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Abstract. — This article constructs a 3-variable balanced diagonal class k(f, g, h)
in the cohomology of the Galois representation associated to a self-dual triple (f, g, h)
of p-adic Hida families. Its first main result (Theorem A of Section 1.1) establishes an
explicit reciprocity law relating x(f, g, h) to the unbalanced Garrett—Rankin p-adic L-
function attached to (f, g, h). The class &(f, g, h) arises from the p-adic interpolation
of diagonal classes in the Bloch-Kato Selmer groups of the specialisations of (f, g, h)
at balanced triples of classical weights. As a consequence, the value of k(f,g,h) at
a specialisation (f,g,h) of (f,g,h) at an unbalanced triple of classical weights is a
p-adic limit of crystalline classes. Our second main result (Theorem B of Section
1.2) shows that the obstruction to the crystallinity of an appropriate derivative of
k(f,g,h) at (f,g,h) is encoded in the central critical value of the complex L-function
of f®g® h.
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1. Description and statement of results

The reciprocity laws alluded to in the title of this work concern the diagonal class
arising in the cohomology of the big Galois representation attached to a self-dual
triple of Hida p-adic families of cusp forms. Our construction of this class builds on
the push-forward of a canonical generator of an invariant space of locally analytic
functions along the diagonal morphism of a modular curve into the corresponding
triple-product threefold. It constitutes a crucial step towards the proof of the main
results of this paper and of those of our other contribution [BSV20a] to the present
volume.

The specialisations of the diagonal class at triples of classical weights in the so-
called balanced region, in which each weight is strictly smaller than the sum of the
other two, give rise to cohomology classes admitting a similar description in terms
of invariant theory which are closely related to diagonal cycles in Chow groups of
Kuga—Sato varieties. As a consequence, the diagonal class belongs to a big Selmer
group, called the balanced Selmer group, which interpolates in the geometric region
of balanced weights the Bloch—Kato Selmer groups of the triple tensor product rep-
resentations of the corresponding modular forms.

The first main result of this paper — Theorem A of Section 1.1 — pertains to the
specialisation of the diagonal class to the three unbalanced regions where one weight
is at least equal to the sum of the other two. The explicit reciprocity laws proved
therein identify the image of the diagonal class by a branch of the Perrin-Riou big
logarithm corresponding to the choice of unbalanced region as the 3-variable p-adic
L-function interpolating the central critical values of the Garrett—Rankin complex
L-functions attached to the triples of weights in that region.

Our second main result — Theorem B of Section 1.2 — proves that the specialisation
of the diagonal class at an unbalanced point is crystalline at p if and only if the
corresponding central critical value is zero. This criterion follows directly from the
reciprocity law of Theorem A combined with Jacquet’s conjecture proved by Harris—
Kudla when the p-adic L-function for the corresponding unbalanced region does not
have an exceptional zero in the sense of Mazur—Tate-Teitelbaum. The exceptional
cases can only occur at unbalanced triples in which the modular form of dominant
weight is multiplicative at p. These subtler cases require the proof of an exceptional
zero formula for the 3-variable p-adic L-function, combined with an analysis of the
derivatives of the Perrin-Riou logarithm at the unbalanced point and the costruction
of an improved class.

Applications to the arithmetic of elliptic curves obtained from instances of the
exceptional case constitute the object of the main results of our other contribution
[BSV20a] to this volume, and represent one motivating feature of the present work.
The Hida families considered in this setting respectively interpolate the weight-two
modular form attached to an elliptic curve A over the rational numbers and two
weight-one theta series associated to the same quadratic field K and subject to natural
arithmetic conditions. In this setting, we establish a factorisation of the triple product
p-adic L-function along the line (k,1,1) as a product of two Hida—Rankin p-adic L-
functions attached to A/K, which implies a relation between the fourth derivative
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at weights (2,1,1) of the former p-adic L-function and the product of the second
derivatives at k = 2 of the latter. This translates into a formula for the Bloch—Kato
logarithm of the specialisation of the diagonal class at (2,1,1) as a product of formal
group logarithms of Heegner points or Stark—Heegner points, depending respectively
on whether K is imaginary quadratic or real quadratic. This result provides a bridge
between the diagonal class arising from the geometry of higher dimensional varieties
and the theory of rational points on elliptic curves, lending also some support to the
conjecture on the rationality of Stark—Heegner points.

1.1. The three-variable reciprocity law. — Fix a prime p > 5, algebraic clo-
sures Q and Q, of Q and Q, respectively, and embeddings Q — Q, and Q — C.
Let L be a finite extension of Q, and let

FF= an(k)-q" € O(Up)[d],

gt= an(l) q" € O(Ug)[[CI]]
and h'= Z cn(m) - q" € O(Un)[q]

be primitive, L-rational Hida p-adic families of modular forms of tame conductors
Ng, Ng and Ny, centres ko, l, and m, and tame characters x ¢, xg and xp respectively
(cf. Section 5). Here Ny is a positive integer coprime to p, Uy is an L-rational open
disc centred at k, € Z>1 in the p-adic weight space W, and O(Uy) is the ring of
analytic functions on Us. For each k in Uf' = {k € Ut NZ>s | k =k, mod 2(p— 1)}
the weight-k specialisation f} = > ons1an(k)-q" € LIglNSk(Ngp, x5) is a p-stabilised
newform of weight k, level I'1 (Ng) N 'o(p) and character xf. In particular the p-th
Fourier coefficient a,(k) is a unit in the ring Ay of functions a € O(Uy) satisfying
|a(z)|, < 1forallz € Up. If k > 2 then fj is the ordinary p-stabilisation of a newform
fiin Si(Ng,xf). If k = 2 then either f5 = fi is new or it is the p-stabilisation of a
newform f5 of level Ny. A similar discussion applies to g* and h*.

Let (&, u,) denote one of pairs (f*, k,), (g*,1,) and (h*,m,). If u, = 1, then the
weight-one specialisation &% of &* is a cuspidal-overconvergent (but not necessarily
classical) ordinary modular form. Throughout the paper we make the following

Assumption 1.1. — Ifu, = 1, then ﬂ 18 a p-stabilisation of a classical, cuspidal
and p-regular newform of level 'y (Ng), without real multiplication by a quadratic field
in which p splits.

A weight-one eigenform has real multiplication if it is equal to the theta series
Uy =D x(a)- ¢ associated with a ray class character x of a real quadratic field
K, where a runs over the non-zero ideals of Og and Na = |Ok/a|. Moreover, a
normalised weight-one eigenform £ = 3, - an(§) - ¢" of level I'1 (Ng) and character
Xe is said to be p-regular if its p-th Hecke polynomial X2 — a,(€) - X + xe(p) is
separable. We refer to Remarks 1.4 and to Section 5 below for explanations on the
relevance of Assumption 1.1 for the main results of this paper.
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Let N be the least common multiple of N¢, Ng and Np. A level-N test vector
for (f*, g%, h*) is a triple (f, g, h) of Hida families of common tame level N, having
(f*, g% h*) as associated triple of primitive families (cf. Section 5). For each k in
U;l the weight-k specialisation f, of f is an ordinary cusp form of weight k, level
I''(N)NTy(p) and character x ¢, which is an eigenvector for U, and Ty for all primes
¢t Np, with the same eigenvalues as f{. Similarly for g and h. Fix a level-N test
vector (f,g,h) for (f*, g% h*).

We make throughout this paper the following crucial self-duality assumption.

Assumption 1.2. — xf-Xg - Xh = 1.

Set ¥ = U x U x Uy!, where Uf' = Uf' U {ko} (so that U§' = Ug" if k, > 2),
and Ugl and U, ¢l are defined similarly. Assumption 1.2 implies that k + [ 4+ m is an
even integer for all w = (k,l,m) in UJS1 x U x Ug!, hence ¢, = (k+1+m —2)/2 is
a positive integer. Let ¥ ¢ be the set of w in ¥ such that k& > [ + m, define similarly
Y4 and Xp, and denote by Yy, the complement in X of the union of X ¢, g and Xy,
One calls Xy, the balanced region.

Denote by £ one of the symbols f,g and h and correspondingly by £ one of f,g
and h. Let 0 = A¢[1/p] be the space of bounded analytic functions on U and set
Ofgh = ﬁf@)Lﬁg@Lﬁh. Associated with (f, g, h) one has:

o Garrett-Rankin square root p-adic L-functions fp'f(f,g,h) in Opgn, interpo-
lating the square roots of the central critical values L(f{ ® g} ® h%,,cy) of
the complex Garrett—Rankin L-functions L(ff ® g; ® hi,, s) for classical triples
w = (k,l,m) in the region ¥¢ (cf. Remark 1.8(1) and see Section 6 for details).

e An Ojgp-adic representation V(f,g,h) of Gq = Gal(Q/Q), satisfying the
following interpolation property (cf. Section 7.2). For each classical triple
w = (k,l,m) in X let V(f{,g},hi,) be the central critical twist (i.e. the ¢,-th
Tate twist) of the tensor product of the Deligne representations of f}, g/ and h,.
Then the base change V(f;,9;, hym) of V(f,g,h) under evaluation at (k,I,m)
on Opgp is isomorphic to @;_, V(fi, g}, h%,), for some integer a > 1 which is
independent of (k,l,m) € ¥ (cf. Section 7.2).

o A balanced Selmer group HL ,(Q,V(f,g,h)) C HY(Q,V(f,g,h)), which in-
terpolates the Bloch—Kato Selmer groups Sel(Q, V(fx, g;, b)) for all balanced
triples (k,1,m) € Xpa1 (cf. Section 7.2).

e Perrin-Riou big logarithms

Le = Loge(f.g.h): H. (Qp, V(f.9,h)) — Ofgn,

satisfying the following interpolation properties. Say that & = f to fix ideas.
Then for all balanced triples w = (k,l,m) in a subset of ¥, which is dense in
Us x Ug x Uy, and for all local balanced classes 2 in H},,(Q,, V(f,g,h))

Ly (resp(g))(w) = ¢ (S 91 hom) - Ing(ffw)(n?k@) Wg, ® whm)'

Here &¢(fi,9;, hm) is an explicit non-zero algebraic number, the class %, in
H (Qp, V(fy, 91, hm)) is the specialisation of 2 at w, log, is the Bloch-Kato
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logarithm and 7% ® wg, ® wh,, is the differential considered in Section 7.3, to
which we refer for details.
According to a conjectural picture envisioned by Perrin-Riou the L-functions
fpf( f,g,h) should arise from a global balanced class via the logarithms %;. Our
first main result confirms this expectation.

Theorem A. — There is a canonical class k(f,g,h) in H},(Q,V(F,g,h)) such
that, for € = f,g,h, one has

Le(res, (v(f.9.h)) = L5 (f.9,h).

Remarks 1.3. —

1. The equality displayed in Theorem A determines the class x(f, g, h) only up to
addition by an element in a suitable (conjecturally trivial) restricted Selmer group.
Nonetheless Section 8.1 gives a geometric construction of a canonical three-variable
balanced class (f, g, h) satisfying the conclusions of Theorem A.

2. Theorem 8.1 and Proposition 8.3 express the specialisation of x(f,g,h) at a
balanced triple (k,1,m) € Y as an explicit multiple of a suitable Selmer diagonal
class k(fy,9;, hm) € Sel(Q,V(fi,9;, him)) associated in Section 3 with (fy, g;, Fm)
(cf. Proposition 3.2). The latter is in turn related to the values of pr(f,g, h) at
(k,1,m) by an explicit reciprocity law (cf. Proposition 3.6). Theorem A then follows
from analytic continuation.

3. Both the square-root p-adic L-function fpg (f,g,h) and the big logarithm
Ly = Zoge(f.g,h) genuinely depend on the choice of the level-N test vec-
tor (f,g,h) for (f*,g* h*). On the other hand the big Galois representation
V(f,g,h) = Vn(f*, g%, h') and the balanced class

K’(.f?ga h’) = KN(.fnagu? hﬁ)
depend on the test vector (f, g, h) only through its level N and the systems of eigen-
values defined by (f*, g%, h*) (cf. Sections 5 and 8.1).

4. The construction of k(f,g,h) given in Section 8.1 applies more generally to a
triple (f, g, h) of (not necessarily ordinary) Coleman families. The p-adic L-function
,,iﬁpf( f,g,h) has recently been constructed in [AI21b], and it is natural to wonder if
one can generalise Theorem A to this setting.

Remark 1.4. — Let (&%, u,) denote one of pairs (f*, k,), (g°,1,) and (h*, m,). When
u, = 1, Assumption 1.1 guarantees that the big Galois representation V(€) and its
maximal Gq,-unramified quotient V(§)~ are free over 0 (cf. Section 5 below for
more details). It is likely that Theorem A can be proved without this assumption, at
the cost of extending scalars to the fraction field of 04y, in the definition of x(f, g, h)
and in the statement of the explicit reciprocity law. On the other hand, the freeness
of V(&) and V(&)™ are crucial in the proofs of Theorem B below and of the main
result of our contribution [BSV20al].

Remark 1.5. — By using different methods, extending those of [DR16], the contri-
bution of Darmon and Rotger [DR20] to this volume gives an alternate construction
of the 3-variable diagonal class.
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Remark 1.6. — The class k(f, g, h) is constructed by interpolating diagonal classes
in the Bloch-Kato Selmer groups Sel(Q, V (£, g;, hm)) for all triples (k,I,m) € Xpa.
By using systems of étale sheaves attached to spaces of locally analytic functions
and the big Abel-Jacobi map defined in equation (156), this geometric problem is
reduced to the simpler one of constructing a canonical invariant in a space of locally
analytic functions. This invariant element plays a central role in the construction,
carried out in [GS20] (cf. also [Hsi20]), of a balanced triple-product p-adic L-function
interpolating the square-roots of the central critical values L(ff ® gi ® hi,,¢,) for
triples w = (k,I,m) in the balanced region Y,. We remark that a similar method
can be applied in other settings, for example for the interpolation of generalised
Heegner cycles. In this case, the relevant invariant function was instrumental for
the definition in [BDO07] of an anticyclotomic two-variable p-adic L-function. The
resulting big Heegner class gives rise via an explicit reciprocity law to the p-adic L-
functions considered in [BDP13, AI21a|. See also [JLZ20] for a related construction
in the Heegner case.

1.2. Specialisations at unbalanced points. — Let w, = (k,l,m) be a classical
triple in the unbalanced region ¥ ;. The following assumption will be in force in this
section (cf. Remarks 1.8).

Assumption 1.7. — The local sign £,(f}, g}, h%,) is equal to +1 for each rational
prime £.

Theorem B stated below relates the specialisation of the big diagonal class
k(f,g,h) at w, to the central value of the complez Garrett—Rankin L-function
L(fi®g}®h},s). This relation is particularly intriguing and subtle when pr(f, g,h)
has an exceptional zero at w, in the sense of Mazur—Tate—Teitelbaum.

Let Hg = Hg(w,) be the g-improving plane in Uy x Ug x U, defined by the equation

kE—l+m=k—-1+m.

Let Ogn, = Og®1,0p, and (shrinking Uy and Uy, if necessary) let vg : Opgn, — Ogn
be the map sending F(k,l,m) to its restriction F(I —m + k+m —[,1,m) to H.
Set V(.f’gv h)|Hg = V(faga h) ®yg ﬁgh and denote by

K(f’g’h)|?-£g S Hl(vi(.fagvh)IHg)

the image of x(f, g, h) under the morphism induced in cohomology by v4. Define the
analytic g-Euler factor

_1_ Xg(p) - bp(l) (k—lm—2)/2
(1) gg(f7g7h’)_1 Cp(m)ap(l—m-l-k—l—m—l) p Eﬁgh

Section 9.3 proves the factorisation

(2> K;(tf’g7h>|7-[g :Sg(fagvh’)"i;(fvg7h)

for a canonical g-improved balanced diagonal class

K;(.fag>h) € Hgal(QIJ?V(.fvgvh)'Hg)'
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This is not interesting nor surprising if £,(f,g,h) does not vanish at w,. On the
other hand, if £, (f;, g;, hm) = 0 this implies that the specialisation of (f, g, h) at w,
vanishes independently of whether the complex L-function L( f{ ® gf ® hi,, s) vanishes
at the central point s = ¢,,. This phenomenon is the first source of exceptional
zeros in the present setting. Since we are limiting our discussion to Hida families, the
vanishing of £,(f, g, h) at w, is equivalent to the following conditions:

B)  wo=(2,1,1), ple(fa), pfe(gr)-c(hy) and xa(p) - ap(2) - by(1) = ¢p(1),

where ¢(f,),c(gy) and ¢(hq) denote the conductors of f,,g; and h; respectively. In
particular g, and h; are classical weight-one eigenforms.

The second source of exceptional zeros for fpf (f,g,h) at w, is of a different (non
geometric) nature (cf. Section 9.2). It is related to the vanishing at w, of the analytic
f-unbalanced Euler factor

by(l) - cp(m) -
4 E* , 7h:17 P P (klm)/QEﬁ ,
) 7(F.9:h) )Zf(p)-ap(l+m+k—l—m)p ah

which on the f-improving plane in Uy x Ug x Uy, defined by the equation
E-l-m=k—-1l-m

interpolates a different Euler factor of pr (f,g,h). In the present ordinary scenario,
this vanishing is equivalent to the following conditions:

(5)  wo=(2,1,1), plle(fo), pre(gr)-clha) and xg(p) - bp(1) - ¢p(1) = ap(2).

We say that the unbalanced triple w, in ¢ is exceptional if the conditions displayed
in Equation (3) or those displayed in Equation (5) are satisfied.

Remarks 1.8. —

1. Assumption 1.7 is in place to guarantee that for weights in the unbalanced
region the Garrett—-Rankin complex L-functions involved in the definition of the triple-
product p-adic L-function have sign of the functional equation equal to +1, and that
the corresponding central values can be described in terms of trilinear forms arising
on GLg q (cf. [HK91]). On the other hand, Theorem A holds regardless of this
assumption and does not exclude the possibility of vanishing of the diagonal class for
sign reasons.

2. The exceptional zero condition (3) is symmetric in g and h. Precisely, define
Hu, V(f.9,h)|n,, 5(f,9,h)|n, and E,(F,g, h) by switching in the above definitions
the roles of g of h. Then

K’(-f)g’h)lﬂh = gh(fag’h’) ’ ’%Z(.fagvh)

for a unique canonical h-improved diagonal class k% (f,g,h) in the global Galois
cohomology of V(f, g, h)|3,.

3. The restriction of the class x(f, g, h) to the plane H; also factors as the prod-
uct of &¢(f,g,h) and a canonical class r}(f,g,h) in the Galois cohomology of
V(f,g,h)|3,. This factorisation is uninteresting in the present setting, as the Euler
factor £¢(f, g, h) does not vanish at any classical point of the region Y.
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4. Under Assumption 1.1, the exceptional zero conditions (3) and (5) are mutually
exclusive. Indeed, if one of them holds, then the other is satisfied precisely if the form
g (or equivalently h}) is p-irregular.

Define the diagonal class

H*(fka g hm) € Hl(Q? V(fkrglv hm))
by the following recipe. If the conditions stated in Equation (3) are not satisfied, then

K*(fkuglvhm) = ’f(fkvglvh‘m)

is the specialisation of k(f, g, h) at the classical triple w, = (k,l,m). If Equation (3)
is satisfied, one defines

K:*(f27glﬂhl) = K’Z(vaglahl)v

where the global class x}(fs, gy, h1) is the specialisation of the g-improved diagonal
class k3 (f,g,h) at w, = (2,1,1). (Note that x}(fy, g1, h1) = —k;(fs,91,h1).)

Theorem B. — The diagonal class k*(fi, g;, hm) is crystalline at p if and only if
the complex L-function L(f} ® g} ® hi,,s) vanishes at s = EHEm=2,

Acknowledgements. The authors are grateful to F. Andreatta for helpful conversations
about his work with A. Iovita and G. Stevens on overconvergent Eichler—Shimura iso-
morphisms. They also thank the referees for their detailed comments and corrections,
which resulted in a significant improvement of our contributions to this volume.

2. Cohomology of modular curves

In a first reading of this paper it will be sufficient to get acquainted with the main
definitions and notations of this section. The precise description of the various Hecke
operators will be necessary for crucial computations in the arguments of later sections
(see in particular Section 8). The exposition follows [Kat04, Section 2.

2.1. Modular curves. — Let M > 1 and N > 1 be positive integers such that
M + N > 5. Denote by

Y (M, N) — Spec(Z[1/MN])
the scheme which represents the functor

S {isomorphism classes of S-triples (E, P, Q)},

where S is a Z[1/M N]-scheme, F is an elliptic curve over S, and P and @ are sections
of E over S such that M - P =0, N-Q = 0 and the map Z/MZ x Z/NZ — E which
on (a,b) takes the value a - P+ b - Q is injective. More generally, for each rational
prime £ > 1, we consider as in [Kat04] the schemes

Y(M),N) — Z[1/(MN] and Y(M,N())— Z[1/¢{MN].

The Z[1/¢M N]-scheme Y (M (¢),N) classifies 4-tuples (E, P, Q,C), where (E, P, Q)
is as above and C is a cyclic subgroup of E of order /M which contains P and is
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complementary to @ (viz. the map Z/NZ x C — E which sends (a,z) to a - Q + x
is injective). Similarly Y (M, N(¢)) classifies 4-tuples (E, P,Q, C) where C is a cyclic
subgroup of order /N which contains @ and is complementary to P. Denote by

E(M,N) —Y(M,N),
E(M(0),N) — Y (M(£), N)
and E(M,N(£)) — Y (M, N(¢))

the universal elliptic curves over Y (M, N), Y(M (¢), N) and Y (M, N(¢)) respectively.
Let H= {z € C | ¥(z) > 0} be the Poincaré upper half-plane and set

['(M,N) = {v in SLy(Z) such that v = (}9) mod (¥ &) }.
Then
(6) Y (M, N)(C) = (Z/MZ)* x T'(M, N)\H,

where the class of (a,z) in (Z/MZ)* x H corresponds to the isomorphism class
of the triple (C/Z ® Zz,az/M,1/N). The Riemann surfaces Y (M (¢), N)(C) and
Y(M,N(¢))(C) admit a similar complex uniformisation by (Z/MZ)* x H.
There is an isomorphism of Z[1/¢M N]-schemes
pe: Y (M, N(£)) =Y(M((),N)
which on the 4-tuple (E, P,Q,C),s in Y/(M,N(£)) (for some Z[1/¢M N]-scheme S)
takes the value

¢(E,P,Q,C)= (E/NC,P+NC,t(Q)NC + NC, (¢"(Z-P)+ NC)/NC),

where £71(-) is the inverse image of - under multiplication by £ on E. On complex
points (cf. Equation (6)) this is induced by the map (Z/MZ)* xH — (Z/MZ)* xH
which sends (a, z) to (a,?-z). If
denotes the base change of E(M({), N) — Y (M (¢), N) under ¢y, there is a natural
degree-¢ isogeny
Av s E(M, N(€)) — ¢z (E(M(£), N)).

When M = 1 one denotes by

(7) Yi(N)=Y(1,N) and Yi1(N,{)=Y(1,N(¥))

the affine modular curves over Z[1/N] and Z[1/N/] corresponding to the subgroups
['1(N) and T1(N,£) = T1(N) N Ty (Lord(N+1) of SLy(Z) respectively. Similarly one
writes

Ey(N)=E(1,N) and E\(N,0) = E(1,N(¢))

for the universal elliptic curves over Y7(N) and Y7 (IV, ) respectively.
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2.2. Degeneracy maps. — Let M and N be as in the previous section, and let ¢
be a rational prime. Let

Y (M,N0) 25y (M, N () 25 Y(M, N)
and Y(M¢,N) 25y (M(0), N) 25 Y(M, N)

be the natural degeneracy maps (e.g. w(E,P,Q) = (E,P,{ - Q,Z - Q) and
vw(E,P,Q,C) = (FE,PQ)), and define

pry : Y(M,N¢) — Y(M,N) and pr,:Y(M,N{)— Y(M,N)
by the formulae
pI‘l(E,P,Q):(E,P,K'Q) and prﬁ(E7P7Q):(E/NZQ7P+NZQ7Q+NZQ)

Under the isomorphism (6) the map pr; (resp., pr,) is induced by the identity (resp.,
multiplication by ¢) on the complex upper half-plane H. Unwinding the definitions
one easily checks the identities

(8) pry =vgopue and pr, = 0 g0 fig.

The degeneracy maps py, fie, Ve, Vs, pr; and pr, are finite étale morphisms of
Z[1/M N/{)-schemes.

2.3. Relative Tate modules and Hecke operators. — Let N, M and /¢ be as
in the previous section and let S be a Z[1/M N{p|-scheme. For every Z[1/M N {p)-
scheme X write Xg = X Xz mnep) S and denote by A = Ax either the locally
constant sheaf Z/p™Z(j) or the locally constant p-adic sheaf (cf. [FK88, Definition
12.6]) Z,(j) on Xy, for fixed m > 1 and j € Z. Moreover fix an integer r > 0.

The previous sections yield the following commutative diagram, in which the
smaller squares are cartesian.
(9)
E(M,N)s <— E(M,N({))s X 0, (E(M(€),N)s) — E(M({),N)s — E(M,N)s

UM,Nl UM,N(e)i \L UM([)ANi J{UM,N

Y(M,N)s <2 Y (M,N(l)) g =————=Y (M, N({))s — > Y (M({), N)s —= Y (M,N)g

Here var, N, var(e),n and vpr n(e) are the structural maps, one writes again vy and 7,
(resp., A¢) for the base changes to S of the corresponding degeneracy maps (resp.,
isogeny), and the unlabelled maps are the natural projections.

If Y(-)s denotes one of Y (M, N)g,Y(M(¢),N)s and Y (M, N({))s, set
(10) T(A) = R'v.Z,(1)®z, A and J*(A) = Homa(Z/(A),A).
Here Rv., is the g-th right derivative of v., : E(-)sy —> Y (+)et and one calls

7 < 7(2,)
the relative Tate module of the universal elliptic curve E(-) — Y(-). The perfect
cup-product pairing
T. @z, T. — R°v.Z,(2)
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and the relative trace R2v.*Zp & Z,(—1) give the perfect relative Weil pairing
(11) (s '>E(-)poo T Oz, T —> Z,(1),

under which one identifies .7.(—1) with .7* = Homgz (.7, Z,). It is a consequence of
the smooth base change theorem (cf. Corollary 4.2, Chapter IV of [Mil80]) that .7.(A)
and J*(A) are locally constant p-adic sheaves on Y7(NV)g, of formation compatible
with base changes along morphisms of Z[1/N M/{p]-schemes S — S. (This justifies
the choice to suppress the dependence on S from the notations.) Define

L (A) =Tsym, 7. (A) and 7 ,.(A)=Symm’.7"(A4),

where for any finite free module M over a profinite Zp-algebra R one denotes by
Tsymp M the R-submodule of symmetric tensors in M®" and by Symm’, M the max-
imal symmetric quotient of M®".

Notation. — When Y (-)s = Y (1, N)g is the modular curve Y7 (N)g associated with
the congruence subgroup I'1(/V), and the level N is clear from the context, we use
the simplified notations

(12) ZL(A) =L N (A), L =2(2Zy), S (A)=S1nNr(A) and 7 = S (Z,).
If there is no risk of confusion, we use the same simplified notations to denote the étale
sheaves .2 n(¢),»(A) and 7 n(p),»(A) on the modular curve Y (1, N(£))s = Y1(N,{)s
of level T'; (N) N Ty (£ (N)+1) (cf. Equation (7)).

Throughout the rest of this section let # denote either .Z ,.(A) or . ,(A). Ac-
cording to the proper base change theorem [Mil80, Chapter VI, Corollary 2.3] and

the diagram (9), associated with the finite étale morphisms vy and 7, one has natural
isomorphisms

(13) vi(Zin) = Fune and ) (Fin) = FM0),N>
which induce pullbacks
(14)
vy Hét(Y(Mv N)Svg\;\n/I,N) vy
He (Y (M, N(0)s, 51 nwy) Hg (Y (M (), N)ss Zy0),n)
and traces (cf. [Mil80, Lemma 1.12, pag. 168|)
(15)
Vew Hét(Y(Mv N)SvylrvI,N) Do
HE (Y (M, N())s: Z11 noy) H, (Y (M(0),N)s, Ziry.n5)

Similarly the (finite étale) isogeny A\, induces morphisms
(16) Mew: Firney — €0 (FTrwyn) and N 0p (Friyn) — T

More precisely, associated with the f-isogeny A, there is a trace Ap. 0o A} —> id. As
vodg = vpr N(r), Wwhere v : @ (E(M(€),N)s) — Y (M({), N)s is the first projection, it
induces a map vas n()« © A — V«. Applying R! and using the natural isomorphisms
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©; (R'nr(ey,neZp(1)) = R',Z,(1) and \jZ,(1) = Z,(1), this in turn induces a
morphism RlvM7N(5)*ZP(1) — @} (RlvM(gLN*Zp(l)), and finally the push-forwards
Ao« which appear in Equation (16). The pullbacks are defined similarly, after replacing
the trace Mg o A} — id with the adjunction morphism id = Mg, o Aj. Together with
¢ the previous morphisms give a pushforward

(17) @ew = @ou 0 Aex : Hoy (Y (M, N(0)s, T 11 (o)) — He(Y (M (0), N)s, Ty 0y )
and a pullback
Op =\ opp  Hy (Y(M(0),N)s, Fiypy.n) — Hep(Y (M, N(0)s, Fiy noy)-
Define the dual ¢-th Hecke operator
T} =ve 0o ®j oy : Hy(Y(M,N)s, Fiy ) — Hu(Y (M, N)s, Ziy ).
We also consider the ¢-th Hecke operator
Ty =g 0 ®povy  Hy (Y(M,N)s, Ziy n) — Hi&(Y (M, N)s, Zip n)-

As customary, if the prime ¢ divides M N, we also denote by U, and U, the Hecke
operators Ty and T respectively.

For each profinite Z,-algebra R and each finite free R-module M, the evaluation
map induces a perfect pairing

TsympM ®pr SymmprM™* — R,

where M* = Homp(M,Z,). This defines a perfect pairing %, ®z, ./, — Z,, hence
a cup-product

(18)

()t Ha(Yi(N)q, Z0(1) ®z, He o(Yi(N)q, 7r) — H

et,C(Yi (N)Q7 Zp(l)) = ZP’
which by Poincaré duality is perfect after inverting p. The Hecke operators T, induce
endomorphisms on the compactly supported cohomology H, é}t,c(Yl (N)g, "), and by
construction Ty and T}, (resp., T, and T}) are adjoint to each other under (-,-),. In

addition, the Eichler—Shimura isomorphism (cf. Chapter 8 of [Shi71])
(19) Hy(Yi(N)q, %) ©z, C = M,12(N,C) @ S,42(N,C)

(depending on a fixed embedding Z,, — C) commutes with the action of the Hecke
operators T, on both sides.
After replacing the left hand square in the diagram (9) with the cartesian square

E(M,Nt)g ——— E(M,N(£))s

'UM,NE\L J('“M,N(Z)

He

Y(M,Nt)s ———= Y (M,N({))s

one defines as in Equations (14) and (15) the maps uj and pe.. For - = 1,£ one can
also define as above morphisms
(20)

; pr., ) pr* )
Hét(Y(M7 Nﬂ)Say]?\n/I}NZ) — Hét(Y<M7 N)S7y]7\a/[,N) — Hét(Y<M7 NE)Sva/[,NZ)v
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which according to Equation (8) satisfy the identities
(21) pry, = Ve o fies, PI] = g 0Vy, Pry, = Vg0 Ppiopgy and pry = pgo @y oy,

As a consequence, if deg(pg) denotes the degree of the finite morphism gy, one has
the relations

(22) deg(pe) - To = prg, opry  and  deg(pe) - Ty = pry, o prj.

2.3.1. Diamond and Atkin—Lehner operators. — We recall here the geometric
definition of the diamond and Atkin—Lehner operators on the cohomology groups
H (Y(")s,-ZI) (where Z7 are the sheaves introduced in the previous section). For
simplicity we limit the discussion to the modular curves Yi(-) of level I'1(+), and
denote by .7, the étale sheaf .#] on Yi(:)s.

For every unit d in (Z/NZ)* the diamond operator (d) : Y1(N)s — Y1(N)g is
the automorphism of Y;(N)g defined on the moduli problem by sending (F, P) to
(E,d - P). Denote by P;(N) the universal point of order N of E;(N)s. The pair
(E1(N)s,d-Pi(N)) is an elliptic curve with I'; (NV)-level structure over Y7 (IN)g, hence
there exists a unique isomorphism (d) : E4(N)s = F1(N)s which makes the following
diagram cartesian:

(d)
Ei(N)s ———— = E1(N)s

Yi(N)s —— 2 = Vi (N)s.

This induces automorphisms (d) = (d)* and (d) = (d), of H},(Y1(N)s, %, ) which are
inverse to each other.

Assume in the rest of this Section 2.3.1 that p does not divide N and that S is a
scheme over Z[1/N, p,]. Set ¢, = e2 /P For every elliptic curve E denote by E, the
kernel of multiplication by p and by (-, ) E, " E, x E, — p, the Weil pairing. Since
p 1 N the curve Y1 (Np) classifies triples (E, P, @), where E is an elliptic curve and
P (resp., Q) is a point of exact order N (resp., p). (More precisely a pair (E, Pny),
where I is an elliptic curve over and Py, is a section of exact order Np, corresponds
in the above identification to the triple (E,p - Pnp, N - Pnp).) The Atkin-Lehner
operator wy, = we, : Y1(Np)s = Y1(Np)s is the automorphism of Y1 (Np)s defined by

wy(E,P,Q)=(E/Z-Q,P+Z-Q,Q' +Z-Q),
where Q' € E, is characterized by (Q,Q’) B, = Cp- There is a natural commutative
diagram

Er(Np)s —2> w’(E1(Np))s — E1(Np)s

UNpl l iw

Y1(Np)s =—=Y1(Np)s —— Y1(Np)s,

in which the right-hand square is cartesian and w, is a degree-p isogeny. As in
Equations (13)—(17), associated with the previous diagram one has a Atkin—Lehner
operator
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wy + Hy (Yi(Np)s, Fr) — Hy (Yi(Np)s,wy(Fr)) — Hy (Y1(Np)s, )
and a dual Atkin-Lehner operator

wy, : Hyy(Yi(Np)s, Z,) = Hy (Yi(Np)s, wy(F,)) = Hiy(Yi(Np)s, ).
More generally, let @ be a divisor of Np such that @ and Np/Q are coprime. After
replacing the pair (p, N) with (Q, Np/Q) in the previous construction, one defines
the Atkin—Lehner operators W on Hélt (Y1(Np)s, Z,).

2.4. Deligne representations. — Let

=" an(f)g" € (N, xy)

n=1

be a normalised cusp form of weight k > 2, level I';(N) and character x;. Set
N, =N/ porde(N) and assume that f is an eigenvector for the Hecke operator T} for
every prime £ { N,. (In particular f is an eigenvector for U, if p divides N.)

Let L/Q, be a finite extension containing the Fourier coefficients of f. Define

(23) H (Y1(N)q, Zi-2(1))L — V(f)

to be the maximal L-quotient on which 7, and (d) = (d), act as multiplication by
ae(f) and x s (d) respectively, for all £ 1 N, and (d) € (Z/NZ)*. If f is new of conductor
N then V(f) is the dual of the Deligne representation of f: for every prime ¢ { Np
an arithmetic Frobenius Frob, € Gq at ¢ acts on it with characteristic polynomial

det (1 — Frob|V(f) - X) =1 —as(f) - X + xp(£) - £F71 - X2

In general V(f) = @j_, V(fP"™) is (non-canonically) isomorphic to the direct sum of
a finite number of copies of V (fP"™), where fP'™ is the primitive form (of conductor
a divisor of N) associated with f. Dually let

V*(f> — Hé}t,c(yrl(N)Q?yk72)L

be the maximal L-submodule on which the Hecke operators 7Ty and (d) = (d)" act as
multiplication by a,(f) and xs(d) respectively, for every prime ¢t N, and unit d mod-
ulo N. (Since f is cuspidal, one can replace the compactly supported cohomology H, é}t’c
with the full cohomology Hj, in the definition of V*(f).) If f is new of level N then
V*(f) is the Deligne Gq-representation of f. In general V*(f) = @;_, V*(fPr™) for
a positive integer a.

Because (by construction) 7, and (d)" are respectively the adjoints of Ty and (d),
under the morphism (-, )\, defined in Equation (18), the latter induces a pairing

(24) () V() @ VI(f) — L,

which is perfect by Poincaré duality [Mil80, Chapter VIJ.
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2.5. Comparison with de Rham cohomology. — Let A be a subring of C,.
Write v : £ — Y for one of the universal morphisms vy n et cetera that as been
previously introduced. Denote by

ydR = ydR(’U) = Rlv*(ﬁE — QlE/Y)
the relative de Rham cohomology of E/Y and for every r > 0 set
ydR,'r = Symmfﬁy ydR.

Let w = U*Q}E /v be the invertible sheaf of relative differentials on E/Y. The vector
bundle “4r is equipped with the Hodge filtration

0—w—Yr —w ' —0

and with an integrable Gauf—Manin connection V : Zyr — Z4r Qoy Q%/ /K For all
r > 0 these give rise to the Hodge filtration

(25) W = W ® SaRr—1 — SaRr

and to an integrable connection on .#4R ,, denoted again by V.

Set Zyr = Homg, (Zur, Oy) and ZLyr,» = Tsymy, Zgr, equipped with the in-
duced Hodge filtration and integrable connection (denoted again by V). If # = ., &
define the de Rham cohomology groups

_ A o
Hip (Y, Zar,r) = B (Y, Zar,r = Farr oy Qy/i)

v . .
(where the complex Far,» — Zar,r oy Q%, /K 18 concentrated in degrees zero and

one). As in Section 2.3 one defines on HgR(K Far,r) Hecke operators Ty and T}, for
every prime ¢ (when Y = Y(M, N)), and diamond operators (d), for every unit d of
Z/NZ (when Y =Y (N)).

Taking A = Q, the comparison theorem of Faltings—Tsuji [Fal88, Tsu99] (and
the Leray spectral sequence for vy, cf. the proof of [BDP13, Lemma 2.2]) gives a
natural, Hecke equivariant isomorphism of filtered Q,-vector spaces

(26) Dar (H&(Y1(N)q,» Fr)Q,) = Hir(Y1(N)q,, Zar.r);

where Dgr(-) = H(Q,, - ®q, Bar) with Bgqr Fontaine’s field of p-adic periods, and
the filtration on the de Rham cohomology arises from the Hodge filtration on %gr (cf.
Equation (25)). Denote by M,.15(N, Z) the Z-module of modular forms of weight r+2,
level 'y (V) and integral Fourier coefficients, and set M, 2(N, R) = M,12(N,Z)®z R
for every ring R. It then follows that canonically

(27)  Fil'Dar(Hi(Yi(N)q,: #)q,) ©a Qlux) = Mriz(N, Qp) ©q Qi)

for every 1 < i < k —1 (cf. [BDP13, Lemma 2.2]). Under the isomorphisms (26)
and (27) the space Fil' H} (Y1 (N)q, Zar.») corresponds to the image of M, (N, Q)
under the Atkin—Lehner operator wy.

Let f and L/Q, be as in the previous section and assume that L contains Q(un).
Define

Vir(f) — Hig(V1(N)q, . -Lark—2)L
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to be the maximal submodule on which T, and (d), act respectively as ay(f) and
x¢(d) for every prime £ { N, and every d € (Z/NZ)*, and dually (cf. Section 2.4)

Hip(Yi(N)q,. ZLo—2(1))r — Var(f).

(Here Zur,-(j) = Zuar,r as flat sheaves and Fili,i”dR,T(j) = Fil”jde,T.) The com-
parison isomorphism (26) gives

(28) Dar(V(f)) = Var(f) and  Dar(V*(f)) = Var(f),
and Equation (27) implies that they restrict to canonical isomorphisms
(29) Fil'Var(f) = Sp(N, L)~ and  Fil'Viz(f) = Sk(N, L);.

Here f* =3 o an(f)-q" € Sk(N,Xy) is the dual of f and Sk(N,L). denotes the
L-module of cusp forms in Sk (N, L) which are eigenvectors for the Hecke operators
Ty and (d), with the same eigenvalues as -, for all primes £ { N, and units d in Z/NZ.
One denotes by

(30) wy € Fil'Vi(f)

the element corresponding to f under the second isomorphism in Equation (29).
The pairing (24) and the isomorphisms (28) induce a perfect duality

(31) () Var(f) ®r Var (f) — Dar(L) = L,
which together with the isomorphisms (29) gives rise to perfect pairings
(32) ()5t Sk(N, L) g @1 Vg (f)/Fil' — L

and (-, )¢ Var(f)/Fil® @, Sk(N, L)y — L,

under which we often identify Vi (f)/Fil' with the L-linear dual of Si(N, L) -.
Denote by

(33) fU=wn(f)=N"1 (N2)™" - f(~1/N2)
the image of f under the Atkin—Lehner isomorphism

WN Sk:<N7 Xf) = Sk:(N7 )Zf)

and define

(34) ny € Var(f)/Fil!

to be the element which represents the linear functional
(fw7 : )N

35 Jp= " : S (N,L)s~ — L.

(35) N T (N, L)y

Here (pu,v)n = ffY1(N)c ﬁ(z)y(z)yk% (with 2 = x + iy) is the Petersson scalar
product on Si (NN, C). The a priori C-valued functional J; indeed takes values in L
(cf. [Hid85, Proposition 4.5]).

Assume that ord,(N) < 1, that p does not divide the conductor of X, and
that a,(f) is a unit in €. Then the Gq,-representations V'(f) are semistable, viz.
Dar(V'(f)) = Ds(V'(f)). It follows that Dqr(V"(f)), hence Vi (f) by Equation
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(28), are equipped with an L-linear Frobenius endomorphism ¢. Enlarging L if nec-
essary, let ay € 0* be the unit root of the Hecke polynomial

hip=X>—ap(f) - X +xs0)p" ' = (X —ay) - (X - 8y)

of f. As proved in [Sai97| the characteristic polynomial of the Frobenius endomor-
phism ¢ acting on Vi (f) is a power of hy ,, and

(36) Vir(f) = Fil'ViR (f) @ ViR (f)F=.
As a consequence 7y lifts uniquely to a differential
(37) nf € Var(f)?=.

3. Diagonal classes

Notation. In this section Y7(N) = Y1(N)q denotes the modular curve of level
I'(N) =T(1,N) over Q and J = Z; y denotes the relative Tate module of the
universal elliptic curve E1(N) = E1(N)q (cf. Equation (10)).

Fix a geometric point 7 = ny : Spec(Q) — Yi(N) and denote by Gy =
7$*(Y1(N),n) the fundamental group of Y;(N) with base point 7. Then the stalk .7,
of J at 7 is a free Z,-module of rank two, equipped with a continuous action of Gy .
Choose an isomorphism of Z,-modules § : 7, = Z, & Z, satisfying (cf. Equation

(11))
(38) (2.9) . = &) NEW)

for every x,y € J;, (where one identifies A’ Z? and Z, via (1,0) A (0,1) = 1) and
denote by
on : Gn — Autz, (7)) = GLa(Zy)

the corresponding continuous group morphism. According to Proposition A 1.8 of
[FK88| the map which sends .% to its stalk %, gives an equivalence between the
category of locally constant p-adic sheaves on Y7(N)s and that of p-adic represen-
tations of Gn. Then restriction via oy allows to associate with every continuous
representation of GL2(Z,) into a free finite Z,-module M a smooth sheaf M® on
Y1(N) satisfying Mt = M.

Let S;(A) be the set of two-variable homogeneous polynomials of degree i in
Alz1, z2], equipped with the action of GLy(Z,) defined for every g € GL3(Z,) and
P($1,$C2) S Sz(A) by

gP(z1,32) = P((z1,22) - g),
and let L;(A) be the A-linear dual of S;(A), with GL2(Z,)-action defined
by gu(P(z1,29)) = (g~ P(x1,22)) for every g € GLa(Z,), p € Li(A) and
P(x1,22) € S;(A). Then (as sheaves on Y7 (N)q) one has (cf. Equation (12))

(39) Zi(A) = Li(A)* and 7(A) = S;(A)°".

In particular 7, is isomorphic to L1(Z,), hence Z,(1), = N’ 7, = det™!, where
det’ : GL(Z,) — Z is defined by det’(-) = det(-)? for j € Z. As a consequence, for
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every j € Z and every p-adic representation M of GLa(Zp):
(40)  H°(GLy(Zp), M @ det ™) — H(Gn, M @ det ™) = HY (Y1 (N), M (4)).

Let » = (r1,72,73) € N3 be a triple of nonnegative integers satisfying the following
assumption.

Assumption 3.1. — 1. r1 +ro+1r3 =2 -7 withr € N.
2. For every permutation {i,j,k} of {1,2,3} one has r; +rj > ry.

Let S, denote the GL3(Z,)-representation S;, (Z,) ®z, Sr,(Zyp) ®z, Sr,(Z,), which
we identify with the module of six-variable polynomials in Z,[x,y, z] which are ho-
mogeneous of degree 71, ro and r3 in the variables @ = (z1,22), ¥y = (y1,y2) and
z = (21, 22) respectively. Following the Clebsch-Gordan decomposition of classical
invariant theory, define (cf. Assumption 3.1)

T—7T3 rT—Tr2 rT—Tr1
(41) Deth, = det (331 56'2) - det <x1 x2> - det <y1 y2> ,
Y1 Y2 Z1 22 21 22
which is a GL2(Z,)-invariant of S, @ det™":
Det}y € H(GLy(Z,), Sr @ det™").
After setting .7, = .7, (Zy) ®z, L1, (L)) ®z, -S7,(Z,), denote by
(42) Detly € Hg(Yi(N), (1))
the class corresponding to DetR, under the natural injection (40). Let
pi : Yi(N)? = Yi(N)
be the natural projections, let
’Eﬂ[T‘] = P15 (Zy) Xz, P57y (Zp) Xz, P53 (Zyp)
and set
wN,'r = Hg’t(Yl (N)3Qa %r])(r + 2)
Since Y1(N)gq is a smooth affine curve over Q one has
H«gt(Yl(N)%v '5ﬁ[7'] (T + 2)) =0,
hence the Hochschild—Serre spectral sequence
Hp(Q7 Hgt(Y(%v 5/[7_] (T + 2))) = H§t+q(Y1(N)3a c5”[7‘] (T + 2))
defines a morphism
HS : HY (Yi(N)?, Ly (r +2)) — H(Q,Wyr).
Let d: Y1(N) — Y1(N)?3 be the diagonal embedding. As
EY'(N) = EJ(N) xy, (s Y1(N)

is isomorphic to the base change of u%, : ET(N) — Y1(N)3 under d, there is a natural
isomorphism d*.#},) = .%;. of smooth sheaves on Y7 (N )et- The codimension-2 closed
embedding d then gives a pushforward map

d. : HY(Vi(N), (1)) — HAYi(N)?, Sy (1 +2)),
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and one defines the diagonal class of level N and weights r + 2:
(43) Fnr =HSod,(Dethy) € H'(Q,Wy)

as the image of Det, under the composition of d, with HS. Let Wy, =Wy » ®z, Qp
and let H}, (Q, Wy ») be the geometric Bloch-Kato Selmer group of Wy ,. over Q, viz.

geo
the module of classes in H'(Q, Wy ) which are unramified at every prime different
from p, and whose restrictions at p belong to the geometric subspace

Hgleo(va W) = ker (H'(Qp, W) — H'(Qp, Wi, ®q, Bar))

(cf. [BK90, Section 3]). The results of [NN16] (cf. the proof of Theorem 5.9) yield
the following crucial proposition.

Proposition 3.2. — The class kK » belongs to Hgleo(Q, W r).

The bilinear form det” : L;(Z,) ®z, Li(Z,) — Z, ® det™" defined by

det"(p@v)=p® V(($1y2 - xzyl)i)

for all u,v € L;(Z,) becomes perfect after extending scalars to Q,,, hence induces an
isomorphism of GLy(Z,)-modules

i1 5i(Qp) = Homgq, (Li(Qp), Qp) = Li(Qy) ®z, det”.

Under the equivalence -¢* this corresponds by Equation (39) to an isomorphism of
sheaves

(44) S; %(Qp) = z(Qp) ®Zp Zp(fi)
Define the sheaves %, on Yi(N) and %, on Y1(N)? as above, and set

(45) Vne = HE(M(N)§, L) 2 —7) and Vi, =Vn, ®z, Qp
The tensor product of the s, gives an isomorphism s, : Wy 5 = Vy .. Set

(46) KN = Srx(Rne) € Hyoo(Q, Viv,r).

Remarks 3.3. — 1. We strived to define diagonal classes with values in the repre-
sentations Vi, as the corresponding cohomology groups are those which are exten-
sively studied in the literature (cf. Sections 4 and 5).

2. For every 0 < j < ¢ denote by [z1, z2]; the projection of x?j ®x§§i_j in S;(Qp).
Then [z1,72]; is a Qp-basis of S;(Qp) and one writes [x1, x2]} for the dual basis of
L;(Qp). A direct computation shows that s; : S;(Qp) = L;(Q,) is given by the
formula

17+ (1) -silonal) = fovsaal
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Set k=71 4+2,1l =719+ 2 and m = r3 + 2, and consider three cuspidal normalised
modular forms

£=Saulf) q" € SN, xy),

n>1

9= _an(g) - q" € SiN,xy),
n>1

h= Zan(h) . qn S Sm(N7 Xh)
n>1

of level I'1 (), weights k,l and m and characters xy, xy and xp. Assume in the rest
of this section the following

Assumption 3.4. — 1. The triple (f, g, h) is self-dual, that is x5 - xg - xn = 1.
2. The forms f,g and h are eigenvectors for the Hecke operators Ty, for every £ 4 N.
3. If p divides N then f,g and h are eigenvectors for the Hecke operator U,.

Note that Assumption 3.4.1 implies Assumption 3.1.1, id est that k 4+ [ + m is an
even integer. Moreover, Assumption 3.1.2 states that the triple (k,[,m) is balanced
(with the terminology introduced in Section 1.1). Set

(47) V(f.9,h) =V(f) @ V(g) @ V(R)((4—k —1—m)/2).

The Kiinneth decomposition and projection to the (f, g, h)-isotypic component give
a morphism of Gg-modules

(48) prfgh : VN,’I‘ ®Qp L —» V(fvgv h)
and one defines the diagonal class associated to the triple (f, g, h) by

K/(.ﬂgvh) = prfgh(ﬁN,r) S Hglco(Q7 V(f,ga h))

3.1. The explicit reciprocity law (cf. [BSV20b]). — Let r and (f,g,h) be
as in the previous section. In particular » and (f,g,h) satisfy Assumption 3.1 and
Assumption 3.4 respectively. In addition, assume in this section that ord,(N) < 1,
that the conductors of xf, x4 and xp are all coprime to p, and that the forms f,g
and h are p-ordinary (viz. their p-th Fourier coefficients are p-adic units).

Lemma 3.5. — For e in {geo, fin,exp}, the Bloch-Kato local conditions
H(Qp V(f,9:h)) — H'(Qp, V(f,9,h))
(cf. [BK90, Section 3]) are all equal.

Proof. — Set w = (k,l,m). For & = f, g, h, denote by &* the newform of conductor
N¢|N and weight v = k, 1, m associated to &, and set

V = V() @1 V(g) @ V(1) (4= k=1 —m)/2).

Since V' (§) is isomorphic to the direct sum of a finite number of copies of V(&%) (cf. Sec-
tion 2.4), it is sufficient to prove the statement after replacing V' (f, g, h) with V. More-
over, since V' is isomorphic to its Kummer dual V* = Homp, (V, L(1)), it is sufficient to
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prove that HY (Q,,V) equals H (Q,,V) (cf. Proposition 3.8 of [BK90]). Accord-
ing to [BK90, Corollary 3.8.4], the quotient Hi, (Qp,V)/Hg,,(Qp, V) is isomorphic
to D/(¢ — 1)D, where D is the crystalline module Deis(V) = H°(Q,, V ®q, Beris)
associated with the restriction of V' to Gq,,, and ¢ is the crystalline Frobenius acting
on it. We are then reduced to prove the claim

(49) D=t = 0.

The assumptions ord,(N) < 1 and p { cond(xe¢) guarantee that V(F)[aq, is
semi-stable, hence so is Vl]gq, . Denote by Dy (&*) = H°(Q,, V(€*) ®q, Bst) and
Dy = H°(Q,,V ®q, Bst) the semi-stable Fontaine modules of V(€)lcq, and Vicg,
respectively. One has

Dy(¢) =L-a¢® L - by,
where a¢ and bg are g-eigenvectors with eigenvalues a, (&%)~ and p'~“xe(p) "1a, (%)
respectively (cf. Section 2.5). Moreover the monodromy operator N¢ on Dy (£F) is
zero if p f Ng, and satisfies N¢(ag) = be and N¢(bg) = 0 if p||Ne. Consider the set
B, ={a,,b, :-=10,f,g, h} of elements of
Ds = Dai(f*) @1 Dsi(9°) ©1 Dsi(h') ®q, Deris(Qp((4 = k =1 —m)/2))

defined by

a, =ay®a;®a,® t(4fkflfm)/2’ a{: _ bf ®a, ®a, @ t(ﬁlfkflfm)/27

b,{: =ay ® bg ® bh ® t(4—k:—l—’m)/27 bw _ bf ® bg ® bh ® t(4—k‘—l—m)/2

et cetera, where ¢ is the canonical generator of Deyis(Qp(1)). Then B, is an L-basis of

p-eigenvectors of Dy with respective eigenvalues &, = {«,,,8;, : - =0, f, g, h}, where
o = pc(w)—l af _ pc(w)—k . ap(fu)
ap(f*)ap(g*)ay(h?) ’ Y xr(p)ap(gh)ap(h) ’

a9 and ol are defined similarly, and 3;, is defined by the equality
D-ay B, =1
Since the forms f, g and h are ordinary and w is balanced, one has
ord,(B;,) < 0 < ord,(ad,) < ordy(cv,)

for - = 0, f,g,h and &€ = f, g, h. In particular the L-module D%~" (hence D¥=1) is
contained in the space generated by the eigenvectors a$, for & = £, g, h.

Define e¢ € {0,1} to be 1 (resp., 0) if p divides (resp., does not divide) the conductor
Ne of €= f,g,h, and set e, = €5 + €4 + €}. According to Theorems 4.5.17 (namely
the Ramanujan—Petersson conjecture) and 4.6.17 of [Miy06] one has

|a§1|oo — p(su,—Q-sg—l)/Z

for £ = f,g,h, where || denotes the complex absolute value. As a consequence
DE=" vanishes if e, = 0 or g, = 2. If £, = 1, say ; = 1, then D¥~" is contained in
L-a% @ L-al. On the other hand, the monodromy operator N on Dy satisfies

N(a?)=bl and N(a")=b?,
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hence DE="N=° vanishes in this case. Finally, if £, = 3, then

N(af,) = bf, + b,
for each permutation (&,¢’,¢") of (f, g, h), hence D¥=! = D;’;ZLN:O = 0 also in this
case, thus proving the claim (49). O

It follows from the previous Lemma 3.5 that, upon setting
(50) Var(f,9,h) = Var(f) ®1 Var(9) ®r Var(h)((4 — k — 1 —m)/2),

the Bloch—Kato exponential and the isomorphism (28) give an isomorphism

epr : VdR(f7 9, h)/FﬂO = Hgleo(QPa V(f?ga h))

Similarly for the dual representations define

(51) Vir(f.9,h) = Vi (f) @1 Var(9) ©r Var(h) ((k +1+m - 2)/2).
Then the perfect dualities (31) (for f, g and h) yield a natural isomorphism

VdR(f: 9, h)/FﬂO = FﬂOVd*R(f7 9, h)v7

where -V = Homyp (-, L). Its composition with exp, ' defines an isomorphism

(52) logp : Hgl;co(Qpa V(fv 9, h)) = Filovd*R(f, 9, h)v
For every global Selmer class k in HéCO(Q, V(f,g,h)) one simply writes log,(x) as a
shorthand for log, (res,(x)).

Denote by w, € Fil' 'Viz(9) and wj, € Fil™ 'Vjz(h) the differentials corre-
sponding to g and h respectively under the isomorphism (29), and recall the class
ng € Var(f)¥= defined in Equation (37). Since Fil'Vi5 (f) equals Vi (f) and
l+m—22>(k+1+m—2)/2 by Assumption 3.1(2) one has
(53) nf ® wy @ wy, € Fil'ViR(f, g, h).

Assume in the rest of this section that p does not divide N. For every s in Z denote
by

M (N, L) C Z,[q] ®z, L
the space of p-adic modular forms of weight s and level T'1(N) defined over L. Let

Ss(N,L) Cq-O[q] ®z, Qp

be the subspace of cuspidal p-adic modular forms. M (N, L) contains naturally the
space My(T'1(N,p), L) of classical modular forms of level I'y(N,p) = T'1(N) NTy(p)
and g-expansion in L[q]. It is equipped with the Hecke operators U = U, and V =V,
which are described on g-expansions by

U(Zan-qn):ZanP.q" and V(Zan.q”)zzan,qm

n=0 n=0 n=0 n=0
respectively. Serre’s derivative operator d = ¢ - d% on L[q] restricts to a morphism

d:M,(N, L) = My,o(N, L).
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For every s > 2 Hida defined in [Hid85| an ordinary projector
eord : Mg(N, L) —» M2 (T (N, p), L)

onto the space M™(I'; (N, p), L) of classical ordinary modular forms of level T'y (N, p),
which is a section of the natural inclusion M™% (T';(N,p), L) < Mg(N,L). Given
5 € Sl(Fl(Nap)7L) and ’(/} € Sm(rl(va)aL) set

ERUEY) = eora(dPTT2EM xp) € SPUTL(N, p), L),

where &Pl and d*—=)/2¢lPl are defined as follows. Note first that t = (k — 1 —m)/2
is a negative integer by Assumption 3.1. The p-depletion £[P) € S;(N,p) is defined by
¢l = (1 — VU)E. If € has g-expansion Zn>1 an(€) - "™ then

= 3 au©) -

(n,p)=1
hence the limit of p-adic modular forms

telp) 1 t+(p—1)p"
dtelvl _nlggod (p=1)p" ¢
defines a p-adic modular form of weight 142t such that d—*(d*¢[Pl) = ¢lPl) and d*¢[P) x4
belongs to Si(N, L).

Let & € Sk(N, xe, L) be a eigenvector for the Hecke operators Ty, for all primes
£1 N. Assume that ¢ is p-ordinary, viz. T,(§) = ap(§) - £ for a unit a,(€) in 0*. Let
ag and B¢ be the roots of the p-th Hecke polynomial X2 — a, (&) - X + xe(p)p*~! of
&. Enlarging L if necessary, assume that a¢ and 3¢ belong to L, and order them in
such a way that ay € 0* is a p-adic unit and 8y € p*~! - 0*. Then the (ordinary)
p-stabilisation of &:

(54) €al(q) = &(q) — Be - &(¢P) € SF™(T1(N, p), xe)

is a normalised eigenvector for the Hecke operator Ty, with the same eigenvalue as &,
for every prime ¢ { Np, and is an eigenvector for U, with eigenvalue a. Taking £ to
be one of f,g,h and f* = wy(f) gives rise to the p-stabilised forms fy, ga, o and
f2=(f")q in Sg(T'1(N,p), L). Define (cf. Sections 2.5 and 6)

( w —ord

= h
= T
( a)fof)NP

In [BSV20b] we proved the following explicit reciprocity law. Its proof uses the
ideas and techniques introduced in [BDP13, DR14, BDR15, KLZ20]. In particu-
lar it relies on Besser’s generalisation of Coleman’s p-adic integration and the work of
Bannai—Kings, Nekovar and Niziot [Nek04, Niz97, Niz01, Bes00, BK90], which
forces the assumption p { N in the statement.

(55) gpf(fowgomhoz) =

Proposition 3.6 ([BSV20b]). — Assume that p does not divide N, and that the
eigenforms f,g and h are p-ordinary. Then

logp(’%(f’g’h))(n}x ® wy ®wh) = E(f’gvh) 'gpf<fa7gaaha)7
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where

e (-2 (- )

1 Lroggn) (1 Booge) (1 - Bulign) (1 Belaf)

3.2. Comparison with Gross—Kudla—Schoen diagonal cycles. — This section
elucidates the relation between the diagonal classes introduced above and the Gross—
Kudla—Schoen diagonal cycles. It will not be used in the sequel of this paper.

Let the notations and assumptions be as in the previous section. In this section
only we also assume r; > 1 for j = 1,2,3. As in [DR14, Section 3.1] fix three
subsets A = {ay,...,ar,}, B =1{b1,...,b,} and C = {c1,...,¢ry} of {1,...,7} of
cardinalities r1, 7o and r3 respectively, such that AN BN C = ). This is possible by
Assumption 3.1. For 1 < j <, let pj : EY(N) = E1(N) Xy, vy - Xy, vy BE1(N) —
E;(N) be the projection from the r-fold fibered product of F1(N) over Y1(N) onto
its j-th component. Define

E(f,g,h) = (

T r def " ”
(56) Ny = (pa,pB,pc) : E{(N) — ET(N) = E{*(N) xq E{*(N) xq ET*(N),
where pg = pa, X -+ X pa,, : E{(N)— E*(N) and pp and pc are defined similarly.
Then tn» = tn,a,B,c) is a closed immersion of relative dimension dim ET(N) —
dim B (N) = r + 2, and one defines the generalised Gross—Kudla—Schoen diagonal
cycle of level N and weights r + 2 (cf. Section 3 of [DR14]) as

(57) ANy = v e(BI(N)) € CH(E](N)),

where CH’ (+) is the Chow group of codimension-j cycles in - modulo rational equiv-
alence.

For i € N denote by &; = u4 x ¥; the semi-direct product of p = {£1}* with the
symmetric group ¥; on i letters. The permutation action of ¥; on Ei(N) and the
action of ps on E;(N) induce an action of &; on Ei(N). Define the character v; :

S; — {£1} by ¥i(s1,...,5,0) =sgn(o) - s1--- s, and set &; = 5 > ges; Vil9) - g.
Then ¢; gives an idempotent in the ring Corr(Ej(N))q of correspondences on Ef(N)
with rational coefficients. Set ¢, =&, ® €., ® £, € Corr(E](N))q. The Lieberman
trick (cf. the proof of Lemme 5.3 of [Del71]) shows that ¢, kills the cohomology
group HJ (ET(N)q, Q) for every j # 2r + 3, hence the image
Clet (57‘ ’ ANW‘) € HgtTH(ET(N)a Qp(r +2))
of €, - Ay, under the cycle class map
cley - CH™ (B (N))q — HE T (BT (N), Qp(r +2))
belongs to
Fil’HZ T (ET(N), Qu(r +2))

= ker (HZ (BT (N), Qp(r +2)) ™ HE (BT (N)q, Qplr +2)
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where m : ET(N)q — E7(N) is the projection. As a consequence one can consider
the Abel-Jacobi image

AT (er - Any) =HSoclgy (e - Any) € HY(Q, e - HE TP (ET(N)q, Qp(r +2)))
of €, - A, under the composition of the cycle class map cle; with the morphism
(58) HS:Fil"HZt(ET(N),Qu(r +2)) — HY(Q,HZ (BT (N)q, Qp(r +2)))

arising from the Hochschild—Serre spectral sequence. According to the Lieberman
trick the Leray spectral sequence associated with the structural map ET(N) — Y;(N)?
induces a natural isomorphism

(59) Lo : er-Hy 72 (BT (N)q, Qpr+2)) 2 Hy (Yi(N)g, Fir)) @2, Qpr+2) = Wi .
Denote by

Lee : HH(Q, e - HE T (ET (N)q, Qp(r +2))) = HY(Q, Wi)
the isomorphism induced in Galois cohomology by L,..

Proposition 3.7. — The image of AJf;t(aT - An.y) under the isomorphism Ly, is
equal (up to sign) to R p.

Proof. — To ease notation set E° = E;(N), Y = Y1(N), tr = N, and denote by
u” = u}y the structural morphism

uh xQui2 xqui} : ET(N) — Yi(N)3.
Let ¢, : E" — E?" be the proper morphism defined by

(P ) = ({Pa APy 1 AP ),

so that ¢, is the composition of ¢, with the natural map d, : E*" — E".
Define

R = R*"u¥Z,, % =R"u'Z, and %" = R*u7Z,.
Then ¢, induces relative pull-back and pushforward maps
95 R (r) — 2y, and V. Z, — B (r)
which are adjoint to each other under the perfect relative Poincaré duality
R (r) ®z, R (1) — R4ruzTZp(2r) ~7Z,

induced by the cup-product pairing. (They induce on the stalks at a geometric point
y : Spec(Q) — Y the pull-back HZ (E2", Z,(r)) — HZ (Ey,Z,(r)) = Z, and push-
forward Z, = HY (E;,Z,) — HZ (E}",Z,(r)) associated with ¢, x, Q respectively.)
The Leray spectral sequences associated with the morphisms «?" and u” identify
the Q,-linear extensions of HY, (Y, %2 (r)) and HZ (Y3, 2" (r +2)) with direct sum-
mands of HZ (E?",Q,(r)) and HZ ™ (E™, Q,(r + 2)) respectively. (This is again a

consequence of the Lieberman trick, cf. [Del71].) By the functoriality of the Leray
spectral sequence, under these identifications ¥, and d, are compatible with the
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absolute push-forward maps attached to ¢, and d,, viz. the following diagram is
commutative:
(60)

T HY(Y, %7 (1) q, —— > HA(YS, 2 (r 4+ 2))q,

Lerayi Lerayi

s ”
He?tr+4(E ) Qp(r +2)).

Qy

Hgt(E’"7 Qp) - HéQtT(EZTa Qp(r))
On the other hand the compatibility of the cycle class
cley : CH2(E™)q — HZMH(E™, Qu(r +2))

with proper push-forwards and the definition of the diagonal cycle A, = Ay, yield
the identities

et (Ar) = clet 0 trs (ET) =ty (1) = dise 0 114 (1).
In addition, using again the functoriality of the Leray spectral sequences, one has the
commutative diagram

HA (Y3, B (r +2))q, —— o HL(Y®, 10 (r + 2))q, —2 HY(Q, W)

Leray l \L Leray

. T r rx OHS T I
Fil’HZ T (B7, Q,(r +2)) - HYQ, e - HY (B, Qp(r +2))),

where pf,) : 2} — Ir] is the natural projection and W, = Wy ,.. Since &, acts as
the identity on .7}, the previous three equations prove that (cf. Equation (59))

Lr* (AJf)t(E'I’ . A,")) — HS Op[r] o d* o ﬁr*(l)

After setting Det” = Det'y, to conclude the proof of the proposition it is then sufficient
to show that

(61) Det” = py 0 V(1) € Hg (Y, S5 (1)),
where p, : #*"(r) - Z.(r) is the natural projection. Let S = S(Z,) be the

standard representation of GL2(Z,). Recall the geometric point 7 : Spec(Q) — Y and
the isomorphism ¢ : 7, = S @ det™" fixed above (cf. Equations (39) and (44)). The
GLj(Z,)-representation %" (r),, contains S®?"® det ™" as a direct summand, and p, :
R (r)y — Lp(r)y = Sp ® det™" is the composition of pr : Z%"(r), - S®*" @ det™"
and the natural projection pr,. : S®?" @ det ™" — S, @ det™". Let 92, : Z,, — Z*"(r)
be the relative push-forward associated (as above) with the morphism E" — E?"
which sends the point (P, ..., P,) to (P1, P1,..., P, P.). Then

(62) Oy = 0p 007,
where 0. = 04 p,c is any fixed permutation of {1,...,2r} satisfying
0r (Pt Pry. oy PryPy) = (Payy ooy Pay s Poyyeooy Py Py Poy )

for every point (Py,..., P.) of E". The image of 1 under the composition
prody, : Zy, = HY(Ey, Zy) — HE (B, Zy(r)) = Z% (1) — S®*" @ det™"
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(where one writes again 99, for the morphism induced by 92, on the stalks at n) is
equal to

F, = (a:®y—y®a:)®7),
where x and y give a Z,-basis of S C Z,[x,y]. It then follows by the definition of

Det” (see Equation (42)) and Equation (62) that in order to prove the claim (61) is
it sufficient to prove (setting Det” = Det'y)

(63) Det” = pr,. 0 . (F.).

The previous formula is easily verified if r < 2 or r = (2,2,2) (hence r = 3). Assume
now r > 3 and r # (2,2,2). Then at least one of [ANB|, |ANC| and |BNC| is greater
or equal than 2. Without loss of generality one can then assume ro = min{ry,ro, 73}
and that the sets A and C' are of the form

A={1,ras3,...,ar,} and C=A{c1,...,Crs—2,1,7}.

Let s = (ry —2,r9,73 — 2) and s = r — 2. Then s satisfies Assumption 3.1 and
one can chose as above a permutation o5 = 04, g,c, of {1,...,2- (r — 1)} relative
to A, = {as,...,ar,—1}, B and C, = {c1,...,¢r;—2}. Extend o5 to a permutation
(denoted by the same symbol) of {1,...,2r} by o5(i) = i fori = 1,2, 2r—1, 2r Without
loss of generality one can then assume that o, = 04 g c is the composition of o5 with
the permutation o, of {1,...,2r} defined by 0,5(2) = 2r — 1 and o, 5(i) = i for
1 # 2,2r — 1, hence by induction on r one has

2
pr,. 0 0y (F,) = pr,. 0 opjs (F1 © 04(Fs) ® Fy) = det <i11 i;) - Det®.

Since r —ry = s — sy +2 and r —r; = s — s; for j # 2, this proves Equation (63), and

with it the proposition. O

4. Big étale sheaves and Galois representations

Sections 4.1 and 4.2 collect the technical background entering the construction of
the three-variable diagonal class of Theorem A. In particular they present a slight
extension of the overconvergent cohomology theory developed by Ash—Stevens and
Andreatta—Tovita—Stevens in [AS08, AIS15].

Notation. In this section N is a positive integer coprime with p. Set T' = T'1 (V, p),
let Y denote the affine modular curve Y;(V, p) of level I' defined over Z[1/Np] and
let u: E — Y be the universal elliptic curve E1(N,p). Denote by C), the universal
order-p cyclic subgroup C1(N,p) of E1(N,p).

4.1. Locally analytic functions and distributions. — Let L be a finite exten-
sion of Q, with ring of integers &' and maximal ideal m = 7 - &. Let W be the
weight space over Q,, viz. the rigid analytic space over Q, which parametrises the
continuous characters of Zy. It is isomorphic to p — 1 copies of the open unit disc,
indexed by the powers w’ of the Teichmiiller character w : F, — Z;. We identify
Z x Z/(p — 1)Z with a subset of W(Q,) by sending the pair (n,a) to the character
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(n,a) : Zy, — Zy, defined by (n,a)(u-w) =u"-w® for every u € 1 + pZ, and w € F}.
Given k € W and z € Zj, we often write 2" for ().

Let U C W be a connected wide open disc defined over L. Write U N'Z for the set
of characters in U(Q,) of the form (n,iy) for some n € Z with n(mod p — 1) = iy,
where iy € Z/(p — 1)Z satisfies k[p: = w' for every k € U. Denote by O(U) the
ring of rigid analytic functions on U, and by Ay € O(U) the set of a € O(U) such
that ord,(a(x)) > 0 for every & € U. The O-algebra Ay is isomorphic to the power
series ring O[T]. In particular it is a regular local ring, complete with respect to the
topology defined by its maximal ideal my = (7, T). Let

Ky Ly — Ay
be the character sending 2 € Zy to the analytic function xy(z) € Aj; which on t € U
takes the value

ry(2)(t) = 272
In what follows let (B, k) denote either the pair (Ay, kyr) or (&, ) for some r € W(L),
and write mp for the maximal ideal of B. For every nonnegative integer m > 0 let
LA,,(Z,,B) be the space of functions «y : Z, — B converging on balls of width m,
viz. for every [a] € Z/p™Z one has y(a+p™z) =}, 5 cal7) 2" for a sequence c,(7)
in B which converges to zero in the mpg-adic topology. We always assume that U is
contained in a connected affinoid domain in W and that the function sending z to
ku (1 + pz) belongs to LA,,(Z,, Ay). The latter condition is guaranteed by taking
m = m(U) big enough.

Define T = Zy x Z, and T" = pZ, x Z;. Right multiplication on ZIQ) by the

semi-group

7 7 Z Z
— D P / — D P
Yo(p) = <pr Zp> C Matay2(Zy) (TGSP-, Yo(p) = (pr Z;) C Matzxz@p))

preserves the subset T (resp., T'). In particular both T and T’ are preserved by scalar
multiplication by Z; and right multiplication by the Iwahori subgroup

To(pZy) = Zo(p) N 4 (p)
of GL2(Z,). Define

Apon = {f :T — B | f(1,2) € LA,(Z,, B) and
(64) fla-t) =k(a) - f(t) for every a € Z, t € T}7

and similarly define A/ = as the space of functions f : T — B such that f(pz,1)

K,m

belongs to LA, (Zy, B), and f(a-t) = x(a) - f(t) for all a € Z; and t € T'. Set
Aim=Am®eLl, D,,= HomB(A;i’m, B) and D, ,,=D,.,,®cL,

K,m
where the superscript - denotes either § or /. We equip A, m with the mp-adic
topology and D, ,,, with the weak-* topology, viz. the weakest topology which makes
the evaluation-at-f morphism continuous for every f in A, .. The B-module A,
is preserved by the left action of ¥j(p) on functions f : T- — B given by v - f(t) =
f(t- ), for every v € ¥y(p) and t € T'. This equips A, ,, with the structure of a

K,m
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B[¥;(p)]-module, and induce on D, ,, the structure of a right B[ (p)]-module. If
(B, k) = (Au, ku) we write Ay, and Dy, as shorthands for A, ., and D ..

Remark 4.1. — For any function f : T — B define f, : Z, — B by fo(z) = f(1, 2).
The map which to f associates f, gives an isomorphism of B-modules between A,; ,
and LA,,(Z,,B). This intertwines the action of X((p) on A ,, with the one on
LA,,(Z,,B) given by

- folz) =(a+c2)" fo <b+d2>, where o = (Z Z)

a—+cz

The B-module LA,,(Z,, B) is isomorphic to the product szo_l B[T]°, where B[T]°
is the set of power series Zn%) by - T™ in B[T] with lim,_, b, = 0 in the mp-adic
topology. Under this isomorphism, for every 0 < a < p™ — 1 and every n > 0, the
power T™ in the a-th factor of LA,,(Z,, B) corresponds to an element f,, € A m.
Every f € A, » can be written uniquely as f = > cpm 1150 ban(f) + fan with
limy, 00 ba,n(f) = 0 for every 0 < a < p™ — 1. A similar discussion applies to A;7m.

4.1.1. Hecke operators. — Set Z(p) = X5(p) N GL2(Q,), and recall that I' denotes
the congruence subgroup I'y (V) NTy(p) of SLa(Z). Let M be a right Ey(p)-module
(e.g. M =D, ,,). Given o € Zy(p) one defines a Hecke operator

T, : H(I',M) — H(T', M)

as follows (cf. [AS86a, Section 1.1]). Write I'oT = []!'7, T'o; with o; € Ey(p), and
define t; : T' — T by 05 -y = t;(7) - 04(y) (for some 1 <i(y) < n,). If € € H/(I', M)
is represented by the homogeneous j-cochain & : IVt1 — M then T, (&) = cl(&,),
where &, : T+t — M is defined by

(Y05 ,75) = i:ﬁ(ti(%), s ti(y)) - o

For every prime ¢ denote by oy (resp., o;) the diagonal matrix with diagonal (1,¢)
(resp., (¢,1)). If oy (resp., o;) belongs to Zy(p) set T, = T, (resp., T; = Taé). As
usual one also writes U, for T}, if ¢ divides Np. The previous discussion then equips
H'(T,Dy.m) (resp., H'(T', D}, ,,,)) with the action of the p-th Hecke operator U, (resp.,
p-th dual Hecke operator UI’)), as well as with the action of the Hecke operators Tj
and T for every prime £ # p.

Let N be a left Z(p)-module (e.g. N = A, ) and let N°P denote the abelian
group N equipped with the structure of right Z;(p) ~!-module by n -7 = 71 - n for
every n € N and 7 € Zy(p)~ . After identifying H(I', N) and H*(T', N°P) define
for every o € Z(p) the Hecke operator T, on H*(I', N) to be the Hecke operator
T,-1 on H(T', N°P) defined in previous paragraph. This equips H'(I', A, ) (resp.,
H'(T, Al ,,)) with the action of the p-th Hecke operator U, = T, (resp., p-th dual
Hecke operator U;) =T %), as well as with the action of the Hecke operators T, = T,

and T, = T, for every prime ¢ different from p.
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4.1.2. Atkin—Lehner operators. — Let @ be a positive divisor of Np, such that Q
and Np/Q are coprime. Consider any matrix

_(Qa b
WQ = (Np Qd € My(Z)
such that det(wg) = Q and d =1 (mod Np/Q@). Such a matrix satisfies
(65) F:WQ~F-WE?1.

If p divides @, then right multiplication by wg on Z% maps T onto T’, hence
induces a topological morphism of B-modules wq : Al ,, — Ay . Together with

K,m
conjugation by the inverse of wg on I' (cf. Equation (65)), it yields a morphism of
pairs wq : (I', A}, ,,,) — (I'; Ak ), which in turn induces a morphism

(66) wg : H'(T, AL ) — H'(T, Acm).
A direct computation proves that, for each z in H*(T', A, ), one has

Upowy(z) =wpoUyo (p)y (x) and U, owny(z) = wny o Uy(z),
where (p)y = T, is the Hecke operator on H'(T', A}, ,,,) associated with any matrix
ap in SLa(Z) of the form a,, = ( pfh. %) withd =1 (mod p) and d = p (mod N). The
dual of wq : Aj ,,, — Axm yields a map wq : Dy m — Dy, ,,, which together with
conjugation by wgp on I' induces as above a morphism
(67) wg : HY(T, Dy ) — H'(L, D, ).
For each y in H'(I', D, ,,) one has

(68) wy 0 Up(y) = U;) ©Wp © <p>N (y) and wnpoUy(y) = U1/) o wnp(Y)-

If p does not divide @, then wg belongs to I'g(pZ,), and for - = ),/ one defines
(69) wq: H'(T, D} ) — H'(I',D;,,,) and wg: H'(T, A, ) — H'(T, 4, )
to be the Hecke operators T, introduced in Section 4.1.1.

4.1.3. Specialisations and comparison. — Let k =r +2 € U and let 7, € Ay be a
uniformiser at k — 2 (hence 7 and 7, generate my). There are short exact sequences
of ¥j(p)-modules (cf. [AIS15, Proposition 3.11])

Tk Pk

(70) 0 At At

A;“,m - 07

Tk Pk

0 Dym D

D, ,, —=0.
The morphisms pj, are defined by the formulae
pr(f)(2,y) = f(z,y)(k)  and  pr(p)(v) = p(yw)(k)

for every f € Ay, (z,y) € T, p € Dy, and v € A, ., where yy(z,y) = ry(z) -
(L,y/2) £ T =T and yu(2,y) = su(y) - v(z/y, ) f T =T

Let r € U N Z3o be a nonnegative integer. Viewing two-variable polynomials as
analytic functions on T' gives a natural map of X(p)-modules S,.(0) — A.. ., and

r,m?
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dually a morphism of ¥ (p)-modules D,.,,, — L,.(0). Together with the comparison
isomorphisms between étale and Betti cohomology:

(71)  H(Yq, 7 (0)) = H'(T',S,(0)) and Hi(Yq, % (0)) = H (I, L.(0))
they induce comparison morphisms
(72)  Hy(Yq,#(0)) — H'(T,A,,,) and H'(T,D,,,) — Hi(Yq, Z:(0)).

The second isomorphism in Equation (71) is Hecke equivariant, hence so is the second
morphism in Equation (72). On the other hand the first isomorphism in Equation
(71) (resp., morphism in Equation (72)) intertwines the actions of the Hecke opera~
tors Uy, Ty, U,, T; on the left hand side with those of Hecke operators U, Ty, Uy, Ty
respectively on the right hand side (whenever the latter are defined).

4.1.4. Slope decompositions. — Let % be a Q,-Banach algebra, let N be a module
over A, let u be a A-linear endomorphism of N, and let h € Q. Following [AS08]
one says that N admits a slope < h decomposition with respect to w if there exists a
(necessarily unique) direct sum decomposition

N = Néh@N>h

into #[u]-modules such that the conditions 1-3 below are satisfied. One says that a
polynomial P(t) in A[t] has slope < h if every edge of its Newton polygon has slope
< h. Let Z[t]S" be the set of polynomials in Z[t] of slope < h and whose leading
coefficient is a multiplicative unit. For every P(t) € B[t] write P*(t) = t¢(P). P(1/t).
1. NS" is finitely generated over 2.
2. There exists P(t) € B[t]S" such that P*(u) kills NS".
3. For every P(t) € B[t]S" the endomorphism P*(u) of N>" is an isomorphism.
Let m and U be as in Section 4.1, let k =r+2 € U(L), and let h € Q>¢. Set

77“ = {(La Aﬁm’ UP)7 (L7A;”,m7 U;Ia)a (Lv DTﬂ’m Up)v (Lv D;“,mv U;)}
and
7-U = {(ﬁUvAU,mv Up)v (ﬁUv /U,mv U}/))’ (ﬁUaDU,vap)v (ﬁUv b,mv U;I;)}v

where O is a shorthand for Ay[1/p]. Recall that Ay is isomorphic to the power series
ring O[T, equipped with the topology defined by the maximal ideal my = (7, T),
hence Oy is isomorphic to the L-module L[T]° of power series in L[T] with bounded
Gauf norm. If s is a real number satisfying 0 < s < 1, define ||, : L[T]° — R0
by [>2,50an - T"|s = sup,>¢s" - |an|p. Then |-|s is an L-Banach algebra norm on
L[T]°, which is independent of s and induces the (7, T)-adic topology on &[T]. This
corresponds to an L-Banach algebra norm on Oy, which restricts to the my-adic
topology on the &-submodule Ay. The discussion on slope < h decompositions then
applies to each triple (%, M, u) in 7, UTy. The following proposition is a consequence
of the work of Coleman and Ash-Stevens [Col97, AS08] (see also [AIS15]).

Proposition 4.2. — Let (%, M,u) be a triple in T, UTy. If r € UNZxg, one also
allows (%, M, u) to denote either (L, S.(L),U,) or (L, L.(L),U,), with U, = Uy, U,).

p
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1. Up to shrinking U if necessary, the %B-module H*(T', M) admits a slope < h
decomposition with respect to w. Moreover, for - = (0,1, the specialisation maps py
defined in Equation (70) induce Hecke equivariant isomorphisms

Pk : Hl (F, A'Uﬁm)gh ®AU AU/ﬂ—k = Hl(rv A;ﬂ,m)gh
and py : H'(T, Dy, )" @4, Au/my, = HY(T, D;.,,,)<".

2. Assume thatr = (n,a) € Z>o xZ/(p—1)Z withn =a (mod p—1) and h < n+1.
Then (for - = 0,1) the natural maps S,(L) — A, and D, . — L.(L) induce
Hecke equivariant isomorphisms

HYT, S, (L)S" =2 H\(T', 4,,,)S" and H'(T,D,,,)S" = H'(T',L.(L))S",

where the superscript <'h in H'(I', -)S™ refers to the slope decomposition with respect
to the endomorphism U,,.

Let r be a nonnegative integer and let h € Q3¢ such that h < r + 1. As the
étale cohomology groups Hy, (Yg, )1 and H} (Yq, %)L are finite-dimensional over
L, they admit slope <'h decompositions with respect to U,. Part 2 of Proposition
4.2 then implies that the comparison maps defined in Equation (72) induce natural
isomorphisms of L-modules (cf. the last lines of the previous section)

(73) Hélt(YQ,Yr)fh =~ HY(T, Apyn)S" and  HY(T, D,n)S" 2 HY (Yo, 20)7"

One obtains similar isomorphisms after replacing A, ., and D, ,, with A} and D;.,,
respectively.

4.2. Etale sheaves. — Let .7 = T (p),N be the relative Tate module R'w,Z,(1)
of E over Y (cf. Equation (10)). Fix a geometric point 7 : Spec(Q) — Y and
denote by G = Gn ,, the fundamental group 7$*(Y, n). Fix in addition an isomorphism

£ 9,27, Z, of Z,-modules such that, for every z,y € .7, one has
(74) (z, ?J>Epoo =¢&(x) AN¢(y) and g(cp,n) =F,-(1,0),

where (-, ~>Epoo is the Weil pairing, A\’ 72 =7, via (1,0) A (0,1) =1, and & : B, ,, =
F, ®F, is the reduction of £ modulo p. The action of G on .7, and the isomorphism
& give a continuous morphism ¢ : G — GLa(Z,). Since the subgroup C,, of E,
is preserved by the action of G, the second condition in Equation (74) implies that
o factors through a continuous morphism ¢ : G — T'g(pZ,). Let S;(Yz) be the
category of locally constant constructible sheaves on Yz with finite stalk of p-power
order at 1, and for every topological group G denote by My(G) the category of
finite sets of p-power order, equipped with a continuous action of G. Taking the
stalk at 7 defines an equivalence of categories -, : S§(Yz;) = My(G), whose inverse
€t My(G) = Sy(Ya) restricts via o to a functor -¢° : My(To(pZy)) — Sf(Yer).
(Here both G and T'g(pZ,) have the profinite topology.) Define Mcs(G) to be the
category of G-modules M which are filtered unions M = J,o; M; with M; € M;(G)
for every i € I, and M(G) C Mcs(G)N to be the category of inverse systems of
objects of Mcs(G). Define similarly Scis(Yer) and S(Ye) C Seis(Yer)N. If G denotes
one of G and T'y(pZ,), the functor -** extends to -** : M[(G) — S(Yzt). Let (M;)ien
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be an inverse system of G-modules and let M = lim M;. If the inverse system (M;);
defining M is clear from the context, we say that M belongs to M(G) to mean that
(M;); does. If this is the case we write M for (M;)¢t.

More generally for every scheme S one defines the category S(Ss) as above. For
every & = (F;)ieN € S(Set) set

H},(S,7) = R (LmD(S,))(F); and B, (S, F) = lim Hj (S, ),
so that (Hgt(S7 Z) is the continuous étale cohomology in the sense of [Jan88] and)
there are short exact sequences
(75) 0 — R'im H.'(S,.7;) — HL (S, F) — B, (S, F) — 0.
—i
One similarly defines compactly supported cohomology groups HY (S,.#) and

ét,c
H; (S, F) (cf. [Jan88]).
Let (B, k) be as in Section 4.1. The modules A, ,,, and D, ,, belong to M(T'(pZ,)):

D, ., =limD, . /FiVD, .
: par s :
Ap i =TAL fp A
: pa I :
and A, ,,/mp- A, = JFili;A4, .,
Jjzi
where (Fil/ D;, m)j>o0 is a decreasing filtration by B[¥;(p)]-submodules on D, ,,,, such

that D;{,m/Filj is finite for every j, and where (Fil; ; A, )
on A, . /mi- A by B[5;(p)]-submodules of finite cardinality. Precisely one defines

j>i is an increasing filtration

FiljD,;”m = {,u €D | 1(fam) € ml; " for every 0 < a < p™ — 1 and n < j}
(cf. [AIS15, Definition 3.9 and Proposition 3.10]) and
Fil; j A, = T B (fam +mj) C A, /my- A,
O0<asp™ —1,n<j

where (fa,n)o<a<pm—1,n>0 is the orthonormal basis of .A;g,m defined in Remark 4.1.
Denote by

A;ﬁ,m = 'Af::n and D.n,?n = D;::u
the images of A, ,, and D, ,, respectively under -** : M(T'¢(pZ,)) — S(Ys). For
every j > 0 set

m

. g j .
A/{,m,j - An,m/mB ’ An,m’

. _ . . ]
Dmm,j = Dmm/Fll ,
. _ - ét
Ami = A
. _ - ét
and D, ., ; =D,

so that \A, ,, is a shortened notation for the inverse system (A,
D.. = (D

K,m

.m,j)jen and similarly

w.m.j)jeN- If Sis a Z[1/Npl|-scheme one can define for every prime £ { Np
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(resp., prime ¢|Np, unit d € (Z/NZ)*) Hecke operators T, (resp., U;, (d)) acting on
H (Ys, A, ;) and Hy (Ys, D, ,, ) (cf. Section 2.3 or [AIS15, Section 5]). We list
below some of the basic properties satisfied by \A, ,, and D, .. Let S be a Z[1/Np|-
scheme and let x : Z* — B* be a continuous character. Let B/m(x) € My (Io(pZ,))
be a copy of B/m%; equipped with the action of I'g(pZ,) defined by v-b = x(det(7))-b,
and let B(x) = lim; B/my(x). If C,,, . denotes either A, . or D, . = define
C,;s,er,-(X) = C,:c,7rz,~ ®B B(X) and c;@,m(X) = C;@,m(X)ét = C;i,m ® (B/mlB(X))géN As
usual, if (B, k) = (Ay, k), one sets Cyy . =Cp oy

e For each k =r+2 € U(L), each j € N and - = (),/, the specialisation maps

(70) induce morphisms

Pk * AU,m,j (X) - A.r,m,j (X) and Pk : DU,m,j (X) - D;’,m,j (X)a
which in turn induce in cohomology specialisation maps
(76) Pk : Hélt(Y55 AU,m(X)) — Hélt(YS7
and  pg: Hét (YS7DU,m(X>) — Hét(ys’
) =2 HY(T',D, ,. .), which in-

A, (X))
D;. (X))

e There are natural isomorphisms Hgt(YQD'

K,m,j K,m,J
duce isomorphisms (cf. Theorem 3.15 of [AIS15])
(77) Hélt (YQa D;-c,m) = H}et (YQa D;c,m) = Hl(rv Dnm)
and Hé‘@C(YQ’ Dmm) = Hét,c(YQ7’D;i,m) = }Ic1 (F’ Dn,m)

of B-modules compatible with the action of the Hecke operators and with the
specialisation maps p,. Here HJ(T',-) = HI=Y(T,I(-)) is defined to be the
(j — 1)-th cohomology group of I with values in the I'-module

I(-) = Homz(Div’ (P(Q)), )
(cf. Proposition 4.2 of [AS86b]).
e There are natural maps Hg (Yq, A, ;) — H'(T, A, ), inducing an iso-

é Ky, J
morphism of B-modules (cf. Lemma 4.3 below and the discussion preceding
it)
(78) Hét(YCDA;ﬁ,m) = HI(F“’AN,m)
compatible with the action of the Hecke operators and with the specialisation

maps. In light of the exact sequence (75), the isomorphism (78) yields a Hecke
equivariant short exact sequence of B-modules

(719 0— R11<i_r£; HO(YQ,A' — Hélt(YQ, A, ) — Hl(r,Am) — 0.

K,m,j)

e The B-modules H{ (Yq, D;, ,,,) and HE (Yg, A, ,,) are equipped with natural
continuous actions of Gq which commute with the Hecke operators and the
specialisation maps. Moreover as G'q-modules

(80) H}et (YQa ,Dﬁ,m(X)) = Hét (YQ7 D;@m)(XQ)
and  He (Yo, A (X)) = B (Y. Ar ) (XQ),



(83)
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where xq = x o X;ylc : Gq — B* and Xcye : Gq — Z, is the p-adic cyclotomic
character. A similar statement holds for the compactly supported cohomology
Hét,c(YQ’ Dmm) .

We equip H'(I, D, ,,,), H! (T, D, ,,,) and H'(I', A, ) with the structures of
continuous Gg-modules via the isomorphisms (77) and (78) respectively. If
h € Qs (and U is sufficiently small) the slope < h submodules H*(T', D}, ,,,)S",
He (T, Dy, )S" and HY(T, A St of HYT, DY )q,y He(T, Dim)q, and
H' (T, A, ,.)q, respectively (cf. Proposition 4.2) are preserved by the action
of GQ.

Set Ay; = (Ay/m?)® and Ay = (Ayj)jen € S(Yer). There are canonical
isomorphisms of Ay-modules

tracey : H2(I', Av) =2 HZ (Yg. Av) = Ap.

ét,c

The evaluation morphism AU,m Ay Db,m — Ay and the trace tracey induce
a cup-product

Hl(F?AU7m) DAy H&(vaUm@) — Hz(raAU) = AU7

under which the Hecke operator U, acting on H 1(F,AU’m) is adjoint to U,
acting on Hcl(F,’D'U’m). This in turn induces for h € Q¢ (and U sufficiently
small) morphisms of Ay[1/p]-modules

&J,m  H' (F7 Ab,m)gh — HomAU[l/P] (H(} (Fv DU,m)ghv AU[l/p])'

Define det : Tx T — Z5 by det((z1,72), (y1,%2)) = T1y2—T2y1, and denote by
dety : T x T' — Aj; the composition of det with xy : Z3 — Aj;. Evaluation
at dety defines a I'-equivarint bilinear form Dy, ®4,, ijym — Ay. Together
with tracey (cf. Equation (81)) this induces a cup-product pairing

dety; : H'(T, Dy,m) ®a, He (L, Dy,,) — HZ(T, Ay) = Ay

under which the Hecke operators U, and U; are adjoint to each other. For
every h € Qxq the (inverse of the) adjoint of det;; induces an isomorphism of
Ay [1/p]-modules

Com  Homay (1/p(HE (T, D) S" Au[1/p]) = HY(T, Dy ) S
Similarly one defines an isomorphism
Cuym HomAU[l/p](Hcl(F7 DU,m)<h7 AU[l/p]) = Hl(ra D{J,m)gh'

Let h € Q>¢. If U is sufficiently small the composition of (i, with £y, gives
a morphism of Gg-modules

SU,h * Hl(FaAU7m><h(K’U) — Hl(FaD&,m)gha

where Ky : Gq — A}y is defined by ky(9) = kv (Xeyc(g)) for every g € Gq.
For every integer k = r+ 2 in UNZ such that h < k — 1, the following diagram
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of L|GqJ-modules commutes.

SU,h

(84) HY(T, Ay ) S (k) H'(T, Dy;,,,)S"

<h Sr <h
H(’}t(YvaT)L (’I“) Hét(YQagr)L

By a slight abuse of notation, here one writes again p, for the composi-
tion of the specialisation map pj : HY(T, Ay.,)S" — HY(T, Aypn)S" (resp.,
px : HYT, Dy, )S" — HY(T,D;,,)S") with the comparison isomorphism
H'T, Ar)Sh = HY (Yo, #)<" (vesp., HY(T,D.,)S" = HNT,.%)5")
defined in Equation (73). Similarly the composition of (7, ,,, with & . gives a
morphism of Gq-modules

sy H'(T, Ay ) S (ky) — HY(T, Dy) "

and the diagram of Ggq-modules obtained by replacing Ay, Db,m and sy p
with A7y, Dum and sy, respectively in Equation (84) commutes.

o The Atkin-Lehner operators w,, (resp., wyyp) defined in Equations (66) and (67)
are Gq-equivariant (resp., Gq(,,)-equivariant).

Due to the lack of a reference, we explain how to construct the crucial isomorphism
(78). Let - denote either the empty symbol or 7, and let Fil; A, ,, = (Fil; ;A )¢
be the étale sheaf on Y associated with the finite B/m’B[I']-module Fil; ;A; ... The
comparison isomorphisms between étale and Betti cohomology yields isomorphisms

comp, ; : Hy (Yq. Fil; j A, ) = H' (L, Fil; j A, ).
The étale cohomology of the affine scheme Y commutes with filtered direct limits.
Moreover, since the group I is finitely generated, the cohomology functor H(T,-)
commutes with filtered direct limits (cf. Exercises 1 and 4 on page 196 of [Bro94]).
Taking the direct limit for j — oo of the isomorphisms comp; ; then gives isomor-
phisms of B/m’B-modules

Comp; : Hl (F7 A;i,m,i) = He];t (YQ7 A;c,m,i)?
which in turn entail an isomorphism of B-modules

comp : lim H'(T, A, ,. ) 2 HE, (Yq, A, )
1 e ’
The sought for isomorphism (78) is defined as the composition of the comparison
isomorphism comp and the natural map H'(T', A ,,) — Jim, H'(T, A, ), which

is an isomorphism by Lemma 4.3 below. The Hecke equivariance of the isomorphism
(78) is proved precisely as in Sections 3.2 and 3.3 of [AIS15].
Lemma 4.3. — The natural maps

HY(T, A, ,,) — lm H'(T, A

n,?n,i)

are isomorphisms of B-modules.
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Proof. — We adapt the proof of [AIS15, Lemma 3.13| to our setting. To ease nota-
tion, set A; = A, ; and A=A, .. For each I-module M, let

(T, M) 0 — ML oy, M) L o2, M) —s -
be the usual complex of inhomogeneous cochains computing the cohomology groups
HI(,M) = Z/)(I', M)/im(d’~1), where C(T, M) is the group of maps from I'V to
M and Z%(I', M) = ker(d’). Denote by d* (resp., d?) the differentials in C*(T,.A)
(resp., C*(T', A;)), so that one has the following commutative diagram with exact
rows. (Recall that by definition 4; is a shorthand for A/m?; - A.)

dO

ZU(T, A) HY (T, A)

| !
(@)

A 0

To prove that 1 is an isomorphism, it is then sufficient to show that ¢ is surjective and
that ¢ is an isomorphism. The cokernel of ¢ is contained in R* Jim, (A;/HO(T, A)),
which vanishes since the maps A;11/H®(T, Ai+1) — A;/H°(T, A;) are surjective.
Moreover, as A = lim, A;, the natural map C* (r,A) — lim, C* (T, A;) is an isomor-
phism, hence so is ¢ by the left exactness of the inverse limit. O

4.3. The ordinary case. — This section explains the relations between the ordi-
nary (id est slope < 0) parts of the modules H* (T, Dy ) and the big ordinary Galois
representations considered in [Hid86, Oht95, Oht00]. This will be particularly rel-
evant for the study of the eigencurve in a neighbourhood of a classical weight-one
eigenform (where the Eichler—Shimura isomorphism of [AIS15] does not apply).

Since H'(T', D}, ,,,) is a profinite group (as Dj, ,, is), the limit e 4 = lim, o UT',”I
defines an idempotent in the B-endomorphism ring of H'(T', D}, ,,,). (Here as usual
(B, k) denotes either (Ay,sy) or (€,r) with r in W(L), and - denotes either the
empty symbol or /.) Set

Hl(F7D;e,m)<0 = e;)rd ' Hl(F’Dn,m)

This is a finite Ag-module, which recasts H'(T', D;, ,,,)S" after inverting p.
Following [Hid86, Oht95], define

T = lim Hi, (i (VD) g, Zp(1),

where r € Z>; and the transition maps are given by the traces pr;, induced in
cohomology by the degeneracy maps pr; : Y1 (Np™™) — Y1 (Np") introduced in
Equation (8). As the maps pr;, are Hecke-equivariant, the module T is equipped
with the action of Hecke operators T, (resp., U;), for each prime ¢ not dividing
(resp., dividing) Np. Moreover, the action of (Z/p"Z)* on H} (V3 (Np")q,Zp(1)) via
diamond operators makes T a module over o = Z,[Z7]. Let

D = Homzp(Step('I'/)7 Z,)
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be the right X{(p)-module of measures on T’, where Step(T’) is the set of Z,-valued
step functions on T’. Section 4.1.1 equips H*(T', D’) with the action of Hecke operators

U, and T}, for - = 0,7 and ¢ a rational prime different from p. A slight variant of
Lemma 6.8 of [GS93] yields a Hecke-equivariant isomorphism of o-modules
(85) T=H'(,D),

where the action of the Iwasawa algebra ¢ on the right hand side arises from that of
the group Z% = Z5 - (1) — X{(p) on D"

Each measure p in D’ extends to a Ay-linear morphism uy : €(T',Ay) — Ay on
the space €(T', Ay) of Ay-valued continuous functions on T’. The map sending pu to
the restriction of uy to Ay, — €(T', Ay) defines a morphism of ¥f(p)-modules

D' — Dy,
which in turn induces a Hecke-equivariant morphism of Ay-modules
(86) H'(I,D') ®, Ay — H'(T', Dy ,,.),
where Ay has the structure of o-algebra arising from ry : Z; — Ay
After setting
T3 = eq - T @ Av,
the composition of the maps (85) and (86) yields an isomorphism of Ay-modules
(87) Shy,m : Ty = HYI, Dy, )< (1),

which is Hecke-equivariant and Gq-equivariant. In order to prove this, let r be a
positive integer in U. Since H?(T,-) vanishes for each I'-module - of finite cardinality
(and Dy, ,, is profinite), evaluation at k = r + 2 on Ay induces an isomorphism

(88) H' (L, Dy ) S° @y Av/me = HY(L, D, )0

/
r,m

(89) HY(D,D.,)<° = HI(T, L,(0))<°,

which for j = 1 recasts the isomorphism displayed in Part 2 of Proposition 4.2 after

Moreover, for each j > 0, the natural map D..,, — L.(0) induces an isomorphism

inverting p. (Indeed a direct computation shows that (p]’:[i ?) € X{(p) maps the
kernel K., of D}, — L(&) into p"™' - K. for each 0 < i < p—1, from which one
deduces that the anti-ordinary projector e/ 4 kills H/(T',K; ) for each j > 0.) On
the other hand, the inclusion S, (Z,) — %(T’,Z,) dualises to a specialisation map
px : D' — L,.(Z,), and Hida’s control theorem (cf. [Hid86, Oht95]) shows that the
isomorphism (85) and py, induce a Hecke-equivariant isomorphism

(90) Cora * T @0 0/ T = H'(T, L (Z,))< ",

where I, is the ideal of ¢ generated by [1+p]—(1+p)" and [u] — ", with 4 a generator
of Fy and [] : Zy — o* the tautological map. It follows from Equations (88)-(90)
that the base change of Shy ,, along the projection Ay — Ay /7y, is an isomorphism.
Together with Nakayama’s Lemma, this implies that Shy,,, is surjective, and that
ker(Shy,m) @A, Au/mk is a quotient of the 7j-torsion submodule of H'(T, Dy, ,,)<°.
The latter is in turn a quotient of H°(I',D}.,,)S?, which vanishes by Equation (89).
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Another application of Nakayama’s Lemma then proves that Shy ,, is injective, thus
concluding the proof of the claim (87).
Set 0y = Ay[1/p] and denote by

h(U) = b(N,U) — Enda, (H'(I,Dfy,,,) ) [1/p]

the Hecke algebra generated over Oy by the dual Hecke operators (U, )q nps (17)enp
and ((d))ae(z/nz)~ acting on H' (I, Dy, )S°. For each positive integer r and - = 0,7,
let h'(Np") be the ring generated by the Hecke operators (U, ) np, (T;)enp and
({d))ac(z/nz)- acting on the space Ma(Np") of complex modular forms of weight 2.
Conjugation by the Atkin-Lehner isomorphism wypr € Isoc(Ma(Np”)) restricts to
an isomorphism h(Np") = h/(Np"), sending U, and Ty to U; and T respectively. Set

(91)  hpe = €oa - 1<i_rrTl(h‘(NpT) ®z Zp) and  hiy,e(U) = hiype @6 O,

where the transition maps in the inverse limit defining Ay e (resp., My, ) are induced
by the inclusions My (Np") C Ma(Np"+1) (resp., the maps My(Np") — Ma(Np™T1)
sending f(z) to f(pz)). The Atkin-Lehner operators (wnpr)r>1 induce an isomor-
phism of Ay-modules between hype (U) and Ry, (N), and since h(Np") acts faith-
fully on H} (Y1(Np")q, Zp(1)) (cf. Equation (19)), the Shapiro isomorphism Shy,,
defined in Equation (87) yields an isomorphisms of ¢y-modules

(92) hnpee (U) = H(N,U).

sending the Hecke operators Ty and U, to the corresponding duals 7, and Ué.
Denote by C = C(N) = Spf(hnp~)q, Berthelot’s rigid fibre of the formal spectrum

of hnpe (cf. Section 7 of [dJ95]). The structural maps © — hype yield a finite and

flat morphism « : C — W, and Equation (92) gives an isomorphism of &y-modules

(93) h(U) = 0(C xwU)

mapping the dual Hecke operators Ty (¢ { Np) and U; (q|Np) in the left hand side
to the corresponding Hecke operators Ty and U, in the right hand side, where O/(-)
denotes the ring of bounded analytic functions on -.

Section 6 of [Pil13] gives an isomorphism between C and the ordinary locus
¢! = €°Y(N) of the Buzzard-Coleman-Mazur eigencurve 4 = % (N) of tame
level N, mapping the Hecke operators in hnpe to the corresponding Hecke operators
in 0(€°"). In light of Equation (93), this gives isomorphisms

(94) h(U) = 6(6° xw U)

mapping the dual Hecke operators in the left hand side to the corresponding Hecke
operators in the right hand side.

Remark 4.4. — If U is a sufficiently small open disc in W centred at an integer
k, > 2, and h is a non-negative rational number satisfying h < k, — 2, then the
overconvergent Eichler—Shimura isomorphism [AIS15, Theorem 1.3 implies that the
isomorphism (94) holds after replacing ™4 with the slope < h locus of %, and h(U)
with the Hecke algebra acting on the slope < h subspace of H 1(F,D{]m). On the
other hand, their result does not apply when U is centred at k, = 1 (and h = 0), a
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crucial scenario for the applications of the main results of this paper to the arithmetic
of elliptic curves (cf. [BSV20a]).

5. Hida families

As explained in Section 6 of [AIS15] (see also Section 6 of [GS93]), the big Ga-
lois representations associated to p-adic Coleman—Hida families (generically) appear
as direct factors of the cohomology groups H 1(F7DU7m). This section recalls these
results, paying particular attention to the case (not covered in loc. cit.) where the
open disc U is centred at weight 1 in W(Q,). To simplify the exposition we limit the
discussion to Hida families. This suffices for the applications we have in mind (and
requires no mention of the theory of (¢, I')-modules and trianguline representations).

Let M be a positive integer coprime to p, let U C W be an L-rational open disc
centred at a positive integer k, € Z>1, and let x be a Dirichlet character modulo M.
Let 0y = Ay[1/p] be the ring of bounded analytic functions on U, and let

U'={keUNZ|k>2and k=k, mod 2-(p—1)}

be the set of classical points of U. An Oy-adic cusp form of tame level M and tame
character y is a formal g-expansion

=Y aufik)-q" € Ovlq]

n>1

such that, for each classical weight k € U°', the weight-k specialisation

Fo= Y an(fik) - q" € S (Mp, ).

n>1
is the g-expansion of a p-ordinary cusp form in S™(Mp, x)r. Here

Sy (Mp, X)L = €ord - Sk(Mp,X) 1,

where eo.q = lim,_ s U;” is Hida’s ordinary projector acting on the L-module
Sk(Mp, x) 1 of cusp forms of weight k, level 'y (M) N To(p), character x and Fourier
coefficients in Q N L (under the fixed embedding Q <+ Q,). Denote by S (M, x)
the Opy-module of Op-adic cusp forms of tame level M and character y. It is
equipped with the action of Hecke operators Ty, for primes £ 1 Mp, and Uy, for primes
£|Mp, which are compatible with the usual Hecke operators on S,‘grd(M p,x) for each
k € UL A cusp form f in S4(M,x) is normalised if a1(f;k) is the constant
function with value one on U. A (L-rational) Hida family of tame level M, tame
character y and centre k, € Zx1 is an Oy-adic cusp form f € SFd(M, x), for some
U as above, which is an eigenvector for the Hecke operators U, and T}, for each
prime ¢ { Mp (equivalently such that, for each k € U, the weight-k specialisation
fi is an eigenvector for the Hecke operators U, and Ty, for all primes £ { Mp.) A
normalised Hida family f € SgFd(M, x) is new (or primitive) of tame level M if the
conductor of the eigenform f, is equal to M for all k > 2 in U'. To each Hida family
F € Sgrd(M, x) is associated a unique pair (Mg, f*), where My is a positive divisor
of M and f* =37, an(k)-¢" in Sgr4(My, x) is a new Hida family of tame level My
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such that Up,(f) = ap(k) - f and T;(f) = ae(k) - f for all primes £{ M. We call Mg
the conductor of f and f* the primitive Hida family associated with f. Moreover, we
denote by

ST M, xp)[fF] — Sg(M, xy)
the Op-module of Hida families in SgF4(M, yf) having f* as associated primitive Hida
family. A level-N test vector for f* is an element of SF4(M, x¢)[f*] of the form

(95) f= Y rafiaY,
0<d|M/Mj
for analytic functions (r4)q in Oy without common zeros in U.
Fix in the rest of this section a positive divisor N¢ of N and a normalised eigenform

]ﬁo = Z Qp * qn € Mko(rl(Nf) N FO(p)7Xf)L
n>1
of weight k, > 1, level Ngp, character x¢ : (Z/NyZ)* — L* and Fourier coefficients
in L, satisfying the following (cf. Assumption 1.1)

Assumption 5.1. — One of the following statements 1-2 holds true.
1. The form f,go is cuspidal of weight k, > 2, p-ordinary (id est ap, is a p-adic unit
under the fized embedding Q — Qp) and its conductor is divisible by Ng.
2. The form f,iu 1s a p-stabilisation of a cuspidal and p-regular weight-one newform
of level Ny, without real multiplication by a quadratic field in which p splits.

The previous assumption guarantees that the eigencurve x : €(Ng) — W (cf.
Section 4.3) is ¢tale at (the L-rational point corresponding to) fi . In case 5.1(1)
(resp., case 5.1(2)) this follows from Corollary 1.4 of [Hid86] and Section 6 of [Pil13]
(resp., Theorems 1.1 and 7.2 of [BD16]). As a consequence, there exists an open
connected disc Uy in Wy, centred at k,, and a section Uy — € (Ny) ®q, L of k®q, L
mapping Uy isomorphically onto an open admissible neighbourhood of f,ﬁo. In light
of Equation (94), this yields an idempotent ey in the Hecke algebra (cf. Section 4.3)

def

H = h(Ng, Uy),
and an isomorphism of Oy, -algebras between egs - H and Oy, . Let
(96) p:H— Oy,

be the composition of this isomorphism with the projection onto eg: - H.

For each positive integer n, denote by A/ C 3((p)NM2(Z) the set of integral matri-
ces o = (‘g 2) satisfying det(a) =n, d=1 mod N, ptd and ¢ =0 mod Np. Define
T = > aca; Ta, where Tj, is the endomorphism of HY(T1(Ng) N Fo(p),ijfym)go
introduced in Section 4.1.1 (and m = m(Uy) is sufficiently large). The dual Hecke
operator T, belongs to H (cf. [Shi71, Chapter 3]), and after setting

an(k) = an(fﬁv k) = QD(TT/L)a
the formal g-expansion

£ =3 aulk) - q" € Oy, lg]

n>1
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ord

is the (unique) cuspidal primitive Hida family in SUf (Ng, x¢) of tame level Ny and
character x s specialising to f,go at k,. For each positive integer n, it is an eigenvector
for the Hecke operator T,, with eigenvalue a, (k).

The rest of this section summarises the main result from Hida theory needed in
the sequel of the paper. Fix a level-N test vector

£ € SN, xg) L]

for f*. To ease notation, set Ay = Ay, 0y = Oy, D}, = Dy, ,,, and Dy, = Dy,
(where as usual - denotes either the empty symbol or 7). Denote by k—k, a uniformiser

at k, in Ay, so that Oy is a module of power series in L[k — k,] which converge for
any k in Us. One has kg, (t) = w(t) =2 . <t>k_2 for all t € Zy, and
ko—2 .  k—2

(97) KUy = Woge ~ " Feye : GQ — Af.

Here weye and ey denote the composition of the p-adic cyclotomic character
Xeye : Gq — 2y,

k—2
cyc 1

with the projections w : Z; — F; and (-) : Z, — 1+ pZ, respectively, and &
the Aj-valued character which on g € Gq takes the value Keye(g)R 2

S

e For every classical weight k£ > 2 in de the weight-k specialisation f, is old at
p. Indeed f;, = f, is the ordinary p-stabilisation of an eigenform f = fj in
Si(N, xr) (cf. Equation (54)), hence ap(k) = af is the unit root of

X2 S X ot = (X =) (X - )

(We refer the reader to [Hid86]| for more details.)
e To ease notation, set

V = H'(I'1(Ny) NTo(p), Df ,,,)S°(1) and  H = b(Ng, Uy).

According to the main results of [Oht00] and the isomorphism (92), there is a
short exact sequence of H[Gq,]-modules

(98) 0—VH—V-—V —0,

where V* are finite free &p-modules. The Gq,-module V™ is the maximal
unramified Op-quotient of V, and an arithmetic Frobenius acts on it as mul-
tiplication by the p-th Fourier coefficient a,(k) of f*. Moreover, there are
canonical isomorphisms of H-modules Y1 2 Hpar and YV~ = Homg, (H, Oy),
where Hpar is the quotient of H acting faithfully on the parabolic subspace
H} o (Tg, DY ,,,)S°(1) of the cohomology group V.

Applying the idempotent ep: (defined before Equation (96)) to the short
exact sequence (98) gives a short exact sequence of 0¢[Gq,]-modules

(99) 0— V(T — V(f) — V(fH —0,
where (for - equal to one of the symbols @), + and —)
V(fﬁ) = efn -V
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is a free Op-direct summand of V'.

e The 0;[Gq]-module V(f*) has rank two over &, and is unramified outside
Ngp. For every prime £ not dividing Ngp, the characteristic polynomial of an
arithmetic Frobenius Froby in Gq at £ is given by (cf. Equation (106) below)

det(1 — Frobe|V(f*) - X) =1 —ae(k) - X + x¢(£) - ki, (0) - £ X

In particular the determinant of V'(f¥) is given by (cf. Equation (97))
(100) deto, V(F) = Xf - Xeye - vy = X5 - whee '+ kbt

As the arithmetic Frobenius Frob, € Ggq, acts on V™~ as multiplication by
ap(k), one deduces isomorphisms of 0¢[Gq,]-modules

(101) V()T = 0p(1+ Ky, + x5 —ap(k))  and  V(f)™ = Gf(ap(k)),

where for every a € A}" one writes @ : Gq, — A}" for the continuous unramified
character satisfying a(Frob,) = a.
e Recall the level-N test vector f for f* fixed above, and define

H'(T, DY ,,)S(1) — V(f)

to be the maximal Op-quotient of H! (F,D]’c7m)<0(l) on which the dual Hecke
operators Ty, U, and (d)" act respectively as multiplication by a,(k), ap (k) and
X5 (d), for each prime ¢ not dividing Np and each unit d in (Z/NZ)*. This is
equal to the Gg-modules V(f*) = ez - V introduced above when N = Ny and
f = f*. In general, the 0y [Ggl-module V(f) is (non-canonically) isomorphic
to the direct sum of a finite number of copies of V(f*). In particular, V(f) is
a free Oy-module, and there is a short exact sequence of 0f[Gq,]-modules

(102) 00— V(AT —=V(EF) —V(EF —0

with V(f)* free of finite rank over &, and V(f) —» V(f)~ the maximal
unramified Op-quotient of V(f).
Dually, define

V*(f) — H01 (Pa Df,m)go(_HUf)

be the maximal Op-submodule of H!(T, Dy ,,)S°(—ky,) on which the Hecke
operators Ty, U, and (d) act respectively as multiplication by a(k), a,(k) and
X7 (d), for every prime ¢{ Np and every unit d in (Z/NZ)*. Then V*(f) is an
Of|Gql-direct summand of H}(T', Df )< (—Kyy, ), isomorphic to the @p-dual
of V(f). Indeed the bilinear form dety, defined in Equation (82) induces a
perfect pairing of 0;[GqJ-modules (cf. [Oht00] and Section 4.3)

(103) (g 2 V() @g, VI(F) — O

Let V*(f)* < V*(f) be the maximal unramified submodule of the restriction
of V*(f) to Gq,, and let V*(f)~ be the quotient of V*(f) by V*(f)*. There
is then a short exact sequence of 0y[Gq,]-modules

0— V() — V() — V() —0,
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and the bilinear form (-, -) 5 induces perfect, Gq,-equivariant pairings
(104) (2)g VI @0 VDT — 6.
Because H!(T, D];m)go is an Op-direct summand of H!(T, D; ), there are
natural Jy[Gq]-projections
(105)  prg s H'(T, D ,,)(1) — V(f) and prf : Hi (L, D) (—kr,) —> V(f).

e For all classical points k in de the specialisation map pj in the right column
of Equation (84) gives rise to an isomorphism of L{Gq]-modules

(106) pi 2 V(F) ®ap Ap/(m) = Hg (Yi(N, p)q, Li—2(1) 5z =V (fi)-
Here
Hélt(Yl (N’ p)Q?D?k—Q(l))L — Hélt(Yl (N’ p)Qv fk—2(1))f;

is the maximal quotient on which 77, Ul', and (d)l act respectively as multiplica-
tion by as(k), ap(k) and x ¢(p) for any prime £ { Np and any unit d in (Z/NpZ)*.
If t : Y1(Np) — Y1(NV,p) is the natural projection (viz. the one induced by the
identity on H under (6)), the second isomorphism in Equation (106) is the one
induced by the pull-back

t*: Hy (Yi(N,p)q, Zi—2(1)) — Hg (Yi(Np)q, Zi—2(1)).
If kK, = 1, so that f;, = Zn21 an(1) - ¢™ is a classical, cuspidal weight-one
Hecke eigenform (cf. Assumption 5.1), then the weight-one specialisation
V(fi) =V () @, Ag/(m1)

of V(f*) yields a canonical model of the dual of the Deligne-Serre representation
attached to ff. More generally, if f; is classical, set V(f;) = V(f) @a, Ag/m1
(which is non-canonically isomorphism to the direct sum of a finite number of
V(£%).) In order to have coherent notation and terminology, we still denote by

(107) p1:V(F) ®a, Ap/(m1) — V(f1)

the identity map, and refer to it as the specialisation map at weight one.
Similarly for each classical weight k in U;é1 there are natural isomorphisms
of L[Gq,]-modules

(108) pr V() ©ap Mg /() = V7 (S)

(cf. the discussion following Equation (84)). Moreover for each x € V(f) and
y € V*(f) one has

(109) (,y) ¢ (k) = (o (@), o (¥)) 4, »

where (-, -) ¢ is the perfect bilinear form defined in Equation (24).

e For each k in de and - = ), ¥, one has short exact sequences of L[Gq,]-modules

(110) 0—V(f)t — V(i) =V (i)~ —0,
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where V(f;,)” is the maximal Gq, -unramified L-quotient of V(f;), and
V*(f)T is the maximal Gq,-unramified L-submodule of V*(f;,). The special-
isation maps (106) and (108) induce isomorphisms

(111) pr V()T @ L=V (fi)*.
According to Equation (101) the inertia subgroup Iq, of Gq, acts on V(f;,)"
via, Xfy_cl, and trivially on V(f,)~. If k¥ > 2, applying Dgr(-) to the previous
exact sequence and using Equation (28) gives natural isomorphisms

(112) Deris(V(f,)7) = VdR(.fk)/Fﬂo and FﬂOVdR(fk) & Dexis(V () 7)-
Similarly Iq, acts trivially on V*(f;)" and via x1;* on V*(f;)~, hence Equa-
tions (28) and (110) give

(113) Deis(V*(fi) ) = VJR(fk)/Fﬂl and Fﬂlvd*R(fk) = Deris(V*(f1)7)-

e The Atkin-Lehner operator wy, introduced in Equation (67) induces an iso-
morphism of Ty [Gq(cy)]-modules (cf. Equation (68))

WNp - Hl(F>DU7m)<O = Hl(F>D/U,m)<07

intertwining the action of the dual Hecke operators Uy, Ty and (d) on the left
hand side with that of the Hecke operators U, Ty and (d>71 on the right hand
side, for each prime ¢ not dividing Np and each unit d modulo N. Since the
form fl:o is cuspidal, it induces Galois equivariant isomorphisms

(114) Wy V() L+ ko, +x5) 2 V()
for - equal to one of the symbols @), + and —.
e Set
(115) D*(f)" = (V)" (1 + kuy +xg)z,207) 7% [1/p),

where V*(f)™ is a Gq,-stable Ag-lattice in V*(f)~, and Z;r is the ring of
integers of the p-adic completion Q;r of the maximal unramified extension
of Q,. (Note that V*(f)~ (1 + Ky, + xy) is an unramified Gq,-module, cf.
Equations (101) and (104).) It is a free finite &p-module (of rank one if f = f*
is primitive). For each classical point & in de, the isomorphism (111) and the
second isomorphism in Equation (113) induce a specialisation isomorphism

(116) g D) ex L= (VA(f) (k=14 xp) 8, QY) " = Fil'Vin(£,).

As V*(f,,)” (k — 1) is unramified, in the previous equation one identifies the
middle term with the tensor product of Deis(V*(fi,) ), Deris(Qp(k — 1)) and
Deris(L(xf£)). The second isomorphism then arises from Equation (113), the
canonical isomorphism Deis(Qp(k — 1)) = Q,, and the isomorphism between
Deiis(L(xf)) and L sending the Gauf sum Zae(Z/c(Xf)z)* Xf(a) ® Clnp) Of
the primitive character xy attached to xz to the identity, where c(xy) is the
conductor of xy and ((y,) is a primitive c(x#)-th root of unity.
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In light of the isomorphisms (87) and (114), the main result of [Oht00] and
Theorem 9.5.2 of [KLZ17] yield an Eichler—Shimura isomorphism

(117) ES; : D*(f)” = Sg (N )57,

whose base change along evaluation at a classical point k& € U;l is equal to
the composition of the specialisation isomorphism (116) with the isomorphism
Fil' Vi (1) = Sk(Np, L)y, defined in Equation (27). One defines

(118) wy € D*(f)~
to be the image of the Hida family f under the inverse of ES}, so that

(119) pe(ws) = wy,
for each classical point k in de (cf. Equation (30)). (When k, > 2, the overcon-
vergent Eichler—Shimura isomorphism proved in [AIS15] extends these results

to Coleman families of slope at most k, — 2.)
e Set

* * 2 Sury G D
(120) D*(f)" = (V' (£)"®z,2y7) " 1/,
where V*(f)" is a Gq,-stable Ag-lattice in V*(f)*. The perfect duality (-, ),

(cf. Equation (104)), the Atkin-Lehner isomorphism w;p (cf. Equation (114))
and the Eichler—Shimura isomorphism ES; give rise to an isomorphism

ES; : D*(f)* = Homg, (Sgi* (N, x1) (5], OF),

whose base change along evaluation at k € de on Jf equals the composition
of the specialisation isomorphism

* ~ * Anr\ G P AU * .
(121) pe: DY ()Y @ L= (VH(fi)1 ®q, Q)F) % = Viw (i) /Fil*
arising from Equations (111) and (113), and the isomorphism
Vir(fi)/Fil' 2 Homp (S, (Np, L)f:, L) = Homy (Sk(Np, L)y, , L),

where the first map is the adjoint of the perfect duality (-, '>fk defined in Equa-
tion (32) (cf. Equation (109)), and the second is the dual of

(71)’6"72 “WNp : Sk(Np, L)fk = Sk(Np, L)f}:

We claim that (shrinking Uy if necessary) there exists

(122) ny € D'(£)°
such that, for each classical point k in U§', one has (cf. Equation (34))
(123) pr(ng) = (p = Dap(k) - ng,.

Indeed, write f = >, 74 - f*(q?), with functions (Ta)aj(n/np) in Op without
common zeros. For each positive divisor d of N/Ng, the Q-rational morphism
vag : Y1(N,p)q — Yi(Ng, p)q arising from multiplication by d on H (cf. Equa-
tion (6)) induces a Gq-equivariant morphism vg. @ V*(f) — V*(f*) (cf.
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Equation (77)), which in turn induces vg. : D*(f)~ — D*(f*)”. Under the
Eichler-Shimura isomorphism ESg, the latter gives rise to a map

va. : SN x2) ] — ST (Ng xa) ] = O - £,

Set Traceg = Y, 7a - Vds, and define the big differential 775 € D*(f)* to be the
image under the inverse of ES}r of the linear form sending the Hida family f’

in S[‘};d(N, x#)[f7] to the first Fourier coefficient of Traces(f’):

ES{ (i1f)(f') = a1 (Traces (f')).
It follows from the definitions and Equation (109) that

- — (_1\ko—2 . (fkafk)Np .
Pk(nf) = ( 1) (.f]iv.f]g)pr nf,

for each classical point k in de. As explained in the proof of Lemma 2.19

of [DR14], the elements (—1)*~2. (fn’“f# are interpolated by an analytic
(fk,fk)pr

function & on Uy, which does not vanish at k, (as f} is non-zero by the
definition of level-N test vector for f*). Shrinking Uy if necessary, one can then
assume that &% is a unit in Of, and define the sought-for J-adic differential
Ny tobe (p—1)- éaf_l - ap(k) times 7jy.

e Similarly as in Equations (115) and (120), for - = %, define the Jp-module

(124) D(F) = (V(F) (), Z2) % [1/p],

where V(f)" is a Gq,-stable O-lattice in V/(f)", v~ is the trivial character and
vt = —1 — Ky, (so that the twist of V(f) by v’ is unramified, cf. Equation
(101)). The pairings (-,-); defined in Equation (104) and the isomorphism
Deris(L(x)) = L sending the Gauft sum G(xy) to the identity induce perfect
dualities of Op-modules (denoted again by the same symbols)

(125) ()5 : D) @6, D ()T — 6.

Similarly as in Equations (116) and (121), for each classical point k € U§', the
specialisation maps (111) and the isomorphisms (112) give rise to specialisation
isomorphisms of L-modules

(126)  pi: D(f)*T @k L = Var(£,)/Fil° and  px: D(f)” @ L 2 Fil’Var(fp).

Under the isomorphisms (116), (121) and (126), the base change of (125) along
evaluation at k on Oy is compatible with the perfect duality (31).

o If k, = 1, the representations V(f;) and V*(f,) are Artin representations
unramified at p. After setting V' (f;)* = V' (f)* @1 L (for - = 0, %), one has a
decomposition of Gq,-modules

V(f)=VI(f)TeV(fi).
Indeed, according to Assumption 5.1(2) one has

V()T = V()00 and V()T = V()T
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where Frob, is an arithmetic Frobenius, agp, = ap(l) and oy, - ﬁfl =Xt (p).
In order to have a uniform notation (cf. Equation (112)), if k, = 1 one sets
Vir(f1) = Daris(V'(f;)) and defines

(127) VdR(.fl)/Fﬂo = DcriS(V(f1)+) and FﬂOVdR(.fl) = Deris(V(f1)7)-

Similarly set Fil' Vi3 (£1) = Denis(V*(f1)7) and Vi (£1)/Fil' = Deris(V*(£1)F).
The pairing (103) then induces a perfect and Gq-equivariant duality

V(f) oL V*(f) — L,

under which V(f;)" is the orthogonal complement of V*(f;)". This in turn
induces on the crystalline Dieudonné modules a perfect pairing

(128) (g, Var(f) @ Ve (f1) — L,

which identifies Fil’Vyg(f;) and Vagr(f,)/Fil° with the duals of Vs (f;)/Fil'
and FillVd*R( f1) respectively. One finally defines

(129) wy, = p1(wy) € Fi'Vir(fy) and ny = p1(ny) € Vir(f,)/Fil'

as the specialisations of wy and 1y respectively at weight one.

6. Garrett—Rankin p-adic L-functions

Fix three primitive L-rational Hida families

fﬁ: Z an(k) : qn € S((};d(Nf,Xf)v

n>1
g'= Z bn(l) - q" € Slojl;d(Ngng)
n>1
and hu:ch(m)'qneslc}i?(]vh7xh)'
n>1

Let N be the least common multiple of Ng, Ng and Ny, and let
fe S(‘};d(N, Xf), g€ S’,‘};d(N, Xg) and h € S,‘}id(N7 Xh)

be Hida families with associated primitive forms f*, g* and h* respectively. Suppose
that Assumption 1.2 holds true, namely Xxf - xg - Xn is the trivial character modulo
N. Denote by %%™ the set of classical triples w = (k,l,m) in ¥y such that p does
not divide the conductor of f,, g; and h,,.

For any w € X% one has f, = (fi)a:9; = (91)a and Ry, = (hy)a for (unique)
p-ordinary eigenforms fi, g; and h,, of common level N (cf. Equation (54)). Similarly
fi.g; and k!, are the ordinary p-stabilisations of newforms f;,g; and hf, of levels

N¢, Ng and N}, respectively.

Lemma 6.1. — There exists a Hida family wy (f) in Sf];d(N, Xf) such that, for any
ke de with p not dividing the conductor of f., the weight-k specialisation wy (f)x
is the ordinary p-stabilisation of fi¥ = wn(fk)-
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Proof. — A direct computation (see Proposition 1.5 of [AL78]) shows that
wy opr, = ((p,1)) -pryowy and wy opr] =prjowy

as morphisms from Hle(Yl(N)Qp,YdR,k,Q)L to Hle(Yl(Np)Qp,ydRyk,g)L, where
{(p,1)) is the diamond operator associated with (p,1) under the identification
Z/NpZ =7Z/NZ x F,,. As a consequence

(130) (f)a = (prt 0wy — % prto wN) fe

=wp o (pff - p%}l 'pr,*)) fo = wn(fy)-

The lemma follows from the previous equation and [KLZ17, Proposition 10.1.2],
namely the existence of a morphism wy : Sg;d(N, Xf) — Sg;d(N, Xf) which spe-
cialises to the Atkin-Lehner operator wy on the ordinary part of Si(I'1(V, p), x¢) for
each classical weight & in Uf' (cf. Equations (69) and (117)). O

According to the previous lemma and the results of [HT01, DR14, Hid85] Hida’s
method (cf. [Hid85]) can be applied to construct a square-root Garrett—Rankin p-adic
L-function

fpf(‘f7g7h) € ﬁfgh

such that, for each classical triple w = (k,l,m) in chen, one has

(131) ,pr(f,g7h)(w) :jpf(fkaglvhm)a

where fpf(fk,gl,hm) is the p-adic period associated in Equation (55) to the p-
stabilisation of the triple (fx, g1, hm)-

Remark 6.2. — The p-adic L-function £/ (f, g, h) slightly differs from the one
denoted by the same symbol in [DR14]. Precisely our fpf (f,g,h) is equal to their
.,iﬂpf (wn(f*),g,h), where f* is the Hida family which specialises to the dual of f, for
each k in UJEI.

6.1. Test vectors and special value formulae. — In this section assume the
following hypotheses (cf. [Hsi20]).

Assumption 6.3. —
1. There is a triple (k,l,m) in ¥ such that the local sign ,(ff, g;, hi,) is equal to
+1 for all primes q|N.
2. The greatest common divisor of Ng, Ng and Ny, is squarefree.
3. There is a classical point k in de such that V(f}) is residually irreducible and
p-distinguished.

Under these assumptions, Section 3.5 of [Hsi20] implies the existence of an explicit
level-N test vector (f*,g*, h*) for (f*, g% h*) such that the Garrett—Rankin triple
product p-adic L-function

Lp(fn7gu7hﬁ) _ gpf(f*’g*7h*)2
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satisfies the following interpolation property (see Theorem A of loc. cit.). For all
w = (k,I,m) in 5"
(132)
L(k,l,m)  E(ff.g] hin)’ L(f; ® g} ® h,,, =52
LP(flgaglahgn) = Qi(klm)) & ( . lg ﬁ HL kQ(k l2) -
" o(FH)? - Eu(fi)? T . (fk,fk)Nf

)

where the notations are as follows.
e a(k,l,m) € Ofgp, is a linear form in the variables k,l and m and
(133)
L(k,m,l) = ((k+1+m—4)/2)!- ((k+1-m—2)/2)!- ((k+m—1-2)/2)!- ((k—1—m)/2)!.

o Set ¢,y = (k+1+m—2)/2, ap = ap(k), B = xz(P)p* 1 /aw, au = by(l) et
cetera. Then

(134)
E(ff gl ) = <1_ﬁkagam> (l_ﬂkﬁ;am) (1—/3’““!@”) (bwjﬂm),
b b pv pew
(135) (fk)—lfﬁ and gl(flg):17p-ﬂl;k'

e For each rational prime ¢ dividing N, Loc, is an explicit non-zero rational
number, independent of w.

e Let w(f}),m(g}) and mw(h%,) be the cuspidal automorphic representations of GLy
attached to ff, g/ and h?, respectively, and set II, = 7(f}) ® 7(g}) ® m(hi,).
Then

L(ff®@g @hl,, s)=Ll,,s+B—k—1—m)/2).
Thanks to the results of Garrett and Harris-Kudla [Gar87, HK91] one knows
that L(f{ ® g; ® h%,, s) admits an analytic continuation to all of C and satisfies
a functional equation with global epsilon factor £(II,, 1/2) equal to +1 relating
its values at sand k+1+m — 2 —s.
This is proved by Hsieh in Theorem A of [Hsi20] relying on the special value
formulae of Garrett, Harris-Kudla and Ichino [Gar87, HK91, Ich08|.

7. Selmer groups and big logarithms

Let (f*,g%,h*) and (f, g, h) be as in Section 6.

7.1. A four-variable big logarithm. — Let (cf. Section 5, in particular Equa-
tions (97), (102) and (101))

M(f.g.h); = V(H)~ELV(g) LV (h)* (Wil ™ w5 ™).
This is a free Opgp-module on which Gq, acts via the unramified character

V:Gq, — GuQrp — ﬁ;gh



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 51

defined by

_ XgXn(p) - ap(k)
(136) U (Frob,) = b,(0) - c(m)

(cf. Equation (101)). Let Ocye C Qp[J —jo] be the ring of bounded analytic functions
on an open disc Uey. centred at j, = (ko — lo — m,)/2, and let k23 : Gq — 07, be

cyc cyc

defined by rzf(g) = exp,(—j - log,(Xcye(9))). Denote by Ofgn the tensor product

cyc

Opgh®q, Ocyc and define the Ofgp[Gq,]-module

(137) M(fvga h’)f = M(f7ga h)f®Qpﬁcyc (w;yj;:o ! H(?y?:) .

Denote by Z = Zpgn the set of integers such that j = j, (mod p — 1) and set
Y =3YxZ. Foralw= (kl,m)eXlet ¥, : Gq, — L* be the composition of
U with evaluation at w on Opgp and define M(f,,g;,hm)r = M(f,g,h)f @, L as
the base change of M (f, g, h) under evaluation at x on Ofgp, which is isomorphic to
L(V,,)® for some positive integer a > 1. If z = (w,j) € ¥ then evaluation at = on
Ofgn induces a natural isomorphism of L[Gq,]-modules

po s M(f,g,h)f @2 L= M(fy,gp, hm) f(—3).
If
Apgh = Np@oAg& o AR
then
M(f.g,h)y =M(f,g,h)¢[1/p]

for a Aggn[Gq,]-module M(f, g, h)y, free of finite rank over Aggp. Let Z;‘r =W(F,)
be the ring of Witt vectors of an algebraic closure of F,, and define

~ o~ NG
D(faga h’)f = (M(fag, h)f®ZpZ2r) [1/]9}
and
D(f797 h)f = D(.fvga h)f®Qpﬁcyc-
(Note that D(f,g,h)s is naturally isomorphic to D(f)"®,D(g)*&®rD(h)", cf.
Equation (124).) As M(f, g, h)y is unramified and free over Aggpn, D(f, g, h); is a free

Opgn-module of the same rank as M(f,g,h);. For all classical triples w = (k,l,m)
in ¥ the specialisation maps (106) induce a natural isomorphism

Pw - D(fagvh)f Quw L= Dcris(M(fk-vglah'rn)f)

Let t, denote Fontaine’s p-adic analogue of 274, which depends on a fixed choice of a
compatible sequence (= of p"-th roots of unit for n > 0. The element ¢ = ¢, @y is
a canonical generator of Deis(Q,(1)), and gives rise to a generator ' of Deyis(Qp (7))
for each i € Z. For any x = (w, j) in ¥ define the isomorphism

(138) Pz * D(f,g, h’)f Rz L= Dcris (M(.fkvgla hm)f(*j))-

by the formulae p, (a®B) = B(j) - puw(a) @t 7, for each o € D(f,g,h); and B € Oeye.
If j < 0 then the Bloch—Kato exponential map gives an isomorphism

CXPy ¢ DcriS(M(fkagla hM)f(_j>) = Hl(vaM(fmglahm)f(_j))a
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and one writes log, for its inverse. If j > 0 denote by

exp; : Hl(QmM(fkvglahm)f(*j)) — Dcris(M(fkaglvhm)f(*j))

the Bloch-Kato dual exponential map. The following proposition is a consequence
of the work of Ochiai [Och03] and Loeffler—Zerbes [LZ14], which extends previous
work of Coleman—Perrin-Riou [Col79, PR94]| (see also Theorem 8.2.3 of [KLZ17]).

Proposition 7.1. — There exists a unique morphism of Ofgpn-modules

Ly:H(Qp, M(f,g,h)f) — D(f,g,h)s

such that for any © = (w,j) in ¥ with W, (Frob,) # p'*/ and any Z in
HY(Q,, M(f,g,h)s) one has

) ; e g

220, = (1 g ) (1- 205y {Um log, (%) i §<0
W (Froby) p't jlexpi(2;) if 70

where L§(Z), and 2, are shorthands for py o L§(Z) and p..(Z) respectively.

7.1.1. Opgn-adic differentials. — Recall the Op-modules D*(f)* (resp., D(f)*) in-
troduced in Equations (115) and (120) (resp., Equation (124)), and define similarly
D*(¢)* and D(€)* for € = g, h. Then (cf. Section 7.1)

D(f7g7 h)f = D(.f)_®LD<g)+®LD(h)+®Q,, ﬁCyC7
and one defines dually
D*(f,g,h); = D*(f)*®rD*(9)”&rD"(h)”®q, Ocyc,
so that the perfect dualities (-, ->€, for € = f,g,h (cf. Equation (125)) yield a pairing
(139) <'a '>fgh : D(fvga h’)f ®5’th D*(f7ga h)f — ﬁfghu

Moreover, identifying Deis(Q, (7)) = Q, - t* with Q,, (i € Z), the isomorphisms (116),
(121), (126) (and their analogues for g and h) give specialisation isomorphisms

(140)  p.: D(f,g,h); ®, L = Fil’Var(£,) ®r Var(g,)/Fil° @1 Var (hy,)/Fil°
and
(141) pe: D*(f,g,h); @, L= Vin(f,)/Fil' @ Fil'Vig(g,) @1 Fil' Vi (hn),

for each classical 4-tuple © = (k,l,m,j) in ¥ with k,I,m > 2.
Define the Opgn-adic differential (cf. Equations (118) and (122))

(142) Nfwgwh = Nf @wg @wp @1 € D*(f, g, h);.

According to Equation (119), Equation (123), and the discussion following Equation
(126), for each x = (k,I,m, j) € ¥ with k,l,m > 2 and each p in D(f,g,h); one has

(143) <I‘l’777.fwgwh>fgh (x) = (p - 1)ap(k) : <pw(l'l')7nfk® w91® wh7n>fkglhm ’

where (-, -) Fog o 18 the product of the perfect dualities (-, -) ¢ introduced in Equation
(32), for £ equal to f;, g; and h,,.
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Define the four-variable f-big logarithm
= — def / 5 - 5
(144) gf :gog(.fvgvh) = <‘Cf(')7nfwgwh>fgh :HI(QZHM(fvgvh‘)f) — ﬁfgh,

to be the composition of £y with the linear form (-,nfwgwn) 4., on D(f,g,h);.
Mutatis mutandis the previous constructions apply after replacing f with a = g, h.
One obtains four-variable a-big logarithms Ly : H (Qp, M(f,g,h)a) — Ofgn.

7.1.1.1. Weight-one specialisations. — With the notations introduced in the last
part of Section 5 (cf. Equations (127)—(129)), the isomorphisms (140) and (141) and
the definition of the pairing (-, '>fkgzhm extend to all classical 4-tuples = = (k,l,m, j)

in ¥, independently on whether the weights k,l and m are geometric or not (id est
equal to 1). Moreover, if k£ > 2, Equation (143) still holds.

7.2. The balanced Selmer group. — Define the continuous character
Efgh : GQ — ﬁf*gh
by the formula

(4holommo)/2 o () (4=k—l=m)/2

Efgh(g) = wcyc(g) yc(g
for every g in Gq, and the Opgn[Gql-representation
V(.faga h’) = V(f)®LV(g)®LV(h) ®ﬁfgh Efgh-
Equations (103) and (114) imply that V(f, g, h) is Kummer self-dual: the product
of the perfect dualities [-,-]¢ : V(§) ®g, V(§) — O¢(1 + Ky, + x¢) defined by
[z, yle = (z, wg,;(y))g yields a perfect, skew-symmetric duality (cf. Assumption 1.2)

['a ']fgh : V(.fag7h‘) ®ﬁfgh V(f).q’h’) — ﬁfgh(l)a
whose adjoint identifies V(f, g, h) with its own Kummer dual. Moreover, for all
w = (k,l,m) in 3 the specialisation maps (106) induce isomorphisms

(145) Pw V(fvg,h) ®ngV(fk,glvhm)

(cf. Equation (47)), where - ®,, L denotes the base change under evaluation at w.
Define a decreasing filtration .Z V(f) on V(f) by ZIV(f) = V(f) for every j < 0,

FW(f) =V ()t and FIV(f) = 0 for j > 2, and similarly .Z V(g) and .Z V (h).

Let & V(f,g,h) be the tensor product filtration:

)

FV(f.g.h)=| Y. FV(H@LFV(9)OLF V(h)|Qop,m Esgh-
ptgtr=n

This is a decreasing filtration of V(f,g,h) by Opgn|Gq,]-submodules, satisfying
F4V(f,g,h) = 0 and .Z°V(f,g,h) = V(f,g,h). The annihilator of .Z'V(f,g,h)
under the duality [-,-]fgn is equal to F4V(f, g, h), hence the adjoint of [, ] ¢gn
induces isomorphisms of Orgp[Gq,]-modules
(146) gt'V(f.g,h) = Homg,,, (s 'V (f,g. h). Opgn(1))
(where gr'V (f,g,h) = FV(f,g,h)/F+1). If one sets

V(f,g.h) s =V(f)~©LV(g) &LV (h)* @6y, Efgn,
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and defines similarly V(f,g,h), and V(f, g, h)p, then

(147) er’V(f,9.h) =V(f,g.h); ®V(f,g.h)g ®V(f. g, h)n

as Opgn|Gq,]-modules. It follows form Equation (146) and the definitions that the
inertia subgroup Iq,(,,) of the absolute Galois group of Q(u,) acts on gr’V(f,g,h)

and gr’V(f, g, h) via the characters nﬁ_’éj‘*m‘Z)/Q and /igégk_l_m)ﬂ respectively. In

addition, Equations (146) and (147) show that gr2V(f,g,h) and gr'V(f,g,h) are
isomorphic respectively to the direct sum of a finite number of copies of

l+m—k ltk—m ktm—1 k—l—m+2 mo_l—k+t2 l—k—m+2
p 3 2 3 3 3
Reyce @D Keye @D Keyc and KReyce @D Keye @D Keye

as Iq(y,)-modules (where k2. = Opgn(ke,.)). In particular, for each i € Z one has

(148) H°(Q,,er'V(f.g,h)) =0.
Define the balanced local condition
Hkl)al(QPa V(.f,ga h‘)) = Hl(Qp,y2v(fagv h))

In light of Equation (148), the morphism induced on the first Gq,-cohomology groups
by the inclusion .#2V(f,g,h) — V(f,g,h) is injective, hence we can, and will,
identify the balanced local condition with a submodule of H'(Q,, V(f, g, h)), namely

Hp(Qp V(f,9.h) = Im(HY(Qy, Z°V(f,9.h)) — H'(Qy, V(f,g.h))).
For - = f, g, h, one denotes by p. both the natural Gq, -equivariant projection
p.: F2V(f.g.h) — V(f,g,h).
arising from Equation (147) and the morphism
p-: H}:1>a1<QP7 V(fag’ h’)) — Hl(QP7 V(faga h))

it induces in cohomology.
For all morphisms of L-algebras ¢ : Opgn, — O, set

V@(f?.q’h)' = V(f7gvh’) ®<,0 ﬁtp a’nd Lg.‘/v<,9(.f7gvh) = yV(f,g7h) ®L,0 ﬁtpa
denote again by by p. : V,,(f,g,h) - V,(f,g, h). the natural projections, and define

Htl)al(Qp7th(fvg’h)) = Im(Hl(Qpaﬁ2th(f7g’h)) — Hl(Q[)a Vkp(fag7h))) N

If w= (k,l,m) is a triple in ¥ and ¢ is evaluation at w, we identify V,(f, g, h) with
V(fs,g;, hm) under the specialisation isomorphism p,, (cf. Equation (145)).
One has the following crucial lemma.

Lemma 7.2. — If w = (k,m,l) € Eya is a balanced classical triple, then

(149) H&al(QPa V(fka g, hm)) = Hf}m(QZN V(fk7 g1, hm))’

where H} (Qyp,-) is the Bloch-Kato finite local condition (cf. Lemma 3.5). As a
consequence, the Bloch—Kato exponential map gives an isomorphism

CXPp * VdR(flﬁglv hm)/FﬂO = Héal(QZN V(flwgl’ hm))



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 55

Proof. — Set V' =V (fy,9;, hm), and consider the exact sequence of Gq,-modules

0— FV —V —V/F?—0.
The discussion preceding Equation (148) shows that .#2V has Hodge-Tate weights

k+l4+m—-2 k+1l—m k+m-—1 l+m—k
2 ) 92 ) a'nd 5

2 2
while V/.%? has Hodge-Tate weights
k—l-m+2 l—-k-m+2 m-k—1l+2 4—k—1l—m
5 , 5 , 5 and 5 .
Since w is a balanced classical triple, it follows that all the Hodge-Tate weights of
F2V (resp., V/.F2) are positive (resp., non-positive), hence

(150) tgyr (F2V) = Dgr(F2V) and Fil’Dyr(V/.Z2) = Dar(V/.F?)

(where tgyg(-) = Dgr(-)/Fil’). The second equality implies that H! ,(Qp, V/.7?)
vanishes (cf. Corollary 3.8.4 of [BK90]), and since .#2V is isomorphic to the Kummer
dual of V/.#2, this in turn implies H(Q,, #2V) = H},,(Qp,.#?V) (cf. Proposition
3.8 of [BK90]). As H{ (Q,,V) = Hg.(Q,, V) by Lemma 3.5, one deduces that
H} (Q,,V) contains the balanced subspace H{,(Qp, V). On the other hand, Equa-
tion (150) shows that the inclusion .#2V —— V induces an isomorphism between the
tangent space of .72V and that of V. It follows that H} ,(Qp,V) is contained in
the image of H, ,(Qp, #2V), hence a fortiori in the balanced subspace H},(Q,, V).
Since Helxp(Qp, V) = H} (Qp, V) by Lemma 3.5, this concludes the proof of the first
statement. The second statement follows from the first and Lemma 3.5. O

7.3. The three-variable big logarithms. — Let w = (k,I,m) be a classical
triple in ¥. If w € Xy, is balanced, then the differential n;‘k ® wg, @ Wh,, belongs

to FilOVd*R(fk,gl, h.,) by Equation (53). In this case denote by
logp : Héad(QZh V(fk:vgl? hm)) = VdR(fkvgla hm)/FﬂO

the inverse of the Bloch-Kato exponential (cf. Lemma 7.2), and define

10gp('>f = Ing(')<n?k® Wy, ® whm) : Hgal(Qp’ V(fk»glv hm)) — L
to be the composition of log, with evaluation on n;‘k ® Wy, ® wp,, - Here one identifies
Var (i, 915 ) /Fil° with the dual of Fil’Vi; (fi, g, hm) under the product of the
perfect dualities (-,-), introduced in Equation (31), for &, = fi, g, hm.-
If w belongs to X ¢ denote by
eXP; : HI(QP, V(fi, 91 hm)) — FﬂOVdR(fkaZahm)

the Bloch-Kato dual exponential map, and by
eXp;(')f = eXp;(') (W?k Y Wg, ® whm,) : Hl(QP? V(fk7 g hm)) — L
its composition with evaluation at n;‘ék ® Wy, ® Wh,,. As above, here one identifies

FilOVdR(fk,gl, h,,) with a subspace of the dual of V5 (fy,9;, hm) under the tensor
product of the pairings (-,-), defined in (31) and (128). (If either [ or m is equal to



56 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

1, the definitions of Var (fy, 9;, hm) and Vii (fi, g, hm) given in Equations (50) and
(51) are understood in light of the conventions of Section 5, cf. Equation (127).)

To ease notation set a = a,(k), B = x7(p)p"~1/ak, cu = b,(l) et cetera. Recall
that for each classical triple w = (k,I,m) in ¥ one writes ¢, = (k+1+m — 2)/2
(which belongs to N by Assumption 1.2).

Proposition 7.3. — There is a unique morphism of Oggn-modules

Ly = Zog(f.g,h) : Hpo(Qp V(f.9. k) — Ofgn
such that, for all w = (k,l,m) € ¥ with ayBBm # p° and 3 € H},,(Q,, V(F,g,h))

(1 - mﬁ%) . {%1ogp(3w)f if W€ Sha
(17%) (k—cw—l)!exp;(f)w)f if weXy
where 34 = puw«(3). Moreover Ly factors through

prs Hoa(Qp, V(£,9,h)) = H'(Qp, V(. 9, b))
Proof. — Set My = M(f,g,h)s, V=V (f,g,h) and V; =V (f,g,h);. Let
V: Opgh — Ofgn

ZL5(3)(w) = (p— Doy -

be the surjective morphism of L-algebras which sends the analytic function
F(k,l,m,j) to its restriction F(k,l,m,(k —1 — m)/2) to the hyperplane de-
fined by the equation 2j = k — 1 — m. (Here we implicitly shrink the discs Uy, Uy
and Up, if necessary, in order to guarantee that (kK — I — m)/2 takes values in the
disc Usye fixed in Section 7.1.) Unwinding the definitions one finds that ¢ induces an
isomorphism of Opgn[Gq,]-modules (denoted by the same symbol)

(151) V: My ®y Opgn = V.
We claim that this map entails an isomorphism
(152) V.t H(Qp, My) ®9 Opgn, =2 H'(Qp, Vy).

Granting this, one can define .Z¢ by the composition
L Hin(Qp, V(F.9,h) 7 HY(Qy, V(£,9.h)y)
ZLr®id

9t —
— H'(Qp, M(f,g.h)f) ®9 Opgn = —  Ofgn,

where jf is the four-variable f-big logarithm defined in Equation (144). Unravelling
the definitions, one checks that the interpolation property satisfied by % is a direct
consequence of Proposition 7.1. It then remains to prove the claim (152).

As M ¢ is a free module over the domain @fgh, the claim (152) is equivalent to the
vanishing of the (2§ — k + I + m)-torsion submodule of H?(Q,, M¢). Set

A= Afgh ®Zp Acyr:v

where Acyc is the Zy-module of functions in Oy bounded by one. The f-algebra
Afgh is isomorphic to a power series ring in four variables with coefficients in &.
In particular, it is a regular local complete Noetherian ring with finite residue field
(hence a UFD). Write My = M;[1/p] for a A[Gq,]-module My free of finite rank over
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A. For every discrete or compact A-module - write Z(-) = Homeont (-, Qp/Zp) for its
Pontrjagin dual. According to the local Tate duality and the Pontrjagin duality

(153) H3(Qp, Mp)[2) — ki + L+ m] = 2D (p(~1))5% /(25 — ks + L+ m) ) [1/3],

Let Frob, be the arithmetic Frobenius in G" = Gal(Q}"/Q,) and let v be a topo-
logical generator of G} = Gal(Qy(up=)/Qp) (recall that p is odd). By construction
(after identifying Gaébp with the product of_G;;r and G¥') Frob, acts on My as multi-
plication by ¥, = W(Frob,) and v acts on My(—1) as multiplication by the inverse of
[, = wlitio . 414 where w, = weye(7) and v, = Keye(7y). This yields

P(Mp(-1))9% /(2§ — k + 1+ m) = @@((\11—11\1“—1)[% —k +l+m])
i=0 o e

for some positive integer a (cf. Equation (137)). We prove that the module
A

— 27—k +1
(\Ijoflarofl)[g * +m]

is killed by a power of p, which together with Equation (153) proves the claim (152).
If j, # —1, the function T, — 1 is a unit in Aeyc[1/p], hence A/(¥, — 1,T, — 1) is
killed by a power of p. Assume then j, = —1 and let F' = F(w, j) be an element of
A whose image in A/(¥, — 1,T, — 1) is killed by 2§ — k + I + m. This implies that

l+m-—-k-2) Flw,-1) = (¥,(w) — 1) - G(w)

for some G(w) in Aggn. As j, = —1 there is a classical triple w = (k,[,m) € ¥
such that [ +m — k — 2 = 0 and such that p does not divide the conductor of f,g,
and h,,. According to the Ramanujan—Petersson conjecture the inverse of ¥, (w) has
complex absolute value ,/p for every such w (cf. Equation (136)). As a consequence
l+m — k — 2 is not an irreducible factor of ¥, — 1, hence the latter divides F'(w, —1)
by the previous equation. This proves that F' belongs to the ideal generated by ¥, —1
and j + 1. As (T, —1)/(1 + j) is a unit in Acye[1/p], it follows that p™ () . F maps
to zero in A/(¥, — 1,T, — 1) for a non-negative integer N(v,) independent of F, as
was to be shown. O

We call .} the three variable f-big logarithm. Mutatis mutandis, for @ = g, h one
defines a-big logarithms

‘i’pa : Héal(QPv V(fvgah)) — ﬁfgh’
which factor through pa. : HL,(Qp, V(f,g.h)) — H (Q,, V(f,g,h),) and satisfy

similar interpolation properties.

8. Proof of Theorem A

This section proves Theorem A stated in the Introduction.
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8.1. Construction of «(f, g, h). — Fix a nonnegative integer ¢ > 1, which will be
made sufficiently large below. For § = f,g,h and - = 0,/ set A, = At o Ay = Ay, ,
D; =Dy, , and D, = Dy, , (cf. Section 4 for the relevant definitions). Similarly, for
anyu € U¢NZ,set A, = A, ., D, =D, ,, A, =A,, and D, =D, .
Set
(T X T)O = {(tl,tg) eTxT | det(tl,tg) S Z;},

where det((z1,22), (¥1,%2)) = 192 —x2y1. Let (T xT)? be the complement of (Tx T)g
in T x T. Note that (T x T)g and (T x T)" are open compact subsets of T x T,
preserved by the diagonal action of I'g(pZ,). Identify A,@An = Ag®eAp with a
space of locally analytic functions on T x T, homogeneous of weights kg = Ky, and
kn = Ky, in the first and second variable respectively. The orthonormal basis of
Ag®Ay, arising from Remark 4.1 gives a decomposition of I'g(pZ,)-modules

A9®Ah = (A9®Ah)0 @ (.Ag®./4h)0,
where (Ag®Ap)o and (Ag&.Ap)° consist in locally analytic functions supported on
(T x T)o and (T x T)Y respectively. Let Apgrn, = Af®eAg®eAp and define the
characters v} : Zy — Af p, and Kfgp, 2 Zy — Af gy, by

iy () = ()l tmehem /2. () Erm kD

and  Kjgn(u) = wlu)betobme0)/2 ) krEm=0)/2

for every u = w(u) - (u) in Zy = Fy x 1+ pZ,. (Recall by the discussion preceding
Equation (97) that r¢(u) is equal to w(u)k=2- (u)*72, and similarly for kg and Kp.)
Here one uses Assumption 1.2, which guarantees that the quantity k, + [, + m, is an
even integer. Define similarly k7 and rj,, so that rfg, = &} + kg + K}, (again with
additive notation). After noting that det : Zf) X Zg — Z, maps T" x T to Z;, let

Det = Det{?" : T/ x T x T — Aggn

be the function which vanishes identically on T/ x (T x T)" and on an element (x, y, 2)
in T" x (T x T)g takes the value

Det(z,y, z) = det(x, y)"» - det(ax, z)" - det(y, z)"*.
Because kj +kj, = Ky, one has Det(u-x,y, z) = rf(u)-Det(z,y, 2) for every u € Z,
hence for + big enough Det(z,y,, z,) belongs to A} for every (y,,2,) € T x T.
Similarly Det(z,,y, 2,) € Ag and Det(x,,y,, z) € Ap for every (z,,2,) € T' x T
and (x,,y,) € T’ x T respectively. Moreover
Det(x -7,y -7,z - ) = det(y)"Fs» - Det(x, y, 2)

for every v € Tg(pZ,). As a consequence Det can be identified with an element of

}®A9®Ah(—m}kgh), which is invariant under th? diaAgonal action of I'yg(pZ,) (cf.
Section 4.2). Since the I'g(pZ,)-representation .A’f®Ag®.Ah corresponds to the pro-
sheaf A} ® Ag @ Ap on Y = Yi(N,p) under the functor - (cf. loco citato) this
yields

(154) Det{f" € HY(Y, A} ® Ay @ Ap(—Kjgn))-
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Let I' =T'1(N,p) and let d : Y — Y2 be the diagonal embedding. Define

(155) w(F,9,h) = % w(f.9,h)° € HYQ,V(F.g.h)),
P
where
K(f,g.h)° = AJLS" (Det{gh)

is the image of the big invariant Detf\,%l under the big Abel-Jacobi map AJ gtgh defined
by the following composition.

HY, (Y, A0 Ag © Ap(—rfgn)) 5 HE(Y?, A R Ay K An(—KEgn) @2, Zp(2))
2, HY(Q, HE, (YG: Ay K AG KAL) (2 + Kf )

(156) 5 HY(Q, HY D, A& HY(L, Ag)& L HY (T, AR) (2 + Kign))
(oSG F(Q, HY(T, Ag)ér HM(T, Ag)or HY(T, Ap)(2 + K}gn))
Lot HY(Q, HY(T, D) S0 HY(T, D) S°@ HY(T, D},)S°(2 — Kfgn))

T HN(QV(HELV(9)DLV (R)(-1 — kign)) = H'(Q.V(£.9.h)).

Here kg, - Gq — Afgh denotes the composition of /@fgh with the p-adic cyclotomic
character xcyc. The first arrow is the push-forward by the diagonal embedding d.
The morphism HS arises from the Hochschild-Serre spectral sequence and Equation
(80). (Note that Hy(Yg,7) vanishes for every pro-sheaf 7 € S(Y), as follows
easily from Equation (75) and [Mil80, Chapter VI, Theorem 7.2].) The map K comes
from the Kiinneth decomposition and the projection in Equation (79). The morphism
(wp, ®1d ®1d). is the one induced in cohomology by the Gq-equivariant Atkin-Lehner
operator wy, : H'(T', A}) — H'(T, Af) (cf. Sections 4.1.2 and 4.2). The penultimate
arrow sggn« is induced by the tensor product of the morphisms of Ggq-modules

HY T, Ay) —» HYI',Ag)S° 22 HY(T, D))S%(—ky,)

for a = f,g,h, where the first map is the projection to the slope < 0 part and
Sa = 81,0 is defined in Equation (83). Finally pryg, denotes the tensor product of
the Gq-equivariant projections pr, defined in Equation (105).

8.2. Balanced specialisations of k(f,g,h). — Let w = (k,l,m) € Xy, be a
balanced triple of classical weights, let » = (kK — 2,1 — 2,m — 2) = w — 2, and let
r = (r1 + 72 +13)/2. Recall the diagonal classes

%Np,r € geo(Q WNP T‘) and KNp,r = ST*(F&NPJ‘) geo(Q VNP ”')

introduced in Equations (43) and (46), and define the twisted diagonal class
(157)
'%T(flm glv h'rn) = pr‘fkglhm* (S'I‘* ((w; oY ld by ld)* (’E"‘Npﬂ‘))) € Hgleo(Qa V(.fkv gla h?n))-

Here pry, g p,, is the projection defined in Equation (48) and
(w;) ®id ®id), : Hl(Q(MP)» Wipr) — Hl(Q(Np)a Wipr)
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is the map induced by the dual Atkin-Lehner operator
wy, + Hy(Yi(Np)q, 7) = He(Y1(Np)q, )

(cf. Section 2.3.1) and the Kiinneth decomposition on Wy, .. A priori the class
&1 (fy, gy, hm) then lives in the geometric subgroup of HY(Q(1p), V (fs, 91, bm)). On
the other hand the forms f., g; and h,, have level 'y (N, p) = I'; (N)NT(p), hence the
cohomology class Ky, is in the image of the map induced in Gg-cohomology by the
pull-back HE (Y1(N,p)gy: Fr)(cw) —> HE(Yi(NDP)g, /1)) (cw) = Wip,r. Because
the Atkin-Lehner operator wj, acting on HY (Y1(N,p)q, %k—2) is Gq-equivariant,
this implies that x'(f,,g;, hm) is fixed by the action of the Galois group of Q(u,)
over Q, hence can naturally be viewed as a geometric class in HY(Q, V (£, g;, hm))-

With the notations already introduced one has the following

Theorem 8.1. — For each balanced triple w = (k,l,m) in Xpa one has

(p_ 1)O[fk . pw(’%(fagah)) = (1 - afkpﬁrgfrfhm) ! KT(fk7gl7hm)'

Before giving the proof of Theorem 8.1 we deduce the following

Corollary 8.2. — k(f,g,h) lies in the balanced Selmer group H.,,(Q,V(f,g,h)).

Proof. — By definition one has to prove that the class
resgz p(k(f, g, k) € H(Q,V(f,9,h)/F°V(f,9,h))

is zero, where res z , is the composition of the restriction at p and the map induced by
V(f,g,h) - V(f,g,h)/F?. According to Proposition 3.2 for every balanced triple
w = (k,l,m) in Xy, one has

resp (”T(fkagz, hm)) € Héeo(Qp, V{(fi g1 hm))-
Let X9, be the set of (k,l,m) in Y. such that p does not divide the conductors of
i, 9; and h,,. One has

Hgleo(QmV(.fkﬂgk?hm)) = ker(Hl(QzH V(fkvglﬂhm)) — Hl(vaV(.fmghhm)/yQ))
and
g, By, B, 1

for all w = (k,1,m) in X¢_, (by the Ramunajan—Petersson conjecture). The previous
two equations and Theorem 8.1 imply that the class resgz ,(k(f, g, h)) specialises to
zero in HY(Q,, V(fs, 91, hm)/F?) at every w in ¥¢_|. Because ¢, is dense in Uy x
Ug X Up, to conclude the proof it is then sufficient to show that H'(Q,, V(f, g, h)/F?)
is Opgn-torsion free (hence a submodule of a reflexive Opgn-module), which implies
that ﬂwezgal(k —k,1—1l,m—m)-HY(Q,, V(f,g,h)/Z?) = 0. This is a consequence
of the following claim. If p € gy, is irreducible and one sets O, = Ofgn /(p), then

(158) H(Qp,V(f,9,h))F* ®e,,, Op) = 0.
The rest of the proof is then devoted to the proof of this claim.
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Section 7.2 shows that there is a short exact sequence of Gq,(,,)-modules
ﬁ@(ef)@a ® ﬁp(eg)@a ® ﬁ@(eh)@a — V(f.g,h)/7? ®6rgn Op — ﬁp(efgh)ﬂaa’

where a is a positive integer and the characters 0. : Gq,(,,) — O, are defined by

Opgh = ffE‘;Zk_l_m)/Q ~ap(k) - Bp(l) - Ep(m),
O = ’igjcilierz)/z “XF Bp(l) - Cp(m) - &p(k)’l

and similarly for 04 and 0. Set prgn = 4—k—1—m, set py = k—l—m+2 and define
similarly pg and pp. Denote by p, and 0, one of p. and 6. respectively. If @ - Ogp is
different from one of the ideals pq - Opgn, then H%(Iq, (), V (f, g, h)/F* @6, Op)
is trivial and (158) holds true. Assume now p = u - g4 for a unit u in Opgp, so that
fo is an unramified character of Gq,( According to the Ramanujan—Petersson
conjecture one has

Bp)

|0a (Froby ) (w)| = /p
for all w € 37, NV (p) (where | -| is the complex absolute value and V() is the zero
locus of p). Shrinking the discs U. if necessary, we can assume that ¢ , NV (p) is
non-empty (otherwise p would be a unit). The previous equation then implies that
the characters 6. are non-trivial and (158) follows. O

Proof of Theorem 8.1. — According to [Mil06, Section I1.7] for every n,i > 1 there
is a trace isomorphism

Traceyn : H2"P3(Y", 0 /m(n 4+ 1)) = 0/m".

ét,c

(See Chapter II, Section 2 of loc. cit. for the definition of Hl'ét,c(Y",)7 denoted
H.(Y™,-) there.) For all finite smooth sheaves .# of ¢'/mi-modules on Y?, Tracey
and the cup-product define perfect pairings

(159) (- -)yn = Traceyn o U: H. (Y™, Z) @ H2' TP (Y™ G (n+ 1)) — O0/m’,

ét,c

where ¥ is the dual of .# (cf. Chapter II, Corollary 7.7 of [Mil06]). Denote by .%, in
Sf(Yet) the sheaf associated to Fil; ;A,, , for u > 0 and fixed j > i > 0, and by ¢, the
O /mi-dual of .Z,. One has a Hecke equivariant diagram of adjoint morphisms, where
the Hecke operators are defined by constructions similar to those of Section 2.3.
(160)

)y

HG (Y, F], @ Fry ® Fpy(r)) % HG (Y9, @9, @G, (2-71)) O /m!
“| < |
HL(Y3, L RF,, R T, (r+2) x HE (Y39, RY, KG, (2-1)) Y i

Let A: and A be shorthands for A, and Ajﬂ respectively. Similarly as above,
the orthonormal basis of A,®.A, arising from Remark 4.1 gives a decomposition of
To(pZ,)-modules

Au®Au = (Au®-/4v)0 ® (Au®~’4'u)07
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where (A,®As)o (resp., (A,®.A45)°) can be identified with a space of locally analytic
functions on T x T supported on (T x T)g (resp., (T x T)?). This in turn induces
similar decompositions

T @ Ty = (P @ F))o®(F @) and 9, 0%, = (9. %) ® (Y ©%,)°.

Let ¢t : Y1(Np) — Y1(N,p) = Y be the natural projection. To ease notations, let
Det € Hy (Y, A, ® A, ® A, (r)) denote the image of Det};, under the composition
of the push-forward ¢, with the natural map

He(’:)t(K yﬁ ® ,54,‘2 ® yTz (T)) — Hgt(yv’ A:"I ® ‘A’fz by A"3 (’I“))

For j = j(i) large enough, let D = D} ; € HY (Y, ) ® Py, @ Fp,(r)) be a represen-
tative of Det (mod m’) (cf. Section 4.2), and let Dy = Dj ;, be its projection to the
cohomology group HY (Y, Z) & (F., ® Z,)o(r)). By construction

(161) (p—1) - pu(Det) =1limD7 ;.

For all z in H, (V3,9 K¥,,K¥,, (2—7)) one has the equalities (cf. Equation (160))

(4:(0 = D), 18 UF2(2)) s = (0= Do, (10 UF2(2))),,
= (D=Do, 5" (126" (12 UP(2))))
) =(D,6"(1 @ Up(1®6%(2))))y
=y (0,65(U) @1 (19 6%(2))))
=p " (D,d(U, ®121(2))),,
=p"" - (d.(D),U; ®1®1(2))

Y

Y

Y3

where 6 : Y — Y2 is the diagonal embedding. To justify the third equality one notes
that

1®6* 01U 1@ U,0l®d*

(resp., 1@ U, 01®§*) takes values in the submodule H, (Y, %/, @ (4, ®%,,)0(2—7))
(resp., in HY, (V. 9, ©(%,,%,,)0(2—r))), and that Hf, .(Y.9, 0(%,%,,)o(2-1)) i
orthogonal to H2t7C(Y, Fh(Fr,@Fr,)°(r)). (Compare with the proof of Proposition
5.4 of [GS20].)

All the other equalities in Equation (162) but the fourth are standard. To prove the
remaining equality, let 7 : Y — Spec(Z[1/Np]) and w = 7 x 7 : Y2 — Spec(Z[1/Np])
be the structural maps. Let Rm and Rm be the d-functors associated in [FK88,
Chapter I, Definition 8.6 with the compactifiable maps 7 and 7, so that by definition
HE (Y,-) = H (Z[1/Np|, Rm-) and Hf, (Y?,-) = H§ (Z[1/Np], Rm-) for any
q = 0 (cf. Section IL.7 of [Mil06]). If & denotes the étale sheaf &, X (¥,, @%,,)(2—7)
on Y2, one can lift the Hecke operators 10U, and U} ®1 on Hét,c(Y2, %) to morphisms
(denoted by the same symbols) Rm¥ — Rm% (cf. Section 2.3). The diagonal
embedding 6* : Y — Y2, the morphism of sheaves

B:6'G =G @Y, @9, (2—1) — O/m'(2)
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defined by the cup product with D, and the trace morphism

try : Rm0/m‘(2) — 0/m'[-2]
(see the discussion preceding Theorem 7.6 in [Mil06, Chapter II, Section 7]) induce
amap ¥ = try o B0 d* : Rm¥ — 0/m'[-2]. In order to prove the forth equality

in Equation (162) it is then sufficient to prove that the composition Z = do01® U,
agrees with W = y¢(p)p" ™" -9 o U, ® 1. By using the Kiinneth isomorphism

Rm¥ =~ Rm¥Y! ®% Rm(Y,, ® 9, (2 — 1)),

the sought for equality Z = W follows from the same formal computation as in the
proof of Proposition 2.9 of [GS20).

Since the operators 1®US? and Uy @1®1 acting on Hj, (YV?,9) RZ,,KY, (2—7))
are the adjoints under (-,-)ys of the operators 1 ® U;?Q and U, ® 1 ® 1 acting on

HL (V3 7 K F,, ®Z,,(r+2)), and since (-,-)ys is perfect, Equation (162) yields
(1@U,®Up,)0dy(D—=Dg) =p" ™ - (U, @1 ®1) 0d,(D).
In light of Equation (161), this implies
(163) (p—1)-1®U, ®Up,) oKoHS od, o p,(Det)
=(1eU,0U,—p ™ -U,®1®1) oKoHS o d,(Det)

in H (Q, H (T, AL )&, H*(I', Ay, )® L H (', Ay, ) (r+2)), where A;, is a shorthand for
A;, ,, and the morphisms K, HS and d, are defined as in Equation (156), after replacing

the big étale sheaf A ® Ag ® Ap, with A, ® A,, ® A,,. To ease notations write ©
(resp., #) for the left (resp., right) hand side of Equation (163).

For each nonnegative integer v and .%,, = ., %, let
Hélt<Y1 (Np)Q, Fu)o — Hét(yl(Np)Qa Fu)L

be the L-direct summand on which the diamond operator (d) acts trivially for each
integer d coprime to p and congruent to one modulo N, so that the pull-back t*
yields an isomorphism between H} (Yq, #.)r and H} (Y1(Np)q,#.)°, with inverse

p%l times the push-forward t,. For - = (), 7 denote by
Cy 't Hélt(Yl(Np)QﬂSﬂu)O — Hl(FvAu)

the composition of ¢, with the comparison morphism introduced in Equation (72).
By construction

(c), 8¢, @Cry)s 0K (Rnp,r) = K 0 HS 0 d.(Det)

(where the morphism K which appear in the left hand side refers to the Kiinneth
decomposition of Wy = H3, (Y1(Np)g,#r))(r + 2)), hence

® = (., D¢, ®cr,)w 0 (1QU, @U, —p" ™™ - Up®1® 1) oK (Rnp.r)
(cf. the discussion following Equation (72)). Since w, o ¢}, = ¢, o w), where w/

P’ P
is the Atkin-Lehner operator defined in Section 2.3.1 and w, is the one defined in
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Equation (66), and since w),U, = (p)y Ujw, as endomorphisms of Hf, (Y1(Np)q,-%u),
one deduces
(164) wp, r+(W) = cpy 0 (1 ® UZ’, ® U; —p" " D)y U]; R1® 1) o w;’f* oK (Rnp.r),

where w), f = w, ®id ® id, w;)’f = w]’7 ®id ®id and ¢, = ¢, @c., cy, .
Taking h = 0 and replacing Ay and Dy, with A, and D), (for u € N) respectively in
the definition of the map sy, (cf. Equation (83)) yields a Gg-equivariant morphism
Su,0 - Hl(F7 Au)go(u) — Hl(r, D;)</07

which intertwines the action of U, on the source with that of U, on the target. If

comp,, : HY(T', D)0 — HL(Yi(Np)g, Z)5°
denotes the composition of t* : H} (Yg, Zu)r — H} (Y1(Np)q, Zu)o with the com-
parison isomorphism defined in Equation (73), then (cf. Equation (44))

1
p—1
as maps from H} (Y1(Np), Yu)fo(u) to H(T, fu)fo. Set sp0 = 8p, 0®85,,008r,,0
and comp,. = comp,, ® comp,, ® comp,. . It then follows from Equation (164) and
the definition of the twisted diagonal class x'(fy, g;, hm) that the equality

(166)
Qh,, Xr(p)p' e
! (1_ f f’“>~l<éT(.fk,gz,hm)
aglah7n

(165) COMP,, 0 Sy,0 O Cy = Sux

PTf g, Ry O COMPyy ©Sp 0 owp,f*(‘) =

holds in H} (Z[1/Npl,V(f,g;, hm)). (Here DIf, g.h,, 1S the tensor product of the
projections pr. defined in Equation (23), for - equal to f;,g; and h,,.)
By construction, one has
Ko HS o d, o p,,(Det) = p,, oKoHS o d,(Det),

where the maps K,HS and d, which appear in the right hand side are the ones in-
troduced in Equation (156). Since the maps p,, and comp, are Hecke-equivariant,
and since s, intertwines the action of U, on HY(T, A,)S? with that of U; on

HY(I', D!,)S'° (for each nonnegative integer u), it follows that
(167) & = (p — 1)ag,ah,, - Prf g p,, © COMP,, O Sr0x © Wy, fx O Py © K0 HS 0 d,(Det),
where one defines
o= Pry g ks © COMPyy © 8y 0x O wp, 1+(9).
One has wy, 740 pyy = py Wy r«. Moreover the diagram (84) and Equation (165) yield
1 1 1
]fl “Sux O Cy O Pyt = E © COMpP,, © Pyt2 © SU,,0

as morphisms from H(I', A¢)<0(kg) — HZ (Y1(Np)g,-Z.)5 °, for (€, u) equal to one
of the pairs (f,k—2), (g,l—2) and (h, m—2), (cf. the discussion following the diagram
(84)). (With a slight abuse of notation, in the previous equation one writes ¢, * for the
S0 and HY(T, A,)<° induced

o

COMP,, © Sy 0 © Put2 =

inverse of the isomorphism between H} (Y1(Np)q, )
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by ¢,.) Finally, with the notations introduced in Equations (105) and (106), one has
the following equality of Gq-equivariant maps from H'(T, D;)S0(1) to V(fy):

Prg, © COMP,, © Pyut2 = Put2 O Pre.
It then follows from Equation (167) and the definitions of ({> and) x(f,g,h)° that

(168) prfkglh,m* © COIMPy.y © Sy 0% © wp,f*(o) = aglahm * Pw (H(fagv h)o)'

As XgXgXn = 1 by Assumption 1.2, and by definition ag,8g, = xg(p)p">**,

an,, Br,, = xn(p)p™t! and 2r = ry + ro + 73, the theorem follows from Equations
(163), (166) and (168). (Recall that x(f,g,h)° = ay(k) - (f,g9,h).)
O

8.3. p-stabilisation of diagonal classes. — Write in this section

for every integer M > 3. Recall the degeneracy maps pr; : Y1(Np) — Yi(N), for
1 =1, p, defined in Section 2.2.

Let w € ¥pa and 7 = w — 2 be as in the previous section. Assume k,l,m > 3
and that p does not divide the conductors of f,,g;, and h,,. As in Section 6 let
f = frx (resp., g = g; and h = h,,) be the cusp form of weight &k (resp., [, m), level
I'i(N) and character x¢ (resp., xg, xn) Whose ordinary p-stabilisation is f;, (resp.,
g;, hyy). It is an eigenvector for the Hecke operator Ty, with the same eigenvalue as
fi (resp., g;, hy,), for every prime £ 1 Np, and an eigenvector for T, with eigenvalue
ap(f) = ag + By, (vesp., a,(g) = ag, + Bg,, ap(h) = an,, + Br,,). Assume without
loss of generality that 3, belongs to L for @ = f., g;, hm, and denote by

Hg* : VN;D,T ®Qp L — VN’,,- ®Qp L
the morphism (cf. Equations (20) and (45))
(169)

By, B Bh,
Hg* = (pr1* - prl : prp* & Pry, — pl%ll : prp* & Pry, — pmil : prp* .

A direct computation shows that the composition pry, o II7, factors through the
projection pry, g ., hence IIZ, induces a morphism

?kglh,m* : V(flwglahm) — V(fk’aglv hm)

of L[|Gq]-modules, which is indeed an isomorphism (see Equation (48) for the defini-
tion of the projections pry ), and prfkglhm). Note that r = (r1,7r2,73) and (fx, g1, om)
satisfy Assumption 3.1 and Assumption 3.4 respectively, hence the class k(fx, g, hm)
in HY(Q, V (fx, g1, hm)) is defined. Denote again by

?k,glhm* : Hl(Qa V(fkagbhm)) — Hl(Q7V(fkvgl7hm))

the morphism induced in Galois cohomology by 0%,

m*"
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Proposition 8.3. — Assume k,l,m > 3 and that p does not divide the conductors
of fr,9; and h,,. Then

Frgihom = (’%T(-fkv g hm))

18 equal to

o, (1- ) (1 S (1 Onadn) g,

Proof. — Fix a geometric point 1 : Spec(C) — Y (1, N(p)), corresponding to the class
of z in H under the isomorphism (6). With a slight abuse of notation denote again by
n the complex point v, o : Spec(C) — Y (1, N), and by 7 both the complex points
wpon:Spec(C) — Y(1(p),N) and 7, o ¢, on : Spec(C) — Y (1,N). Then n and 7
correspond respectively to the classes of z and p - z under the analytic isomorphisms
(6). With the notations of Section 2.3 (see in particular the diagram (9)) write

Ty = R 01 Ny Zp(1), TP = Ry vuZp(1) and T = R'oy n.Zy(1)

for the relative Tate modules of E(1, N(p)) — Y (1,N(p)), E(1(p),N) — Y (1(p),N)
and E(1,N) — Y (1, N) respectively (cf. Section 2.3). There are then natural iso-
morphisms

(170) Tpym E2p DLy -2= 7, and ‘Z;(p) =272y, ®Zy pz= T

Here the subscripts n7 and 7} denote the stalks at 1 and 7 respectively, and for each w
in H one writes

Zp@Zp W= Hl(C/Aw,Z) X7z Zp

for the p-adic completion of the integral homology of the complex elliptic curve C/A,,,
where A, = Z®Z-w. As in Sections 3 and 4.2, after identifying 7, , with Z, © Z,
under the Z,-basis {1, z}, the natural action of the étale fundamental group G, =
T (Y (L, N(p)),m) (resp., ¥ = x{ (Y (1(p). N). 7)) on Ty, (xesp., ")) gives a
continuous representation o) : Gy — I'(1, N(p)) ®z Zp = GL2(Z,) (6@ : GP) —
I'(1(p), N) @z Z, — GL3(Z,)), where I'(1, N(p)) (resp., I'(1(p), N)) is the subgroup
of matrices in (24) in SLy(Z) with c=0,d=1 (mod N) and ¢ =0 (mod p) (resp.,
b =0 (mod p)). For each i > 0 set

)i = Symmizp Tpy(—1) and ﬂ(p) = Symmizpﬂ(p)(—l),

where as in Section 2.3 the Tate twists J,)(—1) and 7 (?)(—1) are identified with
the duals of 7, and .7 under the Weil pairings on E(1,N(p)) and E(1(p), N)
respectively. Then the stalks of 7, ; and %(p ) at 1 and 1), viewed as representations

of G,y and G®) respectively, correspond via 0(py and o) to the T'(1, N(p))-module
S; = Si(Z,) and the I'(1(p), N)-module S; (cf. Section 3). As a consequence, for each
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j 2 0 and u € Z there is a natural inclusion (cf. Section 4.2)

A7) HOT(LN(p)), S ® det ™) ———— HO(Gy, S @ det ™)

Hgt(y(lv N(p)), *jﬂ(p),i ®Zp Zp(u))7

and an isomorphism
HL (Y (L, N(p)q, L)) = H (L(L,N(p)), i),

and similarly for the data (I'(1(p), N),G®, Z(p)) in place of (I'(1, N(p)), G(p), L (p),i)-
As already explained in Section 3, there are similar isomorphisms after replacing o,
with the representations ¢ : G — GLa(Z,) (resp., ¢ : G — GLy(Z,)) arising from the
action of G = 754 (Y (1, N),n) (resp., G = 7Y (1, N),7)) on the stalk at 5 (resp., 1)
of & = %(Zy). Under these isomorphisms, the maps

(172) e = )i 2 80 2 (Fpidy — () 2 i
and A= (A), 85 2 () — (Fpyidn 2 Si
induced respectively on the stalks at 7 and 1 by the morphisms (16) are given by

(173) N L(P) = ((1) 2) P and NA(P)= <g (1)> P,

for P in S;. Indeed the base change A; : C/A, = E(1,N(p)) x,, C — E(1(p), N) x5
C = C/A,, of the p-isogeny ), along 7 is induced by multiplication by p on C, hence
the map Aqs 7 » T (p) it induces on the Tate modules is represented by (6’ (1)),
once one identifies J,) and .7 ® with Z? under the Z,-bases {1, z} and {1,pz} (cf.
Equation (170)). Because the dual isogeny Aj of Aj is the map C/A,. — C/A,
induced by the identity on C, and A;. and A}, are adjoint to each other under the
Weil pairings on C/A, and C/A,,, Equation (173) follows.

After this preliminary discussion, we divide the proof into three steps. For each
triple 4, j, k of elements of {1, p} write

Plijrs = Py ® Prj @ PTyy ZNPJ‘(”) - ZNP>7‘(n)7

forn € Zand Z =V or Z = W, and denote by the same symbol the map they induce
in Gq-cohomology. For any curve X over Q write d : X — X 3 for the diagonal
embedding.

Step 1. One has the identities in H'(Q, Vy »(r + 2)):

(174) Prii. (Knpr) = (p2 —1)-kny and prppp*(”Npm) = (P2 —p" - KN

As the element Det” = Detyy is invariant under GL2(Z,), it defines under the
inclusion (171) an element Det” in H, (Y (1, N(p)), S p),i(r)), and similarly elements
(denoted by the same symbol) in HY, (Y (1(p), N), H),i(r)) and HE (Y (1,N), ().
According to Equation (173) and the definition of Det” in Equation (41) one has

(175) Ap«(Det™) = p" - Det”,
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where A7, = AL @ A2 @ A2 @id : S, @ det™" — S, ® det™ ", hence (since , has
degree p+ 1)

Upx © px © Ap,(Det”) = (p+ 1)p" - Det” € HY (Y (1,N), % (r)).
Retracing the definitions of Section 2.3 and using Equation (21) this gives
pr,.(Det”) = (p? — 1)p" - Det”.

The previous equation and the functoriality of the Hochschild—Serre spectral sequence
implies (cf. Section 3)

PTppps (FNpr) = Spx0HSODI, , 0d,(Det”) = sy.0HSod,opr,, (Det”) = (P*=1)p" Kn.p

This proves the second identity in Equation (174). The first one is proved by a similar
(and simpler) argument.

Step 2. The following identities hold in H'(Q, Vi (1 + 2)):
(176)

prpll*(K;NpJ‘) =p-1) -T,®ideid(kN); Pripp« (Knp,r)

(p—Dp~ " - T, ®id @ id(kN,r);

Prip(fnpr) = (0= 1) - ld @ T, ®id(knr);  Pryips(Bnpr) = (p = Dp" ™ - id ® T, ® id(kn,r);

prup*(H’Np.,r) =(p-1)-id®id® (k) PLpp1s (knpr) = (@—1p' ™" - id®id® T;(KN,T)-

We prove the second identity in the first line. Note that the finite étale cover 7, is
not Galois. To remedy this let ¥ : ) — Y (1, N) be a finite étale Galois morphism
which factors through 7, o ¢, : Y(1,N(p)) — Y (1,N), say ¥ = 1, o ¢, o o with
a:Y — Y(1,N(p)). Denote by G = Gal(?) its Galois group. For each u > 1
denote by 7, = vp. : H{(Y (1, N(p)), p),u) = H' (Y (1,N),.#,), and similarly set
Tt =wv,. Set

7";:* = Ups O Pps © )\Z*a
R
T =T ® 7'(';2* ® m2*

7’ _ T1 T2 T3
and i, =T @ @ W,

where 4, j, k is any triple of elements of {1, p}. Moreover for each morphisma : X — Y
of curves over Q write @ = a Xxq a xq a : X3 — Y3. With these notations it follows
directly from the definitions that

(177) Tlpps © Ty = (P +1)%p" 17 . T @ id @ id.
On the other hand, after setting
KNpr = Srx 0 HS 0 dy 0 9" (Det”),
one has (p + 1) deg(a) - Ky » = Fx(k}y, ), hence
(b + 1) deg(a)® - 775, (k) = A7 0 s 09" 0 9. (1, )

= Z )\;* O Oy O (91 X g2 X 93)*(’%7\/17,7')'
(91,92,93)€G3
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For each g,h € G one has 7r" o )\“ oy 0g, =Pt -, = p" - U o hy, hence the
previous equation yields

(178)
(p+1) deg(a)* - 77 0 T (Riv,r)
= pr2+r3 Z (Vp* o )‘;l* & Ups © Ppx & Upy © ‘Pp*) O Oy O gl*(/{]k\]p,'r‘)
(91,92,93)€G?
— (p+ 1) deg(@)* - (Vpe @ Fpy © Ppe @ Py © ) © (A @i @) (W ):
where k%, ,. = Spx 0HS0dy 0 (7, 00)*(Det™). According to Equations (41) and (173)
Ape (BNpr) = Aph @ ML @ AL (K ) = P - Kip
and A" o AJL(P) = <€ 2) -P=p"-P,

for P in S,,, hence (since 2r = r; 4+ ro + r3) one can rewrite Equation (178) as

(179) ﬂ{pp* o ﬂ;;p(HN,‘f‘) = (p + 1)2p7‘ ! Tr{pp*(’{;\/'p,r)'
(Note that, regarding the natural isomorphism of Equation (171) and its analogue for
Y (1,N(p)) as equalities, the pullback by 7, o ¢, is identified with the identity.) In
addition Equation (8) gives
(180) prlpp*(KN;DJ‘) = 71-iﬂpp* o l"’p*(KN;DJ') = (p - 1) 'Wz‘pp*(’{;\fpm)'
Equations (177), (179) and (180) finally give

(p+1)°D" - Pryppu(finpr) = (p = 1)(p+1)*p"*" - Ty @ id @ id (k).

This proves the second identity in the first line of Equation (176). The other equalities
in the second column (resp., the equalities in the first column) are proved by a similar
(resp., similar and simpler) argument.
Step 3. We can now conclude the proof of the proposition.
Applying the projector pry, ., (see Equation (48)) to the identities (174) and
(176) gives
Pri11«\KNp,») fgh = (p —1)-k(f,g.h);
ppp* KNp,r)fgh = pr(p _1) (fvg, )7
Prp11s (Fnp.r) fgn = (P — 1)Xr(Pap(f) - £(f,

(kNp.r)
( )
(knp.r)
(181) prlpp*<KNP7"')f‘] = "R f
( )
(KNp.r) s
(Fnp.r)
(KNpr) £

 h);
) &(f5 9, h);
PTip1«\KNp,r)fgh = Xg(P)ay(9) - k(f,9,h);
i ) &(f,9,h);
Priips (KNp,r) fgn = (P — 1 Xn(p)ap(h) - K(f, g,h);
= (p—1)p" "ay(h) - 6(f, g, h).
Here (f,g.h) = (fi:91, hm), prijk*(lin’r)fgh is a shorthand for the image of
DTk (KNp») under pryop. = DTy, o5 ., and we used the identity 7, = T}, o (p) as

prppl* KNIL
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endomorphisms of H} (Y1(N)gq,-Zi(j))q,- Because the map
si: Hy (Y1(Np)q, i) = Hy (Y1(Np)q,-£)(—i)

intertwines the action of the dual Atkin—Lehner operators w}’j on both sides, it follows
from the definitions that

(182) H?gh* (HT(fka g hm)) = prfgh* (H?* ((U}; ®id® id)*(HNp,’r‘)>> .
It it easily checked that
pr,, ow,=p'-pr;, and pry ow), = (p) - pr,,

as morphisms from H} (Y1(Np)q, %) to Hi (Y1(N)q,-Zi). As a consequence, setting
<p>/f = (p) ®id ®id and writing ay = ay,, By = By, , g = ag, et cetera, one has

1Ty, o (w, ®id @ id)
/ ﬂf 6 ﬂh
= <<p> : prp* - ? ! prl*) ® (prl* - 1)7‘273-1 ! prp*) & <pr1* - W : prp*)
/ 5 By (Pl Br (v BBy

= <p>f ! prpll* - ? “Prigi« — W ' prppl* - : prplp* + pT2+2 : prlpl*

p’l‘ngl

ByBn BB (p)f ~ ByBybn

prat2 " Pliip« pratrst2 " Plppps pratrst3 "Plipps-

+

Together with Equations (181) and (182) this yields
H?gh* (HT(fkagl’ hm)) = (p - 1) ! Opf(fvga h) : H(f>g7 h)v

where (recalling that a,(£) = ag + B¢ and agfe = xe(p)p*~* for £ € Sy(N, x¢), that
2r =1y +ro + 3 and that xgxgXn(p) = 1 by Assumption 1.2)

Br _ xs@)Bean  x£(@)BeBn  xg(p)orgfn
gf(f’g’ h’) =ay + 6f o ﬁf o ; o pr2+r37r+1 o pT2+T3*’I‘+1 - prs+r27r+1

Xz P)BeBr | Xg(p)BragBy Xg(p)ﬂf5§+)2h(p)ﬂfﬁhah Xn(p)Bs B,
pT3+T27r+1 pT2+2 pr2+2 pr3+2 pr3+2

(183) + Xt (P)Bobn | XgW)BBr _ _cBrBebn 53234,
pT2+7“3—7’+1 pT2+T’3—T+2 pT1+T2+Ts—T+3 pT1+T2+T3—7’+3
_ ( BrBgan  BragBn  BrBeBr | Xn(P)BiB;

pr+2 pr+2 pr+2 pn +7r2+3

pr +2 pr +r3+3 p7'+7'1 +4

BragP BB BBy
—or (125 (- ) (- 52)

This concludes the proof of the proposition. O

Xr(P)B?  Xq(p)B3BE Xf(p),é’j’é,@gﬁh>
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8.4. p-stabilisation of de Rham classes. — Let w = (k,,m) be a classical triple
in 3, such that p does not divide the conductors of f;,,g; and h,,. As in the previous
section denote by fx, g; and h,, the modular forms of level T';(N) with ordinary p-
stabilisations fy, g; and h,, respectively. For each integer M > 3 denote by Vi ,.(M)
the (k414 m — 2)/2-th Tate twist of the tensor product of the de Rham cohomology
groups H(}R(Yl (M)q,,ar,r; )L, for j =1,2,3. Then the restriction of the morphism

Virr(N) — Vir.»(Np)
defined by

* Bfk * * ﬁg, * * ma *
(prl - ph1 "pry | @[ pry — p1 "pry, | @ | pry— pm—1 "Pry

to the (f, g, h)-isotypic component of Vg .(N) gives a p-stabilisation isomorphism

Fegihm - Var (frs 95 hin) = Vi (£ 915 Bom)-

Lemma 8.4. — Assume that p does not divide the conductors of fi,g;, and h,.
Then
By By
Quk « _ k k [e%
0% g1, (15, @ g @ wh,, ) = (p = Do, (1 Ty 1- by, ) T
Proof. — Set 113" = prj — p[i% - pry, set IIf, = pry, — p[i% - pr,,, and define simi-

larly IIf* and II9. By the definition of p-stabilisation (cf. Equation (54)), one has
19 (we) = we,, for any & € Si(N, L)y, , and similarly for II?* and II%" . In particular
(184) ;" (wg,) = wg, and II}"(wp,,) = Wh,,-
According to Equation (3.4.5) on Page 76 of [Shi71], one has
(@, b")pr = M™% (a,b) ;s

for any cuspidal forms a and b of weight n and level I'y (M), where we recall that
W = wp(-) is a shorthand for the image of - under the Atkin—Lehner operator wys
defined in Equation (33), and (-,)s is the Petersson product on S, (M, C) defined
after Equation (35). It follows that (cf. Equation (34) and the discussion following it)

w o TI%* (w _ (flgj?gg)Np _ (fkvfa)Np _ (fkaf)N
(185) (g oy T §)>f’“ (BN (Fes fdnp (fro fr)n

for each & in Sy (N, L)y, , where £¥ = wyp(éa)-
The (easily verified) relations wap opr} = pryown and wyy,opry, = p
yield

k—2 pl‘f own

1, 0wy o 11" = (pro, = 5 oy, ) o (b= 22 prt) o

20p+1 57
=(p-1) (T;—W—i—pf;-Tp) owN.
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As ap(fr) = ayp, + By, and T) o wy and T}, o wy act respectively as a,(fx) - wy and
Xf(P)ap(fr) - wn on ViR (fx), a direct computation then gives (cf. Equation (183))

By, By,
II7, ocwn oHa*:p—l)a‘(l—’“ 1— —2 | -wy
k p k ( i afk pOéfk

as morphisms from Vi (fx) to Vi (fr). Because II?* and IIf, are adjoint to each
other under the pairings (-,-) ; and (-,-) £, this implies

(M (g ) oy O T o))y
(p— 1oy, ( — %) (17 ﬁi> = (g, wn (we)) 5,

3/ pog,
()N ([N

(&N (frs fo)n

for each € in Sx(N, L), = Fil'Viz(fr). As the composition wy, o TI{* gives an
isomorphism between Sy (N, L)y, and Sk(Np, L)y:, and the isomorphism

I« Var (i) = Vir (fi)
commutes with the action of the Frobenius endomorphism on both sides, comparing
Equation (185) with Equation (186) yields the identity

By, ) < Bs,
O (%) = (p— 1o <1 BT —E ) %
k (Ufk) ( ) L ay, pay, U
(cf. Equation (37) for the definition of the differential 7% ). The lemma follows from

(186)

the previous equation and Equation (184). O

8.5. Conclusion of the proof. — This section concludes the proof of Theorem A.
According to Corollary 8.2 the class x(f, g, h) belongs to H{,,(Q,V(f,g,h)). Let
Y9, be the set of balanced triples (k,,m) such that k,l,m > 3 and p does not divide
the conductors of f;,g, and h,,. Let & denote one of f,g and h. Because X} is
dense in Uy x Ug X Up, in order to prove Theorem A it is sufficient to show that

(187) gg(lﬂ(f,g,h))(’LU) :jpg(fkagbhm)

for every w = (k,1,m) in X¢_,, where to ease the notation one writes

Ze(k(f, g, h)) = ZLe(resy((f, 9, h))).
Fix such a triple w and to ease notation set ay = ay, , 85 = By, ,ay = ag, et cetera.
Consider first the case & = f. Write as usual r = (ry,7r2,73) = (k— 2,1 —2,m —2).
Since p does not divide the conductor of f;,g; and h,,, the Ramanujan—Petersson

conjecture gives
(1 - ﬁf) (1 - ﬁf) (1 _ afﬂg§h> 0
af poy prt

Moreover f;, = fo (resp., g; = ga, Rm = hq) is the ordinary p-stabilisation of a cusp
form f = fi (resp., g = gi, h = hy,) of level T'y(N). Proposition 7.3, the definition of
log,(-) and Lemma 8.4 then prove that

(=)™ (r =)t Ly (5(f. g, h)) (w)
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is equal to

(1— 2o )
(1_ &) (1_ L‘) (1_ afBgBh,) - log, (#(f. 9. h)w) (5, (1 © wg @ wr)),

pr2

where £(f,g,h)w € HL (Qp, V(fi, g1 hm)) is the image of k(f, g, h) under the spe-
cialisation map p,, (and as usual log,(-) is a shorthand for log,(res,(-)) for all global

classes - in Hy (Q, V(f,9;,hm))). As T1$7, is the transpose of 1§ ., the functori-

ality under correspondences of the Faltings comparison isomorphism for E;(N) and
of the Leray spectral sequence (from which Equation (26) is deduced) imply that

(188) log, (<(£, 9, h)w) 0 115, = log,, (115,1,.(+(f,9, k) )

as functionals on FilOVd*R( fyg,h). According to Theorem 8.1 and Proposition 8.3
H?gh*(n(fv g, h’)w)

equals
o (-2 (- 228 - 282) (- 248) st

The previous three equations show that % (H( 5,9, h)) (w) is equal to the product of
o (1 ) (1= g (1 22 (1 - 22
- R )
af paf

log,, (k(f,9,h))(nF @ wy ® wh),
which in turn is equal to ﬁpf (fi,9;, hm) by the explicit reciprocity law Proposition
3.6. This proves Equation (187), and with it Theorem A, for £ = f.
The proofs of Equation (187) for €& = g,h are similar. We give the details for
& = g. Exchanging the roles of f and g in the constructions of Sections 7.1, 7.3, and
8.4, (the resulting) Propositions 7.3 and 8.4 proves that

(D)7 (r =)t Ly (k(£, 9, h)) (w)

1 — 2tbyon
(1_ @) (<1 Bj) (3 BfagBh,) -log,, (k(f, 9, h)w) (5, (wr @15 @ wp)).

pr2

and

is equal to

Qg pPQyg

Equations (188)—(189) (which are symmetric in (f, g, h)) then prove that the special
value 2, (k(f, g, h))(w) is the product of

(_1)r—r2 (1 _ a;fi;xh) (1 - a;?ifh,) (1 - 5;?1(;,1) (1 _ ﬁ;éjgh>

A (-5 0-%)
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and

logp (K(f7 9, h)) ((Uf ® 77(; ® wh)
This is precisely the formula for £J(fy,g;, hy) obtained by replacing the triple
(fx,9;, hm) with (g, fi., hm) in the statement of the explicit reciprocity law Propo-
sition 3.6, thus concluding the proof of Theorem A.

9. Proof of Theorem B

This section proves Theorem B stated in the Introduction. The notations and
assumptions are as in Section 1.2. Then (f, g, h) is alevel-N test vector for (f*, g*, h*)
and w, = (k,[,m) is an unbalanced triple in Y.

For the convenience of the reader, we briefly describe the contents of the different
subsections. Section 9.1 proves Theorem B assuming that w, is not exceptional in
the sense of Section 1.2. Section 9.2 proves an exceptional zero formula for the big
logarithm %5 when w, is exceptional of type (5), viz. in the exceptional case arising
from the vanishing at w, of the analytic f-Euler factor 5}“( f,g,h) introduced in
Equation (4). Section 9.3 constructs the improved diagonal classes x;(f,g,h) and
k3 (f, g, h) introduced in Section 1.2. Their construction is nontrivial only when the
g-Euler factor £;(f, g, h) defined in Equation (1) vanishes at w,, that is when w, is
exceptional of type (3) (cf. Section 1.2). Section 9.4 finally proves Theorem B when
w, is exceptional.

9.1. Proof in the non-exceptional case. — This section proves Theorem B when
w, is not exceptional.

Lemma 9.1. — The Bloch—Kato finite, exponential and geometric subspaces of the
local cohomology group H*(Qp, V (£, g1, hm)) are all equal.

Proof. — We use the notations introduced in the proof of Lemma 3.5. As in loco
citato, it is sufficient to prove that DZ="N=" vanishes.
Since k > [+ m, one has ord,(af) < —1 and ord,(8;,) < — 1 for - = (), g, h, hence
h

DE=" is contained in the L-module generated by a.,,ad, al and bl . Moreover

oo = pE /2] [l | = pEw=2ee=D/2 and |8S | = pBereu=1/2
for £ = g, h (cf. loco citato for the notation). It follows that D;‘Z:l is equal to zero if
ew=0o0r¢g, =2. If g, =3, then D;‘Z:l is contained in L-ad @& L - aﬁj and
N(r-af +s-a)=(r+s)-bl +7 bl +s-b?,
for each 7, s in L, hence DE="N=0 = 0. Ifg,, = ¢ = 1 for £ = g, h and {¢,¢} = {g,h},
then D;Dt:l is contained in the L-module generated by a,, and a$,, and
N(r-a,+s-a8) =r-a% +s-bl,
hence DZ=N=0 = 0. Finally, if ¢,, = er =1, one has
N(r-a,+s-al +t-a +u-bl)=r-af +s5-b" 4+t bl +u-b,,

hence D¥=1N=0 vanishes also in this case, concluding the proof of the lemma. O
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In light of Lemma 9.1, in order to prove Theorem B it is sufficient to show that
(190) exp,((fx, 91, hm)) =0 if and only if L(fi®g;®@hi,, (k+1+m—2)/2) =0,

where expy, is the Bloch-Kato dual exponential and expy(-) = expj(res,(-)) for any -
in the global cohomology group HY(Q, V (fi,a;, hm))-

Set
(191) V(£ g hm)™ =V (F)* @1 V(g) @0 V' (h)(c),
where ¢. = 4 —k—1l—-—m)/2and c. = (k+1+m—2)/2if - = 0 and - = x
respectively. Because k > [ + m the inclusion V*(fy, g, )™ — V*(fi, 91, hm)
and the projection V(fi,9;, hm) — V(fi, g}, b))~ induce isomorphisms
(192) D(V*(fs 91 hom) ™) = Vir (£ 12 915 hin) /FiL”
and FilOVdR(fkagbhm) = Dst(v(fkaglvhm)i)

respectively. (If g; or h,, is a weight-one modular form, the modules Var (fi, g, bm)
and V3, (f4, 91, hm) are defined using the conventions introduced in the last item of
Sections 5, cf. Equations (127) and (129) and Section 7.1.1.1.) Let

() frgimn : FIPVAR (fi g1 hon) @1 Vig (Fio g1 hom) /Fil” — L

be the perfect pairing induced on the de Rham modules by the specialisation at w, (cf.
Equations (106)-(109)) of the tensor product of the pairings (-, ), defined in Equation
(103), for € = f, g, h. (According to Equation (109), if k, [ and m are all geometric this
is also induced by the tensor product of the pairings (-, ) ¢ introduced in Equation
(31), for & = fi.,9;,hm.) By construction V(f;,g;, hm)s is a Gq,-submodule of
V(fx,9;, hm)~, and the image of

DCriS<V(.fkvgla hm)f) — Dst(V(fka g, hm)_> = FﬂOVdR(fk?gla hm)
(cf. Equation (192)) is orthogonal under (-,-) 5 /5, to the kernel of the projection

Vir (fr> 915 hm)/FﬂO = Dst(V*(fkvgh hm)+) I DcriS(V*<fk7gl» hM)f)a
where V*(fi,,9;, hum) s is the c.-th Tate twist of V*(f,)T @ V*(g;)” @1 V*(hm) ™.
Moreover, after setting z, = (w,, (k —1 — m)/2) (and identifying D.,is(Q, (7)) with
Q, - '), one has by definition (cf. Section 7)

Dcris(V(fkvgl7 hm)f) = D(.f’g7 h)f ®JJO L
and Dcris(V*(.fkagb hm)f) = D*(.fagv h)f ®xn L.
By Corollary 8.2 the class k(f,g,h) is balanced, viz. its restriction at p is the
image of a (unique) class &(f,g,h) in H'(Q,, Z2V(f,g,h)). Let &(f, 9, hm)

be the specialisation of &(f,g,h) at w,, and let k(fy,g;, hn)s be its image in
HY(Q,,V(fs,9:, hm) ) under the morphism py, (cf. Section 7.2). As the diagram

(193) Hl(Qpﬂy2V(fkvglvhm)) Hl(QP7V(.fk7gl7hm))

g |

HY(Qp, V(fi: 91, hm) f) HY(Qp, V(fi: g1, him) ™)
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commutes, the previous paragraph reduces the proof of Equation (190) to the following
claim.
(a) The Garrett L-function L(f} ® gi ® hi,,s) vanishes at s = (k+1+m — 2)/2
if and only if
<exp;(/€(fk:7gl7hm)f)7u>fkglh =0

m

for all differentials y in D(f,g,h); ®,, L. Here expy, is the Bloch-Kato dual
exponential on H'(Q,, V(f5,9;, hm)y) and (-, '>fkgzhm is the specialisation at
z, of the bilinear form (-,-) ¢, defined in Equation (139).

As (f,g,h) varies through the level-N test vectors for (f*,g*, h*), the speciali-
sations at x, of the associated Ofgp-adic differentials npwywp, (cf. Equation (142))
generate D*(f,,g;,hm) ¢ ®;, L. This follows from the results of Sections 2.5, 5 and
7.1.1. As a consequence the claim (a) is equivalent to

(B) The Garrett L-function L(f{ ® g} ® h¥,,s) vanishes at s = (k+1+m —2)/2

if and only if

(expy(k(Fr, g1, him) p), Wfkwglwhm>fkglhm =0

for all level-N test vectors (f,g,h) for (f* g* h*), where ng wg wh, in
Deris(V*( £ 915 hm) ¢) is the specialisation of ngwgwn at x, (cf. Section 7.1.1).

Remark 9.2. — As explained in Remark 1.3(3), the class (f, g, h), hence &(f, g, h)
and a fortiori (fy,g;, hm)ys, is independent of the choice of the level-N test vector

(f.g,h) for (f*,g°, h7).
Assume in the rest of this section that w, is not exceptional. This implies that

ﬂf g, an #p(k+l+m—2)/2
k 1 m

for each test vector (f,g,h). (As usual By, = xf(P)p*~1/a,(k), hence the previous
equation is a consequence of Equation (5) and the Ramanujan—Petersson conjecture.)
According to Theorem A, (the proof of) Proposition 7.3 and the previous equation,
for each level-N test vector (f,g,h) one has

gpf(fkwgh h’m) = (g)wo : <eXp;;(H(-fk>gl’ hm)f)7 nfkwglwh"”>fkglhm

for a non-zero algebraic number &,,,. The statement (3) can then be rephrased as

(v) L(ff @ g] @ hi,, (k+1+m —2)/2) = 0 if and only if £/ (f,,g;, hm) = 0 for
all level-N test vectors (f, g, h) for (f*,g*, h*).

Under the current Assumption 1.7 on the local signs e,(ff, gi, h%,), the claim () is a

consequence of Jacquet’s conjecture proved by Harris-Kudla in [HK91]. Indeed, as

w, is not exceptional, there exist test vectors (f, g, h) such that pr(fk,gl, h,,)is a

non-zero multiple of the complex central value L(ff ® gf @ h%,, (k+1+m —2)/2) (ct.

Section 6 and [DR14, Theorems 4.2 and 4.7]).
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9.2. Derivatives of big logarithms I. — Assume in this section that the unbal-
anced classical triple w, in Xy satisfies the conditions displayed in Equation (5) of
Section 1.2. In particular w, = (2,1, 1).

Denote by # = ., the ideal of functions in Opgp, which vanish at w,. The
exceptional zero condition (5) and Proposition 7.3 imply that the big logarithm 2
takes values in .#. According to loc. cit. £} factors through the morphism induced
by the projection ps : F2V(f,g,h)) — V(f,g,h)s and we write again

Ly HY(Qp, V(f,g,h)s) — 7

for the resulting map. The aim of this section is to prove Proposition 9.3 below, which
gives a formula for the derivative of £ at w,, namely for the the composition of 2%
with the projection .# — #/.#2. In order to state it we need to introduce further
notations.

Since X£(p) = xgxr(p) and x£(p) - ap(2) = bp(1) - ¢, (1) under the current assump-
tions, the G'q,-representation

V(£2)ss EV(F.9.h)5 @u, L=V(f2)” @ V(g @ V(h1)*

is isomorphic to the direct sum of a finite number of copies of the trivial p-adic
representation of G, = Gq, (cf. Section 7.2). Let sz be the Galois group of the
maximal abelian extension of Q,,, and let

rec, : Qy0Q), = ng®Qp

be the reciprocity map of local class field theory, normalised by requiring that
rec,(p~') is an arithmetic Frobenius. Identify H'(Q,, Q,) = Homcont(ng, Q,) with
Homeont (Q}, Qp) under recy, so that

(194) HY(Qyp, V(£2)55) = Homeons (Q), Q) @q, V(£2) 35
and Deis(V(f2)55) =V (f2) -

Under these identifications the Bloch-Kato dual exponential exp’ on H'(Qy, V( f2)55)
satisfies

(195) exp, (Y @ v) = (e(1)) -v € V(f2) g
for all ¢ ® v in Homeont (Qy, Qp) ®q, V(f2) 55, Where
e(1) = (1+p)®log,(1+p)~" € Z:2Q,.
Similarly the Gq,-module

VA (f)bs L V() L Vi(g))” @1 V()"

is isomorphic to the direct sum of several copies of the trivial representation of Gq,,
hence DcriS(V*(fg);gﬁ) = V*(fQ)Eﬁ and Paragraph 7.1.1.1 give a perfect pairing

(- '>f2glh1 1 V(f2) 55 ®L V*(f2)3_@ — L.
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For each 3 = ¢ ®v in H(Q,, V(f2)5): with ¢ € Homeont(Qy, Qp) and v € V/(f3) 55,
and each ¢ in Q*, define (cf. Equation (129) and the discussion preceding it)

3(a) =v(@) v € V(f)gs

and
3(0)r = —1)ap(2) - (3(a), 05, ® wg, @Why )y o €L

Let 3 in H'(Q,, V(f,, 91, h1)) be the specialisation at w, of a balanced class 3 in
HL L (Qp, V(f,g,h)), that is 3 = py,«(3). Then 3 is the natural image of a unique
class Q) in H'(Q,, 2V (f,g,h)). Define

(196) Vf =D« (pwo*@))) € Hl(va V(f2)[;ﬁ)
and exp;(j)f :(p - l)ap(2) : <eXPZ(Uf)a77f2 ® Wg, ® wh1>f291h1'

The following key proposition studies the derivatives of the logarithm %%, extend-
ing some of the results of [Ven16]. Its proof exploits the existence of an improved big
logarithm for the restriction of .Z to the improving plane Hy defined by the equation
k =14 m. Part 1 of the proposition is a crucial ingredient in the proof of the main
result of our contribution [BSV20a], and Part 3 is essential for the ongoing proof of
Theorem B in the exceptional case (cf. Section 9.4). Part 2 is not used elsewhere in
the paper and is stated for completeness (and with future applications of this work
in mind). Before stating the proposition, we introduce some notation.

For the proof of Theorem B, we are especially interested in the improving line Hpq
in Uy x Ug x Up, defined by the equations k = I+1 and m = 1; it is the intersection of
the improving planes Hq (introduced in Section 1.2) and Hy. Let resgg : Opgn — Oy
be the morphism sending the analytic function F'(k, I, m) to its restriction F(I1+1,1,1)
to the improving line H ¢4. For each Opgp-module M, denote by M|z, = M @res,, O
the base chance of M along resyg, and for each m in M denote by m|y,, the image
of m under the projection M — M|, . Set

V(-fgvhl) :V(f7gah’)|7'lfg and V(fgahl)f :V(f7gah)f‘7'[‘fg'

Shrinking Ug and U}, if necessary, assume that [ + m belongs to Uy for each (I, m)
in Ug x Up, and recall the analytic f-Euler factor

bp(l) - cp(m)

197 Ei(f.g.h)=1— —F=—b

(197 G = ) s m)
introduced in Equation (4). (We also recall that a,(k), b,(l) and c¢,(m) are the p-th
Fourier coefficients of the primitive Hida families f*, g* and h* associated respectively
with f, g and h.) In the present exceptional zero scenario (cf. Equation (5)) it vanishes
at (I, m) = (1,1). Denote by

g}k(fgvhl) = g;(f’g7h)‘Hfg € ﬁg
the restriction of 5}‘(]", g,h) to Hysg. Finally define the analytic -Z-invariants
L5 = —2-dloga,(k)|k=2, £5" = —2-dlogby(l)[i=1 and £} = —2-dlogc,(m)[m=1.

We can now state the main result of this section.

S ﬁg®Lﬁh

Proposition 9.3. —
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1. Let 3 € H'(Qp, V(f,g,h)s) and let 5 = pu,(3) € H(Qp,V (fz)/;g) Then
21— 1/p) - Z(3) = (37 1)s — 7 - 3(e()y) - (o
+(£Z“-3(( )r—3(p f) (
+ (3 5(e(0); —57Y)y) - (m
2. Let 3 be a local balanced class in HY,;(Qp, V(f,g,h)) and let 3 = py,(3) be its
w,-specialisation in HL, (Qp, V(f2,91,h1)). Then
2(1—-1/p) - Z5(3)
is congruent modulo 2 to
((ggm = 2) - 0=+ (g~ 2) - (m— 1)) - expy(3)s-
3. There exists a morphism
L tanny, P H (Qp V(fg,h1)g) — O

such that, for each local class 3 in H (Q,, V(fg,h1)¢) and each positive integer
1 >1in Ug congruent to 1 modulo p — 1, one has

g(l) : ‘j(fg hl)f(B)(l) = ( - 1)ap(l + 1) ’ <exp;(3), nfz+1wgzwh1>fz+1gzh1>

where &(1) =1 — X220 and 5 = py(3) in HY(Qp, V(fis1, 90 b)) is the

weight-l specialisation of 3. Moreover, the following diagram commutes.

1)
-1 (mod #2).

2L

Hl(QP7V(f7gvh)f) ﬁfgh
reng*i J{reng
€5 (£9:01) L7 (59.ny)
HY(Q,. V (g, h1);) Vg,

Proof. — Let € : ﬁfgh — Opgn be the map which sends the analytic function
F(k,l,m,j) in Ofgp to its restriction F(k,l,m,0) € Opgp, to the hyperplane j = 0
(see Section 7.1 and note that j, = 0). Because M (f, g, h)s is equal (by definition)
to the base change M(f,g,h); ®: Ofgn, this induces in cohomology

Ex t Hl(QmM(.fvgah)f) — Hl(QpaM(f7g7h’)f)'

A slight generalisation of [Ven16, Proposition 3.8] stated in Lemma 9.4 below gives
an improved big dual exponential

L5 HY(Qp, M(f,g,h);) — D(f,g,h)s
such that, for all classes 3 in H(Q,, M(f,g,h)¢) and all w = (k,l,m) € ¥, one has
(198) (1 —p L. \I/w(Frobp)) L3(3)(w) = exp™(3uw),
where W, is the composition of the unramified character ¥ : Gq, — ﬁ; ah introduced

in Equation (136) with evaluation at w, exp* is the Bloch—-Kato dual exponential on
HY(Qp, M (f1, 91, hm)¢), and 3, is a shorthand for p,.(3). (Precisely, after setting
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KX = Opgn, # = M(f,g,h)s and & = U, then one has L% = &xpj, with the notations
of Lemma 9.4.) Recall the big logarithm %y introduced in Equation (144), and let

Zf  H (Qp, M(f,g,h)s) — Ofgn
be the composition of L} with the base change
(- MfwgWn)pgn ®= Opgn : D(f,g,h) s = Opgn
of the linear form (-, 7fwgwn) ¢, along €. Equation (198) and Proposition 7.1 yield
(199) g0 s = (1-U(Frob,) ") - Zfoe,.

~ Define ¢ = py, : Opgh — Ocyc by o(F(k,l,m,j)) = F(w,,j) and denote by
M(f5,9,,h1) the base change M (f,g,h)s ®, Ocyc. Note that in the present setting
Gq, acts on M(f5,91,h1) ¢ via the character k3, and for all integers j divisible by

cyc?
p — 1, evaluation at j on Oy induces a natural isomorphism (cf. Sect. 7.1)
(200) V(f2)55(—) = M(f2,91. k1) ®; L.

The results of Coleman and Perrin-Riou (see Section 4 of [PR94]) then give a mor-
phism of & .-modules

gcyc : Hl(QpaM(f%glahl)f) — ﬁCyC
M

such that, for all classes 3 in H'(Q,,
j =0 (mod p—1), one has

(f2,91,h1)s) and all integers j > 0 satisfying

(201) Zeye(3)(4) = j!(l(i;_pj_)l) exp”(3;) -

Here 3; is the image of 3 in H'(Q,, V(f3)55(—j)) under the morphism induced by
(200) and one writes again
exp”(")s = (p — 1)ap(2) - <eXp*(')vnfzwglwh1>fzglhl

for the composition of the linear form (p — 1)a,(2) - (-, 77f2w91wh1>f gihy OO V(£2)ss
291
with the Bloch—Kato dual exponential map

exp” : Hl(Qw V(fQ)E,@(_j)) — V(f2)§ﬁ ®Q, Q- 7 V(fz),gg

(cf. Section 7.1 and Equation (194)). According to Proposition 3.6 of [Ven16] (see
also [Ben14, Proposition 2.2.2]), for all classes 3 in H*(Q,, M (f,,g;,h1)s) one has

d _ _
d—ijC(S)jzo =@1-1/p)" 57y,
where 3 is a shorthand for 3¢. Moreover Proposition 7.1 and Equation (201) yield the
identity
(203) 00T = Loyeo u.

Let 3 be a class in H'(Qy, V(f,g,h)f) and let 3 = pu,(3) € H(Qp, V(f2)33)
be its specialisation at w,. As explained in the proof of Proposition 7.3 (see in

(202)
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particular Equations (151) and (152)), the class 3 can by lifted to an element 27 in
HY(Qp, M(f,g,h)¢) via the map induced in cohomology by the isomorphism

M(f,g.h);/(2j —k+1+m) M(f.g.h)=V(f.g.h);,
and one has
(204) Z4(3) (k1 m) = 2y (2) (kL (k — L—m) /2),
for any such lift 2. As (cf. Equation (136))
2-(1-W¥(Frob,) ") =£2" - (I-1)+ & (m—1) - - (k—2)+ -,

where the dots denote the terms of higher degree in the Taylor expansion at w,,
Equations (199) and (203) yield that 2(1 — 1/p) - Z5(Z) is equal to

2 (1= W(Froby) ™) (1= 1/p) - L (. (2)) + 201 = 1/p) - Loyel0a(Z)) + -+,
which in turn agrees with
3e@))r- (L5 - U=+ LR (m—1) = L5 (k—2)) +2-5(p" )y -5+

by Equations (195), (198) and (202). This proves Part 1 in the statement.
To prove Part 2 let 3,9),3 and ys be as in Equation (196), so that

(205) expp,(3)r = vy(e(l))s

(cf. Equation (195)). Note that the L|G,]-module .#2V (f,, g,, h1) splits as the direct

sum of its submodules V(fQ);rﬁ =V (fy,91,h1)g, V(f2);a =V (fy,91,h1)n and
V(£2)ps =V (f2) @1 V(g1)" @1 V (k)"

(cf. Section 7.2). Moreover, if V(fz)gﬁ denotes the tensor product of V(f,)",V(g;)™"
and V(hy)* (that is #3V (£,, g,, h1) with the notations of Section 7.2), the projection
V(f2)ss — V(f2)5 gives rise to a short exact sequence of Gq,-modules

(206) 0—V(f2)is D V(f)es V(f2)gs — 0.

It follows that the image of H'(Q,, #2V(f,,g1,h1)) under ps. equals that of
HY(Q,,V(f,)pp) under 7, hence

(207) vy € 1 (H'(Qp, V(f2)s5)) -
The short exact sequence (206) defines an extension class ¢y in
Extriq,) (V(f2)55: V(f2)hs) = H(Qp, L(1)) @ Homr (V(£2)55, V(£2) 55 (1)

After identifying H'(Q,, L(1)) with Q;@L under the Kummer isomorphism, this
defines a morphism

LQf : Hl(QPa V(-fZ)Eﬁ) = Homcont(Q;a L) QL V(f2)§5
— V(fZ)?i_ﬂ(il) = H2(Qp7 V(fQ);,B),

where the last isomorphism arises from the invariant map H?(Q,, L(1)) 2 L of local
class field theory. A direct computation, carried out in Lemma 9.5 below, shows
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that L, is equal to the connecting morphism HY(Q,, V(fQ)EB) — H%(Q,, V(fz)gﬁ)
associated with the exact sequence (206). It then follows from Equation (207) that
(208) Lg; (9s) = 0.

According to Theorem 3.18 of [GS93] ¢y is of the form q; ® 0y for some linear
form 65 : V(f2)55 — V(fz);ﬁ and q; in Q&L such that ord,(qs) # 0 and

L5 = log, (ay)/ordy(ay)-
Then
logqf = log, —£%" - ord,, € Homcont(Q;, L)

is the branch of the p-adic logarithm which vanishes at qy and L - log, @V (f3) 54
is contained in the kernel of L,,. Taking the long exact sequence associated with
(206) one easily checks that the kernel of Ly, has the same dimension as V(f;) g5,
hence L - logy, @V (f2)55 is equal to the kernel of Ly,. Equation (208) then yields
s = log,, @vy for some vy in V(f;)g5, hence

(209) vr(p~") = L5 vy = LF" 9y (e(1)).
Part 1 of the proposition and Equations (205) and (209) give
2(1=1/p)- Z5(3) = 2(1 = 1/p) - Z o py+ (D)

Part 1

= (0s07 s — £ vs(e()r) - (k- 2)
(25 (e =0 (077 ) - =1+ (L8 (e =0y (7)) - (m = 1)
qu(m) Uf(e(l))f . ((Egn - S}n) . (l . 1) + (S?zn _ 2;}1) . (m _ 1))

exp(3)s - ((,23“ - SE}“) (-1 + (22“ — Saf“) < (m — 1)) (mod .#?),
as was to be shown.

We finally prove Part 3. Taking # = Oy, # =V (fg,h1); and ® =resgg o ¥ in
Lemma 9.4 gives an improved big dual exponential

gxpt/(fg,hl)f : Hl(QINV(fg?hl)f) — D(.fgvhl)a

where D(fg,h1)r = (V(fg, hl)f®zngr)c% [1/p] and V(fg, h1)s is a Gq,-invariant
Ag-lattice in V(fg, h1)y. Note that D(fg, h1); is naturally isomorphic to the base
change of D(f,g,h) along resgg : Opgn —> Oy, and define

L tamy, P H (Qp V(fg,h1)g) — O

to be the composition of gxp*v(fg,hl)f with the base change

Eq. (205)

(- Nfwgwn) ®ress, Og : D(fg,h1)s — Oy
along resgq of the linear form (-, nfwgwh>fgh on D(f,g,h)s. After noting that
1 — U(Frob,) (I + m,l,m) =E(f.g,h) and 1—p " T,(Frob,) = &(1)

for each positive integer [ > 1 in Uy congruent to 1 modulo p—1, where w = (I+1,1,1)
in Hyg, the interpolation property satisfied by 2y (g n,), and the commutativity of
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the diagram in the statement follow directly from Equation (143) (cf. Section 7.1.1.1
for the case | = 1), Proposition 7.3 (and its proof) and Lemma 9.4. O

The following two lemmas have been invoked in the proof of Proposition 9.3.

Lemma 9.4. — Let R be a complete local Noetherian ring with finite residue field of
characteristic p, and let Z = R[1/p]. Let M be a free R-module of finite rank, equipped
with the action of Gq, given by a continuous unramified character ® : Gq, — R*.
Set # = M[1/p]. Then there exists a morphism of %-modules

Euply : HY(Qp, M) — (Mg, Z2) 50 [1/p]

such that, for each continuous morphism of Z,-algebras v : R — Qp and each class

3 € HY(Q,,.#), one has

v(Epp(3)) = (1—p~' - @, (Frob,)) ™ - expi(3.),

where the notations are as follows. Set 0, = v(R) and L, = Frac(0,). The un-
ramified character ®, : Gq, — O is the composition of ® with v, the class 3, in
HY(Qy, L,(®,)) is the image of 3 under the map induced in cohomology by v, and

expl : HY(Qp, Lu(®,)) — Deris(Ly(R)) = (0,(D,) Rz, Z5) 2w [1/p]

is the Bloch—Kato dual exponential.

Proof. — When # = O¢ and .# = Oyf(ay(k)), this is [Venl6, Proposition 3.8|.
Mutatis mutandis, the proof of loco citato works in this more general setting. O

Lemma 9.5. — Let M and N be two finite dimensional L-vector spaces, equipped
with the trivial action of the absolute Galois group G, of Qp, let

(210) 0— M1) -5V N—0
be a short exact sequence of (continuous) L[Gp]-modules, and let
qv € Extyg (N, M(1)) = Q) ®z, Homy (N, M)

be the corresponding extension class (where one identifies H'(Q,,Z,(1)) with the
p-adic completion Q;, of Q, via the Kummer map). Then the connecting morphism

(;V : Hl(QpaN) — Hl(QpaM(l))
associated with the short exact sequence is equal to the composition
Ly : H(Qp, N) 2 Homeont (Q}, Zp) @z, N <5 M = H*(Q,, M(1)),

where the first isomorphism arises from the local Artin map recy, : Qp — G;b (send-
ing p~* to an arithmetic Frobenius), the second isomorphism arises from the invariant
map inv, : H*(Qp, Z,(1)) £ Z,, and ey is evaluation at gy (under the product of the
natural dualities Q; Rz, Homcont(Q;, Z,) — Z, and Hom (N, M) ®;, N — M ).
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Proof. — Identify M (1) with a subspace of V' via the injective morphism «, and fix
an L-linear section 0 : N — V of 5. Under the natural isomorphisms

ExtlL[Gp](N, M(1)) = ExtlL[Gp] (L,Homy (N, M)(1)) = H(Q,, Homy (N, M)(1)),
the extension class of (210) is represented by the 1-cocylce
§V = €V,0 : Gp — HomL(M, N)(l)

defined by the formulae
g9(o(n)) —a(n) =&v(g)(n)

for each g in G, and each n in N.
For each 1-cocycle (id est continuous morphism of groups) ¢ : G, — N, the image
of ¢ under the connecting map Jy is represented by the 2-cocycle 09 (¢) defined by

5 (9)(g: 1) = g(a(p(h))) — a(e(gh)) +ale(g)) = &v(9)(w(h)) = &v Uev ¢ (g, 1),
where Uy, : C?

cont (Gim HOIHL(N, M)(l)) ®L C’c.ont (GP7 N) — O(;ont (Gp7 M(l)) denotes
the cup-product induced on continuous cochains by the evaluation pairing

ev: Hom;(N,M)®, N — M

(cf. Sections 3.4.1.2 and 3.4.5.1 of [Nek06]). If (-, ), denotes the composition of the
cup-product pairing induced in (1, 1)-cohomology by Ue, with the M-linear extension

invy 1 H(Qp, M(1)) = H*(Q,, Zy(1)) ®z, M = M
of the local invariant map inv,, it follows that
(211) invar (Ov (@) = (cl(€v), @)y -
where cl(-) denotes the class represented by -. Under the natural isomorphisms
H'(Qp,Homy (N, M)(1)) = H'(Qp, Zy(1)) ®z, Homp (N, M)

and H'(Qp,N) = H(Q,,Z,) ®z, N, the pairing (-,-),, corresponds to the product
of ev and the local Tate duality

(1) s H(Qpy Zp (1)) @z, H'(Qpo Zy) = H*(Qy Z,(1)) =5 Z,
associated with the multiplication pairing Z,(1) ®z, Z, — Z,. Finally one has

(k(q), x) = x(recy(q))

for each x in H'(Q,,Z,) and each ¢ in Q}, where  : Q) — H'(Q,, Z,(1)) denotes
the Kummer map (cf. Proposition 1 in Section 2.3 of [Ser67]), hence

<CZ(£V)7 SD>CV =€y (80)7
which combined with Equation (211) concludes the proof. O
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9.3. Improved diagonal classes. — This section proves the existence of the big
g-improved diagonal class introduced in Equation (2) of Section 1.2.

Section 8.1 associates to the ordered triple of Hida families (f, g, h) the big diag-
onal class k(f,g,h) (which is symmetric in the forms g and h). After identifying
the big Gq-representations V(f,g,h),V(g, f,h) and V(h, f,g) under the natural
isomorphisms, a priori the three classes

k(f.g.h), k(g f,h) and k(h,f,g)
in HY(Q,V(f,g,h)) may be different. This is indeed not the case.

Lemma 9.6. — The classes k(f,g,h), (g, f,h) and x(h, f,g) are equal.

Proof. — Let X7, be the set of balanced triples w = (k,{, m) such that p does not
divide the conductors of f,, g, and h,,. Since H(Q,V(f,g,h)) is a torsion-free
O¢gn-module and X7, is dense in Uy x Ug x Up, one has

() (k—kl-1,m—-m)-H(QV(f,g h) =0

weRP,)

It is then sufficient to prove that the three classes in the statement have the same
specialisation at each balanced classical triple w in 3¢ ). Because the map 1%, .

(defined after Equation (169)) is an isomorphism at each point (k,l,m) of £{ ,, this
is a consequence of Theorem 8.1 and Proposition 8.3. O

We now construct the g-improved balanced diagonal class

(212) ‘%;(fagv h) € H’éal(Q7 V(f797 h)|Hg)

satisfying Equation (2) of Section 1.2.
Set Agh = Ag®gAp, so that Ogp, = Agn[1/p]. For every Aggp-module M, define

M|’Hg =M Qv Agh

to be the base change of the Ag¢p-module M under the morphism vg : Agen — Agn
sending the analytic function F'(k,l,m) to its restriction F(I — m + 2,1, m) to the
g-improving plane Hg (cf. Section 1.2). A similar notation applies to Oggp-modules
and sheaves of Agpp or Ogpp-modules.

Remark 9.7. — The space A;@.Af@/lhmg is identified with a subspace of the
Agn-valued functions f on T’ x T x T that are locally analytic and such that

flte oty -yt 2)= ug(t’;ftgjgtgh) fz,y,2).

(This can be seen by applying [GS16, Lemma 7.3] with X = T’ X T x T to reduce
the statement to the fact that the formation of locally analytic function - without the
homogeneity property imposed - is compatible with base change.) Conversely, such a
function f can be assumed to be in the image of A}®A9®Ah|Hg, by increasing the
radius of convergence in the definition of Ay = Ay, . Ay = Ay and A, = Ay ..
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Consider the analytic function Dy : T' x T x T — Aggn defined by the formula
Dy(x,y,2) = det(m,y)”z . det(m,z)“} . det(y,z)(k+m*l*2)/2

for each (z,y,z) in T' x T x T with @ = (a1,a2) for a = x,y,z. (Because we
apply an integer power to the last determinant, there is no need to restrict to the
domain T’ x (T x T)p as we did in the definition of Det in Section 8.1.) Then
Dety := vg oDy : T' x T xT — Agp is a locally analytic function satisfying the
homogeneity property of Remark 9.7. It also satisfies the invariance property
Det(x -7,y 7,2 - 7) = det(y)"sasn . Det} (- v,y 7,2 7).
Applying Remark 9.7 and recalling that kg = vg o Ky fpe We have thus defined
(213) Det} € H(To(pZ,), Ay @A & Ak, (—rq)).
With the notations of Sections 4.2 and 8.1, let

A;&Af&Ah‘Hg = A;@Af@)flhﬁ_ﬁg and A;@Af(@Ah‘Hg = d*(AggAngﬂyg)
be the étale sheaf on Y3 associated with the representation Af®A;®Ah\HQ in

M(Ty(pZ,)?) and its pull back under the diagonal embedding d : ¥ — Y3
respectively, so that one has a natural inclusion

(214)  H(Lo(pZy), Ag®As @ Anln, (—kg)) — Hg (Y, Ay ® A @ Anly, (—kg)).
On the other hand, consider the following composition.

HE (Y, Ay @ Ap @ Apln,(—kg))

(215) 5 H(Y®, Ay 0 Ay B Anls, (~rg) @2, Zy(2))
= HY(Q, HE (Y5, Ay R Ay K Ay, ) (2+ Kg))

Because HY, (Y(%7 ) vanishes for every pro-sheaf .7 € S(Y3) (cf. the discussion fol-
lowing Equation (156)), one has a natural isomorphism

HE (Y5 Ay BAf B Aplw,) = HE (Y, Ay RAg KA 3, -
Moreover, as in Equation (156), the base change along vg of the projection arising
from the Kiinneth decomposition et cetera induce a map
(216)  H'(Q, HZ (Y5, A K AG KA )|n, (2 + Kg)) — H'(Q,V(g, £ h)|n,),
and we denote by
(217)  AJE" L HG(Y, Ay © Ap © Anl, (—rg)) — HY(Q,V (g, . R)la,)

the composition of the maps (215) and (216).

Identifying V(f, g, h)|#, and V (g, f, h)|3,, one defines the sought for g-improved
diagonal class (212) to be the image of Det, under the big Abel-Jacobi map defined
in Equation (217), multiplied by the normalising factor ﬁ (cf. Equation (155)):

b

agfh *
b, (1) AJZ; (Detg).

tig(f,9,h) =
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(Here one views Det; as a global section of the étale sheaf Ay @Ay @Ap |3, (—Fg) via
the inclusion (214).) The balancedness of x(f, g, h) follows from a similar argument
as the one in the proof of Corollary 8.2.

We now verify that «(f, g, h) satisfies the identity displayed in Equation (2):

(218) ’i(f7gvh’)‘7'lg :gg(fag’h)'KZ(fvgah)~

Let HS' be the intersection of Hg with U;l x U x Ugl. As HY(Q,V(f,g.h)|n,) is
a torsion-free Ogyp-module, in order to prove the previous equation it is sufficient to
show that

(219) pus((F, g, ) = Eg (£ G, om) - (kg (£, 9, h))

for each classical triple w = (k,I,m) in the subset
bal __ cl
Hy' = {(k,l,m) € Hq | m > 3}

of ’Hgl, where py, : V(f,g9,h) — V(f},9;, hm) is the specialisation map (cf. Equation
(145)) and &;(fy, gy, hm) is the value of £(f,g,h) at (I,m). The set Hp is the
intersection of H4 with the balanced region ¥y,;. Moreover Lemma 9.6 and Theorem
8.1 yield

(p = Dbp() - 0w« (k(f, 9, h)) = Eg(fi 91 o) - “T(ghfmhm)

for each w = (k,I,m) in Hgal. (Recall from Equation (157) that the definition of
the twisted diagonal class k'(g;, fi, hm) is not symmetric in the forms f;, g; and h,,,.
Indeed, after identifying V' (g;, f, bm) with V(f1, g;, ), it follows from Theorem 8.1
and Lemma 9.6 that the class (g;, fi., h) is in general not equal to ' (fy, g;, hm).)
To prove Equation (219), and with it Equation (218), it then remains to prove that

(p - 1)bp(l) : pw* (HZ(fMQa h)) = HT(QZ& fk7 hm)
for each w = (k,l,m) in Hgal. After unwinding the definition, this is in turn a direct
consequence of the identity
pw(Det)) = Det;\,(;f),
where r(w) = (I — 2,k — 2,m — 2), which holds true in Sy(,) — A]_,@Ap_2@Am_2
for each balanced triple w = (k,l,m) in ’Hgal by the very definitions of the invariants
Det, and DetY;, (cf. Equations (213) and (41)).

9.4. Conclusion of the proof. — Assume that w, = (2,1, 1) is exceptional. As
in Section 9.2, denote by Hyg the intersection of the improving planes Hg and Hy,
that is the set of triples in Uy x Ug X Uy, of the form (I + 1,1,1). Denote by

L] (fg,m) = L] (f,9,h)u,, € Oy

the analytic function on Ug which on I takes the value .,Sﬂpf(flﬂ,gl, h;) (cf. Equation
(55)). Define similarly

g}k(fgvhl) = g;(f’g7h)|7{fg € ﬁg and gg(.fgah1> = gg(fvgah”?-lfg € ﬁg-
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Lemma 9.8. — Let hy be the modular form of weight one and level T'y(N) with
p-stabilisation hy. One has

gpf(fgahl) = S}k(fgvhl) : gg(fgahl) ’ gpf*(fg’ h1)7

where fpf*(fg,hl) is the analytic function in Og which on the classical point | > 1
in U;l takes the value

(wn (f)i+1,h1 - g)Np
(wn (Fir1, wn (F)is1)np

Moreover, the following two conditions are equivalent.
1. .pr*(fQ,gl, hy) is zero for all level-N test vectors (f,g,h) for (f*,g* h*).
2. The complex central value L(f5 ® g} ® hi, 1) vanishes.

gpf*(fH»l? g, h) =

Proof. — Set U = U, denote by (-,-)u : SFUN, X¢) ®ow) SN, xf) — OU)
the O(U)-adic Petersson product (cf. Section 7 of [Hid93]) and define

(U

)
(wn (F)+1, ora(h1 - 9))U
(wn(F)41,on(f)+1)u

Here wy(f) is the Hida family introduced in Lemma 6.1, wx(f)+1 is the family in
Serd(N, xy) whose specialisation at the classical point m > 2 equals wy(f,,,,) and
€ora 1s Hida’s ordinary projector from the space of O(U)-adic cusp forms of tame level
N and character xs onto SF4(N, vy), cf. [Hid93]. (Concretely eoa(h1 - )i equals
eord (h1-g;) for each classical point [ in U¢!, where the idempotent e,.q occurring in the
right hand side is equal to lim,, U”'.) By construction the value of pr*(fg, h1)

gpf*(fgv hl) =

at a classical point m > 1 equals 92” “(fip1,90 7).
Recall the operator V =V, on L[[q]] defined by V (3 cng™) = > ¢n¢"". Then

hy=(1-pn, - V)h1 and h[lp] =1 —ap, - V)hy

with ap, - Bn, = Xxn(p), and similarly ggp] = (1 —ag, -V)g;. Since g[p] -V(hy) is
p-depleted (viz. its n-th Fourier coefficient is zero if p|n), it is killed by egq, hence

(wn (fis1)r 91 V(hl))Np = ag, - (wn(fi1), V(g; - hl))Np
- #‘me (wn(fi1) 91 ~h1)Np

(To justify the last equality, note that eoq 0V = U, L. eqra and U, acts on wy (f; 41)
as Xf(p) -ale.) Then

. h[P] —|1= Qg, Vh,y . -h
(wN(fH‘l) €o d(gl ))Np < )Zf(P)ale (wN(fl+1)’gl 1)Np
Similarly the vanishing of eqq (g%p I V(h1)) yields

(wn(fi31). 90 hl)Np = (1 - )Zg(p)agl> (wn(fiz1) 90 h1)Np

OzthZle
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Using once again the identity eg.q (g%p] -V(hy)) = 0 one deduces that gl”!-h; —g,- h[lp]

is killed by eora, hence the previous two equations give (cf. Equations (55) and (131))

f w) = (wN(fm),eord(ng] ~h1))Np
gp (.fag>h)( ) - (wN(fl+1)awN(fl+1))

(1= aglahl 1_ Xg(p)agl . (wN(fl+1)7gl : hl)Np
>Zf(p)Oéfl,.p1 ahlaf1,+1 (wN(.fl+1)7wN(.fl+1))Np
= g}k(.fag7 h)(U}) ’ 5g(f7ga h)(w) : gpf*(fbklvgl? hl)
for each I > 1, where w = (I+1,1,1). (See Equations (1) and (197) for the definitions
of &(f,g,h) and Ef(f,g, h) respectively.) This proves the first statement.
The second statement follows from the main result of [HK91] and Theorem 3 of
[DN10]. (Note that (wn(f2), g1 - h1)y, = 0 for each level-N test vectors (f, g, h) for
(fF, g%, h*), cf. the discussion preceding the statement of [DN10, Theorem 3|.) O

As in Section 9.2, for each Opgp-module M denote by M|, = M ®res;, Og the
base change of M along the morphism resgg : Opgp, — Oy sending F'(k,l,m) to
F(l+1,1,1), and for each m in M denote by m|4,, the natural image of m in the
quotient M|y, of M. Finally, if £ is equal to one of f,g and h, define

ty..‘/(fg7hl) :f.V(f,g,h”Hfg and V(fg,hl)fz‘/(f,g,h)d’;{fg
Lemma 9.9. — The map

Hl(Qp? f2V(fg’ hl)) — Hl(va V(fga hl))
induced by the inclusion F2V (fg,h1) — V(fg, h1) is injective.

Proof. — Set M =V (fg,h1) and M¢ = V(fg, h1)e. The statement follows from the
vanishing of H%(Q,, V(fg,h1)/#?), which in turn follows from the claim:

(220) H(Qp,g1"M) = H°(Qp,gr' M) = 0.

To prove the claim, recall from Section 7.2 that the inertia subgroup of Gq(,,) acts on
gr'M = M/FM via the character rl}, hence H°(Q,, gr? M) = 0. Moreover, denote

cyc
by @, ®, and ®j the Ogy-valued unramified characters of Gq, sending an arithmetic

: Xf(P)-ap(+1) _ Xgq(p)-bp(l) Xn(p)-cp(1) ;
Frobenius to ij;,ﬁl).cpu) , af{’lfl)_cp(l) and af,?lﬁl)c-bp(l) respectively. Then Gq_(,,)

acts on My, M, and M}, via the characters ®¢, ®, - Hiyc and @y, - Ky respectively (cf.
Section 7.2). According to the Ramanujan—Petersson conjecture the complex numbers
ap(141) and by (1) have absolute values p'/2? and p{‘~1)/2 respectively for each classical
point [ > 3 in Uy, hence H°(Q,, M¢(j)) = 0 for £ = f,g,h and each integer j.
Since gr2M is isomorphic to the direct sum of My, My and My, and since gr' M is
isomorphic to the Kummer &g-dual of gr?M (cf. Section 7.2), the claim follows. [

We can now conclude the proof of Theorem B in the exceptional case.
Recall the g-improved balanced class x}(f,g,h) in Héal(Q,V(f,g,h)mg) con-
structed in Section 9.3. By the definition of the balanced condition (cf. Section 7.2),
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the restrictions at p of the classes x(f, g, h) and x;(f, g, h) are the images of classes

R(fag7h)eHl(Qp7y2V(fvg7h)) and RZ(fvgah)eHl(QpathV(fvgah)h{g)
respectively. Denote by

R(fgvhl)zk(f7gah)|?{fg and R’Z(fgvhl):k_j;(f7gah)|7{fg

their restrictions to the improving line H g, and set
H(fg7h1)f :pf*(k(fgahl)) and HZ(fgvhl) :pf*(k;(fgahl))7

where ps 1 Z2V(fg,h1) — V(fg,h1)s is the natural projection (cf. Section 7.2).
According to Equation (218) and Lemma 9.9 one has

k(fg,h)r =Ey(fg,h1) -k, (fg,hi)y.
It then follows from Theorem A, Part 3 of Proposition 9.3 and Lemma 9.8 that

LI (£9. ) = L7 (4., (5 (Fg. 1))

Evaluating both sides of the previous equation at I = 1 and using once again Part 3
of Proposition 9.3 one gets the identity

(221) "gpf*(f%glv hl) =p- a’p(2) ! <6Xp;(/€;(f2, ['AD) hl)f)7 Nf,Wg, Why >f291h1
where #7(f5,91,h1)s is the weight-1 specialisation of k3 (fg, h1);:
H;(vagh h’l)f = pl*(’%;(.fga hl)f) € Hl(Q}’H V(fQ)gB)

Similarly as in Section 9.1, we claim that the following statements are equivalent.

(a) The complex central value L(f5 ® g} ® h}, 1) vanishes.

(b) ,fz[,f*(fg,g17 hi) = 0 for all level-N test vectors (f,g,h) for (f*,g*, h*).

(C) eXpZ(H;(f2vgla hl)f) =0.

(d) exppres, () (£, g3, b)) = 0.

(e) ky(f2;91,h1) is crystalline at p.

(As usual, here £}(fy,9,,h1) in H'(Qp, V(fy,91,h1)) denotes the specialisation of
Ky(f,g,h) at w,.) The equivalence between (a) and (b) is proved in Lemma 9.8.

As (f,g,h) varies through the level-N test vectors for (f*, g h'), the differen-
tials ng,wg, wh, generate the L-module V*(fz);gﬁ = DdR(V*(fQ)EB) (cf. Section 9.2).
Equation (221) then proves that (b) and (c¢) are equivalent to each other. (Recall that
k(f,g,h), hence r;(f,g,h), is independent of the choice of the level-N test vectors
(f,g,h) for (f*,g* h"), cf. Remark 1.3(3).)

The equivalence between (c¢) and (d) follows, as in Section 9.1, from the balanced-
ness of the improved diagonal class. More precisely, the projection

p7 : V(fZaglahl) — V(vaglﬂh’l)i

induces an isomorphism between Fil’Vyr(f,, g, h1) and Dar(V (£, 91, h1)”), hence
(d) is equivalent to the vanishing of the dual exponential of p, (res,(k(fs, g1, h1))). In
addition, since V(f3)55 = V(f2, 91, h1)y is a Gq,-direct summand of V(f5, gy, 1)~
(cf. Section 9.2), and since #}(fs, gy, h1) is balanced at p, the diagram (193) yields

p: (I‘esp<l€;(f27g1,h1))) = K;(.vaglahl)fa
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thus proving the equivalence between (c) and (d).
Finally, the equivalence between (d) and (e) follows from Lemma 9.1. This con-
cludes the proof of Theorem B in the exceptional case.
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