▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Triple product *p*-adic *L*-functions A generalization and some applications

Luca Marannino

Universität Duisburg-Essen

ENTR23 - August 23rd, 2023

p-adic interpolation

Applications and expectations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Broad picture (after a talk by Andreatta)

Our setting

p-adic interpolation

Applications and expectations

Broad picture (after a talk by Andreatta)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our setting

p-adic interpolation 000 Applications and expectations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivation: equivariant BSD conjecture

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation: equivariant BSD conjecture

We fix:

- E/\mathbb{Q} an elliptic curve;
- ρ a self-dual Artin representation of $G_{\mathbb{Q}} \coloneqq \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with coefficients in L/\mathbb{Q} finite extension and with kernel identified with $\operatorname{Gal}(\overline{\mathbb{Q}}/H)$ for H/\mathbb{Q} finite Galois extension.

Motivation: equivariant BSD conjecture

We fix:

- E/\mathbb{Q} an elliptic curve;
- ρ a self-dual Artin representation of $G_{\mathbb{Q}} \coloneqq \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with coefficients in L/\mathbb{Q} finite extension and with kernel identified with $\operatorname{Gal}(\overline{\mathbb{Q}}/H)$ for H/\mathbb{Q} finite Galois extension.

One can define the so-called Hasse-Weil-Artin *L*-function $L(E, \rho, s)$ attached to (E, ρ) . A priori it is only defined for $\operatorname{Re}(s) > 3/2$ via a suitable Euler product.

Motivation: equivariant BSD conjecture

We fix:

- E/\mathbb{Q} an elliptic curve;
- ρ a self-dual Artin representation of $G_{\mathbb{Q}} \coloneqq \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with coefficients in L/\mathbb{Q} finite extension and with kernel identified with $\operatorname{Gal}(\overline{\mathbb{Q}}/H)$ for H/\mathbb{Q} finite Galois extension.

One can define the so-called Hasse-Weil-Artin *L*-function $L(E, \rho, s)$ attached to (E, ρ) . A priori it is only defined for $\operatorname{Re}(s) > 3/2$ via a suitable Euler product.

Conjecture (Galois equivariant BSD conjecture)

The function $L(E, \rho, s)$ admits analytic continuation and satisfies a functional equation $s \leftrightarrow 2 - s$. Moreover:

 $\operatorname{ord}_{s=1}L(E,\rho,s) = \dim_L \left(\operatorname{Hom}_{L[G_{\mathbb{Q}}]}(V_{\rho},E(H)\otimes L) \right).$

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations 000
00●0	00	000	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

From global to local

Spoiler

We are not going to prove the BSD conjecture today!

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations 000
00●0	00	000	

From global to local

Spoiler

We are not going to prove the BSD conjecture today!

When the global picture is poorly understood, one can try to move to the local setting and to implement *p*-adic methods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A bit of context 000●	Our setting 00	<i>p</i> -adic interpolation	Applications and expectations

A bit of context 000●	Our setting 00	<i>p</i> -adic interpolation	Applications and expectations

Fix a prime number p. A possible p-adic strategy to shed some light on this sort of problems can be described as follows.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

A bit of context 000●	Our setting 00	<i>p</i> -adic interpolation	Applications and expectations

Fix a prime number p. A possible p-adic strategy to shed some light on this sort of problems can be described as follows.

STEP 1: construct a *p*-adic *L*-function via *p*-adic interpolation of (the algebraic part of) special values of classical *L*-functions.

Key words: congruences, *p*-adic measures, interpolation range/region.

A bit of context 000●	Our setting 00	<i>p</i> -adic interpolation	Applications and expectations

Fix a prime number p. A possible p-adic strategy to shed some light on this sort of problems can be described as follows.

STEP 1: construct a *p*-adic *L*-function via *p*-adic interpolation of (the algebraic part of) special values of classical *L*-functions.

Key words: congruences, *p*-adic measures, interpolation range/region.

STEP 2: approach arithmetically meaningful *p*-adic *L*-values via *p*-adic limit formulas and relate them to (local/hopefully global) points/cycles.

- ロ ト - 4 回 ト - 4 □

Key words: explicit reciprocity law, p-adic derivatives

A bit of context 0000	Our setting ●0	<i>p</i> -adic interpolation	Applications and expectations

(ロ)、(型)、(E)、(E)、 E) のQ(()

Our setting

A bit of context 0000	Our setting ●○	<i>p</i> -adic interpolation 000	Applications and expectations
Our setting			

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

• $p \ge 5$ such that *E* has multiplicative reduction at *p*.

A bit of context 0000	Our setting ●○	<i>p</i> -adic interpolation	Applications and expectations
Our setting			

- $p \ge 5$ such that *E* has multiplicative reduction at *p*.
- We let K/Q be a quadratic imaginary field where p is inert and we consider two Galois characters η₁, η₂ of K of conductor cp^rO_K with c ∈ Z, (c, p) = 1 and r ≥ 1.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

A bit of context 0000	Our setting ●○	<i>p</i> -adic interpolation	Applications and expectations

• $p \ge 5$ such that *E* has multiplicative reduction at *p*.

Our setting

- We let K/Q be a quadratic imaginary field where p is inert and we consider two Galois characters η₁, η₂ of K of conductor cp^rO_K with c ∈ Z, (c, p) = 1 and r ≥ 1.
- We assume that η_1 and η_2 are not induced by Dirichlet characters and that they have inverse central characters.

A bit of context 0000	Our setting ●○	<i>p</i> -adic interpolation	Applications and expectations

Our setting

- $p \ge 5$ such that *E* has multiplicative reduction at *p*.
- We let K/Q be a quadratic imaginary field where p is inert and we consider two Galois characters η₁, η₂ of K of conductor cp^rO_K with c ∈ Z, (c, p) = 1 and r ≥ 1.
- We assume that η_1 and η_2 are not induced by Dirichlet characters and that they have inverse central characters.

A D N A 目 N A E N A E N A B N A C N

• We let $\rho \coloneqq \rho_1 \otimes \rho_2$ where, for $i = 1, 2, \ \rho_i \coloneqq \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_i)$.

A bit of context 0000	Our setting ●○	<i>p</i> -adic interpolation	Applications and expectations

• $p \ge 5$ such that *E* has multiplicative reduction at *p*.

Our setting

- We let K/Q be a quadratic imaginary field where p is inert and we consider two Galois characters η₁, η₂ of K of conductor cp^rO_K with c ∈ Z, (c, p) = 1 and r ≥ 1.
- We assume that η_1 and η_2 are not induced by Dirichlet characters and that they have inverse central characters.
- We let $\rho \coloneqq \rho_1 \otimes \rho_2$ where, for $i = 1, 2, \ \rho_i \coloneqq \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_i)$.
- The conductor N_E of E is squarefree, coprime to the discriminant of K and with an even number of prime divisors which are inert in K (*Heegner hypothesis*).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A bit of context 0000	Our setting ●○	<i>p</i> -adic interpolation	Applications and expectations

- $p \ge 5$ such that *E* has multiplicative reduction at *p*.
- We let K/Q be a quadratic imaginary field where p is inert and we consider two Galois characters η₁, η₂ of K of conductor cp^rO_K with c ∈ Z, (c, p) = 1 and r ≥ 1.
- We assume that η_1 and η_2 are not induced by Dirichlet characters and that they have inverse central characters.
- We let $\rho \coloneqq \rho_1 \otimes \rho_2$ where, for $i = 1, 2, \ \rho_i \coloneqq \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_i)$.
- The conductor N_E of E is squarefree, coprime to the discriminant of K and with an even number of prime divisors which are inert in K (*Heegner hypothesis*).

• Minor technical assumptions.

Our setting

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations
0000	○●	000	

Some remarks

A bit of context 0000	Our setting	<i>p</i> -adic interpolation		Applications and ex	<pectations< p=""></pectations<>
Some remarks					
			0		

(i) There is a decomposition $\rho \cong \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_1\eta_2) \oplus \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_1\eta_2^{\sigma})$, where $\langle \sigma \rangle = \operatorname{Gal}(\mathcal{K}/\mathbb{Q})$.

A bit of context 0000	Our setting ⊙●	<i>p</i> -adic interpolation 000	Applications and expectations
Some remarks			

- (i) There is a decomposition $\rho \cong \operatorname{Ind}_{K}^{\mathbb{Q}}(\eta_{1}\eta_{2}) \oplus \operatorname{Ind}_{K}^{\mathbb{Q}}(\eta_{1}\eta_{2}^{\sigma})$, where $\langle \sigma \rangle = \operatorname{Gal}(K/\mathbb{Q})$.
- (ii) $\rho_1 = \rho_g$, $\rho_2 = \rho_h$, where g (resp. h) is the theta series attached to η_1 (resp. η_2). The newforms g and h have weight 1, level divisible by p^{2r} and infinite p-slope (i.e. $a_p(g) = 0 = a_p(h)$).

A bit of context 0000	Our setting ○●	<i>p</i> -adic interpolation 000	Applications and expectations
Some remark	۲S		

- (i) There is a decomposition $\rho \cong \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_1\eta_2) \oplus \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_1\eta_2^{\sigma})$, where $\langle \sigma \rangle = \operatorname{Gal}(\mathcal{K}/\mathbb{Q})$.
- (ii) $\rho_1 = \rho_g$, $\rho_2 = \rho_h$, where g (resp. h) is the theta series attached to η_1 (resp. η_2). The newforms g and h have weight 1, level divisible by p^{2r} and infinite p-slope (i.e. $a_p(g) = 0 = a_p(h)$).

(iii) We can identify

$$L(E,\rho,s) = L(f_E \times g \times h,s)$$

- $f_E \in S_2(\Gamma_0(N_E))$ newform attached to E via modularity.
- $L(f_E \times g \times h, s)$ Garrett-Rankin triple product *L*-function (for which analytic continuation and functional equation are known!).

A bit of context	Our setting ○●	<i>p</i> -adic interpolation 000	Applications and expectations
Some remarks	5		

- (i) There is a decomposition $\rho \cong \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_1\eta_2) \oplus \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_1\eta_2^{\sigma})$, where $\langle \sigma \rangle = \operatorname{Gal}(\mathcal{K}/\mathbb{Q})$.
- (ii) $\rho_1 = \rho_g$, $\rho_2 = \rho_h$, where g (resp. h) is the theta series attached to η_1 (resp. η_2). The newforms g and h have weight 1, level divisible by p^{2r} and infinite p-slope (i.e. $a_p(g) = 0 = a_p(h)$).

(iii) We can identify

$$L(E,\rho,s) = L(f_E \times g \times h,s)$$

- $f_E \in S_2(\Gamma_0(N_E))$ newform attached to E via modularity.
- $L(f_E \times g \times h, s)$ Garrett-Rankin triple product *L*-function (for which analytic continuation and functional equation are known!).
- (iv) The decomposition in (i) yields a factorization

$$L(f_E \times g \times h, s) = L(f_E/K, \varphi, s) \cdot L(f_E/K, \psi, s) \qquad \varphi \coloneqq \eta_1 \eta_2, \psi \coloneqq \eta_1 \eta_2^{\sigma}.$$

Our setting

p-adic interpolation

Applications and expectations

Families of modular forms I

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations
0000	00	●○○	

Families of modular forms I

We associate to f_E the unique Hida family **f** passing through f_E , i.e.

$$\boldsymbol{f} = \sum_{n\geq 1} a_n(\boldsymbol{k}) q^n, \quad a_n(\boldsymbol{k}) \in \Lambda_{\boldsymbol{f}}$$

where Λ_f is a suitable lwasawa algebra (in this case $\Lambda_f \cong \mathbb{Z}_p[[T]]$) and one thinks about the coefficients $a_n(\mathbf{k})$ as *p*-adic analytic functions of the weight variable \mathbf{k} .

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations
0000	00	●00	

Families of modular forms I

We associate to f_E the unique Hida family **f** passing through f_E , i.e.

$$\boldsymbol{f} = \sum_{n\geq 1} a_n(\boldsymbol{k}) q^n, \quad a_n(\boldsymbol{k}) \in \Lambda_{\boldsymbol{f}}$$

where Λ_f is a suitable lwasawa algebra (in this case $\Lambda_f \cong \mathbb{Z}_p[[T]]$) and one thinks about the coefficients $a_n(\mathbf{k})$ as *p*-adic analytic functions of the weight variable \mathbf{k} .

The formal q-expansion f satisfies the following interpolation property:

(i) for all $k \ge 2$, $\boldsymbol{f}(k) \coloneqq \sum_{n \ge 1} a_n(\boldsymbol{k})|_{\boldsymbol{k}=k} q^n$

is the *q*-expansion at the cusp ∞ of a *p*-ordinary modular form of weight *k* and level N_E ;

(ii)
$$\boldsymbol{f}(2) = f_E$$
.

Our setting

p-adic interpolation 0 = 0

Applications and expectations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Families of modular forms II

Families of modular forms II

One can similarly associate to g (resp. h) a p-adic family of modular forms g (resp. h) passing through g (resp. h). The families g and h essentially come from a p-adic deformation of the characters η_1 and η_2 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Families of modular forms II

One can similarly associate to g (resp. h) a p-adic family of modular forms g (resp. h) passing through g (resp. h). The families g and h essentially come from a p-adic deformation of the characters η_1 and η_2 .

Remark

- (i) There is no good general theory for families of ∞ *p*-slope.
- (ii) The corresponding Iwasawa algebras Λ_g and Λ_h are *bigger* than Λ_f . More precisely, they are abstractly isomorphic to a ring of the form $\mathcal{O}_F[[X, Y]]$, with F/\mathbb{Q}_p a large enough finite extension. The two variables morally come from the fact that the units $\mathcal{O}_{K,p}^{\times}$ of the *p*-adic completion of \mathcal{O}_K are a rank two \mathbb{Z}_p -module (up to torsion), since *p* is inert in *K*.

A bit of context

Our setting

p-adic interpolation

Applications and expectations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Triple product *p*-adic *L*-function

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations
0000	00	00●	

Triple product *p*-adic *L*-function

Our aim is to interpolate *p*-adically (square roots of) the special values

$$L^{\mathrm{alg}}(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k,l,m}) \in \bar{\mathbb{Q}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

in the so-called *f*-unbalanced region, i.e. for $k \ge l + m$ and $l, m \in \mathbb{Z}_{\ge 1}$.

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations
0000	00	00●	

Triple product *p*-adic *L*-function

Our aim is to interpolate *p*-adically (square roots of) the special values

$$L^{\mathrm{alg}}(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k,l,m}) \in \bar{\mathbb{Q}}$$

in the so-called *f*-unbalanced region, i.e. for $k \ge l + m$ and $l, m \in \mathbb{Z}_{\ge 1}$.

Theorem (M., in progress)

There exists an element $\mathscr{L}_{\rho}^{f}(f, g, h) \in \Lambda_{f} \hat{\otimes}_{\mathbb{Z}_{\rho}} \Lambda_{g} \hat{\otimes}_{\mathbb{Z}_{\rho}} \Lambda_{h}$ such that, for all f-unbalanced triples (k, l, m), it holds

$$\left(\mathscr{L}_p^{\boldsymbol{f}}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})(k,l,m)\right)^2 = \mathscr{E}_p(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})(k,l,m) \cdot L^{\mathrm{alg}}(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), \boldsymbol{c}_{k,l,m}),$$

where $\mathscr{E}_{p}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, l, m)$ is an explicit Euler factor at p.

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations
0000	00	○○●	

Triple product *p*-adic *L*-function

Our aim is to interpolate *p*-adically (square roots of) the special values

$$L^{\mathrm{alg}}(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), c_{k,l,m}) \in \bar{\mathbb{Q}}$$

in the so-called *f*-unbalanced region, i.e. for $k \ge l + m$ and $l, m \in \mathbb{Z}_{\ge 1}$.

Theorem (M., in progress)

There exists an element $\mathscr{L}_{\rho}^{f}(f, g, h) \in \Lambda_{f} \hat{\otimes}_{\mathbb{Z}_{\rho}} \Lambda_{g} \hat{\otimes}_{\mathbb{Z}_{\rho}} \Lambda_{h}$ such that, for all f-unbalanced triples (k, l, m), it holds

$$\left(\mathscr{L}_p^{\boldsymbol{f}}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})(k,l,m)\right)^2 = \mathscr{E}_p(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})(k,l,m) \cdot L^{\mathrm{alg}}(\boldsymbol{f}(k) \times \boldsymbol{g}(l) \times \boldsymbol{h}(m), \boldsymbol{c}_{k,l,m}),$$

where $\mathscr{E}_{p}(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})(k, l, m)$ is an explicit Euler factor at p.

The main idea is to adapt the constructions of Darmon-Rotger and Hsieh for the case in which also g and h are Hida families, relying on previous works of Hida and on Ichino's formula.

Our setting

p-adic interpolation

Applications and expectations $\bullet \circ \circ \circ$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Factorization of *p*-adic *L*-functions

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations $\bullet \circ \circ$
0000	00	000	

Factorization of *p*-adic *L*-functions

The factorization

 $L(f_E \times g \times h, s) = L(f_E/K, \varphi, s) \cdot L(f_E/K, \psi, s) \qquad \varphi \coloneqq \eta_1 \eta_2, \psi \coloneqq \eta_1 \eta_2^{\sigma}$

suggests a factorization of the form

 $\mathscr{L}_{p}^{f}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}) = (\diamond) \cdot \mathscr{L}_{p}(\boldsymbol{f},\varphi) \cdot \mathscr{L}_{p}(\boldsymbol{f},\psi)$

- (\diamond) denotes an explicit factor never vanishing for k = 2.
- $\mathscr{L}_{p}(\mathbf{f},\varphi)$ (resp. $\mathscr{L}_{p}(\mathbf{f},\psi)$) denotes the two-variable anticyclotomic *p*-adic *L*-function interpolating the (square root of the algebraic part of the) special values $L(\mathbf{f}(k)/K,\varphi\nu,k/2)$ (resp. $L(\mathbf{f}(k)/K,\psi\nu,k/2)$), where ν is a suitable character of the anticyclotomic \mathbb{Z}_{p} -extension of K (cf. works of Bertolini-Darmon, Hsieh and Castella-Longo).

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations $\bullet \circ \circ$
0000	00	000	

Factorization of *p*-adic *L*-functions

The factorization

 $L(f_E \times g \times h, s) = L(f_E/K, \varphi, s) \cdot L(f_E/K, \psi, s) \qquad \varphi \coloneqq \eta_1 \eta_2, \psi \coloneqq \eta_1 \eta_2^{\sigma}$

suggests a factorization of the form

 $\mathscr{L}_{p}^{f}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h}) = (\diamond) \cdot \mathscr{L}_{p}(\boldsymbol{f},\varphi) \cdot \mathscr{L}_{p}(\boldsymbol{f},\psi)$

- (\diamond) denotes an explicit factor never vanishing for k = 2.
- $\mathscr{L}_{p}(\mathbf{f},\varphi)$ (resp. $\mathscr{L}_{p}(\mathbf{f},\psi)$) denotes the two-variable anticyclotomic *p*-adic *L*-function interpolating the (square root of the algebraic part of the) special values $L(\mathbf{f}(k)/K,\varphi\nu,k/2)$ (resp. $L(\mathbf{f}(k)/K,\psi\nu,k/2)$), where ν is a suitable character of the anticyclotomic \mathbb{Z}_{p} -extension of K (cf. works of Bertolini-Darmon, Hsieh and Castella-Longo).

Theorem (M., in progress)

The above factorization holds (in a precise sense).

The idea of the proof is to compare the interpolation formulas for both sides.

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations $0 \bullet 0$
0000	00	000	

(ロ)、(型)、(E)、(E)、 E) のQ(()

An application

A bit of context 0000	Our setting 00	<i>p</i> -adic interpolation 000	Applications and expectations ○●○
An application	on		
Assume that φ =	$\eta_1\eta_2$ is a quadration	tic character of <i>K</i> of co	nductor coprime to <i>p</i> .

One can use the theory of *optimal embeddings* to produce a so-called Heegner point $P_{\varphi} \in E(H_{\varphi})$ attached to φ .

A bit of context 0000	Our setting 00	<i>p</i> -adic interpolation 000	Applications and expectations ○●○
An application			
Assume that $\varphi = \eta_1 \eta_2$ is a quadratic character of K of conductor coprime to p.			

One can use the theory of *optimal embeddings* to produce a so-called Heegner point $P_{\varphi} \in E(H_{\varphi})$ attached to φ .

Corollary (factorization + previous works of Bertolini-Darmon)

If, moreover, $p\mathcal{O}_K$ divides the conductor of ψ and (as one expects in most cases) $L(f_E/K, \psi, 1) \neq 0$, then one can characterise the fact that P_{φ} is of infinite order in terms the non-vanishing of certain p-adic partial derivatives of $\mathscr{L}_p^f(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ at (2, 1, 1).

A bit of context 0000	Our setting 00	<i>p</i> -adic interpolation 000	Applications and expectations ○●○
An application	on		
Assume that $\omega =$	$n_1 n_2$ is a quadrat	tic character of K of cor	aductor coprime to p

One can use the theory of *optimal embeddings* to produce a so-called Heegner point $P_{\varphi} \in E(H_{\varphi})$ attached to φ .

Corollary (factorization + previous works of Bertolini-Darmon)

If, moreover, $p\mathcal{O}_K$ divides the conductor of ψ and (as one expects in most cases) $L(f_E/K, \psi, 1) \neq 0$, then one can characterise the fact that P_{φ} is of infinite order in terms the non-vanishing of certain p-adic partial derivatives of $\mathscr{L}_p^f(\mathbf{f}, \mathbf{g}, \mathbf{h})$ at (2, 1, 1).

Why do we need to pass to derivatives?

- (i) With the above hypothesis, the Euler factor $\mathscr{E}_p(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ vanishes at (2, 1, 1).
- (ii) In our setting $L(f_E/K, \varphi, s)$ has sign -1 (due to the Heegner hypothesis), hence $L(f_E/K, \varphi, 1) = 0$.

p-adic interpolation

Applications and expectations $_{\text{OO}}$

Towards a geometric interpretation

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < ○ < ○</p>

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations $00 \bullet$
0000	00	000	

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_p^f(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called *geometric balanced region*, i.e. for $k, l, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

A bit of context	Our setting	<i>p</i> -adic interpolation	Applications and expectations $\circ \circ \bullet$
0000	00	000	

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_p^f(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called *geometric balanced region*, i.e. for $k, l, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

The nice *p*-adic variation of such classes should allow to obtain a class $\kappa_{2,1,1}$ as a limit of geometric classes (note that (2,1,1) is NOT in the balanced region) and one expects to relate such a class to the behaviour of $\mathscr{L}_{p}^{f}(f, g, h)$ at (2,1,1).

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_{p}^{f}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called *geometric balanced region*, i.e. for $k, l, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

The nice *p*-adic variation of such classes should allow to obtain a class $\kappa_{2,1,1}$ as a limit of geometric classes (note that (2,1,1) is NOT in the balanced region) and one expects to relate such a class to the behaviour of $\mathscr{L}_{p}^{f}(f, g, h)$ at (2,1,1).

This approach is more general and can be applied to situations in which \boldsymbol{g} and \boldsymbol{h} are not necessarily families of theta series.

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a geometric interpretation/construction of $\mathscr{L}_{p}^{f}(\boldsymbol{f},\boldsymbol{g},\boldsymbol{h})$ in terms of diagonal cycles/classes on a product of three modular curves, in the so-called *geometric balanced region*, i.e. for $k, l, m \in \mathbb{Z}_{\geq 2}$ such that they can be the sizes of the edges of a triangle.

The nice *p*-adic variation of such classes should allow to obtain a class $\kappa_{2,1,1}$ as a limit of geometric classes (note that (2,1,1) is NOT in the balanced region) and one expects to relate such a class to the behaviour of $\mathscr{L}_{p}^{f}(f, g, h)$ at (2,1,1).

This approach is more general and can be applied to situations in which \boldsymbol{g} and \boldsymbol{h} are not necessarily families of theta series.

Main difficulty: one has to work with modular curves whose reduction modulo p is not smooth, so that the cohomological machinery becomes more complicated.