Triple product p-adic L-functions

A generalization and some applications

Luca Marannino

Universität Duisburg-Essen
ENTR23 - August 23rd, 2023

Broad picture (after a talk by Andreatta)

Broad picture (after a talk by Andreatta)

Motivation: equivariant BSD conjecture

Motivation: equivariant BSD conjecture

We fix:

- E / \mathbb{Q} an elliptic curve;
- ρ a self-dual Artin representation of $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ with coefficients in L / \mathbb{Q} finite extension and with kernel identified with $\operatorname{Gal}(\overline{\mathbb{Q}} / H)$ for H / \mathbb{Q} finite Galois extension.

Motivation: equivariant BSD conjecture

We fix:

- E / \mathbb{Q} an elliptic curve;
- ρ a self-dual Artin representation of $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ with coefficients in L / \mathbb{Q} finite extension and with kernel identified with $\operatorname{Gal}(\overline{\mathbb{Q}} / H)$ for H / \mathbb{Q} finite Galois extension.

One can define the so-called Hasse-Weil-Artin L-function $L(E, \rho, s)$ attached to (E, ρ). A priori it is only defined for $\operatorname{Re}(s)>3 / 2$ via a suitable Euler product.

Motivation: equivariant BSD conjecture

We fix:

- E / \mathbb{Q} an elliptic curve;
- ρ a self-dual Artin representation of $G_{\mathbb{Q}}:=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ with coefficients in L / \mathbb{Q} finite extension and with kernel identified with $\operatorname{Gal}(\overline{\mathbb{Q}} / H)$ for H / \mathbb{Q} finite Galois extension.

One can define the so-called Hasse-Weil-Artin L-function $L(E, \rho, s)$ attached to (E, ρ). A priori it is only defined for $\operatorname{Re}(s)>3 / 2$ via a suitable Euler product.

Conjecture (Galois equivariant BSD conjecture)

The function $L(E, \rho, s)$ admits analytic continuation and satisfies a functional equation $s \leftrightarrow 2-s$. Moreover:

$$
\operatorname{ord}_{s=1} L(E, \rho, s)=\operatorname{dim}_{L}\left(\operatorname{Hom}_{L\left[G_{Q}\right]}\left(V_{\rho}, E(H) \otimes L\right)\right) .
$$

From global to local

Spoiler

We are not going to prove the BSD conjecture today!

From global to local

Spoiler

We are not going to prove the BSD conjecture today!

When the global picture is poorly understood, one can try to move to the local setting and to implement p-adic methods.

A p-adic strategy

A p-adic strategy

Fix a prime number p. A possible p-adic strategy to shed some light on this sort of problems can be described as follows.

A p-adic strategy

Fix a prime number p. A possible p-adic strategy to shed some light on this sort of problems can be described as follows.

STEP 1: construct a p-adic L-function via p-adic interpolation of (the algebraic part of) special values of classical L-functions.
Key words: congruences, p-adic measures, interpolation range/region.

A p-adic strategy

Fix a prime number p. A possible p-adic strategy to shed some light on this sort of problems can be described as follows.

STEP 1: construct a p-adic L-function via p-adic interpolation of (the algebraic part of) special values of classical L-functions.

Key words: congruences, p-adic measures, interpolation range/region.
STEP 2: approach arithmetically meaningful p-adic L-values via p-adic limit formulas and relate them to (local/hopefully global) points/cycles.

Key words: explicit reciprocity law, p-adic derivatives

Our setting

Our setting

- $p \geq 5$ such that E has multiplicative reduction at p.

Our setting

- $p \geq 5$ such that E has multiplicative reduction at p.
- We let K / \mathbb{Q} be a quadratic imaginary field where p is inert and we consider two Galois characters η_{1}, η_{2} of K of conductor $c p^{r} \mathcal{O}_{K}$ with $c \in \mathbb{Z},(c, p)=1$ and $r \geq 1$.

Our setting

- $p \geq 5$ such that E has multiplicative reduction at p.
- We let K / \mathbb{Q} be a quadratic imaginary field where p is inert and we consider two Galois characters η_{1}, η_{2} of K of conductor $c p^{r} \mathcal{O}_{K}$ with $c \in \mathbb{Z},(c, p)=1$ and $r \geq 1$.
- We assume that η_{1} and η_{2} are not induced by Dirichlet characters and that they have inverse central characters.

Our setting

- $p \geq 5$ such that E has multiplicative reduction at p.
- We let K / \mathbb{Q} be a quadratic imaginary field where p is inert and we consider two Galois characters η_{1}, η_{2} of K of conductor $c p^{r} \mathcal{O}_{K}$ with $c \in \mathbb{Z},(c, p)=1$ and $r \geq 1$.
- We assume that η_{1} and η_{2} are not induced by Dirichlet characters and that they have inverse central characters.
- We let $\rho:=\rho_{1} \otimes \rho_{2}$ where, for $i=1,2, \rho_{i}:=\operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{i}\right)$.

Our setting

- $p \geq 5$ such that E has multiplicative reduction at p.
- We let K / \mathbb{Q} be a quadratic imaginary field where p is inert and we consider two Galois characters η_{1}, η_{2} of K of conductor $c p^{r} \mathcal{O}_{K}$ with $c \in \mathbb{Z},(c, p)=1$ and $r \geq 1$.
- We assume that η_{1} and η_{2} are not induced by Dirichlet characters and that they have inverse central characters.
- We let $\rho:=\rho_{1} \otimes \rho_{2}$ where, for $i=1,2, \rho_{i}:=\operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{i}\right)$.
- The conductor N_{E} of E is squarefree, coprime to the discriminant of K and with an even number of prime divisors which are inert in K (Heegner hypothesis).

Our setting

- $p \geq 5$ such that E has multiplicative reduction at p.
- We let K / \mathbb{Q} be a quadratic imaginary field where p is inert and we consider two Galois characters η_{1}, η_{2} of K of conductor $c p^{r} \mathcal{O}_{K}$ with $c \in \mathbb{Z},(c, p)=1$ and $r \geq 1$.
- We assume that η_{1} and η_{2} are not induced by Dirichlet characters and that they have inverse central characters.
- We let $\rho:=\rho_{1} \otimes \rho_{2}$ where, for $i=1,2, \rho_{i}:=\operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{i}\right)$.
- The conductor N_{E} of E is squarefree, coprime to the discriminant of K and with an even number of prime divisors which are inert in K (Heegner hypothesis).
- Minor technical assumptions.

Some remarks

Some remarks

(i) There is a decomposition $\rho \cong \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}\right) \oplus \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}^{\sigma}\right)$, where $\langle\sigma\rangle=\operatorname{Gal}(K / \mathbb{Q})$.

Some remarks

(i) There is a decomposition $\rho \cong \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}\right) \oplus \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}^{\sigma}\right)$, where $\langle\sigma\rangle=\operatorname{Gal}(K / \mathbb{Q})$.
(ii) $\rho_{1}=\rho_{g}, \rho_{2}=\rho_{h}$, where g (resp. h) is the theta series attached to η_{1} (resp. η_{2}). The newforms g and h have weight 1 , level divisible by $p^{2 r}$ and infinite p-slope (i.e. $a_{p}(g)=0=a_{p}(h)$).

Some remarks

(i) There is a decomposition $\rho \cong \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}\right) \oplus \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}^{\sigma}\right)$, where $\langle\sigma\rangle=\operatorname{Gal}(K / \mathbb{Q})$.
(ii) $\rho_{1}=\rho_{g}, \rho_{2}=\rho_{h}$, where g (resp. h) is the theta series attached to η_{1} (resp. η_{2}). The newforms g and h have weight 1 , level divisible by $p^{2 r}$ and infinite p-slope (i.e. $a_{p}(g)=0=a_{p}(h)$).
(iii) We can identify

$$
L(E, \rho, s)=L\left(f_{E} \times g \times h, s\right)
$$

- $f_{E} \in S_{2}\left(\Gamma_{0}\left(N_{E}\right)\right)$ newform attached to E via modularity.
- $L\left(f_{E} \times g \times h, s\right)$ Garrett-Rankin triple product L-function (for which analytic continuation and functional equation are known!).

Some remarks

(i) There is a decomposition $\rho \cong \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}\right) \oplus \operatorname{Ind}_{K}^{\mathbb{Q}}\left(\eta_{1} \eta_{2}^{\sigma}\right)$, where $\langle\sigma\rangle=\operatorname{Gal}(K / \mathbb{Q})$.
(ii) $\rho_{1}=\rho_{g}, \rho_{2}=\rho_{h}$, where g (resp. h) is the theta series attached to η_{1} (resp. η_{2}). The newforms g and h have weight 1 , level divisible by $p^{2 r}$ and infinite p-slope (i.e. $a_{p}(g)=0=a_{p}(h)$).
(iii) We can identify

$$
L(E, \rho, s)=L\left(f_{E} \times g \times h, s\right)
$$

- $f_{E} \in S_{2}\left(\Gamma_{0}\left(N_{E}\right)\right)$ newform attached to E via modularity.
- $L\left(f_{E} \times g \times h, s\right)$ Garrett-Rankin triple product L-function (for which analytic continuation and functional equation are known!).
(iv) The decomposition in (i) yields a factorization

$$
L\left(f_{E} \times g \times h, s\right)=L\left(f_{E} / K, \varphi, s\right) \cdot L\left(f_{E} / K, \psi, s\right) \quad \varphi:=\eta_{1} \eta_{2}, \psi:=\eta_{1} \eta_{2}^{\sigma} .
$$

Families of modular forms I

Families of modular forms I

We associate to f_{E} the unique Hida family \boldsymbol{f} passing through f_{E}, i.e.

$$
\boldsymbol{f}=\sum_{n \geq 1} a_{n}(\boldsymbol{k}) q^{n}, \quad a_{n}(\boldsymbol{k}) \in \Lambda_{\boldsymbol{f}}
$$

where Λ_{f} is a suitable Iwasawa algebra (in this case $\Lambda_{f} \cong \mathbb{Z}_{p}[[T]$) and one thinks about the coefficients $a_{n}(\boldsymbol{k})$ as p-adic analytic functions of the weight variable \boldsymbol{k}.

Families of modular forms I

We associate to f_{E} the unique Hida family \boldsymbol{f} passing through f_{E}, i.e.

$$
\boldsymbol{f}=\sum_{n \geq 1} a_{n}(\boldsymbol{k}) q^{n}, \quad a_{n}(\boldsymbol{k}) \in \Lambda_{\boldsymbol{f}}
$$

where Λ_{f} is a suitable Iwasawa algebra (in this case $\Lambda_{f} \cong \mathbb{Z}_{p}[\llbracket T]$) and one thinks about the coefficients $a_{n}(\boldsymbol{k})$ as p-adic analytic functions of the weight variable \boldsymbol{k}.

The formal q-expansion \boldsymbol{f} satisfies the following interpolation property:
(i) for all $k \geq 2$,

$$
\boldsymbol{f}(k):=\left.\sum_{n \geq 1} a_{n}(\boldsymbol{k})\right|_{\boldsymbol{k}=k} q^{n}
$$

is the q-expansion at the cusp ∞ of a p-ordinary modular form of weight k and level N_{E};
(ii) $\boldsymbol{f}(2)=f_{E}$.

Families of modular forms II

Families of modular forms II

One can similarly associate to g (resp. h) a p-adic family of modular forms \boldsymbol{g} (resp. \boldsymbol{h}) passing through g (resp. h). The families \boldsymbol{g} and \boldsymbol{h} essentially come from a p-adic deformation of the characters η_{1} and η_{2}.

Families of modular forms II

One can similarly associate to g (resp. h) a p-adic family of modular forms \boldsymbol{g} (resp. \boldsymbol{h}) passing through g (resp. h). The families \boldsymbol{g} and \boldsymbol{h} essentially come from a p-adic deformation of the characters η_{1} and η_{2}.

Remark

(i) There is no good general theory for families of ∞p-slope.
(ii) The corresponding Iwasawa algebras Λ_{g} and Λ_{h} are bigger than Λ_{f}. More precisely, they are abstractly isomorphic to a ring of the form $\mathcal{O}_{F}[[X, Y]]$, with F / \mathbb{Q}_{p} a large enough finite extension. The two variables morally come from the fact that the units $\mathcal{O}_{K, p}^{\times}$of the p-adic completion of \mathcal{O}_{K} are a rank two \mathbb{Z}_{p}-module (up to torsion), since p is inert in K.

Triple product p-adic L-function

Triple product p-adic L-function

Our aim is to interpolate p-adically (square roots of) the special values

$$
L^{\mathrm{alg}}\left(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k, l, m}\right) \in \overline{\mathbb{Q}}
$$

in the so-called \boldsymbol{f}-unbalanced region, i.e. for $k \geq I+m$ and $I, m \in \mathbb{Z}_{\geq 1}$.

Triple product p-adic L-function

Our aim is to interpolate p-adically (square roots of) the special values

$$
L^{\mathrm{alg}}\left(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k, l, m}\right) \in \overline{\mathbb{Q}}
$$

in the so-called \boldsymbol{f}-unbalanced region, i.e. for $k \geq I+m$ and $I, m \in \mathbb{Z}_{\geq 1}$.

Theorem (M., in progress)

There exists an element $\mathscr{L}_{p}^{\boldsymbol{f}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) \in \Lambda_{f} \hat{\otimes}_{\mathbb{Z}_{\rho}} \wedge_{\boldsymbol{g}} \hat{\mathbb{Z}}_{\mathbb{Z}_{p}} \Lambda_{\boldsymbol{h}}$ such that, for all \boldsymbol{f}-unbalanced triples (k, l, m), it holds

$$
\left(\mathscr{L}_{p}^{\boldsymbol{f}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, l, m)\right)^{2}=\mathscr{E}_{p}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, l, m) \cdot L^{\mathrm{alg}}\left(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k, l, m}\right),
$$

where $\mathscr{E}_{p}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, I, m)$ is an explicit Euler factor at p.

Triple product p-adic L-function

Our aim is to interpolate p-adically (square roots of) the special values

$$
L^{\mathrm{alg}}\left(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k, l, m}\right) \in \overline{\mathbb{Q}}
$$

in the so-called \boldsymbol{f}-unbalanced region, i.e. for $k \geq I+m$ and $I, m \in \mathbb{Z}_{\geq 1}$.

Theorem (M., in progress)

There exists an element $\mathscr{L}_{p}^{\boldsymbol{f}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}) \in \Lambda_{f} \hat{\otimes}_{\mathbb{Z}_{\rho}} \wedge_{\boldsymbol{g}} \hat{\mathbb{Z}}_{\mathbb{Z}_{p}} \Lambda_{\boldsymbol{h}}$ such that, for all \boldsymbol{f}-unbalanced triples (k, l, m), it holds

$$
\left(\mathscr{L}_{p}^{\boldsymbol{f}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, l, m)\right)^{2}=\mathscr{E}_{p}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, l, m) \cdot L^{\mathrm{alg}}\left(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k, l, m}\right),
$$

where $\mathscr{E}_{p}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, I, m)$ is an explicit Euler factor at p.
The main idea is to adapt the constructions of Darmon-Rotger and Hsieh for the case in which also \boldsymbol{g} and \boldsymbol{h} are Hida families, relying on previous works of Hida and on Ichino's formula.

Factorization of p-adic L-functions

Factorization of p-adic L-functions

The factorization

$$
L\left(f_{E} \times g \times h, s\right)=L\left(f_{E} / K, \varphi, s\right) \cdot L\left(f_{E} / K, \psi, s\right) \quad \varphi:=\eta_{1} \eta_{2}, \psi:=\eta_{1} \eta_{2}^{\sigma}
$$

suggests a factorization of the form

$$
" \mathscr{L}_{p}^{\boldsymbol{f}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})=(\diamond) \cdot \mathscr{L}_{p}(\boldsymbol{f}, \varphi) \cdot \mathscr{L}_{p}(\boldsymbol{f}, \psi) "
$$

- (\diamond) denotes an explicit factor never vanishing for $k=2$.
- $\mathscr{L}_{p}(\boldsymbol{f}, \varphi)\left(\right.$ resp. $\left.\mathscr{L}_{p}(\boldsymbol{f}, \psi)\right)$ denotes the two-variable anticyclotomic p-adic L-function interpolating the (square root of the algebraic part of the) special values $L(\boldsymbol{f}(k) / K, \varphi \nu, k / 2)$ (resp. $L(\boldsymbol{f}(k) / K, \psi \nu, k / 2)$), where ν is a suitable character of the anticyclotomic \mathbb{Z}_{p}-extension of K (cf. works of Bertolini-Darmon, Hsieh and Castella-Longo).

Factorization of p-adic L-functions

The factorization

$$
L\left(f_{E} \times g \times h, s\right)=L\left(f_{E} / K, \varphi, s\right) \cdot L\left(f_{E} / K, \psi, s\right) \quad \varphi:=\eta_{1} \eta_{2}, \psi:=\eta_{1} \eta_{2}^{\sigma}
$$

suggests a factorization of the form

$$
" \mathscr{L}_{p}^{\boldsymbol{f}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})=(\diamond) \cdot \mathscr{L}_{p}(\boldsymbol{f}, \varphi) \cdot \mathscr{L}_{p}(\boldsymbol{f}, \psi) "
$$

- (\diamond) denotes an explicit factor never vanishing for $k=2$.
- $\mathscr{L}_{p}(\boldsymbol{f}, \varphi)\left(\right.$ resp. $\left.\mathscr{L}_{p}(\boldsymbol{f}, \psi)\right)$ denotes the two-variable anticyclotomic p-adic L-function interpolating the (square root of the algebraic part of the) special values $L(\boldsymbol{f}(k) / K, \varphi \nu, k / 2)$ (resp. $L(\boldsymbol{f}(k) / K, \psi \nu, k / 2)$), where ν is a suitable character of the anticyclotomic \mathbb{Z}_{p}-extension of K (cf. works of Bertolini-Darmon, Hsieh and Castella-Longo).

Theorem (M., in progress)

The above factorization holds (in a precise sense).
The idea of the proof is to compare the interpolation formulas for both sides.

An application

An application

Assume that $\varphi=\eta_{1} \eta_{2}$ is a quadratic character of K of conductor coprime to p. One can use the theory of optimal embeddings to produce a so-called Heegner point $P_{\varphi} \in E\left(H_{\varphi}\right)$ attached to φ.

An application

Assume that $\varphi=\eta_{1} \eta_{2}$ is a quadratic character of K of conductor coprime to p.
One can use the theory of optimal embeddings to produce a so-called Heegner point $P_{\varphi} \in E\left(H_{\varphi}\right)$ attached to φ.

Corollary (factorization + previous works of Bertolini-Darmon)

If, moreover, $p \mathcal{O}_{K}$ divides the conductor of ψ and (as one expects in most cases) $L\left(f_{E} / K, \psi, 1\right) \neq 0$, then one can characterise the fact that P_{φ} is of infinite order in terms the non-vanishing of certain p-adic partial derivatives of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ at $(2,1,1)$.

An application

Assume that $\varphi=\eta_{1} \eta_{2}$ is a quadratic character of K of conductor coprime to p.
One can use the theory of optimal embeddings to produce a so-called Heegner point $P_{\varphi} \in E\left(H_{\varphi}\right)$ attached to φ.

Corollary (factorization + previous works of Bertolini-Darmon)

If, moreover, $p \mathcal{O}_{K}$ divides the conductor of ψ and (as one expects in most cases) $L\left(f_{E} / K, \psi, 1\right) \neq 0$, then one can characterise the fact that P_{φ} is of infinite order in terms the non-vanishing of certain p-adic partial derivatives of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ at $(2,1,1)$.

Why do we need to pass to derivatives?
(i) With the above hypothesis, the Euler factor $\mathscr{E}_{p}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ vanishes at $(2,1,1)$.
(ii) In our setting $L\left(f_{E} / K, \varphi, s\right)$ has sign -1 (due to the Heegner hypothesis), hence $L\left(f_{E} / K, \varphi, 1\right)=0$.

Towards a geometric interpretation

Towards a geometric interpretation

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called geometric balanced region, i.e. for $k, l, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

Towards a geometric interpretation

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called geometric balanced region, i.e. for $k, I, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

The nice p-adic variation of such classes should allow to obtain a class $\kappa_{2,1,1}$ as a limit of geometric classes (note that $(2,1,1)$ is NOT in the balanced region) and one expects to relate such a class to the behaviour of $\mathscr{L}_{p}^{\mathbf{f}}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ at $(2,1,1)$.

Towards a geometric interpretation

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called geometric balanced region, i.e. for $k, I, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

The nice p-adic variation of such classes should allow to obtain a class $\kappa_{2,1,1}$ as a limit of geometric classes (note that $(2,1,1)$ is NOT in the balanced region) and one expects to relate such a class to the behaviour of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ at $(2,1,1)$.
This approach is more general and can be applied to situations in which \boldsymbol{g} and \boldsymbol{h} are not necessarily families of theta series.

Towards a geometric interpretation

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called geometric balanced region, i.e. for $k, I, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

The nice p-adic variation of such classes should allow to obtain a class $\kappa_{2,1,1}$ as a limit of geometric classes (note that $(2,1,1)$ is NOT in the balanced region) and one expects to relate such a class to the behaviour of $\mathscr{L}_{p}^{f}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ at $(2,1,1)$.
This approach is more general and can be applied to situations in which \boldsymbol{g} and \boldsymbol{h} are not necessarily families of theta series.

Main difficulty: one has to work with modular curves whose reduction modulo p is not smooth, so that the cohomological machinery becomes more complicated.

