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1 Introduction.
The six functor formalism was formulated by Grothendieck to give a framework for the basic
operations and duality statements for cohomology theories. In brief, a six functor formal-
ism is a theory of coefficient systems relative to any scheme with a collection of six functors
f∗, f∗, f

!, f!,⊗,Hom which satisfy a set of relations. This formalism is usually formulated in
the language of triangulated categories. In [MV99], Morel and Voevodsky define the general
theory of A1-homotopy theory of schemes which incorporates homotopy theoryin the field of
algebraic geometry. To a scheme S, they associate a triangulated category SH(S) which is de-
fined by applying A1-localization and P1-stabilization to the category of simplicial Nisnevich
sheaves. Voevodsky and Ayoub ([Ayo07a] and [Ayo07b]) constructed a six functor formalism
of A1-homotopy theory. In this seminar, we study the extension of SH on a specific class
of algebraic stacks and the six functor formalism using the language of ∞-categories due to
Lurie ([Lur09]).

In order to motivate the need of language of ∞-categories, let us recall the six functor
formalism of derived categories of ℓ-adic sheaves over an algebraic stack. To an algebraic stack
X , one can define the derived category of the algebraic stack X as derived category of ℓ-adic
étale sheaves over X . For example, if X = BGm, then the derived category of BGm is the
derived category of Gm-equivariant ℓ-adic étale sheaves over a point. As the connected group
Gm cannot act non-trivially on locally constant sheaves, this is equivalent to the category
of sheaves over a point. Thus this naive definition implies that D(BGm) is equivalent to the
derived category of a point. But we have

H∗(BGm) ∼= Ql[c]

where c is in degree 1 ([Tot99]).

In [LO08b] and [LO08a], Laszlo and Olsson define derived categories of algebraic stacks
and construct the six functor formalism using the lisse-étale topos. They use simplicial meth-
ods to to construct the derived category that gives the expected answer for the cohomology of
BGm. The fact that the lisse-étale topos is not functorial makes the construction of derived
pullback bit technical.The language of ∞-categories allows us to circumvent this problem.

In [LZ17], Liu and Zheng construct a six functor formalism of derived ∞-categories of
ℓ-adic sheaves for any algebraic stack. To any scheme X, the derived ∞-category Det(X,Ql)
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is the ∞-categorical enhancement of the usual derived category. The major advantange of
the ∞-categorical language is that the derived ∞-category satisfies étale descent. For any
algebraic stack X , the ∞-category Det(X ,Ql) consturcted by Liu and Zheng is isomorphic to
the limit of derived ∞-categories over Čech nerve of any atlas x : X → X . In other words, we
have

Det(X ,Ql) ∼= lim
(

Det(X,Ql) Det(X×X X,Ql) Det(X×X X×X X,Ql) · · ·
)

(1)
where the maps in the limit are the derived pullback maps. Their construction uses abstract
descent theory of the language of ∞-categories. This also allows to construct the pullback
functor in a canonical way. Morever, they prove that their formalism agrees with the one
introduced by Laszlo and Olsson once one passes to homotopy categories of the derived ∞-
categories. Thus the language of ∞-categories seem advantageous to extend ∞-sheaves from
schemes to algebraic stacks. We shall use a similar technique in our setting of motivic homo-
topy theory but in this case extra care is needed because motivic invariants usually do not
satisfy étale descent.

To a Noetherian scheme of finite Krull dimension S, the motivic stable homotopy category
SH⊗(S) is a presentable stable symmetric monoidal ∞-category (we refer to [Rob15] for the
notations). The functorial assignment makes SH⊗ into a functor

SH⊗ : N(Schfd)
op → CAlg(PrLstb) (2)

where the target is the ∞-category of stable presentable symmetric monoidal ∞-categories.
As mentioned above, we cannot use equation Eq. (1) as a definition of SH⊗ for an algebraic
stack because SH⊗ does not satisfy étale descent and thus Eq. (1) would depend on the choice
of the atlas X. This problem problem by specifying a class of smooth atlases for which we
can prove descent. The resulting class of (2, 1)-category of algebraic stacks Nis-locSt consists
of algebraic stacks which admit an atlas admitting Nisnevich-local sections. This includes all
quasi-compact, quasi-separated algebraic spaces, quotient stacks [X/G] where G is an affine
algebraic group, local quotient stacks, the moduli stack of vector bundles Bunn, the moduli
stack of G-bundles BunG and moduli space of stable maps. Using the formulation of enhanced
operation map ([LZ17]), we also manage to extend the six functor formalism from schemes to
Nis-locSt. The main result is as follows:

Theorem 1.1. [Cho, Theorem 5.5.1] The functor SH⊗(−) extends to a functor

SH⊗
ext : N

D
• (Nis-locSt)op → CAlg(PrLstb).

Morever,

1. For any X ∈ Nis-locSt, there exist functors ⊗,Hom : SHext(X )×SHext(X ) → SHext(X ).

2. For any morphism f : X → Y in Nis-locSt, there is a pair of adjoint functors

f∗ : SHext(Y) → SHext(X ) , f∗ : SHext(X ) → SHext(Y).
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3. For a morphism f : X → Y in Nis-locSt which is separated of finite type and representable
by algebraic spaces, there is a pair of adjoint functors

f! : SHext(X ) → SHext(Y) , f! : SHext(Y) → SHext(X ).

These functors restrict to the known functors on the category of schemes. Furthermore,
the projection formula, base change, localization, homotopy invariance and purity extend to
Nis-locSt.

Along with this theory, we shall also briefly study the equivariant motivic homotopy the-
ory due to Hoyois ([Hoy17]), the motivic homotopy theory on scalloped algebraic stacks as
well as limit-extended cohomology theories due to Khan and Ravi([KR21]).

The seminar is divided into three parts. The first part consists of prereuqisite material
that we need to define SH⊗

ext(−) and the six functors. This includes a short introduction to
presentable stable symmetric monoidal ∞-categories, reviewing the definition of motivic ho-
motopy theory of schemes in ∞-categorical setting ([Rob14]) and algebraic stacks (especially
local quotient stacks).
The second part deals with defining SH⊗

ext(X ) and understanding the six functors associated
to it ([Cho]). This in particular shall include the so called enhanced operation map due to Liu
and Zheng ([LZ17]) which will be used for constructing the exceptional functors and proving
projection formula, base change.
In the last part, we discuss the equivariant motivic homotopy theory ([Hoy17]) and the gen-
eralized cohomology theories on algebraic stacks ([KR21]).

2 Outline of the talks.

Part 1: Prerequisites.

2.1 Talk 1: Overview of the seminar (12/10/21).
2.2 Talk 2: Introduction to ∞-categories (19/10/21).
Overview: In this talk, we recall the basic notion of ∞-categories. We shall begin with re-
calling the definition and introduce basic terminologies like objects, morphisms, compositions,
homotopy category, initial/final objects, limits and mapping spaces. The two main examples
of ∞-categories that we are interested in arise from simplicial categories and 2-categories. We
shall end the talk by recalling the notion of fibrations of simplicial sets, categorical equivalence
and Cartesian fibrations.

References: [Lur09, Chapter 1-2], [Lur18a, Chapter 1, 2.2,2.3] and [Rez, Part 4].

Outline: Briefly motivate the notion of ∞-categories ([Lur18a, Pages 11-13]). Define
simplicial sets and the simplicial sets ∆n, ∂∆n and Λn

I ([Lur18a, Section 1.1.1-1.1.2]). Define∞-categories and state the examples of Singular complex and the nerve of a small category
([Lur18a, Section 1.3.0]). Define objects, morphisms ([Lur18a, Definition 1.3.1.1]), homotopies
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of morphisms([Lur18a, 1.3.3]), composition of morphisms ([Lur18a, 1.3.4]), homotopy cate-
gory ([Lur18a, 1.3.5]), mapping space, over and undercategories and limits ([Lur09, Chapter
1]). If time permits, briefly explain the homotopy category of Sing•(X).
Define simplicial categories and briefly describe the homotopy coherent nerve C[−] ([Lur09,
Chapter 1]). Define 2-categories and briefly describe the Duskin nerve of a 2-category ([Lur18a,
Section 2.2-2.3]). State [Lur18a, Theorem 2.3.2.1]. Define the ∞-category of spaces ([Lur09,
Section 1.8]) and the ∞-category of ∞-categories Cat∞ ([Lur09, Chapter 3]).
Define various notions of fibrations of simplicial sets ([Lur09, Chapter 2]). Define the notion
of Cartesian morphisms and Cartesian fibrations([Lur09, Section 2.3]) and try to motivate it
as analog of cartesian morphisms in the setting of fibered categories.
Define categorical equivalence and state some examples ([Rez, Part 4]).

2.3 Talk 2: Presentable stable ∞-categories(26/10/21).
Overview: In this talk, we define the notion of presentability and stability in the setting
of ∞-categories. The talk shall start by recalling the notion of presheaves, Yoneda lemma
and adjoint functors in the setting of ∞-categories. We then move on defining presentable∞-categories by filtered categories and ind-objects. We briefly recall the notion of ∞-sheaves.
The talk ends by defining the notion of stable ∞-categories and the ∞-category of presentable
stable ∞-categories PrLstb.

References: [Lur09], [Lur17] and [Lur18b].

Outline: Define the ∞-category of presheaves ([Lur09, Definition 5.1.0.1]) and briefly ex-
plain the Yoneda embedding j ([Lur09, 5.1.3]). State [Lur09, Proposition 5.1.3.1] and [Lur09,
Corollay 5.1.58]. Define adjoint functors by [Lur09, Definition 5.2.2.7] and [Lur09, Propo-
sition 5.2.2.8]. Define adjointable squares ([Lur17, Definition 4.7.4.13]) and ∞-categories
FunLAd(S,Cat∞), FunRAd(S,Cat∞)) ([Lur17, Definition 4.7.4.16]). State [Lur17, Corollary
4.7.4.18 (3)].
Define filtered ∞-categories ([Lur09, Definition 5.3.1.7]), explain [Lur09, Example 5.3.1.8]
and state some properties ([Lur09, Lemma 5.3.1.12, 5.3.1.18]). Define the ∞-category of
Ind-objects by [Lur09, Corollary 5.3.5.4] and state [Lur09, Proposition 5.3.5.10]. Define pre-
sentable ∞-categories ([Lur09, Theorem 5.5.1.1 (4)]) and state examples ((see [Cho, Theorem
5.5.1] for a complete statement)[Lur09, Example 5.5.1.8] and [Lur17, Corollary 4.7.4.18 (1)]).
Explain the representable functors ([Lur09, 5.5.2]) and state [Lur09, Proposition 5.5.1.9].
State the adjoint functor theorem ([Lur09, Corollary 5.5.2.9]). Define the ∞-categories PrL
and PrR ([Lur09, Definition 5.5.3.1]) and state [Lur09, Corollary 5.5.3.4 , Proposition 5.5.3.13,
Theorem 5.5.3.18].
Define pointed ∞-categories, fibers and cofibers ([Lur17, Definition 1.1.1.1-Definition 1.1.1.6]).
Try to motivate the definition of fibers and cofibers as kernels and cokernels when C is nerve
of an ordinary category. Define stable ∞-categories ([Lur17, Definition 1.1.1.9]). State some
examples ([Lur17, Example 1.1.1.11, 1.1.1.12]). Briefly explain suspension and loop func-
tors ([Lur17, Page 24]). State [Lur17, Theorem 1.1.2.14] and explain why the ∞-category of
presentable stable ∞-categories admits small limits.
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2.4 Talk 3: Symmetric monoidal ∞-categories and module objects. (2/11/21).
Overview: In this talk, we define the algebra and module objects in the setting of ∞-
categories. In particular, we are interested in defining symmetric monoidal ∞-categories. In
order to make sense of these notions, we start by defining ∞-operads which are generalized
notions of colored operads. Symmetric monoidal ∞-categories are special kinds of ∞-operads.
The talk ends by defining module objects over ∞-operads and explaning a higher categor-
ical generalization of the fact that a morphism between algebra objects A → B gives B an
A-module structure..

Reference: [Lur17, Chapter 2,3] and [Rob14, Section 9.4.1.2].

Outline: Motivate the definition of C⊗ associated to a symmetric monoidal category C
([Lur17, Construction 2.0.0.1]) and briefly describe the properties of the forgetful functor
p : C → Fin∗. ([Lur17, 166-168]). Define ∞-operads ([Lur17, Definition 2.1.1.10]), state
[Lur17, Remark 2.1.1.12] and state examples ([Lur17, Example 2.1.1.18, 2.1.1.20]). Define
maps of ∞-operads ([Lur17, Definition 2.1.2.7]). Define symmetric monoidal ∞-categories
([Lur17, Definition 2.0.07] or [Lur17, Example 2.1.2.18]) and explain [Lur17, Remark 2.1.2.20,
Example 2.1.2.21]. Define the ∞-category of commutative algebra objects ([Lur17, Definition
2.1.3.1]) and state [Lur17, Example 2.1.3.2 ]. State the existence of the symmetric monoidal∞-category C⨿ associated to a category admitting finite coproducts ([Lur17, Construction
2.4.3.1]).
Define the ∞-operad Pf⊗ ([Rob14, Definition 9.4.1.2]) and define module objects over a sym-
metric monoidal ∞-category by [Rob14, Eq 9.4.44]. Describe the map Pf⊗ → ∆[1]⨿ and
explain how a morphisms of algebra objects induces a module structure ([Rob14, 9.4.1.2]).

2.5 Talk 4: Motivic homotopy theory of schemes(9/11/21).
Overview:In this lecture, we shall define the motivic homotopy theory of schemes in the
language of ∞-categories. We shall briefly recall the definition of unstable, pointed and sta-
ble homotopy theory. Then we recall the functoriality and six operations. We shall state
the existence of the exceptional pushforward functors without proving them. This shall be
later explained while discussing the enhanced operation map in Talk 10. The talk ends by
stating properties like localization, homotopy purity, homotopy invariance and explaining the
construction of αf and purity transformation ρf.

References: [Rob14], [CD19] and [Hoy17].

Outline: Define unstable motivic homotopy category ([Rob14, Section 5.1]) and state
[Rob14, Theorem 5.1.2]. Explain how the cartesian structure in H(S) can be transferred into
a symmetric monoidal structure in H(S)∗ and defined the pointed unstable motivic category
([Rob14, Section 5.2]).
Before defining SH⊗(S), recall the inversion of objects in symmetric monoidal ∞-category
([Rob14, Section 4.2.2]). In particular, state and give a brief idea of [Rob14, Theorem 4.2.5].
Define symmetric objects ([Rob14, Definition 4.2.7] and state [Rob14, Theorem 4.2.10, Corol-
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lary 4.2.13].
Define stable motivic category ([Rob14, Definition 5.3.1]) and state [Rob14, Corollay 5.3.2].
State [Rob14, Proposition 5.3.3] by briefly explaining the notion of compact generators ([Rob14,
Section 2.1.23]).
State the six operations and relations between them ([Hoy17, Theorem 6.18, Propsition 6.24]
taking G to be trivial). State smooth (proper) base change and projection formula ([Rob14,
Example 9.4.6]). Explain the construction of αf ([CD19, Proposition 2.2.10]) and purity
transformation ρf ([Rob14, Section 9.4.2.4]).

2.6 Talk 5: Algebraic stacks (16/11/21).
Overview: In this talk, we discuss the notion of algebraic spaces and algebraic stacks. We
also discuss some examples of algebraic stacks like local quotient stacks, moduli stack of vector
bundles. We also define the deformation to the normal cone in the setting of algebraic stacks.
The talk ends by discussing the notion of resolution property of algebraic stacks.

References: [Sta21], [Knu71], [Hei10], [LMB00] [Tot04] and [Gro17].

Outline: Define algebraic spaces and algebraic stacks ([Knu71], [Sta21, Part 7] or [Hei10]).
Motivate the definition of algebraic stacks by group actions on a scheme and hence defining
quotient stacks. Give other examples of algebraic stacks like moduli space of vector bundles
([Hei10, Example 1.14]). Define geometric properties on stacks and morphisms of stacks
([Hei10, Section 2.1]). Define local quotient stacks ([FHT11]). State the result of Totaro
stating that stacks admitting resolution property are quotient stacks ([Tot04, Theorem 1.1]).
Define normal bundle, blow-up and deformation to normal cone for a closed immersion of
algebraic stacks by local constructions ([LMB00, Section 14]).

Part 2: The functor SH⊗
ext(−).

2.7 Talk 6: Descent along sections (23/11/21).
Overview: In this talk, we recall the ∞-categorical setup generalizing the classical state-
ment that descent along morphisms admitting sections is automatic. The talks by recalling
the classical statement in ordinary category theory using the notion of split forks. Then we
move in explaining the skeletal descriptions of simplicial category ∆, augmented simplicial
category ∆+ and the split-simplicial category ∆−∞. The talks end by stating the main result
which is due to [Lur09, Lemma 6.1.3.16].

References: [Lur09, Section 6.1] and [Cho, Chapter 2].

Outline: Define fork, equalizer and give examples ([Cho, Definition 2.1.1, Example 2.1.2]).
Define split forks ([Cho, Definition 2.1.3]), prove [Cho, Lemma 2.1.4] and state [Cho, Example
2.1.5, Remark 2.1.6].
Define augmented simplicial (∆+) and split-simplicial category (∆−∞) ([Cho, Definition 2.1.1-
2.2.2]). Describe the skeletal description of ∆ and ∆+ ([Cho, Remark 2.2.7 ]) by stating the
simplicial identites and proving [Cho, Proposition 2.2.5, Corollary 2.2.6]. Define splitting
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maps ([Cho, Notation 2.2.8]) and describe the skeletal description of ∆−∞ ([Cho, Remark
2.2.11]) by [Cho, Proposition 2.2.9, Corollary 2.2.10].
Define simplicial, augmented and split-simplicial objects ([Cho, Definition 2.2.12]). Moti-
vate the relevance of split-simplicial objects via the Dold-Kan correspondence ([Cho, Section
4.7.2]). Prove [Cho, Lemma 2.2.14].
State [Lur09, Lemma 6.1.3.16] (give an idea of the proof if possible) and prove [Lur09, Corol-
lary 2.3.2].

2.8 Talk 7: Kan extensions, descent theory and localization of ∞-categories
(30/11/21).

Overview: In this lecture, we recall some important notions in higher category theory that
we need for proving [Cho, Theorem 3.4.1] which allows us to extend sheaves from schemes to a
large class of algebraic stacks. We start the talk by introducing the notion of Kan extensions
in the setting of ∞-categories. Kan extensions allow us to associate limits of diagrams in a
functorial manner. The second part of the lecture introduces the notion of descent theory
and states specific conditions when ∞-sheaves can be realised by descent along Čech nerves
of coverings. The last part of the lecture reviews localization of ∞-categories and explains
the existence of localization along any class of morphisms.

References: [Lur09, Section 4.2,5.5], [Lur18b, Appendix A 3.1-3.3],[Cho, Appendix A]
and [Lan21, Section 2.4].

Outline: Define relative colimits ([Lur09, Definition 4.3.1.1]) and give examples ([Lur09,
Example 4.3.1.3, Example 4.3.1.4]). Define Kan extensions along inclusions ([Lur09, Definition
4.3.2.2]) and give example ([Lur09, Example 4.3.2.4]). State [Lur09, Proposition 4.3.2.9] and
explain the functorial association of limits of diagrams by stating [Lur09, Corollary 4.3.2.16].
Prove commutativity of limits ([Lur09, Lemma 5.5.2.3]).
Define finitary Grothendieck topologies ([Lur18b, Definition A.3.1.1]) and explain how one
gets finitary Grothendieck topologies by some conditions on coverings ([Lur18b, Proposition
A.3.2.1]). Explain that sheaf condition in finitary Grothendieck topologies can be studied by
descent along Čech nerves of coverings ([Lur18b, Proposition A.3.3.1]). Define the notion of
F-descent [Cho, Definition A.16.7] and prove [Cho, Lemma A.16.8].
Define localization of ∞-categories ([Lan21, Definition 2.4.2]). State an example of localization
([Lan21, Lemma 2.4.5]) and briefly explain the existence of localizations along any class of
morphisms ([Lan21, Lemma 2.4.6]).

2.9 Talk 8: Enhancement of sheaves along coverings with local sections
(7/12/21).

Overview: In this talk, we prove [Cho, Theorem 3.4.1] and thus extend the stable homotopy
functor SH⊗(−) from schemes to the (2, 1)-category Nis-locSt. The talk starts by introducing
T -local sections in a site (C, T ) and stating some properties. We then move to defining the
(2, 1)-category of stacks admitting T -local sections of which the category of qcqs algebraic
spaces and the (2, 1)-category Nis-locSt are examples. We state [Cho, Theorem 3.4.1] and
explain the proof using the theory of Kan extensions and localizations explained in the pre-

7



vious lecture. The lecture ends defining the functor SH⊗
ext(−) ([Cho, Corollary 3.5.3]) and

constructing the four functors f∗, f∗,−⊗− and Hom(−,−) on Nis-locSt.

References: [Cho, Chapter 3].

Outline: Define a morphism admitting T -local sections ([Cho, Definition 3.1.1]). State
[Cho, Example 3.1.2] and [Cho, Lemma 3.1.3]. State [Cho, Corollary 3.1.4] and prove [Cho,
Proposition 3.1.5].
Define the category of stacks admitting T -local sections ([Cho, Definition 3.2.1]) and explain
or state the properties of this category ([Cho, Remark 3.2.2-Lemma 3.2.8]). Define Nis-locSt
([Cho, Notation 3.3.2]). State [Cho, Lemma 3.3.3-3.3.4] and give examples of algebraic stacks
which belong to Nis-locSt ([Cho, Corollary 3.3.6-3.3.11]) (try to explain why quotient stacks
belong to this category).
State the main theorem ([Cho, Theorem 3.4.1]) and explain the idea of the proof of the
theorem by proving [Cho, Proposition 4.3.2]. Complete the proof of [Cho, Theorem 3.4.1].
Prove [Cho, Corollary 3.5.3] and explain the four functors on SH⊗

ext(X ) ([Cho, Notation
3.5.6-Notation 3.5.9]).

2.10 Talk 9: Compactification in the setting of ∞-categories (14/12/21).
Overview: In this talk, we give a brief idea of Deligne’s compactification in ∞-categorical
setting due to Liu and Zheng ([LZ12]). The talks starts with a brief recall of Deligne’s argu-
ment of constructing the exceptional pushforward f! in étale cohomology. The rest of talk is
introducing the terminology of multi-marked and multi-tiled simplicial sets which is needed to
state the theorem of ∞-categorical compactification ([LZ12, Theorem 0.1]) and constructing
the enhanced operation map (which shall be done in the next talk). The talk ends with a
brief sketch of the idea of [LZ12, Theorem 0.1].

References: [Del73, Section 3][LZ12] and [Cho, Section 4.2, Appendix D].

Outline: Briefly describe Deligne’s argument of glueing pseudo-categories ([Del73, Section
3, Expose XVIII]).Motivate the need of multi-simplicial sets ([Cho, Section 4.1, Appendix D])
Define multi-simplicial sets and the functors δk∗, δ

∗
k, ϵ

I
J. Explain these functors in case k = 2

([Cho, Example 4.2.5]). Define I-marked simplicial set ([LZ12, Definition 3.9]), the functors
δ∗I+, δ

I+
∗ ([Cho, Notation 4.2.8]). Define the restricted I-simplicial nerve ([LZ12, Definition

3.10]) and explain it with [Cho, Example 4.2.10]. Define I-tiled simplicial set ([LZ12, Definition
3.12]), the functors δ∗I□, δI□∗ ([Cho, Notation 4.2.12]) and the Cartesian I-simplicial nerve
([Cho, Definition 4.2.14]) with [Cho, Example 4.2.15].
State [LZ12, Theorem 0.1]. State [Corollary D.1.4] [Cho] and explain [Cho, Remark D.1.5].
Explain the basic idea of the proof of [LZ12, Theorem 0.1] ([Cho, Remark D.1.8]).
If time permits, describe the simplicial sets Cptn , □n, K ptα(τ)([LZ12, Section 4]) and the
basic idea of why the map pcomm is a categorical equivalence ([Cho, Appendix D.1.4]).
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2.11 Talk 10 : Enhanced operations for stable homotopy theory of algebraic
stacks (21/12/21).

Overview: In this talk, we extend the exceptional pushforward and pullback functors f! and
f! from schemes to Nis-locSt. This is extended by the so called enhanced operation map due
to Liu and Zheng ([LZ17, Section 2.2]). The talk starts with recalling the setting of six op-
erations with smooth (and proper) base change and projection formula on the level schemes
and constructs the enhanced operation map. Then we explain how the enhanced operation
map encodes the exceptional pushforward functors, base change and projection formula. The
rest of talk deals with explaining extending the enhanced operation map from schemes to
Nis-locSt ([Cho, Proposition 4.4.2]) with a brief sketch of the proof.

References: [Cho, Chapter 4, Appendix D], [LZ17, Section 1, Section 3] and [Rob14,
Section 9.4].

Outline: State the general setup of six operations ([Cho, Notation 4.3.1]). State the
statement of partial adjoints ([Cho, Theorem D.2.1]) and explain it via examples ([Cho,
Remark D.2.2] and [LZ17, Remark 1.4.5]). Explain the construction of the enhanced operation
map ([Cho, Appendix D.3] and [Rob14, Section 9.4.1.3]).
Explain how the enhanced operation map encodes the extraordinary pushforward map and
encodes projection formula and base change ([Cho, Section 4.3.2]). State [Cho, Theorem
4.1.1]State and give a brief idea of the proof by stating [Cho, Proposition 4.4.2].

2.12 Talk 11: Six operations for SHext(X ) (11/01/22) .
Overview: In this talk, we prove relations between the six operations that we enocuntered
in the previous talks in particular; localization, homotopy invariance and homotopy purity.
The talk starts with proving smooth and proper base change and then move on to prove local-
ization and homotopy invariance. We construct the natural transformations αf and ρf. The
talks ends with proving the homotopy purity theorem via the deformation to the normal cone.

References: [Cho, Chapter 5].

Outline: Prove the conservativeness of pullback map ([Cho, Lemma 5.1.1]) and proof
smooth/proper base change ([Cho, Proposition 5.1.2]). Prove localization and homotopy in-
variance ([Cho, Section 5.2]).
Define compactifiable morphisms ([Cho, Definition 5.3.1]) and construct the natural transfor-
mation αf ([Cho, Proposition 5.3.3]).
Prove the purity theorem ([Cho, Proposition 5.4.1]) and describe the explicit description of
Σf by the deformation to the normal cone ([Cho, Proposition 5.4.5-Corollary 5.4.7]).
If time permits, explain [Cho, Remark 5.4.8].

Part 3: Other constructions.
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2.13 Talk 12: Equivariant motivic homotopy theory (18/01/22).
Overview: In this talk, we recall the equivariant motivic homotopy theory due to Hoyois
([Hoy17]). The talk starts with defining the unstable homotopy category HG(S) and stating
the importance of tame condition of group scheme while constructing the purity isomorphism.
We state functoriality,smooth and proper projection formula and define the pointed motivic
homotopy category HG

• (S) and stating the unstable ambidexterity map. The talk ends with
defining the equivariant stable homotopy theory SHG(S) and stating the six operations and
descent properties of SHG(−).

References: [Hoy17].
Outline: Will be written later.

2.14 Talk 13: Generalized cohomology theories of algebraic stacks (25/01/22).
Overview: In this talk, we recall the construction of generalized cohomology theories on
scalloped algebraic stacks and also define limit-extended cohomology theories.

References: [KR21].

Outline: Will be written later.
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