Babyseminan WS 2022-23 - talk 11
Reductive groups I - (Split) reductive group of semisimple rank 1
Ref: [M] J.S. Milne, 'Algebraic Groups', chapters 13 and 20
§1. Introduction
$k=\bar{R}$ alg. dosed field, G / k affine algebinic group
Def: (a) G is called reductive if G is smooth and connecked and $R_{u}(G)=e \quad\left(R_{u}(G)\right.$ is the vnipotent radical of G, is. the maximal smooth normal connected unipokent sulogrenp of G)
(b) If G is a reductive gory, its semisimple rank is defied as the dimension of a maximal tows in $G / R(G)$ (recall that $R(G)$ is the radical of G, e the maximal smooth connected nounal solvable subgroup of G)
Ex: $G=G L_{n} \quad R(G)=Z(G)=G_{m} \quad G / R(G) \cong P G_{n}$ and maximal tui in PGL_{n} have dim. $n-1$
$\Rightarrow G L_{n}$ has semissmple sank $n-1$
Rah: G reductive of semissimple rank $0 \Leftrightarrow G$ reductive and solvable $\Leftrightarrow G$ is a torus Niklas' Talk
$!"<=$ " obvious
$" \Rightarrow{ }^{\prime} G / R(G)$ unipotent (it contains no nouthivine taus) and scusisimple, heme trivial

AIM OF TODAY:
The A (TM], pup. 20.32) Let G be a (Sp $: \cdot:$) reductive group of semisimple mash 1 Then there exists a homomoplumen $r:\left(S L_{2}, T_{2}\right) \rightarrow(G, T)$ with central kernel. Every such r is a central isugeny from $S L_{2}$ onto $D G=[G, G]$ and any two differ by the inner autouncuphion defined by an eleenent of $\left(N / \mu_{2}\right)(K)$. Here $T_{2} \leq S L_{2}$ maximal diaconal truss, $N=N_{S C_{2}}(T), \mu_{2}=Z\left(S L_{2}\right)$.
Actually one can then decluce that there are not many porsib:litie
The B $([M]$, then 20.33) Every (split) reductive group over k of semisimple rank 1 is isomuphic to exactly one of the following gongs:

$$
\mathbb{G}_{m}^{r} \times S L_{2}, \mathbb{G}_{m}^{r} \times P G L_{2}, \mathbb{C}_{1 m}^{r} \times G L_{2} \text { same } r \in \mathbb{Z}_{\geq 0}
$$

Rums: The groups appearing above are pairwise non-isomerphie, since:
(i) $G_{m}^{n} \hat{=} G_{\text {men }}^{s} \Leftrightarrow \quad R=S$
(ii) $D\left(S L_{2}\right)=O\left(G L_{2}\right)=S L_{2} \quad O\left(P G L_{2}\right)=P G L_{2} \quad\binom{$ one can check this on }{R-points }
(iii) $Z\left(S L_{2}\right)=\mu_{2}, \quad Z\left(S L_{2}\right)=\mathbb{C}_{m}, \quad Z\left(P G L_{2}\right)=e$
ξ_{2}. Cocharacters and limits in algebraic groups
Def Let X be a separated ely. k - scheme and assume that we have anceetion $\mathbb{C}_{\text {m }} \times X \xrightarrow{\mu} X$
Given $x \in X(R)$ we have an orbit map $\mu_{x}: \mathbb{G}_{m, R} \rightarrow X_{R} \rightarrow t \cdot x$
If μ_{x} extends (nee. uniquely) to a map $\mathbb{A}_{R}^{1} \xrightarrow{\mu_{x}} X_{R}$, we ray that $\lim _{t \rightarrow 0} t \cdot x \in X(R)$ exits and it is given by $\widetilde{\mu}_{x}(0)$.
Now let G be an all. group/k (always affine), $\lambda: G_{\text {goo }} \rightarrow G$ a cocharnetere; then λ defines an action $G_{1 m} \times G \rightarrow G$ via inner automaphisus, icC.

$$
r \cdot g=\lambda(t) y \lambda(t)^{-1}
$$

Def: In the above setting we let (i) $Z(\lambda):=C_{G}(\operatorname{Im}(\lambda))=G^{G m}$

$$
\begin{aligned}
& \text { et: In the above }=\left\{g \in G(R) \mid \lim _{t \rightarrow 0} t \cdot g \text { exists }\right\} \\
& \text { (i) } P(\lambda)(R):=\left\{g \in G(R) \mid \lim _{1} t \cdot g\right. \text { exists an. } \\
& \text { (ii) } ⿴(1)(R):=\{g \in(R)
\end{aligned}
$$

(ii) $U(\lambda)(R):=\left\{g \in G(R) \mid \sum_{t \rightarrow 0} \lim _{t \rightarrow 0} t \cdot g\right.$ exists and equals $\left.f_{R} \in G(R)\right\}$

Pup 1: In the above setting we have:
(a) $Z(\lambda), P(\lambda), U(\lambda)$ define algebraic subgrangs of G and $U(\lambda)$ is a annual unipotent subgroup of $P(\lambda)$.
Assume that G is smooth, then:
(b) $Z(\lambda), P(l), U(l)$ are smooth; $P(\lambda)$ (esp. $U(, l)$) is the unique smooth algemari subgurup of G st $P(\lambda)(k)=\left\{g \in G(k) \mid \lim _{t \rightarrow 0} t \cdot g\right.$ exists $\}$ (ep. $\left.U(\lambda)(k)=\left\{g \in G(k) \mid \lim _{t \rightarrow 0} t \cdot g=1_{k}\right\}\right)$
(c) The multiplication map $U(\lambda) X Z(\lambda) \rightarrow P(\lambda)$ is an iso of alg. genes
(d) " " " $V(-\lambda) \times P(\lambda) \rightarrow G_{T}$ is an open inmersion of algebraic varieties
(e) G_{F} connected $\Rightarrow Z(\lambda), P(\lambda), U(\lambda)$ are connected and $U(\lambda), Z(\lambda), U(-\lambda)$ generate G PF: Omitted, cf. [M], section $13 . d$.
§3. Reductive groups of semisimple rank 1
Lemma 2: Let G be a smooth connected semisimple nonsolvable algebraic group of rank 1 . Fix an isounorphism $\lambda: G_{m} \stackrel{n}{\Rightarrow} T \quad T \subseteq G$ a maximal tors. Then:
(a) $\exists B^{+}$Bored subgroup of G s.t. $T \subseteq B^{+}$and $U(\lambda) \subseteq B^{+}$ $\exists B^{-} \longrightarrow T \subseteq B^{-}$and $U(-\lambda) \subseteq B^{-}$
(b) It cannot happen $U(\lambda) \subseteq B^{-} \quad \Omega \quad U(-\lambda) \subseteq B^{+}$(with the notation of (a))
(c) There exists an element of $N_{G}(T)(k)$ which acts on T as $t \mapsto t^{-1}$

Pf: (a)
$\Rightarrow P(\lambda)$ solvable and convected $\Rightarrow \ni B^{+} \leq G$ Boded subgroup st $P(\lambda) \subseteq B^{+}$. Similarly $\exists B^{-}$st $P(-\lambda) \subseteq B^{-}$.
(b) Since G is not solvable and rime $U(\lambda), Z(\lambda), U(-\lambda)$ generate G, we deduce that $U(-\lambda) \nsubseteq B^{+}$and $U(\lambda) \nsubseteq B^{-}$.
(c) Recall that (Lukar'talk) $N_{G}(T)(k)$ ads transitively on the set $B^{\top}(k)$ of Bored subyoups containing T. Pick $x \in N_{G}(T)(R)$ sending B^{+}to B^{-}; then the iso $B^{+} \xlongequal{\cong} B^{-}$given by conjugation by x induces an automuphersm $T \triangleq{ }_{\tilde{\Xi}} T$ which must be nontrivial, line $W(G, T)=\frac{N_{G}(T)(R)}{C_{G}(T)(R)}$ acts simply transitively on $B^{\top}(R)$. Hence the curtomaphirm $T \stackrel{\cong}{=} T$ must be given by $t-t^{-1}$ (vague non trivial automaphism of $C_{1 m} \cong T$)
Lemma 3 : Let C be a smooth prop, all. ante over k; if C admits a nontrivial action by a smooth and corrected alg. group $C r \Rightarrow C \cong p^{1}$
Pf: Assume first that G is solvable \Leftrightarrow split solvable; heme C admits a nontrivial - action by $\mathbb{G}_{4}\left(o r \mathbb{G}_{m}\right)$; then for some $x \in C(k)$ the orbit map

$$
\begin{aligned}
& \mu_{x}: G_{a} \rightarrow C\left(\operatorname{Gr}_{x}: G_{m} \rightarrow C\right) \subset R(T) \Rightarrow R(C) \cong R\left(\mathbb{R}^{1}\right) \Rightarrow C \cong \mathbb{P}^{1} \\
& \Rightarrow R(C) \subset R
\end{aligned}
$$

Now fa general G recall that $G(R)=\bigcup_{B \text { Bree }} B(K)$ and since G is smooth we see that G acts nonthivially on $C \Leftrightarrow B$ aces nontrivially on C far rome so vie are reduced to the case G solvable

The 4: G reductive nonsolvable group, $T \subseteq G$ maximal tuns; TFAE:
(a) G has semisimple rank 1
(b) T lies exactly in two Bael subgroups
(c) $\operatorname{dim}(B)=1 \quad$ (recall $B \cong G / B, w L O G$ Bel subs. $B \supseteq T$)
(d) there is an isogeny $G / R(G) \rightarrow P G L_{2}$

Pf: $(a) \Rightarrow(b)$ we can replace G by $G / R(G)$ and atone that G is semirimple Since in this case $T \xlongequal[=]{\Omega} G_{m}$ and $\operatorname{Aut}\left(G_{m}\right)=\{ \pm 1\}$ and $W(G, T)$ acts simply transitively on the set of Bal subgangs containing $T \Rightarrow$ at moot 2 of those. Leman $2(b) \Rightarrow$ at least two of those, so (b) follows.
$(b) \Rightarrow(C)$ one can show that there must be at least $\operatorname{dim}(B)+1$ fixed points for the action of T on B, and we know that there are exactly two of them

$$
\Rightarrow \operatorname{dim}(B)=1
$$

(c) \Rightarrow (d) B sooth prog unve with a nontrivial action of $G \Rightarrow$ (lemmas) $B \cong \mathbb{P}^{1} \Rightarrow$ we get a homomuplinton $G \xrightarrow{\varphi} \operatorname{Aut}\left(\mathbb{P}^{1}\right) \cong P G L_{2}$ with

$$
R(G)=\left(\bigcap_{\substack{B \subseteq G \tag{*}\\
B \text { nee }}} B\right)_{\text {ned }}^{0} \subseteq \bigcap_{\substack{B \subseteq G \\
B \text { ne }}} B=\begin{array}{|ccc}
\substack{B \subseteq G \\
B \text { ne } \\
\text { Lukas talk }}
\end{array} N_{G}(B)=\operatorname{ker} \varphi
$$

Note that φ is subjective, since every proper alg. subgroup of $P C_{2}$ is solvable (having dim ≤ 2) and G is non solvable by astivenption.
Finally $\bar{\varphi}: G / R(G) \rightarrow P G_{2}$ is an istegeny because by $(*)$ we see that $R(G) \Delta \operatorname{ker} \varphi$ has finite index.
(d) $\Rightarrow(a) \quad P G L_{2}=\frac{G L_{2}}{Z\left(G L_{2}\right)}=\frac{G L_{2}}{R\left(G L_{2}\right)}$ is semsiumple of rank 1 .

Since we have an itgeny $G / R(G) \rightarrow P G L_{2}$, the save holds for $G / R(G)$.
Rusk: The subjective homs. $\varphi: G \rightarrow P G L_{2}$ in the above proof actually satisfies $\operatorname{ker} \varphi=Z(G)$. Indeed since φ is subjective we see that $\varphi\left(\bar{t}\left(G_{G}\right)\right) \leq z\left(P G_{2}\right)=e$
 is a numal dianonaliable subgroup of G. By rigidity (If. Ginlio's talk) we deduce that $\operatorname{ken} \varphi \leqslant Z(G)$.

Prop S: $S L_{2}$ is simply conerected (is every irogeny $G \rightarrow S L_{2}$ with G smooth and cones and with diagnonatizable kererel is an isoenorphism) and the projection mors $S L_{2} \rightarrow P G_{1}$ is the Universal covering of $P G L_{2}$ (in particular, since $S L_{2}$ and $P G L_{2}$ are also perfect, it holds that, for every $\varphi: G \rightarrow P G L_{2}$ isegeny of connected group varieties with diagonalizable kennel, there exists a unique $\alpha: S L_{2} \rightarrow G_{1} \quad$ t

Pf: Assume $G \in{\underset{\sim}{4}}^{\varphi} P G L_{2}$ is an irogeny with $G s m$. and coons and ken φ diagonalizable. Then G is reductive ($R_{u}(G)$ maps isomuphically outs its image in $P G L_{2}$, which is trivial). P :ck $T \subseteq G$ max. tans. As in the previous remark, by rigidity ken $\varphi \subseteq Z(G)$ $\Rightarrow \operatorname{ken} \varphi \subseteq T$ and $T_{\operatorname{ken} \varphi}$ maps som onto a max tans in $P G L_{2}$, so $\frac{T}{\operatorname{kan} \varphi} \cong \operatorname{Gm}$
$\Rightarrow T \cong \operatorname{Gum}_{m}$ and $\operatorname{ker\varphi } \cong \mu_{n} \quad P_{n}$ some n. We clam that $n \leqslant 2$.
The element $\left[\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right] \in P G L_{2}(k)$ normalises the diagonal taus in $P G L_{2}$ and acts on it as $t \longmapsto t^{-1}$. Hence a lift to $G(k)$ of a suitable conjugate on $\left[\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right]$ numalizes T and acts on $: t$ as $t \mapsto t^{-1}$. Since $\operatorname{ker} \varphi$ is central, the action is ϕ_{1} vial on $k e r \varphi$

$$
\Rightarrow n \leqslant 2
$$

Now if $G \rightarrow S L_{2}$ is an isogeny with G smooth and cores and with dian. Kernel, then $G_{1} \rightarrow S L_{2} \rightarrow \mathrm{PGL}_{2}$ has degree at mort 2 , so $G \rightarrow S L_{2}$ unapt be an isomopphime ($\mathrm{SL}_{2} \rightarrow \mathrm{PSL}_{2}$ has already deg. 2)

Proof of the A
We have produced an exnet sequence: $e \rightarrow Z(G) \rightarrow G \rightarrow P G L_{2} \rightarrow e$ where we can assume that 9 maps the maximal tans T onto the cloagonal tans in $P G L_{2}$. $T^{\prime}:=(T \cap O G)_{t}$ is a maximal taus of $O G$ (easy to see). $9_{O G}: D G \rightarrow P G L_{2}$. Woke that $D G$ is not solvable (otherwise G would be solvable), heme $\left.9\right|_{D G}$ must be surjecture (every pepper all, subgr. of $P G L_{2}$ is solvable). Moreover $\operatorname{ker}\left(q_{(D G)}\right)=Z(G) \cap O G_{T}$ is finite. Indeed chose a faithful rep. $G \subset{ }^{e} G L V$, recall that $R(G)=Z(G)_{t}$ (max tons in $Z(G)$). Since $R(G)$ terns, we can dingounalse its action on V, hence $V=V_{X_{1}}{ }^{\oplus} \cdots\left(V_{X_{2}} X_{i} \in X^{A}(R(G))\right.$
with $x_{i} \neq x_{j}$ if icj. Chooring a suitable bars of V we see that the images of elements $t \in R(G)(R)$ are of the form $\left(\begin{array}{cccc}A_{1} & & \\ & \ddots & \\ 0 & & A r\end{array}\right) \quad A_{i}=\left(\begin{array}{lll}x_{i}(t) & & \\ & \ddots & \\ & & x_{i}(t)\end{array}\right)$
 but $S V_{x_{i}}^{(R)}$ contains only finitely many scalar matinees fur all $i=11^{n}$

$$
\Rightarrow R(G) \cap O G \text { finite } \Rightarrow \forall(G) \cap の G \text { finite. }
$$

We conclude that $91_{D G}: O G_{1} \rightarrow P L_{1}$ is an iregeny with diagonalizable kernel and such that $q\left(T^{\prime}\right)$ is the maximal drayoonal taus in $P C_{2} L_{2}$.
Hence by mop. 5 we deduce that $\exists!V^{\prime}:\left(S L_{2}, T_{2}\right) \rightarrow\left(O G, T^{\prime}\right)$ isogeny with dian. kernel sit.

We let $V:\left(S L_{2}, T_{2}\right) \xrightarrow{v^{\prime}}\left(D G, T^{\prime}\right) \subseteq(G, T)$ to be this composition. Pearly $k e r v= \begin{cases}e & \text { if } O G \text { simply conn. } \\ \mu_{2} & \text { else }\end{cases}$
and any two V^{\prime} 's differ by an automorphism of $\left(S L_{2}, T_{2}\right)$ and one can check that such autounphorms are the incurs autom. Defined by an element of $\quad N / \mu_{2}(k) \quad N=N_{S_{2}}\left(T_{2}\right)$.

Appendix: what happens if k is NOT reparably closed?
Now assume k is any freed and that G / k is a reductive group of semisimple reach 1 (ie. $G_{\bar{k}} / R\left(G_{\bar{K}}\right)$ is sevisimple of sank 1$)$.
If $T \subseteq G_{G}$ is a maximal tons, thees T splits over $k^{s e \varphi}$
$\Rightarrow G$ is a $k^{k / p} / k$ form of one of the grans appearing in the B.
if $\Gamma=\operatorname{Gal}\left(k^{\operatorname{sen}} / R\right)$, one can shew that

$\Gamma \cap A_{R^{s e p}}(\hat{G})$ natually as $\sigma \cdot \alpha=\sigma \cdot \alpha \cdot \sigma^{-1} \sigma+\Gamma \quad \alpha \in A u_{k}$ rep (\tilde{G})
If G / k is a $k^{\text {sep }} / k$ fain of \hat{G} then there is an isomapenten
$f: \hat{G} \stackrel{\cap}{\Longrightarrow} G_{k^{\text {rep }}} \sim\left[\begin{array}{l}\Gamma \rightarrow \operatorname{Aut}_{k \text { kep }}(\hat{G}) \\ \sigma \longmapsto a_{\sigma}=f^{-1} \circ \sigma f\end{array}\right] \in H^{\prime}\left(r\right.$, Ant $\left._{\text {kep }}\left(\hat{G}_{1}\right)\right)$
If $\hat{G}^{\prime}=G L_{2 / h^{\text {sep }}}$, one can show that:

- $\operatorname{Aut}_{R^{\text {sup }}}\left(\hat{G}_{1}\right) \cong \operatorname{PG} L_{2}\left(R^{\text {sop }}\right) \Rightarrow\left\{R^{\text {ser } / R}\right.$ forms of $\left.G L_{2}\right\} / \cong \stackrel{\text { 1:1 }}{\stackrel{1}{1}} H^{1}\left(\Gamma, P G L_{2}\left(h^{\text {step }}\right)\right)$
- $W^{\prime}\left(I_{1} P L_{2}\left(k^{\text {rp }}\right)\right) \stackrel{1: 1}{-}$ \{isoclates of quaternion algebras $\left.\begin{array}{l}\text { sour } k\end{array}\right\}$
$\left[\tau \mapsto c_{\tau}=a^{-1} \circ \tau a\right]$

$$
\begin{equation*}
a: M_{2}\left(k^{s e p}\right) \hat{=} A \otimes_{k} k^{s e p} \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\left[R \longmapsto G(R):=\left(A \otimes_{R} R\right)^{x}\right] \tag{A}
\end{equation*}
$$

Given a quateravon algelsion A war K, one can defoe also:

$$
\begin{aligned}
S^{A}: R & \longmapsto(A \otimes R)^{\text {Norm }=1} \\
& \succsim k^{\operatorname{sep} / R} \text { farm of } S l_{2} / R^{\text {Sep }}
\end{aligned}
$$

$$
p^{A}=G^{A} / z\left(G^{A}\right)
$$

$\bigcirc k^{\text {kep }} / k$ fam of $P G_{2} / k^{\text {kep }}$

Not surprisingly the classification them is a follows:
The $B+$: Les T be a taus and A be a quateuncon algeboen $/ R$.
Then $T \times S^{A}, T \times P^{A}, T \times G^{A}$ are reductive groups of semisimple rems 1 wen k. Every reductive group of semisimple wank 1 wore k is rromerphic to one of there gramps.

