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A bit of context Our setting p-adic interpolation Applications and expectations

Motivation: equivariant BSD conjecture

We fix:

● E/Q an elliptic curve;

● ρ a self-dual Artin representation of GQ ∶= Gal(Q̄/Q) with coefficients in
L/Q finite extension and with kernel identified with Gal(Q̄/H) for H/Q
finite Galois extension.

One can define the so-called Hasse-Weil-Artin L-function L(E , ρ, s) attached to
(E , ρ). A priori it is only defined for Re(s) > 3/2 via a suitable Euler product.

Conjecture (Galois equivariant BSD conjecture)
The function L(E , ρ, s) admits analytic continuation and satisfies a functional
equation s ↔ 2 − s. Moreover:

ords=1L(E , ρ, s) = dimL (HomL[GQ](Vρ,E(H)⊗ L)) .
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From global to local

Spoiler
We are not going to prove the BSD conjecture today!

When the global picture is poorly understood, one can try to move to the local
setting and to implement p-adic methods.
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A p-adic strategy

Fix a prime number p. A possible p-adic strategy to shed some light on this sort
of problems can be described as follows.

STEP 1: construct a p-adic L-function via p-adic interpolation of (the algebraic
part of) special values of classical L-functions.

Key words: congruences, p-adic measures, interpolation range/region.

STEP 2: approach arithmetically meaningful p-adic L-values via p-adic limit
formulas and relate them to (local/hopefully global) points/cycles.

Key words: explicit reciprocity law, p-adic derivatives
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Our setting

● p ≥ 5 such that E has multiplicative reduction at p.

● We let K/Q be a quadratic imaginary field where p is inert and we consider
two Galois characters η1, η2 of K of conductor cprOK with c ∈ Z, (c,p) = 1
and r ≥ 1.

● We assume that η1 and η2 are not induced by Dirichlet characters and that
they have inverse central characters.

● We let ρ ∶= ρ1 ⊗ ρ2 where, for i = 1,2, ρi ∶= IndQ
K(ηi).

● The conductor NE of E is squarefree, coprime to the discriminant of K and
with an even number of prime divisors which are inert in K (Heegner
hypothesis).

● Minor technical assumptions.
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Some remarks

(i) There is a decomposition ρ ≅ IndQ
K(η1η2)⊕ IndQ

K(η1η
σ
2 ), where

⟨σ⟩ = Gal(K/Q).
(ii) ρ1 = ρg , ρ2 = ρh, where g (resp. h) is the theta series attached to η1 (resp.

η2). The newforms g and h have weight 1, level divisible by p2r and infinite
p-slope (i.e. ap(g) = 0 = ap(h)).

(iii) We can identify
L(E , ρ, s) = L(fE × g × h, s)

● fE ∈ S2(Γ0(NE)) newform attached to E via modularity.
● L(fE × g × h, s) Garrett-Rankin triple product L-function (for which

analytic continuation and functional equation are known!).

(iv) The decomposition in (i) yields a factorization

L(fE × g × h, s) = L(fE /K , φ, s) ⋅ L(fE /K , ψ, s) φ ∶= η1η2, ψ ∶= η1η
σ
2 .
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Families of modular forms I

We associate to fE the unique Hida family f passing through fE , i.e.

f =∑
n≥1

an(k)qn , an(k) ∈ Λf

where Λf is a suitable Iwasawa algebra (in this case Λf ≅ Zp[[T ]]) and one thinks
about the coefficients an(k) as p-adic analytic functions of the weight variable k.

The formal q-expansion f satisfies the following interpolation property:

(i) for all k ≥ 2,
f (k) ∶=∑

n≥1
an(k)∣k=kqn

is the q-expansion at the cusp ∞ of a p-ordinary modular form of weight k
and level NE ;

(ii) f (2) = fE .
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Families of modular forms II

One can similarly associate to g (resp. h) a p-adic family of modular forms g
(resp. h) passing through g (resp. h). The families g and h essentially come
from a p-adic deformation of the characters η1 and η2.

Remark
(i) There is no good general theory for families of ∞ p-slope.

(ii) The corresponding Iwasawa algebras Λg and Λh are bigger than Λf . More
precisely, they are abstractly isomorphic to a ring of the form OF [[X ,Y ]],
with F /Qp a large enough finite extension. The two variables morally come
from the fact that the units O×K ,p of the p-adic completion of OK are a rank
two Zp-module (up to torsion), since p is inert in K .
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Triple product p-adic L-function

Our aim is to interpolate p-adically (square roots of) the special values

Lalg(f (k) × g(l) × h(m), ck,l,m) ∈ Q̄

in the so-called f -unbalanced region, i.e. for k ≥ l +m and l ,m ∈ Z≥1.

Theorem (M., in progress)
There exists an element L f

p (f ,g ,h) ∈ Λf ⊗̂Zp Λg ⊗̂Zp Λh such that, for all
f -unbalanced triples (k, l ,m), it holds

(L f
p (f ,g ,h)(k, l ,m))

2 = Ep(f ,g ,h)(k, l ,m) ⋅ Lalg(f (k) × g(l) × h(m), ck,l,m) ,

where Ep(f ,g ,h)(k, l ,m) is an explicit Euler factor at p.

The main idea is to adapt the constructions of Darmon-Rotger and Hsieh for the
case in which also g and h are Hida families, relying on previous works of Hida
and on Ichino’s formula.
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Factorization of p-adic L-functions

The factorization

L(fE × g × h, s) = L(fE /K , φ, s) ⋅ L(fE /K , ψ, s) φ ∶= η1η2, ψ ∶= η1η
σ
2

suggests a factorization of the form

“L f
p (f ,g ,h) = (♢) ⋅Lp(f , φ) ⋅Lp(f , ψ)”

● (♢) denotes an explicit factor never vanishing for k = 2.
● Lp(f , φ) (resp. Lp(f , ψ)) denotes the two-variable anticyclotomic p-adic

L-function interpolating the (square root of the algebraic part of the) special
values L(f (k)/K , φν, k/2) (resp. L(f (k)/K , ψν, k/2)), where ν is a suitable
character of the anticyclotomic Zp-extension of K (cf. works of
Bertolini-Darmon, Hsieh and Castella-Longo).

Theorem (M., in progress)
The above factorization holds (in a precise sense).

The idea of the proof is to compare the interpolation formulas for both sides.
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● Lp(f , φ) (resp. Lp(f , ψ)) denotes the two-variable anticyclotomic p-adic

L-function interpolating the (square root of the algebraic part of the) special
values L(f (k)/K , φν, k/2) (resp. L(f (k)/K , ψν, k/2)), where ν is a suitable
character of the anticyclotomic Zp-extension of K (cf. works of
Bertolini-Darmon, Hsieh and Castella-Longo).

Theorem (M., in progress)
The above factorization holds (in a precise sense).

The idea of the proof is to compare the interpolation formulas for both sides.
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An application

Assume that φ = η1η2 is a quadratic character of K of conductor coprime to p.

One can use the theory of optimal embeddings to produce a so-called Heegner
point Pφ ∈ E(Hφ) attached to φ.

Corollary (factorization + previous works of Bertolini-Darmon)
If, moreover, pOK divides the conductor of ψ and (as one expects in most cases)
L(fE /K , ψ,1) ≠ 0, then one can characterise the fact that Pφ is of infinite order in
terms the non-vanishing of certain p-adic partial derivatives of L f

p (f ,g ,h) at
(2,1,1).

Why do we need to pass to derivatives?

(i) With the above hypothesis, the Euler factor Ep(f ,g ,h) vanishes at (2,1,1).
(ii) In our setting L(fE /K , φ, s) has sign −1 (due to the Heegner hypothesis),

hence L(fE /K , φ,1) = 0.
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Towards a geometric interpretation

Following works of Darmon-Rotger and Bertolini-Seveso-Venerucci, one expects a
geometric interpretation/construction of L f

p (f ,g ,h) in terms of diagonal
cycles/classes on a product of three modular curves, in the so-called geometric
balanced region, i.e. for k, l ,m ∈ Z≥2 such that they can be the sizes of the edges
of a triangle.

The nice p-adic variation of such classes should allow to obtain a class κ2,1,1 as a
limit of geometric classes (note that (2,1,1) is NOT in the balanced region) and
one expects to relate such a class to the behaviour of L f

p (f ,g ,h) at (2,1,1).
This approach is more general and can be applied to situations in which g and h
are not necessarily families of theta series.

Main difficulty: one has to work with modular curves whose reduction modulo p
is not smooth, so that the cohomological machinery becomes more complicated.
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