \chi_{n}(k) \end{pmatrix}$ the decomp-
but $SU_{\chi_{i}}(\mathbb{R})$ contains only finitely many scalar matrices for all $i \equiv 1 - n$
 $\Rightarrow \mathbb{R}(G) \cap DG$ finite $\Rightarrow \mathbb{P}(G) \cap DG$ finite.
We conclude that $\P|_{DG} \oplus DG(\mathbb{R}) = \mathbb{P}(G) \oplus \mathbb{P}(G) \oplus \mathbb{P}(G)$
here $\chi_{i} \oplus \mathbb{P}(G) \oplus \mathbb{P}(G)$.
Hence by $\mathbb{P}(G) \oplus \mathbb{P}(G) \oplus \mathbb{P}(G) \oplus \mathbb{P}(G) \oplus \mathbb{P}(G)$
 $\mathbb{P}(G) \oplus \mathbb{P}(G) \oplus \mathbb{P}(G$

Appendix: what happens if k is NOT reparably clored?
Now assume k is any field and that
$$G/k$$
 is reductive group of tensimple rank 1
(i.e. $G\bar{E}/(G\bar{E})$
If $T \subseteq G$ is a maximul torus, then T splits over kier
 \Rightarrow G is a kier/k form of one of the groups appearing in them B .
 \Rightarrow G is a k^{ker}/k form of one of the groups appearing in them B .
If $T = Gal(k^{ker}/k)$, one can show that
 $\{k^{ker}/k$ forms of an algoring $\tilde{G}/k^{ker} \}_{reg} \xrightarrow{d:A} H^{1}(\Gamma, Aut_{ker}(\tilde{G}))$
 $\Gamma \supset Aut_{ker}(\tilde{G})$ not usely as $\sigma : \alpha = \sigma \circ \alpha \circ \sigma^{-1} = \sigma \in \Gamma = FAut_{ker}(\tilde{G})$
If G/k is a k^{ker}/k form of \tilde{G} then there is an isomorphism
 $f: \tilde{G} \xrightarrow{d} G_{k'er} \sim \left[\Gamma \rightarrow Aut_{ker}(\tilde{G}) \right] \in H'(\Gamma, Aut_{ker}(\tilde{G}))$

If
$$\hat{G} = GL_{2/h}^{sep}$$
, one can show that:
• Authorized (\hat{G}) = $PGL_{2}(\mathbb{R}^{sop}) \longrightarrow \{k^{ser}/k \text{ forms of } GL_{2}\}/2 \stackrel{1:1}{\longrightarrow} H^{1}(\Gamma, PGL_{2}(h^{ep}))$
• $H^{1}(\Gamma, PGL_{2}(\mathbb{R}^{sep})) \stackrel{!:1}{\longrightarrow} \{i^{seo} \text{ classes of quateurism algebrass}\}$
[$\tau \mapsto c_{\tau} = a^{-1} \circ \tau a$] (A]
 $a: M_{2}(\mathbb{R}^{sep}) \stackrel{:}{\Longrightarrow} A \otimes_{\mathbb{R}} \mathbb{R}^{sep}$
Hence $\{k^{sep}/k \text{ forms of } GL_{2}\}/2 \stackrel{!:1}{\longrightarrow} \{i^{seo} \text{ classes of quateurism algebrash } [R_{1}, G^{2}(\mathbb{R}) \stackrel{:}{\Longrightarrow} (A \otimes_{\mathbb{R}} \mathbb{R})^{\times}]$ (A)
(iven a quakeurism algebrash A cuest \mathbb{R} , one can define also:
 $S^{A}: \mathbb{R} \longrightarrow (A \otimes \mathbb{R})$
 $\downarrow \mathbb{R}^{sep}/\mathbb{R}$ form of SL_{2}/\mathbb{R}^{sep} $\downarrow \mathbb{R}^{pp}/\mathbb{R}$ form of $PGL_{2}(\mathbb{R}^{sep})$

Not surprisingly the classification that is a follows: Then B + : Let T be a torus and A be a quaternon algebra /R. Then $T \times S^A$, $T \times P^A$, $T \times G^A$ are reductive groups of remissimple reach 1 wer R. Every reductive group of remissimple rank 1 over R is ino morphic to one of these groups.