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1 Introduction and first examples

The study of the absolute Galois group of a number field is one of the most classical
and important problems in number theory. In the last decades the investigation of the
representations of such Galois groups has led to many developments in the theory.

For this introduction we fix a number field K and we let K̄ be an algebraic closure of
K and GK ∶= Gal(K̄/K) denote the absolute Galois group. It is well-known that

GK ≅ lim
←Ð
K⊆L

finite Galois

Gal(L/K)

and that GK becomes a profinite topological group under this identification.

If S denotes a finite set of non-archimedean places of K, we let GK,S ∶= Gal(K̄S/K)
where K̄S is the maximal algebraic extension of K inside K̄ which is unramified outside
S (i.e. the union of all finite extensions of K inside K̄ which are unramified outside S or
equivalently the union of all finite extensions of K inside K̄ whose relative discriminant is
not divisible by any prime outside S). Notice that GK,S is itself a profinite group, being
a quotient of GK .

If A is any topological ring, we endow the group GLN(A) with the topology induced
by the embedding

GLN(A) = {(a1,1, a1,2, . . . , aN,N , d) ∈ AN2+1 ∣ d ⋅ det([ai,j]) = 1} ⊂ A
N2+1

Definition 1. A Galois representation of K is a continuous group homomorphism

ρ ∶ GK,S → GLN(A)

for some topological ring A.

Galois representations arise naturally while studying arithmetic objects.

Example 2. Let E be an elliptic curve over K with identity element O ∈ E(K). Let
n ∈ Z≥1. As usual we let

E[n] = {x ∈ E(K̄) ∣ [n] ⋅ x = O}

denote the group of n-torsion points of the curve. It is easy to see that there is a natural
action of GK on E[n]. Fixing an isomorphism E[n] ≅ (Z/nZ)2 induces a continuous
homomorphism GK → GL2(Z/nZ) which factors through GK,S where S is the set of
primes dividing n or of bad reduction for E. Indeed if p is a prime ideal of OK such
that E has good reduction modulo p and p ∤ nOK , let us Ē denote the reduction of E
modulo p. Then by our assumptions we get that Ē[n] ≅ (Z/nZ)2 is a Gk(p)-module (with
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k(p) = OK/p), with Galois action induced by the Galois action on E[n]. This implies that
the Galois action on E[n] is trivial on the inertia subgroup relative to the prime p, i.e. our
representation GK → GL2(Z/nZ) is unramified at p. Thus we get a Galois representation

ρE,n ∶ GK,S → GL2(Z/nZ)

If we fix a rational prime p > 1 and we let

S = {prime of bad reductions of E} ∪ {p}

we can form an inverse system of representations (ρE,pk)k≥1 where at each step the maps
are given by

E[pk+1]→ E[pk] x↦ [p] ⋅ x

obtaining Tp(E) = lim←Ðk
E[pk] ≅ Z2

p (the p-adic Tate module of E) and hence a representa-
tion

ρE,p∞ ∶ GK,S → GL2(Zp)

In what follows we would like to interpret such a representation as a prototypical example
of lifting of a Galois representation over Fp via the study of a suitable deformation problem.

2 Mod p representations of profinite groups and the associ-
ated deformation problems

Let us start this more general treatment by fixing some definitions and notations.
We let k denote a finite field and p ∶= char(k).

Definition 3. A k-coefficient ring (or simply a coefficient ring, when the field k is
clear from the context) is a complete noetherian local ring A with residue field k.

A homomorphism of k-coefficient rings is a continuous local homomorphism of k-
coefficient rings.

Remark 4. We let W (k) denote the ring of Witt vectors of k. Then by the universal
properties of Witt vectors, any k-coefficient ring A is endowed with a homomorphism (in
the above sense) W (k)→ A and becomes naturally a topological W (k)-algebra.

If A is a k-coefficient ring with maximal ideal mA, then the topology on GLN(A) is
the same as the profinite topology given by the identification

GLN(A) = lim←Ð
n

GLN(A/m
n
A)

From now on we let Π be a profinite group and assume that we have a representation
of Π with k-coefficient ring A0 and degree N , i.e. a representation

ρ0 ∶ Π→ GLN(A0).

If h ∶ A1 → A0 is a homomorphism of k-coefficient rings, let us also denote by the same
letter the induced group homomorphism

h ∶ GLN(A1)→ GLN(A0)

Definition 5. A deformation of ρ0 to the k-coefficient ring A1 is a strict equivalence
class of liftings
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Π GLN(A1)

GLN(A0)

ρ1

ρ0 h

where two liftings ρ1 and ρ′1 are strictly equivalent if there exists a matrix x ∈ Ker(h)
such that ρ1(π) = x

−1ρ′1(π)x for all π ∈ Π.

Definition 6. Let Λ be a k-coefficient ring. A k-coefficient Λ-algebra is a k-coefficient
ring A together with a k-coefficient ring homomorphism Λ→ A.

Given a k-coefficient Λ-algebra we consider the category ĈΛ(A) whose objects are
k-coefficients Λ-algebras together with a fixed k-coefficient Λ-algebras homomorphism
to A (sometimes called A-augmentation) and where morphisms are morphisms of k-
coefficients Λ-algebras commuting with augmentations in the obvious way.

We let CΛ(A) denote the full subcategory of ĈΛ(A) whose objects are those objects in
ĈΛ(A) which are also artinian rings.

When A = k we simply write ĈΛ = ĈΛ(k) and CΛ = ĈΛ(k).

Given a k-coefficient ring Λ, a profinite group Π and a residual representation ρ̄ ∶ Π→
GLN(k) we define the functor

Dρ̄ ∶ ĈΛ → Sets (1)

assigning to any object Λ → B of ĈΛ the set of deformations of ρ̄ to B, with morphisms
acting via post-composition (note that this is well-defined!).

We can also define relative versions of this functor as follows. For any representation
ρ ∶ Π→ GLN(A) (which should be interpreted as a choice of a lifting, i.e. an actual group
homomorphism, not a strict equivalence class, of ρ̄) to a k-coefficient Λ-algebra A, we let

Dρ ∶ ĈΛ(A)→ Sets (2)

the functor associating to any A-augmented Λ-algebra B the set of deformations of ρ to
B.

Proposition 7 (cf. Prop. 20.2 in [2]). The functors Dρ and Dρ̄ defined above are con-
tinuous, i.e. for every A-augmented Λ-algebra B it holds,

Dρ(B) = lim←Ð
n

Dρn(B/m
n
B)

where ρn ∶ Π
ρ
Ð→ GLN(A)↠ GLN(A/m

n
A), and for every k-coefficient Λ-algebra B it holds

Dρ̄(B) = lim←Ð
n

Dρ̄(B/m
n
B)

Proof. We refer to [2] for the proof.

The above proposition shows that the functor Dρ̄ is uniquely determined by its restric-
tion to the category CΛ and that the functor Dρ is uniquely determined by the restrictions
of the functors Dρn to the category CΛ(A). In particular we can now apply the machinery
for functors on artinian rings that was developed in the previous talks.
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3 Pro-representability and near representability

In this section we introduce the version of Schlessinger’s criterion that is needed to prove
that our functors Dρ̄ and Dρ of the previous section enjoy good properties under some
suitable hypothesis.

In this section we let D ∶ CΛ → Sets and DA ∶ CΛ(A)→ Sets be covariant functors such
that D(k) and DA(A) consist of a single element. We let k[ε] denotes the ring of dual
numbers and A[ε] = A ⊗k k[ε], as the notation suggests. We will always view k[ε] as
Λ-algebra via the composition Λ↠ k ↪ k[ε] (and similarly for A[ε]).

We also make the following hypothesis.

(Tk) The natural map
D(k[ε] ×k k[ε])→D(k[ε]) ×D(k[ε])

is a bijection.

(TA) The natural map

DA(A[ε] ×A A[ε])→DA(A[ε]) ×DA(A[ε])

is a bijection.

Definition 8. We define the Zariski tangent k-vector space to D as tD ∶= D(k[ε])
and the Zariski tangent A-module to DA as tD,A ∶=DA(A[ε]).

It was already shown in the previous talks that hypothesis Tk implies that tD is indeed
endowed with a natural structure of a k-vector space. The same proof shows that, under
the hypothesis TA, the set tD,A is naturally an A-module.

Given any diagram A→ C ← B in CΛ we have seen in the previous talks that the fibre
product A ×C B exists in CΛ. In this case we always denote by h the natural map

h ∶D(A ×C B)→D(A) ×D(C)D(B)

obtained by the universal property of fibre products in Sets.

Recall that a morphism A → C in CΛ is a small extension if it is surjective and its
kernel is a principal ideal annihilated by mA. Note that this means that such kernel is
endowed with the structure of one-dimensional k-vector space.

We are now ready to state the version of Schlessinger’s criterion that we need (note
that this is also the original formulation given in [4], theorem 2.11).

Theorem 9 (Schlessinger’s criterion). Let D ∶ CΛ → be a covariant functor such that D(k)
consists of a single element. Then D is pro-representable (in the sense of the previous
talks) if and only if the following four conditions hold.

(H1) The map h defined above is surjective if A→ C is a small extension.

(H2) The map h is bijective if A → C is the morphism k[ε] ↠ k (so in particular (Tk)
holds).

(H3) tD is a finite dimensional k-vector space.

(H4) The map h is bijective if A→ C and B → C are the same small extension.

Moreover, D has a hull (in the sense of the previous talks) if and only if the conditions
(H1), (H2) and (H3) hold.
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For the functors DA we define a weaker notion.

Definition 10. Let DA ∶ CΛ(A) → Sets be a covariant functor such that DA(A) consists
of a single element. We say that DA is nearly representable if hypothesis (TA) holds
and furthermore the A-module tD,A is of finite type.

4 The role of p-finiteness

It is now time to go back to the study of the deformation problems associated to represen-
tations of profinite groups. It turns out that, if p ∶= char(k) and Π is our profinite group
as before, there is a condition on Π called p-finiteness that enables us to ensure that our
deformation functors are good candidates for pro-representability (or near representability
in the relative case).

Definition 11. We say that a profinite group Π satisfies the p-finiteness condition if
for all open subgroups Π0 of Π, there are only a finitely many continuous group homo-
morphisms Π0 → Z/pZ.

Proposition 12. The groups GK,S introduced in section 1 satisfy the p-finiteness condition
for every prime p.

Proof. One checks that every open subgroup of Π = GK,S is of the form Π0 = GL,T for
a finite extension L of K (uniquely determined by taking the preimage of Π0 along the
projection GK ↠ GK,S) and the set T of all non-archimedean places of L lying over the
places in S. Thus it is enough to prove that the set

Homcont(GK,S ,Z/pZ)

This is equivalent to proving that there are only finitely many finite cyclic Galois extensions
L/K inside K̄ of degree p (i.e. with Galois group Gal(L/K) ≅ Z/pZ) which are unramified
outside S.

Let D ∶= DOL/OK
denote the different of such an extension (an OL-ideal) and δ ∶=

δOL/OK
denote the discriminant (an OK-ideal), so that δ = NL/K(D). One can check that

a prime q of K ramifies in L if and only if q ∣ δ. More specifically if Q is a prime of L with
Q ∣ q then the ramification index e(Q/q) > 1 if and only if Q ∣ D. Assume that e(Q/q) > 1
and that the exact power of Q dividing D is Qr (r ≥ 1). In this case we have the two
following cases:

(i) if char(OK/q) ∤ e(Q/q) (tame ramification), then r = e(Q/q) − 1;

(ii) if char(OK/p) ∣ e(Q/q) (wild ramification), then

e(Q/q) ≤ r ≤ e(Q/q) − 1 + vQ(e(Q/q)).

where vQ denotes the Q-adic valuation on L, normalized so that vQ(π) = 1 if π is
any uniformizer in the Q-adic completion OL,Q of OL.

In our situation if q ∈ S ramifies if and only if q = Qp for a prime Q of L (with norm
NL/K(Q) = q), so that r = p − 1 in case of tame ramification and p ≤ r ≤ p − 1 + vQ(p) if
q ∣ pOK . Since vQ(p) is bounded (say by [K ∶ Q] ⋅ p) and S is finite, we deduce that there
are only finitely many possible relative discriminants δ for such extensions.

Since the global discriminant ∆L/Q satisfies

∆L/Q = ±(∆K/Q)
p ⋅NK/Q(δ),
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we deduce that the possible global discriminants for such number fields L lie in a finite
subset of Z.

We conclude by the classical Hermite-Minkowski’s theorem (stating that there are only
finitely many number fields with a fixed discriminant) that the possible extensions L/K
Galois of degree p unramified outside S form a finite set.

For the last part of the above proof and the Hermite-Minkowski’s theorem we refer to
[3], chapter III §2.

Remark 13. In order to prove the above proposition one could observe that

Homcont(GK,S ,Z/pZ) = Homcont(G
ab
K,S ,Z/pZ),

where Gab
K,S denotes the quotient of GK,S by the closure of its commutator subgroup

(equivalently it can be interpreted as the Galois group of the maximal abelian extension
of K unramified outside S). One can use class field theory to prove that the profinite
group Gab

K,S is topologically finitely generated (a property which is in general not known
for the group GK,S) and deduce our statement as a consequence of this fact.

Note also that local class field theory shows that the absolute Galois group of finite
extensions K of Qp satisfies the p-finiteness condition for all p, since it provides an iso-
morphism of topological groups

Gab
K ≅ Gal(Kan/Kunr) ×Gal(Kunr/K) ≅ O×K × Ẑ.

We can now state the following crucial result (the notation is the usual one).

Theorem 14 (cf. [2] prop. 20.2 ). Let ρ̄ ∶ Π → GLN(k) be a continuous residual repre-
sentation, with k a finite field of characteristic p and Π a profinite group satisfying the
p-finiteness condition. Let Λ a coefficient ring with residue field k. Then the following
assertions hold.

(i) The functor Dρ̄ ∶ CΛ → Sets satisfies the conditions (H1), (H2), (H3) of theorem 9,
so it has a hull.

(ii) If ρ̄ is absolutely irreducible (i.e. irreducible over an algebraic closure of k), then
DDρ̄ is pro-representable.

Moreover, for any (artinian) coefficient Λ-algebra A and every lifting ρ ∶ Π → GLN(A) of
ρ̄ to A, the relative functor Dρ ∶ CΛ(A)→ Sets is nearly representable (in the sense of our
definition 10)

For the full proof of this result we refer to [1] (cf. section 1.2 in particular).

Remark 15. In the assertion (ii) of the above theorem one can actually assume a weaker
hypothesis, namely that the natural mapping k → Endk[Π](V̄ ) is an isomorphism, where

V̄ = kN with Π acting on it via ρ̄. This condition is clearly satisfied (by Schur’s lemma) if
ρ̄ is absolutely irreducible, but it can also hold in other cases of interest. For instance it
is satisfied by the (non necessarily irreducible!) degree 2 residual Galois representations
attached to elliptic curves over p-adic fields with ordinary reduction.

In what follows, we try to explain where the p-finiteness of Π is needed in the proof
of theorem 14. We will see that assuming the p-finiteness of Π is crucial to prove that Dρ̄

satisfies condition (H3) of theorem 9 and that Dρ is nearly representable.
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In the setting (and with the notation) of the above theorem we assume that we have
proven (H1) and (H2) for the functor Dρ̄ and that hypothesis (TA) holds for Dρ. Then
we know that tρ̄ ∶= tDρ̄ = D(k[ε]) is naturally a k-vector space (our Zariski tangent k-
vector space) and that tρ ∶ tDρ = Dρ(A[ε]) is naturally an A-module (our Zariski tangent
A-module).

In order to prove the finiteness of tρ as A-module (note that the relative case contains
the absolute case!) we will need a cohomological interpretation of such A-module. Let
V = AN be the free A-module of rank N endowed with the A-linear action given via the
composition of ρ with the natural action of GLN(A) on V (we think of elements of V as
column vectors and the action is right multiplication of matrices).

The action of Π on V induces the so-called adjoint action of Π on EndA(V ) (a free
A-module of rank N2), given by

(g ∗ e)(v) ∶= ρ(g)(e(ρ(g)−1(v)))

for all g ∈ Π, e ∈ EndA(V ), v ∈ V . We write EndA(V ) = Ad(ρ) when we think of EndA(V )
as a Π-module with the above adjoint action. Equivalently Ad(ρ) can be thought as the
composition of ρ with the adjoint representation of GLN(A) into its Lie algebra MatN(A).

The cohomology groups appearing in the following will always refer to the continuous
cohomology of profinite groups.

Proposition 16. There is a natural isomorphism of A-modules

tρ ≅H
1(Π,Ad(ρ))

Sketch of the proof. Let Γ ∶= Ker(GLN(A[ε]) → GLN(A)). The short exact sequence of
groups

1→ Γ→ GLN(A[ε])
β
Ð→ GLN(A)→ 1

splits on the right via the obvious injection σ ∶ GLN(A) ↪ GLN(A[ε]), proving that we
can view GLN(A[ε]) as a semidirect product

GLN(A[ε]) = Γ ⋊GLN(A)

Moreover Γ ≅ MatN(A) as abelian groups (sending 1 + εm ↦ m) and under this isomor-
phism we have that

GLN(A[ε]) ≅MatN(A) ⋊GLN(A) = EndA(V ) ⋊GLN(A)

with GLN(A) acting on MatN(A) via conjugation (in particular we have Γ ≅MatN(A) ≅
Ad(ρ) also as Π-modules).

The set of deformations tρ = Dρ(A[ε]) is the set of strict equivalence classes of group
homomorphisms ρ′ ∶ Π→ GLN(A[ε] such that β ○ ρ′ = ρ, where recall that ρ′ is equivalent
to ρ′′ if they are conjugate to each other via an element of Γ = Ker(β).

Let ρ0 be the homomorphism ρ0 = σ ○ ρ, which certainly defines a class in tρ. If ρ′ is
another lifting of ρ we define the difference cocycle cρ′ ∶ Π→ Γ ≅ Ad(ρ) as

cρ′(g) ∶= ρ
′(g) ⋅ ρ0(g)

−1 for all g ∈ Π.

Note that this is well-defined, i.e. cρ′(g) actually lies in Γ and it holds

cρ′(g1g2) = cρ′(g1) ⋅ (g1 ∗ cρ′(g2))

Then one checks that sending the class of ρ′ in tρ to the class of cρ′ in H1(Π,Ad(ρ))
defines the required bijection (we omit the details here).
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Remark 17. It is also possible to interpret the elements of the A-module H1(Π,Ad(ρ))
as isomorphism classes of (continuous) Γ-torsors, sending the deformation represented by
a certain lifting ρ′ to the isormorphism class of the torsor given by Γ ≅ EndA(V ) with
regular right Γ-action and left Π-action given by

g ⋅ρ′ (1 + εm) ∶= ρ
′(g)(1 + εm)ρ0(g)

−1

for every g ∈ G and m ∈MatN(A) = EndA(V ).

Proposition 18. Let A be a coefficient Λ-algebra. Then the Zariski tangent A-module tρ
is finite over A.

Sketch of the proof. We will assume that A is artinian. For the proof in the general case
we refer to [2], proposition 21.2b.

By the above theorem it is enough to show that H1(Π,Ad(ρ)) is a finite A-module.
Since A is artinian, the kernel of ρ is an open subgroup of Π, that we denote by Π0. In this
simple situation the inflation-restriction exact sequence for (continuous) group cohomology
looks like

1→H1(Π/Π0,Ad(ρ))→H1(Π,Ad(ρ))→ Homcont(Π0,Ad(ρ))
Π/Π0 → . . .

and we have that H1(Π/Π0,Ad(ρ)) is finite since Π/Π0 is a finite group and Ad(ρ) is
finite, while Homcont(Π0,Ad(ρ) is finite because Π satisfy the p-finiteness condition and
EndA(V ) is a finite abelian p-group. The thesis follows.

5 Presentations of the deformation rings

In this section we work under the assumptions Λ = W (k) and A = k. In this case we
simply denote the category ĈΛ(k) (resp. CΛ(k)) by Ĉ (resp. C). As usual we let

ρ̄ ∶ Π→ GLN(k)

be a residual representation of our profinite group Π. Assuming that Π satisfies the p-
finiteness condition and that ρ̄ is absolutely irreducible, we know by theorem 14 that the
functor Dρ̄ is pro-representable, i.e. there is a unique complete local noetherian ring R =
R(ρ̄) with residue field k and a deformation represented by a lifting ρuniv ∶ Π → GLN(R)
of ρ̄, such that for all objects A in C (and actually in Ĉ) it holds

HomĈ(R,A) ≅Dρ̄(A) f ↦ [f̃ ○ ρuniv]

Moreover we have canonical identifications

Homk(mR/(m
2
R + pR), k) ≅ HomĈ(R,k[ε]) ≅Dρ̄(k[ε]) = tρ̄ ≅H

1(Π,Ad(ρ̄)).

One can expect that (some) obstructions to the existence of deformations might lie in
the group H2(Π,Ad(ρ̄)). In order to see this we let A1 → A0 be a surjective map in C
with kernel I annihilated by mA1 (i.e. I endowed with the structure of k-vector space, in
particular I2 = 0).

Assume that we are given a deformation ρ0 represented by a lifting ρ0 ∶ Π→ GLN(A0)

of ρ̄ (note the abuse of notation here!).
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Lemma 19. With the above notation, there exists an obstruction class

O(ρ0) ∈H
2(Π,Ad(ρ̄))⊗ I =H2(Π, I ⊗Ad(ρ̄))

which depends only upon the strict equivalence class of ρ0 and which vanishes if and only
if there exists a deformation ρ1 ∶ Π → GLN(A1) of ρ̄, which when projected to A0 yields
the deformation ρ0.

Sketch of the proof. A cocycle c(ρ0) representing the class O(ρ0) can be formed setting:

c(ρ0)(g1, g2) = γ(g1g2)γ(g2)
−1γ(g1)

−1 ∈ 1 + I ⊗MatN(k) ≅ I ⊗Ad(ρ̄)

for every g1, g2 ∈ Π, where γ ∶ Π→ GLN(A1) is any set theoretic map that when projected
to GLN(A0) gives a homomorphism in the strict equivalence class of our ρ0 and where we
note that

1 + I ⊗MatN(k) = Ker(GLN(A1)→ GLN(A0)).

One can check that c(ρ0) is indeed a 2-cocycle and that its cohomology class O(ρ0) only
depends on the strict equivalence class of ρ0. Assuming this, it trivially follows that if ρ1
as above exists, then O(ρ0) vanishes.

Conversely, assuming that c(ρ0) is a coboundary, i.e.

c(ρ0)(g1, g2) = g1 ∗ f(g2) ⋅ f(g1g2)
−1f(g1)

for a set-theoretic function f ∶ Π → 1 + I ⊗MatN(k), then we leave to the reader the task
of checking that

ρ1 ∶ Π→ GLN(A1) g ↦ f(g) ⋅ γ(g)

is indeed the required lifting (the only thing to check is that with our definition ρ1 is a
group homomorphism!).

Set hi ∶= dimkH
i(Π,Ad(ρ̄)) in what follows. We can now state and prove our last

result.

Proposition 20. In the above setting and with the above notation we have that the Krull
dimension of R = R(ρ̄) satisfies

h1 − h2 ≤ dim(R/pR) ≤ h1

In particular if h2 = 0 (i.e. if the lifting problem for ρ̄ is unobstructed), then it holds
dim(R/pR) = h1 and R is isomorphic to the ring of power series in h1 variables over
W (k). If h2 > 0 we can still find a surjective ring homomorphism

π ∶ F ∶=W (k)[[X1, . . . ,Xh1]]↠ R

and given any such π one has a canonical injection of k-vector spaces

Homk(Ker(π)/mFKer(π), k)↪H2(Π,Ad(ρ̄)

so that Ker(π) is can be generated by at most h2 elements.
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Proof. Denote by DF the functor on Ck pro-represented by DF , so that the Zariski tan-
gent space tDF

is a k-vector space of dimension h1. One can clearly define a continuous
coefficient W (k)-algebra homomorphism π ∶ F → R inducing an isomorphism tρ̄ ≅ tDF

(just send the variables X1, . . . ,Xh1 to elements of the maximal ideal mR of R generating
mR/(m

2
R + pR) as k-vector space).

Since such π will induce the identity at the level of residue fields, one easily sees that
it must be surjective. Let J ∶= Ker(π) so that we have an exact sequence

0→ J/mFJ → F /mFJ → R → 0.

One can construct an obstruction class ϑ ∶= O(ρuniv) ∈ H2(Π,Ad(ρ̄)) ⊗ J/mFJ (viewing
A1 = F /mFJ , A0 = R and I = J/mFJ in the previous lemma). Let V = Homk(J/mFJ, k)
be the k-dual of J/mFJ . Then we define a k-linear map

V →H2(Π,AD(ρ̄)) f ↦ (id⊗ f)(ϑ)

and we claim that it is injective. Note that if this is true then the proof of the proposition
is complete.

Assume by contradiction that there exists f ∈ V non-zero such that (id ⊗ f)(ϑ) = 0
and let J ′ = (J/mFJ)/Ker(f), which is a k-vector space of dimension one fitting in the
exact sequence

0→ J ′ → R′
π̃
Ð→ R → 0

where R′ = (F /mFJ)/Ker(f). Then, by construction, the obstruction to have a lifting of
ρuniv to R′ vanishes and we get a deformation ρ′ ∈ Dρ̄(R

′), which by universality yields
a morphism σ ∶ R → R′ such that π̃ ○ σ = idR (again by universality), so in particular σ
is injective. By our construction of the original π it follows that π̃ induces isomorphisms
on the tangent spaces tρ̄ ≅ tDR′

, so that σ does the same. Since σ induces the identity on
residue fields and R,R′ are complete noetherian local rings, this implies that σ must be
surjective, i.e. an isomorphism. Then π̃ would be an isomorphism, contradicting the fact
that J ′ = Ker(π̃) ≠ 0. This finishes the proof.

References

[1] Barry Mazur. Deforming Galois representations. In Galois groups over Q (Berkeley,
CA, 1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 385–437. Springer, New
York, 1989.

[2] Barry Mazur. An introduction to the deformation theory of Galois representations.
In Modular forms and Fermat’s last theorem (Boston, MA, 1995), pages 243–311.
Springer, New York, 1997.

[3] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by
Norbert Schappacher, With a foreword by G. Harder.

[4] Michael Schlessinger. Functors of Artin rings. Trans. Amer. Math. Soc., 130:208–222,
1968.

10


	Introduction and first examples
	Mod p representations of profinite groups and the associated deformation problems
	Pro-representability and near representability
	The role of p-finiteness
	Presentations of the deformation rings

