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Abstract. — This article constructs a 3-variable balanced diagonal class κ(f , g,h)
in the cohomology of the Galois representation associated to a self-dual triple (f , g,h)
of p-adic Hida families. Its first main result (Theorem A of Section 1.1) establishes an
explicit reciprocity law relating κ(f , g,h) to the unbalanced Garrett–Rankin p-adic L-
function attached to (f , g,h). The class κ(f , g,h) arises from the p-adic interpolation
of diagonal classes in the Bloch–Kato Selmer groups of the specialisations of (f , g,h)
at balanced triples of classical weights. As a consequence, the value of κ(f , g,h) at
a specialisation (f, g, h) of (f , g,h) at an unbalanced triple of classical weights is a
p-adic limit of crystalline classes. Our second main result (Theorem B of Section
1.2) shows that the obstruction to the crystallinity of an appropriate derivative of
κ(f , g,h) at (f, g, h) is encoded in the central critical value of the complex L-function
of f ⊗ g ⊗ h.
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1. Description and statement of results

The reciprocity laws alluded to in the title of this work concern the diagonal class
arising in the cohomology of the big Galois representation attached to a self-dual
triple of Hida p-adic families of cusp forms. Our construction of this class builds on
the push-forward of a canonical generator of an invariant space of locally analytic
functions along the diagonal morphism of a modular curve into the corresponding
triple-product threefold. It constitutes a crucial step towards the proof of the main
results of this paper and of those of our other contribution [BSV20a] to the present
volume.

The specialisations of the diagonal class at triples of classical weights in the so-
called balanced region, in which each weight is strictly smaller than the sum of the
other two, give rise to cohomology classes admitting a similar description in terms
of invariant theory which are closely related to diagonal cycles in Chow groups of
Kuga–Sato varieties. As a consequence, the diagonal class belongs to a big Selmer
group, called the balanced Selmer group, which interpolates in the geometric region
of balanced weights the Bloch–Kato Selmer groups of the triple tensor product rep-
resentations of the corresponding modular forms.

The first main result of this paper – Theorem A of Section 1.1 – pertains to the
specialisation of the diagonal class to the three unbalanced regions where one weight
is at least equal to the sum of the other two. The explicit reciprocity laws proved
therein identify the image of the diagonal class by a branch of the Perrin-Riou big
logarithm corresponding to the choice of unbalanced region as the 3-variable p-adic
L-function interpolating the central critical values of the Garrett–Rankin complex
L-functions attached to the triples of weights in that region.

Our second main result – Theorem B of Section 1.2 – proves that the specialisation
of the diagonal class at an unbalanced point is crystalline at p if and only if the
corresponding central critical value is zero. This criterion follows directly from the
reciprocity law of Theorem A combined with Jacquet’s conjecture proved by Harris–
Kudla when the p-adic L-function for the corresponding unbalanced region does not
have an exceptional zero in the sense of Mazur–Tate–Teitelbaum. The exceptional
cases can only occur at unbalanced triples in which the modular form of dominant
weight is multiplicative at p. These subtler cases require the proof of an exceptional
zero formula for the 3-variable p-adic L-function, combined with an analysis of the
derivatives of the Perrin-Riou logarithm at the unbalanced point and the costruction
of an improved class.

Applications to the arithmetic of elliptic curves obtained from instances of the
exceptional case constitute the object of the main results of our other contribution
[BSV20a] to this volume, and represent one motivating feature of the present work.
The Hida families considered in this setting respectively interpolate the weight-two
modular form attached to an elliptic curve A over the rational numbers and two
weight-one theta series associated to the same quadratic fieldK and subject to natural
arithmetic conditions. In this setting, we establish a factorisation of the triple product
p-adic L-function along the line (k, 1, 1) as a product of two Hida–Rankin p-adic L-
functions attached to A/K, which implies a relation between the fourth derivative
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at weights (2, 1, 1) of the former p-adic L-function and the product of the second
derivatives at k = 2 of the latter. This translates into a formula for the Bloch–Kato
logarithm of the specialisation of the diagonal class at (2, 1, 1) as a product of formal
group logarithms of Heegner points or Stark–Heegner points, depending respectively
on whether K is imaginary quadratic or real quadratic. This result provides a bridge
between the diagonal class arising from the geometry of higher dimensional varieties
and the theory of rational points on elliptic curves, lending also some support to the
conjecture on the rationality of Stark–Heegner points.

1.1. The three-variable reciprocity law. — Fix a prime p > 5, algebraic clo-
sures Q̄ and Q̄p of Q and Qp respectively, and embeddings Q̄ ↪→ Q̄p and Q̄ ↪→ C.
Let L be a finite extension of Qp and let

f ]=
∑
n>1

an(k) · qn ∈ O(Uf )JqK,

g]=
∑
n>1

bn(l) · qn ∈ O(Ug)JqK

and h]=
∑
n>1

cn(m) · qn ∈ O(Uh)JqK

be primitive, L-rational Hida p-adic families of modular forms of tame conductors
Nf , Ng and Nh, centres ko, lo and mo and tame characters χf , χg and χh respectively
(cf. Section 5). Here Nf is a positive integer coprime to p, Uf is an L-rational open
disc centred at ko ∈ Z>1 in the p-adic weight space W, and O(Uf ) is the ring of
analytic functions on Uf . For each k in U cl

f =
{
k ∈ Uf ∩ Z>2 | k ≡ ko mod 2(p− 1)

}
the weight-k specialisation f ]k =

∑
n>1 an(k)·qn ∈ LJqK∩Sk(Nfp, χf ) is a p-stabilised

newform of weight k, level Γ1(Nf ) ∩ Γ0(p) and character χf . In particular the p-th
Fourier coefficient ap(k) is a unit in the ring Λf of functions α ∈ O(Uf ) satisfying
|α(x)|p 6 1 for all x ∈ Uf . If k > 2 then f ]k is the ordinary p-stabilisation of a newform
f ]k in Sk(Nf , χf ). If k = 2 then either f ]2 = f ]2 is new or it is the p-stabilisation of a
newform f ]2 of level Nf . A similar discussion applies to g] and h].

Let (ξ], uo) denote one of pairs (f ], ko), (g
], lo) and (h],mo). If uo = 1, then the

weight-one specialisation ξ]1 of ξ] is a cuspidal-overconvergent (but not necessarily
classical) ordinary modular form. Throughout the paper we make the following

Assumption 1.1. — If uo = 1, then ξ]1 is a p-stabilisation of a classical, cuspidal
and p-regular newform of level Γ1(Nξ), without real multiplication by a quadratic field
in which p splits.

A weight-one eigenform has real multiplication if it is equal to the theta series
ϑχ =

∑
a χ(a) · qNa associated with a ray class character χ of a real quadratic field

K, where a runs over the non-zero ideals of OK and Na = |OK/a|. Moreover, a
normalised weight-one eigenform ξ =

∑
n>0 an(ξ) · qn of level Γ1(Nξ) and character

χξ is said to be p-regular if its p-th Hecke polynomial X2 − ap(ξ) · X + χξ(p) is
separable. We refer to Remarks 1.4 and to Section 5 below for explanations on the
relevance of Assumption 1.1 for the main results of this paper.
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Let N be the least common multiple of Nf , Ng and Nh. A level-N test vector
for (f ], g],h]) is a triple (f , g,h) of Hida families of common tame level N , having
(f ], g],h]) as associated triple of primitive families (cf. Section 5). For each k in
U cl
f the weight-k specialisation fk of f is an ordinary cusp form of weight k, level

Γ1(N)∩ Γ0(p) and character χf , which is an eigenvector for Up and T` for all primes
` - Np, with the same eigenvalues as f ]k. Similarly for g and h. Fix a level-N test
vector (f , g,h) for (f ], g],h]).

We make throughout this paper the following crucial self-duality assumption.

Assumption 1.2. — χf · χg · χh = 1.

Set Σ = Ũ cl
f × Ũ cl

g × Ũ cl
h , where Ũ

cl
f = U cl

f ∪ {ko} (so that Ũ cl
f = U cl

f if ko > 2),
and Ũ cl

g and Ũ cl
h are defined similarly. Assumption 1.2 implies that k + l + m is an

even integer for all w = (k, l,m) in U cl
f × U cl

g × U cl
h , hence cw = (k + l +m− 2)/2 is

a positive integer. Let Σf be the set of w in Σ such that k > l +m, define similarly
Σg and Σh and denote by Σbal the complement in Σ of the union of Σf , Σg and Σh.
One calls Σbal the balanced region.

Denote by ξ one of the symbols f , g and h and correspondingly by ξ one of f, g
and h. Let Oξ = Λξ[1/p] be the space of bounded analytic functions on Uξ and set
Ofgh = Of ⊗̂LOg⊗̂LOh. Associated with (f , g,h) one has:
• Garrett–Rankin square root p-adic L-functions L ξ

p (f , g,h) in Ofgh, interpo-
lating the square roots of the central critical values L(f ]k ⊗ g]l ⊗ h]m, cw) of
the complex Garrett–Rankin L-functions L(f ]k ⊗ g

]

l ⊗h]m, s) for classical triples
w = (k, l,m) in the region Σξ (cf. Remark 1.8(1) and see Section 6 for details).

• An Ofgh-adic representation V (f , g,h) of GQ = Gal(Q̄/Q), satisfying the
following interpolation property (cf. Section 7.2). For each classical triple
w = (k, l,m) in Σ let V (f ]k, g

]

l , h
]
m) be the central critical twist (i.e. the cw-th

Tate twist) of the tensor product of the Deligne representations of f ]k, g
]

l and h
]
m.

Then the base change V (fk, gl,hm) of V (f , g,h) under evaluation at (k, l,m)
on Ofgh is isomorphic to

⊕a
i=1 V (f ]k, g

]

l , h
]
m), for some integer a > 1 which is

independent of (k, l,m) ∈ Σ (cf. Section 7.2).
• A balanced Selmer group H1

bal(Q, V (f , g,h)) ⊂ H1(Q, V (f , g,h)), which in-
terpolates the Bloch–Kato Selmer groups Sel(Q, V (fk, gl,hm)) for all balanced
triples (k, l,m) ∈ Σbal (cf. Section 7.2).

• Perrin-Riou big logarithms

Lξ = Logξ(f , g,h) : H1
bal(Qp, V (f , g,h)) −→ Ofgh,

satisfying the following interpolation properties. Say that ξ = f to fix ideas.
Then for all balanced triples w = (k, l,m) in a subset of Σbal which is dense in
Uf × Ug × Uh, and for all local balanced classes Z in H1

bal(Qp, V (f , g,h))

Lf

(
resp(Z )

)
(w) = Ef (fk, gl,hm) · logp(Zw)

(
ηαfk⊗ ωgl⊗ ωhm

)
.

Here Ef (fk, gl,hm) is an explicit non-zero algebraic number, the class Zw in
H1

fin(Qp, V (fk, gl,hm)) is the specialisation of Z at w, logp is the Bloch–Kato
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logarithm and ηαfk⊗ ωgl⊗ ωhm is the differential considered in Section 7.3, to
which we refer for details.

According to a conjectural picture envisioned by Perrin-Riou the L-functions
L ξ
p (f , g,h) should arise from a global balanced class via the logarithms Lξ. Our

first main result confirms this expectation.

Theorem A. — There is a canonical class κ(f , g,h) in H1
bal(Q, V (f , g,h)) such

that, for ξ = f , g,h, one has

Lξ

(
resp

(
κ(f , g,h)

))
= L ξ

p (f , g,h).

Remarks 1.3. —
1. The equality displayed in Theorem A determines the class κ(f , g,h) only up to

addition by an element in a suitable (conjecturally trivial) restricted Selmer group.
Nonetheless Section 8.1 gives a geometric construction of a canonical three-variable
balanced class κ(f , g,h) satisfying the conclusions of Theorem A.

2. Theorem 8.1 and Proposition 8.3 express the specialisation of κ(f , g,h) at a
balanced triple (k, l,m) ∈ Σbal as an explicit multiple of a suitable Selmer diagonal
class κ(fk, gl,hm) ∈ Sel(Q, V (fk, gl,hm)) associated in Section 3 with (fk, gl,hm)
(cf. Proposition 3.2). The latter is in turn related to the values of L ξ

p (f , g,h) at
(k, l,m) by an explicit reciprocity law (cf. Proposition 3.6). Theorem A then follows
from analytic continuation.

3. Both the square-root p-adic L-function L ξ
p (f , g,h) and the big logarithm

Lξ = Logξ(f , g,h) genuinely depend on the choice of the level-N test vec-
tor (f , g,h) for (f ], g],h]). On the other hand the big Galois representation
V (f , g,h) = VN (f ], g],h]) and the balanced class

κ(f , g,h) = κN (f ], g],h])

depend on the test vector (f , g,h) only through its level N and the systems of eigen-
values defined by (f ], g],h]) (cf. Sections 5 and 8.1).

4. The construction of κ(f , g,h) given in Section 8.1 applies more generally to a
triple (f , g,h) of (not necessarily ordinary) Coleman families. The p-adic L-function
L ξ
p (f , g,h) has recently been constructed in [AI21b], and it is natural to wonder if

one can generalise Theorem A to this setting.

Remark 1.4. — Let (ξ], uo) denote one of pairs (f ], ko), (g
], lo) and (h],mo). When

uo = 1, Assumption 1.1 guarantees that the big Galois representation V (ξ) and its
maximal GQp -unramified quotient V (ξ)− are free over Oξ (cf. Section 5 below for
more details). It is likely that Theorem A can be proved without this assumption, at
the cost of extending scalars to the fraction field of Ofgh in the definition of κ(f , g,h)
and in the statement of the explicit reciprocity law. On the other hand, the freeness
of V (ξ) and V (ξ)− are crucial in the proofs of Theorem B below and of the main
result of our contribution [BSV20a].

Remark 1.5. — By using different methods, extending those of [DR16], the contri-
bution of Darmon and Rotger [DR20] to this volume gives an alternate construction
of the 3-variable diagonal class.
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Remark 1.6. — The class κ(f , g,h) is constructed by interpolating diagonal classes
in the Bloch-Kato Selmer groups Sel(Q, V (fk, gl,hm)) for all triples (k, l,m) ∈ Σbal.
By using systems of étale sheaves attached to spaces of locally analytic functions
and the big Abel–Jacobi map defined in equation (156), this geometric problem is
reduced to the simpler one of constructing a canonical invariant in a space of locally
analytic functions. This invariant element plays a central role in the construction,
carried out in [GS20] (cf. also [Hsi20]), of a balanced triple-product p-adic L-function
interpolating the square-roots of the central critical values L(f ]k ⊗ g

]

l ⊗ h]m, cw) for
triples w = (k, l,m) in the balanced region Σbal. We remark that a similar method
can be applied in other settings, for example for the interpolation of generalised
Heegner cycles. In this case, the relevant invariant function was instrumental for
the definition in [BD07] of an anticyclotomic two-variable p-adic L-function. The
resulting big Heegner class gives rise via an explicit reciprocity law to the p-adic L-
functions considered in [BDP13, AI21a]. See also [JLZ20] for a related construction
in the Heegner case.

1.2. Specialisations at unbalanced points. — Let wo = (k, l,m) be a classical
triple in the unbalanced region Σf . The following assumption will be in force in this
section (cf. Remarks 1.8).

Assumption 1.7. — The local sign ε`(f
]

k, g
]

l , h
]
m) is equal to +1 for each rational

prime `.

Theorem B stated below relates the specialisation of the big diagonal class
κ(f , g,h) at wo to the central value of the complex Garrett–Rankin L-function
L(f ]k⊗g

]

k⊗h
]

k, s). This relation is particularly intriguing and subtle when L f
p (f , g,h)

has an exceptional zero at wo in the sense of Mazur–Tate–Teitelbaum.
LetHg = Hg(wo) be the g-improving plane in Uf×Ug×Uh defined by the equation

k − l+m = k − l +m.

Let Ogh = Og⊗̂LOh and (shrinking Ug and Uh if necessary) let νg : Ofgh −→ Ogh
be the map sending F (k, l,m) to its restriction F (l −m + k + m − l, l,m) to Hg.
Set V (f , g,h)|Hg = V (f , g,h)⊗νg Ogh and denote by

κ(f , g,h)|Hg ∈ H1(Q, V (f , g,h)|Hg )

the image of κ(f , g,h) under the morphism induced in cohomology by νg. Define the
analytic g-Euler factor

(1) Eg(f , g,h) = 1− χ̄g(p) · bp(l)
cp(m) · ap(l−m+ k +m− l)

· p(k−l+m−2)/2 ∈ Ogh.

Section 9.3 proves the factorisation

(2) κ(f , g,h)|Hg = Eg(f , g,h) · κ∗g(f , g,h)

for a canonical g-improved balanced diagonal class

κ∗g(f , g,h) ∈ H1
bal(Qp, V (f , g,h)|Hg ).
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This is not interesting nor surprising if Eg(f , g,h) does not vanish at wo. On the
other hand, if Eg(fk, gl,hm) = 0 this implies that the specialisation of κ(f , g,h) at wo
vanishes independently of whether the complex L-function L(f ]k⊗g

]

l ⊗h]m, s) vanishes
at the central point s = cwo . This phenomenon is the first source of exceptional
zeros in the present setting. Since we are limiting our discussion to Hida families, the
vanishing of Eg(f , g,h) at wo is equivalent to the following conditions:

(3) wo = (2, 1, 1), p‖c(f2), p - c(g1) · c(h1) and χh(p) · ap(2) · bp(1) = cp(1),

where c(f2), c(g1) and c(h1) denote the conductors of f2, g1 and h1 respectively. In
particular g1 and h1 are classical weight-one eigenforms.

The second source of exceptional zeros for L f
p (f , g,h) at wo is of a different (non

geometric) nature (cf. Section 9.2). It is related to the vanishing at wo of the analytic
f -unbalanced Euler factor

(4) E∗f (f , g,h) = 1− bp(l) · cp(m)

χ̄f (p) · ap(l+m+ k − l −m)
p(k−l−m)/2 ∈ Ogh,

which on the f -improving plane in Uf × Ug × Uh defined by the equation

k − l−m = k − l −m

interpolates a different Euler factor of L f
p (f , g,h). In the present ordinary scenario,

this vanishing is equivalent to the following conditions:

(5) wo = (2, 1, 1), p‖c(f2), p - c(g1) · c(h1) and χf (p) · bp(1) · cp(1) = ap(2).

We say that the unbalanced triple wo in Σf is exceptional if the conditions displayed
in Equation (3) or those displayed in Equation (5) are satisfied.

Remarks 1.8. —
1. Assumption 1.7 is in place to guarantee that for weights in the unbalanced

region the Garrett–Rankin complex L-functions involved in the definition of the triple-
product p-adic L-function have sign of the functional equation equal to +1, and that
the corresponding central values can be described in terms of trilinear forms arising
on GL2,Q (cf. [HK91]). On the other hand, Theorem A holds regardless of this
assumption and does not exclude the possibility of vanishing of the diagonal class for
sign reasons.

2. The exceptional zero condition (3) is symmetric in g and h. Precisely, define
Hh, V (f , g,h)|Hh , κ(f , g,h)|Hg and Eh(f , g,h) by switching in the above definitions
the roles of g of h. Then

κ(f , g,h)|Hh = Eh(f , g,h) · κ∗h(f , g,h)

for a unique canonical h-improved diagonal class κ∗h(f , g,h) in the global Galois
cohomology of V (f , g,h)|Hg .

3. The restriction of the class κ(f , g,h) to the plane Hf also factors as the prod-
uct of Ef (f , g,h) and a canonical class κ∗f (f , g,h) in the Galois cohomology of
V (f , g,h)|Hf . This factorisation is uninteresting in the present setting, as the Euler
factor Ef (f , g,h) does not vanish at any classical point of the region Σf .
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4. Under Assumption 1.1, the exceptional zero conditions (3) and (5) are mutually
exclusive. Indeed, if one of them holds, then the other is satisfied precisely if the form
g]1 (or equivalently h]1) is p-irregular.

Define the diagonal class

κ∗(fk, gl,hm) ∈ H1(Q, V (fk, gl,hm))

by the following recipe. If the conditions stated in Equation (3) are not satisfied, then

κ∗(fk, gl,hm) = κ(fk, gl,hm)

is the specialisation of κ(f , g,h) at the classical triple wo = (k, l,m). If Equation (3)
is satisfied, one defines

κ∗(f2, g1,h1) = κ∗g(f2, g1,h1),

where the global class κ∗g(f2, g1,h1) is the specialisation of the g-improved diagonal
class κ∗g(f , g,h) at wo = (2, 1, 1). (Note that κ∗h(f2, g1,h1) = −κ∗g(f2, g1,h1).)

Theorem B. — The diagonal class κ∗(fk, gl,hm) is crystalline at p if and only if
the complex L-function L(f ]k ⊗ g

]

l ⊗ h]m, s) vanishes at s = k+l+m−2
2 .

Acknowledgements. The authors are grateful to F. Andreatta for helpful conversations
about his work with A. Iovita and G. Stevens on overconvergent Eichler–Shimura iso-
morphisms. They also thank the referees for their detailed comments and corrections,
which resulted in a significant improvement of our contributions to this volume.

2. Cohomology of modular curves

In a first reading of this paper it will be sufficient to get acquainted with the main
definitions and notations of this section. The precise description of the various Hecke
operators will be necessary for crucial computations in the arguments of later sections
(see in particular Section 8). The exposition follows [Kat04, Section 2].

2.1. Modular curves. — Let M > 1 and N > 1 be positive integers such that
M +N > 5. Denote by

Y (M,N) −→ Spec(Z[1/MN ])

the scheme which represents the functor

S � //
{
isomorphism classes of S-triples (E,P,Q)

}
,

where S is a Z[1/MN ]-scheme, E is an elliptic curve over S, and P and Q are sections
of E over S such that M ·P = 0, N ·Q = 0 and the map Z/MZ×Z/NZ→ E which
on (a, b) takes the value a · P + b · Q is injective. More generally, for each rational
prime ` > 1, we consider as in [Kat04] the schemes

Y (M(`), N) −→ Z[1/`MN ] and Y (M,N(`)) −→ Z[1/`MN ].

The Z[1/`MN ]-scheme Y (M(`), N) classifies 4-tuples (E,P,Q,C), where (E,P,Q)
is as above and C is a cyclic subgroup of E of order `M which contains P and is
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complementary to Q (viz. the map Z/NZ × C → E which sends (a, x) to a · Q + x
is injective). Similarly Y (M,N(`)) classifies 4-tuples (E,P,Q,C) where C is a cyclic
subgroup of order `N which contains Q and is complementary to P . Denote by

E(M,N) −→ Y (M,N),

E(M(`), N) −→ Y (M(`), N)

and E(M,N(`)) −→ Y (M,N(`))

the universal elliptic curves over Y (M,N), Y (M(`), N) and Y (M,N(`)) respectively.
Let H = {z ∈ C | =(z) > 0} be the Poincaré upper half-plane and set

Γ(M,N) =
{
γ in SL2(Z) such that γ ≡ ( 1 0

0 1 ) mod (M M
N N )

}
.

Then

(6) Y (M,N)(C) ∼= (Z/MZ)∗ × Γ(M,N)\H,

where the class of (a, z) in (Z/MZ)∗ × H corresponds to the isomorphism class
of the triple (C/Z⊕ Zz, az/M, 1/N). The Riemann surfaces Y (M(`), N)(C) and
Y (M,N(`))(C) admit a similar complex uniformisation by (Z/MZ)∗ ×H.

There is an isomorphism of Z[1/`MN ]-schemes

ϕ` : Y (M,N(`)) ∼= Y (M(`), N)

which on the 4-tuple (E,P,Q,C)/S in Y (M,N(`)) (for some Z[1/`MN ]-scheme S)
takes the value

ϕ`(E,P,Q,C) =
(
E/NC,P +NC, `−1(Q) ∩ C +NC,

(
`−1(Z · P ) +NC

)
/NC

)
,

where `−1(·) is the inverse image of · under multiplication by ` on E. On complex
points (cf. Equation (6)) this is induced by the map (Z/MZ)∗×H −→ (Z/MZ)∗×H
which sends (a, z) to (a, ` · z). If

ϕ∗` (E(M(`), N)) −→ Y (M,N(`))

denotes the base change of E(M(`), N) → Y (M(`), N) under ϕ`, there is a natural
degree-` isogeny

λ` : E(M,N(`)) −→ ϕ∗` (E(M(`), N)).

When M = 1 one denotes by

(7) Y1(N) = Y (1, N) and Y1(N, `) = Y (1, N(`))

the affine modular curves over Z[1/N ] and Z[1/N`] corresponding to the subgroups
Γ1(N) and Γ1(N, `) = Γ1(N) ∩ Γ0(`ordl(N)+1) of SL2(Z) respectively. Similarly one
writes

E1(N) = E(1, N) and E1(N, `) = E(1, N(`))

for the universal elliptic curves over Y1(N) and Y1(N, `) respectively.
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2.2. Degeneracy maps. — Let M and N be as in the previous section, and let `
be a rational prime. Let

Y (M,N`)
µ`−→Y (M,N(`))

ν`−→ Y (M,N)

and Y (M`,N)
µ̌`−→Y (M(`), N)

ν̌`−→ Y (M,N)

be the natural degeneracy maps (e.g. µ`(E,P,Q) = (E,P, ` · Q,Z · Q) and
ν`(E,P,Q,C) = (E,P,Q)), and define

pr1 : Y (M,N`) −→ Y (M,N) and pr` : Y (M,N`) −→ Y (M,N)

by the formulae

pr1(E,P,Q) = (E,P, ` ·Q) and pr`(E,P,Q) = (E/NZ ·Q,P +NZ ·Q,Q+NZ ·Q).

Under the isomorphism (6) the map pr1 (resp., pr`) is induced by the identity (resp.,
multiplication by `) on the complex upper half-plane H. Unwinding the definitions
one easily checks the identities

(8) pr1 = ν` ◦ µ` and pr` = ν̌` ◦ ϕ` ◦ µ`.

The degeneracy maps µ`, µ̌`, ν`, ν̌`,pr1 and pr` are finite étale morphisms of
Z[1/MN`]-schemes.

2.3. Relative Tate modules and Hecke operators. — Let N,M and ` be as
in the previous section and let S be a Z[1/MN`p]-scheme. For every Z[1/MN`p]-
scheme X write XS = X ×Z[1/MN`p] S and denote by A = AX either the locally
constant sheaf Z/pmZ(j) or the locally constant p-adic sheaf (cf. [FK88, Definition
12.6]) Zp(j) on Xét, for fixed m > 1 and j ∈ Z. Moreover fix an integer r > 0.

The previous sections yield the following commutative diagram, in which the
smaller squares are cartesian.
(9)
E(M,N)S

vM,N

��

E(M,N(`))Soo

vM,N(`)

��

λ` // ϕ∗` (E(M(`), N)S)

��

// E(M(`), N)S

vM(`),N

��

// E(M,N)S

vM,N

��
Y (M,N)S Y (M,N(`))S

ν`oo Y (M,N(`))S
ϕ` // Y (M(`), N)S

ν̌` // Y (M,N)S

Here vM,N , vM(`),N and vM,N(`) are the structural maps, one writes again ν` and ν̌`
(resp., λ`) for the base changes to S of the corresponding degeneracy maps (resp.,
isogeny), and the unlabelled maps are the natural projections.

If Y (·)S denotes one of Y (M,N)S , Y (M(`), N)S and Y (M,N(`))S , set

(10) T·(A) = R1v·∗Zp(1)⊗Zp A and T ∗· (A) = HomA(T·(A), A).

Here Rqv·∗ is the q-th right derivative of v·∗ : E(·)ét −→ Y (·)ét and one calls

T·
def
= T·(Zp)

the relative Tate module of the universal elliptic curve E(·) −→ Y (·). The perfect
cup-product pairing

T· ⊗Zp T· −→ R2v·∗Zp(2)
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and the relative trace R2v·∗Zp ∼= Zp(−1) give the perfect relative Weil pairing

(11) 〈·, ·〉E(·)p∞ : T· ⊗Zp T· −→ Zp(1),

under which one identifies T·(−1) with T ∗· = HomZp(T·,Zp). It is a consequence of
the smooth base change theorem (cf. Corollary 4.2, Chapter IV of [Mil80]) that T·(A)
and T ∗· (A) are locally constant p-adic sheaves on Y1(N)S , of formation compatible
with base changes along morphisms of Z[1/NM`p]-schemes S′ → S. (This justifies
the choice to suppress the dependence on S from the notations.) Define

L·,r(A) = Tsymr
AT·(A) and S·,r(A) = Symmr

AT ∗· (A),

where for any finite free module M over a profinite Zp-algebra R one denotes by
Tsymr

RM the R-submodule of symmetric tensors in M⊗r and by Symmr
RM the max-

imal symmetric quotient of M⊗r.

Notation. — When Y (·)S = Y (1, N)S is the modular curve Y1(N)S associated with
the congruence subgroup Γ1(N), and the level N is clear from the context, we use
the simplified notations

(12) Lr(A) = L1,N,r(A), Lr = Lr(Zp), Sr(A) = S1,N,r(A) and Sr = Sr(Zp).

If there is no risk of confusion, we use the same simplified notations to denote the étale
sheaves L1,N(`),r(A) and S1,N(`),r(A) on the modular curve Y (1, N(`))S = Y1(N, `)S
of level Γ1(N) ∩ Γ0(`ordl(N)+1) (cf. Equation (7)).

Throughout the rest of this section let F r
· denote either L·,r(A) or S·,r(A). Ac-

cording to the proper base change theorem [Mil80, Chapter VI, Corollary 2.3] and
the diagram (9), associated with the finite étale morphisms ν` and ν̌` one has natural
isomorphisms

(13) ν∗`
(
F r
M,N

) ∼= F r
M,N(`) and ν̌∗`

(
F r
M,N

) ∼= F r
M(`),N ,

which induce pullbacks
(14)

Hi
ét(Y (M,N)S ,F r

M,N )
ν̌∗`
,,

ν∗`
rr

Hi
ét(Y (M,N(`))S ,F r

M,N(`)) Hi
ét(Y (M(`), N)S ,F r

M(`),N )

and traces (cf. [Mil80, Lemma 1.12, pag. 168])
(15)

Hi
ét(Y (M,N)S ,F r

M,N )

Hi
ét(Y (M,N(`))S ,F r

M,N(`))

ν`∗ 22

Hi
ét(Y (M(`), N)S ,F r

M(`),N )

ν̌`∗ll

Similarly the (finite étale) isogeny λ` induces morphisms

(16) λ`∗ : F r
M,N(`) −→ ϕ∗`

(
F r
M(`),N

)
and λ∗` : ϕ∗`

(
F r
M(`),N

)
−→ F r

M,N(`).

More precisely, associated with the `-isogeny λ` there is a trace λ`∗ ◦ λ∗` −→ id. As
v◦λ` = vM,N(`), where v : ϕ∗` (E(M(`), N)S)→ Y (M(`), N)S is the first projection, it
induces a map vM,N(`)∗ ◦λ∗` −→ v∗. Applying R1 and using the natural isomorphisms
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ϕ∗` (R
1vM(`),N∗Zp(1)) ∼= R1v∗Zp(1) and λ∗`Zp(1) ∼= Zp(1), this in turn induces a

morphism R1vM,N(`)∗Zp(1) −→ ϕ∗`
(
R1vM(`),N∗Zp(1)

)
, and finally the push-forwards

λ`∗ which appear in Equation (16). The pullbacks are defined similarly, after replacing
the trace λ`∗ ◦ λ∗` −→ id with the adjunction morphism id = λ`∗ ◦ λ∗` . Together with
ϕ` the previous morphisms give a pushforward

(17) Φ`∗ = ϕ`∗ ◦ λ`∗ : Hi
ét(Y (M,N(`))S ,F

r
M,N(`)) −→ Hi

ét(Y (M(`), N)S ,F
r
M(`),N )

and a pullback

Φ∗` = λ∗` ◦ ϕ∗` : Hi
ét(Y (M(`), N)S ,F

r
M(`),N ) −→ Hi

ét(Y (M,N(`))S ,F
r
M,N(`)).

Define the dual `-th Hecke operator

T ′` = ν`∗ ◦ Φ∗` ◦ ν̌∗` : Hi
ét(Y (M,N)S ,F

r
M,N ) −→ Hi

ét(Y (M,N)S ,F
r
M,N ).

We also consider the `-th Hecke operator

T` = ν̌`∗ ◦ Φ`∗ ◦ ν∗` : Hi
ét(Y (M,N)S ,F

r
M,N ) −→ Hi

ét(Y (M,N)S ,F
r
M,N ).

As customary, if the prime ` divides MN , we also denote by U` and U ′` the Hecke
operators T` and T ′` respectively.

For each profinite Zp-algebra R and each finite free R-module M , the evaluation
map induces a perfect pairing

Tsymr
RM ⊗R Symmr

RM
∗ −→ R,

where M∗ = HomR(M,Zp). This defines a perfect pairing Lr ⊗Zp Sr −→ Zp, hence
a cup-product
(18)
〈·, ·〉N : H1

ét(Y1(N)Q̄,Lr(1))⊗Zp H
1
ét,c(Y1(N)Q̄,Sr) −→ H2

ét,c(Y1(N)Q̄,Zp(1)) ∼= Zp,

which by Poincaré duality is perfect after inverting p. The Hecke operators T ·` induce
endomorphisms on the compactly supported cohomology H1

ét,c(Y1(N)Q̄,Sr), and by
construction T` and T ′` (resp., T ′` and T`) are adjoint to each other under 〈·, ·〉N . In
addition, the Eichler–Shimura isomorphism (cf. Chapter 8 of [Shi71])

(19) H1
ét(Y1(N)Q̄,Lr)⊗Zp C ∼= Mr+2(N,C)⊕ Sr+2(N,C)

(depending on a fixed embedding Zp ↪−→ C) commutes with the action of the Hecke
operators T ·` on both sides.

After replacing the left hand square in the diagram (9) with the cartesian square

E(M,N`)S

vM,N`

��

// E(M,N(`))S

vM,N(`)

��
Y (M,N`)S

µ` // Y (M,N(`))S

one defines as in Equations (14) and (15) the maps µ∗` and µ`∗. For · = 1, ` one can
also define as above morphisms
(20)

Hi
ét(Y (M,N`)S ,F

r
M,N`)

pr·∗−→ Hi
ét(Y (M,N)S ,F

r
M,N )

pr∗·−→ Hi
ét(Y (M,N`)S ,F

r
M,N`),
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which according to Equation (8) satisfy the identities

(21) pr1∗ = ν`∗ ◦µ`∗, pr∗1 = µ∗` ◦ ν∗` , pr`∗ = ν̌`∗ ◦Φ`∗ ◦µ`∗ and pr∗` = µ∗` ◦Φ∗` ◦ ν̌∗` .
As a consequence, if deg(µ`) denotes the degree of the finite morphism µ`, one has
the relations

(22) deg(µ`) · T` = pr`∗ ◦ pr∗1 and deg(µ`) · T ′` = pr1∗ ◦ pr∗` .

2.3.1. Diamond and Atkin–Lehner operators. — We recall here the geometric
definition of the diamond and Atkin–Lehner operators on the cohomology groups
Hi

ét(Y (·)S ,F r
· ) (where F r

· are the sheaves introduced in the previous section). For
simplicity we limit the discussion to the modular curves Y1(·) of level Γ1(·), and
denote by Fr the étale sheaf F r

1,· on Y1(·)S .
For every unit d in (Z/NZ)∗ the diamond operator 〈d〉 : Y1(N)S → Y1(N)S is

the automorphism of Y1(N)S defined on the moduli problem by sending (E,P ) to
(E, d · P ). Denote by P1(N) the universal point of order N of E1(N)S . The pair
(E1(N)S , d ·P1(N)) is an elliptic curve with Γ1(N)-level structure over Y1(N)S , hence
there exists a unique isomorphism 〈d〉 : E1(N)S ∼= E1(N)S which makes the following
diagram cartesian:

E1(N)S

vN

��

〈d〉 // E1(N)S

vN

��
Y1(N)S

〈d〉 // Y1(N)S .

This induces automorphisms 〈d〉 = 〈d〉∗ and 〈d〉′ = 〈d〉∗ of Hi
ét(Y1(N)S ,Fr) which are

inverse to each other.
Assume in the rest of this Section 2.3.1 that p does not divide N and that S is a

scheme over Z[1/N, µp]. Set ζp = e2πi/p. For every elliptic curve E denote by Ep the
kernel of multiplication by p and by 〈·, ·〉Ep : Ep × Ep → µp the Weil pairing. Since
p - N the curve Y1(Np) classifies triples (E,P,Q), where E is an elliptic curve and
P (resp., Q) is a point of exact order N (resp., p). (More precisely a pair (E,PNp),
where E is an elliptic curve over and PNp is a section of exact order Np, corresponds
in the above identification to the triple (E, p · PNp, N · PNp).) The Atkin–Lehner
operator wp = wζp : Y1(Np)S ∼= Y1(Np)S is the automorphism of Y1(Np)S defined by

wp(E,P,Q) = (E/Z ·Q,P + Z ·Q,Q′ + Z ·Q),

where Q′ ∈ Ep is characterized by 〈Q,Q′〉Ep = ζp. There is a natural commutative
diagram

E1(Np)S
w̌p //

vNp

��

w∗p(E1(Np))S

��

// E1(Np)S

vNp

��
Y1(Np)S Y1(Np)S

wp // Y1(Np)S ,

in which the right-hand square is cartesian and w̌p is a degree-p isogeny. As in
Equations (13)–(17), associated with the previous diagram one has a Atkin–Lehner
operator
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wp : Hi
ét(Y1(Np)S ,Fr)

w∗p−→ Hi
ét(Y1(Np)S , w

∗
p(Fr))

w̌∗p−→ Hi
ét(Y1(Np)S ,Fr)

and a dual Atkin–Lehner operator

w′p : Hi
ét(Y1(Np)S ,Fr)

w̌p∗−→ Hi
ét(Y1(Np)S , w

∗
p(Fr))

wp∗−→ Hi
ét(Y1(Np)S ,Fr).

More generally, let Q be a divisor of Np such that Q and Np/Q are coprime. After
replacing the pair (p,N) with (Q,Np/Q) in the previous construction, one defines
the Atkin–Lehner operators w·Q on H1

ét(Y1(Np)S ,Fr).

2.4. Deligne representations. — Let

f =
∑
n>1

an(f)qn ∈ Sk(N,χf )

be a normalised cusp form of weight k > 2, level Γ1(N) and character χf . Set
No = N/pordp(N) and assume that f is an eigenvector for the Hecke operator T` for
every prime ` - No. (In particular f is an eigenvector for Up if p divides N .)

Let L/Qp be a finite extension containing the Fourier coefficients of f . Define

(23) H1
ét(Y1(N)Q̄,Lk−2(1))L −� V (f)

to be the maximal L-quotient on which T ′` and 〈d〉′ = 〈d〉∗ act as multiplication by
a`(f) and χf (d) respectively, for all ` - No and 〈d〉 ∈ (Z/NZ)∗. If f is new of conductor
N then V (f) is the dual of the Deligne representation of f : for every prime ` - Np
an arithmetic Frobenius Frob` ∈ GQ at ` acts on it with characteristic polynomial

det (1− Frob`|V (f) ·X) = 1− a`(f) ·X + χf (`) · `k−1 ·X2.

In general V (f) ∼=
⊕a

i=1 V (fprim) is (non-canonically) isomorphic to the direct sum of
a finite number of copies of V (fprim), where fprim is the primitive form (of conductor
a divisor of N) associated with f . Dually let

V ∗(f) ↪−→ H1
ét,c(Y1(N)Q̄,Sk−2)L

be the maximal L-submodule on which the Hecke operators T` and 〈d〉 = 〈d〉∗ act as
multiplication by ap(f) and χf (d) respectively, for every prime ` - No and unit d mod-
uloN . (Since f is cuspidal, one can replace the compactly supported cohomologyH1

ét,c

with the full cohomology H1
ét in the definition of V ∗(f).) If f is new of level N then

V ∗(f) is the Deligne GQ-representation of f . In general V ∗(f) ∼=
⊕a

i=1 V
∗(fprim) for

a positive integer a.
Because (by construction) T ′` and 〈d〉

∗ are respectively the adjoints of T` and 〈d〉∗
under the morphism 〈·, ·〉N defined in Equation (18), the latter induces a pairing

(24) 〈·, ·〉f : V (f)⊗L V ∗(f) −→ L,

which is perfect by Poincaré duality [Mil80, Chapter VI].
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2.5. Comparison with de Rham cohomology. — Let A be a subring of Cp.
Write v : E → Y for one of the universal morphisms vM,N et cetera that as been
previously introduced. Denote by

SdR = SdR(v) = R1v∗
(
OE −→ Ω1

E/Y

)
the relative de Rham cohomology of E/Y and for every r > 0 set

SdR,r = Symmr
OY SdR.

Let ω = v∗Ω
1
E/Y be the invertible sheaf of relative differentials on E/Y . The vector

bundle SdR is equipped with the Hodge filtration

0 −→ ω −→ SdR −→ ω−1 −→ 0

and with an integrable Gauß–Manin connection ∇ : SdR → SdR ⊗OY Ω1
Y/K . For all

r > 0 these give rise to the Hodge filtration

(25) ωr ↪−→ · · · ↪−→ ω ⊗SdR,r−1 ↪−→ SdR,r

and to an integrable connection on SdR,r, denoted again by ∇.
Set LdR = HomOY (SdR,OY ) and LdR,r = Tsymr

OY LdR, equipped with the in-
duced Hodge filtration and integrable connection (denoted again by∇). If F = S ,L
define the de Rham cohomology groups

Hj
dR(Y,FdR,r) = Hj

(
Y,FdR,r

∇−→ FdR,r ⊗OY Ω1
Y/K

)
(where the complex FdR,r

∇−→ FdR,r ⊗OY Ω1
Y/K is concentrated in degrees zero and

one). As in Section 2.3 one defines on Hj
dR(Y,FdR,r) Hecke operators T` and T ′` , for

every prime ` (when Y = Y (M,N)), and diamond operators 〈d〉, for every unit d of
Z/NZ (when Y = Y1(N)).

Taking A = Qp the comparison theorem of Faltings–Tsuji [Fal88, Tsu99] (and
the Leray spectral sequence for vN , cf. the proof of [BDP13, Lemma 2.2]) gives a
natural, Hecke equivariant isomorphism of filtered Qp-vector spaces

(26) DdR

(
H1

ét(Y1(N)Q̄p
,Fr)Qp

) ∼= H1
dR(Y1(N)Qp ,FdR,r),

where DdR(·) = H0(Qp, · ⊗Qp BdR) with BdR Fontaine’s field of p-adic periods, and
the filtration on the de Rham cohomology arises from the Hodge filtration on FdR (cf.
Equation (25)). Denote byMr+2(N,Z) the Z-module of modular forms of weight r+2,
level Γ1(N) and integral Fourier coefficients, and setMr+2(N,R) = Mr+2(N,Z)⊗ZR
for every ring R. It then follows that canonically

(27) FiliDdR

(
H1

ét(Y1(N)Q̄p
,Sr)Qp

)
⊗Q Q(µN ) ∼= Mr+2(N,Qp)⊗Q Q(µN )

for every 1 6 i 6 k − 1 (cf. [BDP13, Lemma 2.2]). Under the isomorphisms (26)
and (27) the space Fil1H1

dR(Y1(N)Q,SdR,r) corresponds to the image of Mr+2(N,Q)
under the Atkin–Lehner operator wN .

Let f and L/Qp be as in the previous section and assume that L contains Q(µN ).
Define

V ∗dR(f) ↪−→ H1
dR(Y1(N)Qp

,SdR,k−2)L
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to be the maximal submodule on which T` and 〈d〉∗ act respectively as a`(f) and
χf (d) for every prime ` - No and every d ∈ (Z/NZ)∗, and dually (cf. Section 2.4)

H1
dR(Y1(N)Qp

,Lk−2(1))L −� VdR(f).

(Here LdR,r(j) = LdR,r as flat sheaves and FiliLdR,r(j) = Fili+jLdR,r.) The com-
parison isomorphism (26) gives

(28) DdR(V (f)) ∼= VdR(f) and DdR(V ∗(f)) ∼= V ∗dR(f),

and Equation (27) implies that they restrict to canonical isomorphisms

(29) Fil0VdR(f) ∼= Sk(N,L)f∗ and Fil1V ∗dR(f) ∼= Sk(N,L)f .

Here f∗ =
∑
n>1 ān(f) · qn ∈ Sk(N, χ̄f ) is the dual of f and Sk(N,L)· denotes the

L-module of cusp forms in Sk(N,L) which are eigenvectors for the Hecke operators
T` and 〈d〉, with the same eigenvalues as ·, for all primes ` - No and units d in Z/NZ.
One denotes by

(30) ωf ∈ Fil1V ∗dR(f)

the element corresponding to f under the second isomorphism in Equation (29).
The pairing (24) and the isomorphisms (28) induce a perfect duality

(31) 〈·, ·〉f : VdR(f)⊗L V ∗dR(f) −→ DdR(L) = L,

which together with the isomorphisms (29) gives rise to perfect pairings

〈·, ·〉f : Sk(N,L)f∗ ⊗L V ∗dR(f)/Fil1 −→ L(32)

and 〈·, ·〉f : VdR(f)/Fil0 ⊗L Sk(N,L)f −→ L,

under which we often identify V ∗dR(f)/Fil1 with the L-linear dual of Sk(N,L)f∗ .
Denote by

(33) fw = wN (f) = Nk−1 · (Nz)−k · f(−1/Nz)

the image of f under the Atkin–Lehner isomorphism

wN : Sk(N,χf ) ∼= Sk(N, χ̄f )

and define

(34) ηf ∈ V ∗dR(f)/Fil1

to be the element which represents the linear functional

(35) Jf =
(fw, · )N

(fw, fw)N
: Sk(N,L)f∗ −→ L.

Here (µ, ν)N =
∫∫
Y1(N)C

µ̄(z)ν(z)yk dxdyy2 (with z = x + iy) is the Petersson scalar
product on Sk(N,C). The a priori C-valued functional Jf indeed takes values in L
(cf. [Hid85, Proposition 4.5]).

Assume that ordp(N) 6 1, that p does not divide the conductor of χf , and
that ap(f) is a unit in O. Then the GQp -representations V ·(f) are semistable, viz.
DdR(V ·(f)) = Dst(V

·(f)). It follows that DdR(V ·(f)), hence V ·dR(f) by Equation
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(28), are equipped with an L-linear Frobenius endomorphism ϕ. Enlarging L if nec-
essary, let αf ∈ O∗ be the unit root of the Hecke polynomial

hf,p = X2 − ap(f) ·X + χf (p)pk−1 = (X − αf ) · (X − βf )

of f . As proved in [Sai97] the characteristic polynomial of the Frobenius endomor-
phism ϕ acting on V ∗dR(f) is a power of hf,p, and

(36) V ∗dR(f) = Fil1V ∗dR(f)⊕ V ∗dR(f)ϕ=αf .

As a consequence ηf lifts uniquely to a differential

(37) ηαf ∈ V ∗dR(f)ϕ=αf .

3. Diagonal classes

Notation. In this section Y1(N) = Y1(N)Q denotes the modular curve of level
Γ1(N) = Γ(1, N) over Q and T = T1,N denotes the relative Tate module of the
universal elliptic curve E1(N) = E1(N)Q (cf. Equation (10)).

Fix a geometric point η = ηN : Spec(Q̄) → Y1(N) and denote by GN =
πét

1 (Y1(N), η) the fundamental group of Y1(N) with base point η. Then the stalk Tη

of T at η is a free Zp-module of rank two, equipped with a continuous action of GN .
Choose an isomorphism of Zp-modules ξ : Tη

∼= Zp ⊕ Zp satisfying (cf. Equation
(11))

(38) 〈x, y〉Ep∞ = ξ(x) ∧ ξ(y)

for every x, y ∈ Tη (where one identifies
∧2

Z2
p and Zp via (1, 0) ∧ (0, 1) = 1) and

denote by
%N : GN −→ AutZp(Tη) ∼= GL2(Zp)

the corresponding continuous group morphism. According to Proposition A I.8 of
[FK88] the map which sends F to its stalk Fη gives an equivalence between the
category of locally constant p-adic sheaves on Y1(N)ét and that of p-adic represen-
tations of GN . Then restriction via %N allows to associate with every continuous
representation of GL2(Zp) into a free finite Zp-module M a smooth sheaf M ét on
Y1(N) satisfying M ét

η = M .
Let Si(A) be the set of two-variable homogeneous polynomials of degree i in

A[x1, x2], equipped with the action of GL2(Zp) defined for every g ∈ GL2(Zp) and
P (x1, x2) ∈ Si(A) by

gP (x1, x2) = P
(
(x1, x2) · g

)
,

and let Li(A) be the A-linear dual of Si(A), with GL2(Zp)-action defined
by gµ(P (x1, x2)) = µ(g−1P (x1, x2)) for every g ∈ GL2(Zp), µ ∈ Li(A) and
P (x1, x2) ∈ Si(A). Then (as sheaves on Y1(N)Q) one has (cf. Equation (12))

(39) Li(A) = Li(A)ét and Si(A) = Si(A)ét.

In particular Tη is isomorphic to L1(Zp), hence Zp(1)η ∼=
∧2 Tη

∼= det−1, where
detj : GL2(Zp)→ Z∗p is defined by detj(·) = det(·)j for j ∈ Z. As a consequence, for
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every j ∈ Z and every p-adic representation M of GL2(Zp):

(40) H0(GL2(Zp),M ⊗ det−j) ↪−→ H0(GN ,M ⊗ det−j) ∼= H0
ét(Y1(N),M ét(j)).

Let r = (r1, r2, r3) ∈ N3 be a triple of nonnegative integers satisfying the following
assumption.

Assumption 3.1. — 1. r1 + r2 + r3 = 2 · r with r ∈ N.
2. For every permutation {i, j, k} of {1, 2, 3} one has ri + rj > rk.

Let Sr denote the GL2(Zp)-representation Sr1(Zp)⊗Zp Sr2(Zp)⊗Zp Sr3(Zp), which
we identify with the module of six-variable polynomials in Zp[x,y, z] which are ho-
mogeneous of degree r1, r2 and r3 in the variables x = (x1, x2), y = (y1, y2) and
z = (z1, z2) respectively. Following the Clebsch–Gordan decomposition of classical
invariant theory, define (cf. Assumption 3.1)

(41) DetrN = det

(
x1 x2

y1 y2

)r−r3
· det

(
x1 x2

z1 z2

)r−r2
· det

(
y1 y2

z1 z2

)r−r1
,

which is a GL2(Zp)-invariant of Sr ⊗ det−r:

DetrN ∈ H0(GL2(Zp), Sr ⊗ det−r).

After setting Sr = Sr1(Zp)⊗Zp Sr2(Zp)⊗Zp Sr3(Zp), denote by

(42) DetrN ∈ H0
ét(Y1(N),Sr(r))

the class corresponding to DetrN under the natural injection (40). Let

pj : Y1(N)3 → Y1(N)

be the natural projections, let

S[r] = p∗1Sr1(Zp)⊗Zp p
∗
2Sr2(Zp)⊗Zp p

∗
3Sr3(Zp)

and set
WN,r = H3

ét(Y1(N)3
Q̄,S[r])(r + 2).

Since Y1(N)Q̄ is a smooth affine curve over Q̄ one has

H4
ét(Y1(N)3

Q̄,S[r](r + 2)) = 0,

hence the Hochschild–Serre spectral sequence

Hp(Q, Hq
ét(Y

3
Q̄,S[r](r + 2))) =⇒ Hp+q

ét (Y1(N)3,S[r](r + 2))

defines a morphism

HS : H4
ét(Y1(N)3,S[r](r + 2)) −→ H1(Q, WN,r).

Let d : Y1(N) −→ Y1(N)3 be the diagonal embedding. As

E2r
1 (N) = Er1 (N)×Y1(N)3 Y1(N)

is isomorphic to the base change of urN : Er1 (N)→ Y1(N)3 under d, there is a natural
isomorphism d∗S[r]

∼= Sr of smooth sheaves on Y1(N)ét. The codimension-2 closed
embedding d then gives a pushforward map

d∗ : H0
ét(Y1(N),Sr(r)) −→ H4

ét(Y1(N)3,S[r](r + 2)),
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and one defines the diagonal class of level N and weights r + 2:

(43) κ̃N,r = HS ◦ d∗(DetrN ) ∈ H1(Q, WN,r)

as the image of DetrN under the composition of d∗ with HS. Let WN,r = WN,r ⊗Zp Qp

and letH1
geo(Q,WN,r) be the geometric Bloch–Kato Selmer group ofWN,r over Q, viz.

the module of classes in H1(Q,WN,r) which are unramified at every prime different
from p, and whose restrictions at p belong to the geometric subspace

H1
geo(Qp,WN,r) = ker

(
H1(Qp,WN,r) −→ H1(Qp,WN,r ⊗Qp

BdR)
)

(cf. [BK90, Section 3]). The results of [NN16] (cf. the proof of Theorem 5.9) yield
the following crucial proposition.

Proposition 3.2. — The class κ̃N,r belongs to H1
geo(Q,WN,r).

The bilinear form det∗ : Li(Zp)⊗Zp Li(Zp)→ Zp ⊗ det−i defined by

det∗(µ⊗ ν) = µ⊗ ν
(
(x1y2 − x2y1)i

)
for all µ, ν ∈ Li(Zp) becomes perfect after extending scalars to Qp, hence induces an
isomorphism of GL2(Zp)-modules

si : Si(Qp) = HomQp
(Li(Qp),Qp) ∼= Li(Qp)⊗Zp deti.

Under the equivalence ·ét this corresponds by Equation (39) to an isomorphism of
sheaves

(44) si : Si(Qp) ∼= Li(Qp)⊗Zp Zp(−i).

Define the sheaves Lr on Y1(N) and L[r] on Y1(N)3 as above, and set

(45) VN,r = H3
ét(Y1(N)3

Q̄,L[r])(2− r) and VN,r = VN,r ⊗Zp Qp.

The tensor product of the srj gives an isomorphism sr : WN,r
∼= VN,r. Set

(46) κN,r = sr∗(κ̃N,r) ∈ H1
geo(Q, VN,r).

Remarks 3.3. — 1. We strived to define diagonal classes with values in the repre-
sentations VN,r, as the corresponding cohomology groups are those which are exten-
sively studied in the literature (cf. Sections 4 and 5).

2. For every 0 6 j 6 i denote by [x1, x2]j the projection of x⊗j1 ⊗ x
⊗i−j
2 in Si(Qp).

Then [x1, x2]j is a Qp-basis of Si(Qp) and one writes [x1, x2]∗j for the dual basis of
Li(Qp). A direct computation shows that si : Si(Qp) ∼= Li(Qp) is given by the
formula

(−1)j ·
(
i

j

)
· si([x1, x2]j) = [x1, x2]∗j .
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Set k = r1 + 2, l = r2 + 2 and m = r3 + 2, and consider three cuspidal normalised
modular forms

f =
∑
n>1

an(f) · qn ∈ Sk(N,χf ),

g =
∑
n>1

an(g) · qn ∈ Sl(N,χg),

h =
∑
n>1

an(h) · qn ∈ Sm(N,χh)

of level Γ1(N), weights k, l and m and characters χf , χg and χh. Assume in the rest
of this section the following

Assumption 3.4. — 1. The triple (f, g, h) is self-dual, that is χf · χg · χh = 1.
2. The forms f, g and h are eigenvectors for the Hecke operators T`, for every ` - N .
3. If p divides N then f, g and h are eigenvectors for the Hecke operator Up.

Note that Assumption 3.4.1 implies Assumption 3.1.1, id est that k + l +m is an
even integer. Moreover, Assumption 3.1.2 states that the triple (k, l,m) is balanced
(with the terminology introduced in Section 1.1). Set

(47) V (f, g, h) = V (f)⊗L V (g)⊗L V (h)
(
(4− k − l −m)/2

)
.

The Künneth decomposition and projection to the (f, g, h)-isotypic component give
a morphism of GQ-modules

(48) prfgh : VN,r ⊗Qp
L −� V (f, g, h)

and one defines the diagonal class associated to the triple (f, g, h) by

κ(f, g, h) = prfgh(κN,r) ∈ H1
geo(Q, V (f, g, h)).

3.1. The explicit reciprocity law (cf. [BSV20b]). — Let r and (f, g, h) be
as in the previous section. In particular r and (f, g, h) satisfy Assumption 3.1 and
Assumption 3.4 respectively. In addition, assume in this section that ordp(N) 6 1,
that the conductors of χf , χg and χh are all coprime to p, and that the forms f, g
and h are p-ordinary (viz. their p-th Fourier coefficients are p-adic units).

Lemma 3.5. — For • in {geo,fin, exp}, the Bloch–Kato local conditions

H1
• (Qp, V (f, g, h)) ↪−→ H1(Qp, V (f, g, h))

(cf. [BK90, Section 3]) are all equal.

Proof. — Set w = (k, l,m). For ξ = f, g, h, denote by ξ] the newform of conductor
Nξ|N and weight u = k, l,m associated to ξ, and set

V = V (f ])⊗L V (g])⊗L V (h])
(
(4− k − l −m)/2

)
.

Since V (ξ) is isomorphic to the direct sum of a finite number of copies of V (ξ]) (cf. Sec-
tion 2.4), it is sufficient to prove the statement after replacing V (f, g, h) with V . More-
over, since V is isomorphic to its Kummer dual V ∗ = HomL(V,L(1)), it is sufficient to



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 21

prove that H1
exp(Qp, V ) equals H1

fin(Qp, V ) (cf. Proposition 3.8 of [BK90]). Accord-
ing to [BK90, Corollary 3.8.4], the quotient H1

fin(Qp, V )/H1
exp(Qp, V ) is isomorphic

to D/(ϕ − 1)D, where D is the crystalline module Dcris(V ) = H0(Qp, V ⊗Qp
Bcris)

associated with the restriction of V to GQp
, and ϕ is the crystalline Frobenius acting

on it. We are then reduced to prove the claim

(49) Dϕ=1 = 0.

The assumptions ordp(N) 6 1 and p - cond(χξ) guarantee that V (ξ])|GQp
is

semi-stable, hence so is V |GQp
. Denote by Dst(ξ

]) = H0(Qp, V (ξ]) ⊗Qp
Bst) and

Dst = H0(Qp, V ⊗Qp
Bst) the semi-stable Fontaine modules of V (ξ])|GQp

and V |GQp

respectively. One has
Dst(ξ

]) = L · aξ ⊕ L · bξ,
where aξ and bξ are ϕ-eigenvectors with eigenvalues ap(ξ])−1 and p1−uχξ(p)

−1ap(ξ
])

respectively (cf. Section 2.5). Moreover the monodromy operator Nξ on Dst(ξ
]) is

zero if p - Nξ, and satisfies Nξ(aξ) = bξ and Nξ(bξ) = 0 if p‖Nξ. Consider the set
Bw = {a·w,b·w : · = ∅, f, g, h} of elements of

Dst
∼= Dst(f

])⊗L Dst(g
])⊗L Dst(h

])⊗Qp Dcris(Qp((4− k − l −m)/2))

defined by

aw = af ⊗ ag ⊗ ah ⊗ t(4−k−l−m)/2, afw = bf ⊗ ag ⊗ ah ⊗ t(4−k−l−m)/2,

bfw = af ⊗ bg ⊗ bh ⊗ t(4−k−l−m)/2, bw = bf ⊗ bg ⊗ bh ⊗ t(4−k−l−m)/2

et cetera, where t is the canonical generator of Dcris(Qp(1)). Then Bw is an L-basis of
ϕ-eigenvectors of Dst with respective eigenvalues Ew = {α·w, β·w : · = ∅, f, g, h}, where

αw =
pc(w)−1

ap(f ])ap(g])ap(h])
, αfw =

pc(w)−k · ap(f ])
χf (p)ap(g])ap(h])

,

αgw and αhw are defined similarly, and β·w is defined by the equality

p · α·w · β·w = 1.

Since the forms f, g and h are ordinary and w is balanced, one has

ordp(β
·
w) < 0 6 ordp(α

ξ
w) < ordp(αw)

for · = ∅, f, g, h and ξ = f, g, h. In particular the L-module Dϕ=1
st (hence Dϕ=1) is

contained in the space generated by the eigenvectors aξw for ξ = f, g, h.
Define εξ ∈ {0, 1} to be 1 (resp., 0) if p divides (resp., does not divide) the conductor

Nξ of ξ = f, g, h, and set εw = εf + εg + εh. According to Theorems 4.5.17 (namely
the Ramanujan–Petersson conjecture) and 4.6.17 of [Miy06] one has

|αξw|∞ = p(εw−2·εξ−1)/2

for ξ = f, g, h, where | · |∞ denotes the complex absolute value. As a consequence
Dϕ=1

st vanishes if εw = 0 or εw = 2. If εw = 1, say εf = 1, then Dϕ=1
st is contained in

L · agw ⊕ L · ahw. On the other hand, the monodromy operator N on Dst satisfies

N(agw) = bhw and N(ahw) = bgw,
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hence Dϕ=1,N=0
st vanishes in this case. Finally, if εw = 3, then

N(aξw) = bξ
′

w + bξ
′′

w

for each permutation (ξ, ξ′, ξ′′) of (f, g, h), hence Dϕ=1 = Dϕ=1,N=0
st = 0 also in this

case, thus proving the claim (49).

It follows from the previous Lemma 3.5 that, upon setting

(50) VdR(f, g, h) = VdR(f)⊗L VdR(g)⊗L VdR(h)
(
(4− k − l −m)/2

)
,

the Bloch–Kato exponential and the isomorphism (28) give an isomorphism

expp : VdR(f, g, h)/Fil0 ∼= H1
geo(Qp, V (f, g, h)).

Similarly for the dual representations define

(51) V ∗dR(f, g, h) = V ∗dR(f)⊗L V ∗dR(g)⊗L V ∗dR(h)
(
(k + l +m− 2)/2

)
.

Then the perfect dualities (31) (for f , g and h) yield a natural isomorphism

VdR(f, g, h)/Fil0 ∼= Fil0V ∗dR(f, g, h)∨,

where ·∨ = HomL(·, L). Its composition with exp−1
p defines an isomorphism

(52) logp : H1
geo(Qp, V (f, g, h)) ∼= Fil0V ∗dR(f, g, h)∨.

For every global Selmer class κ in H1
geo(Q, V (f, g, h)) one simply writes logp(κ) as a

shorthand for logp(resp(κ)).
Denote by ωg ∈ Fill−1V ∗dR(g) and ωh ∈ Film−1V ∗dR(h) the differentials corre-

sponding to g and h respectively under the isomorphism (29), and recall the class
ηαf ∈ V ∗dR(f)ϕ=αf defined in Equation (37). Since Fil0V ∗dR(f) equals V ∗dR(f) and
l +m− 2 > (k + l +m− 2)/2 by Assumption 3.1(2) one has

(53) ηαf ⊗ ωg ⊗ ωh ∈ Fil0V ∗dR(f, g, h).

Assume in the rest of this section that p does not divide N . For every s in Z denote
by

Ms(N,L) ⊂ ZpJqK⊗Zp L

the space of p-adic modular forms of weight s and level Γ1(N) defined over L. Let

Ss(N,L) ⊂ q · OJqK⊗Zp Qp

be the subspace of cuspidal p-adic modular forms. Ms(N,L) contains naturally the
space Ms(Γ1(N, p), L) of classical modular forms of level Γ1(N, p) = Γ1(N) ∩ Γ0(p)
and q-expansion in LJqK. It is equipped with the Hecke operators U = Up and V = Vp,
which are described on q-expansions by

U
(∑
n>0

an · qn
)

=
∑
n>0

anp · qn and V
(∑
n>0

an · qn
)

=
∑
n>0

an · qpn

respectively. Serre’s derivative operator d = q · ddq on LJqK restricts to a morphism

d : Ms(N,L)→Ms+2(N,L).
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For every s > 2 Hida defined in [Hid85] an ordinary projector

eord : Ms(N,L) −�Mord
s (Γ1(N, p), L)

onto the spaceMord
s (Γ1(N, p), L) of classical ordinary modular forms of level Γ1(N, p),

which is a section of the natural inclusion Mord
s (Γ1(N, p), L) ↪→ Ms(N,L). Given

ξ ∈ Sl(Γ1(N, p), L) and ψ ∈ Sm(Γ1(N, p), L) set

Ξord
k (ξ, ψ) = eord

(
d(k−l−m)/2ξ[p] × ψ

)
∈ Sord

k (Γ1(N, p), L),

where ξ[p] and d(k−l−m)/2ξ[p] are defined as follows. Note first that t = (k− l−m)/2
is a negative integer by Assumption 3.1. The p-depletion ξ[p] ∈ Sl(N, p) is defined by
ξ[p] = (1− V U)ξ. If ξ has q-expansion

∑
n>1 an(ξ) · qn then

ξ[p] =
∑

(n,p)=1

an(ξ) · qn,

hence the limit of p-adic modular forms

dtξ[p] = lim
n→∞

dt+(p−1)pnξ

defines a p-adic modular form of weight l+2t such that d−t(dtξ[p]) = ξ[p], and dtξ[p]×ψ
belongs to Sk(N,L).

Let ξ ∈ Sk(N,χξ, L) be a eigenvector for the Hecke operators T`, for all primes
` - N . Assume that ξ is p-ordinary, viz. Tp(ξ) = ap(ξ) · ξ for a unit ap(ξ) in O∗. Let
αξ and βξ be the roots of the p-th Hecke polynomial X2 − ap(ξ) ·X + χξ(p)p

k−1 of
ξ. Enlarging L if necessary, assume that αξ and βξ belong to L, and order them in
such a way that αf ∈ O∗ is a p-adic unit and βf ∈ pk−1 · O∗. Then the (ordinary)
p-stabilisation of ξ:

(54) ξα(q) = ξ(q)− βξ · ξ(qp) ∈ Sord
k (Γ1(N, p), χξ)

is a normalised eigenvector for the Hecke operator T`, with the same eigenvalue as ξ,
for every prime ` - Np, and is an eigenvector for Up with eigenvalue αξ. Taking ξ to
be one of f, g, h and fw = wN (f) gives rise to the p-stabilised forms fα, gα, hα and
fwα = (fw)α in Sk(Γ1(N, p), L). Define (cf. Sections 2.5 and 6)

(55) L f
p (fα, gα, hα) =

(fwα ,Ξ
ord
k (g, h))Np

(fwα , f
w
α )Np

∈ L.

In [BSV20b] we proved the following explicit reciprocity law. Its proof uses the
ideas and techniques introduced in [BDP13, DR14, BDR15, KLZ20]. In particu-
lar it relies on Besser’s generalisation of Coleman’s p-adic integration and the work of
Bannai–Kings, Nekovář and Nizioł [Nek04, Niz97, Niz01, Bes00, BK90], which
forces the assumption p - N in the statement.

Proposition 3.6 ([BSV20b]). — Assume that p does not divide N , and that the
eigenforms f, g and h are p-ordinary. Then

logp
(
κ(f, g, h)

)
(ηαf ⊗ ωg ⊗ ωh) = E(f, g, h) ·L f

p (fα, gα, hα),
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where

E(f, g, h) =
(−1)r−r1(r − r1)!

(
1− βf

αf

)(
1− βf

pαf

)
(

1− βfαgαh
pr+2

)(
1− βfαgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

) .
3.2. Comparison with Gross–Kudla–Schoen diagonal cycles. — This section
elucidates the relation between the diagonal classes introduced above and the Gross–
Kudla–Schoen diagonal cycles. It will not be used in the sequel of this paper.

Let the notations and assumptions be as in the previous section. In this section
only we also assume rj > 1 for j = 1, 2, 3. As in [DR14, Section 3.1] fix three
subsets A = {a1, . . . , ar1}, B = {b1, . . . , br2} and C = {c1, . . . , cr3} of {1, . . . , r} of
cardinalities r1, r2 and r3 respectively, such that A ∩B ∩ C = ∅. This is possible by
Assumption 3.1. For 1 6 j 6 r, let pj : Er1(N) = E1(N)×Y1(N) · · · ×Y1(N) E1(N) −→
E1(N) be the projection from the r-fold fibered product of E1(N) over Y1(N) onto
its j-th component. Define

(56) ιN,r = (pA, pB , pC) : Er1(N) −→ Er1 (N)
def
= Er11 (N)×Q Er21 (N)×Q Er31 (N),

where pA = pa1 × · · · × par1 : Er1(N)→ Er11 (N) and pB and pC are defined similarly.
Then ιN,r = ιN,(A,B,C) is a closed immersion of relative dimension dimEr1 (N) −
dimEr1(N) = r + 2, and one defines the generalised Gross–Kudla–Schoen diagonal
cycle of level N and weights r + 2 (cf. Section 3 of [DR14]) as

(57) ∆N,r = ιN,r∗(E
r
1(N)) ∈ CHr+2(Er1 (N)),

where CHj(·) is the Chow group of codimension-j cycles in · modulo rational equiv-
alence.

For i ∈ N denote by Si = µi2 oΣi the semi-direct product of µi2 = {±1}i with the
symmetric group Σi on i letters. The permutation action of Σi on Ei1(N) and the
action of µ2 on E1(N) induce an action of Si on Ei1(N). Define the character ψi :
Si → {±1} by ψi(s1, . . . , si, σ) = sgn(σ) · s1 · · · si, and set εi = 1

2i·i!
∑
g∈Si ψi(g) · g.

Then εi gives an idempotent in the ring Corr(Ei1(N))Q of correspondences on Ei1(N)
with rational coefficients. Set εr = εr1 ⊗ εr2 ⊗ εr3 ∈ Corr(Er1 (N))Q. The Lieberman
trick (cf. the proof of Lemme 5.3 of [Del71]) shows that εr kills the cohomology
group Hj

ét(E
r
1 (N)Q̄,Qp) for every j 6= 2r + 3, hence the image

clét
(
εr ·∆N,r

)
∈ H2r+4

ét (Er1 (N),Qp(r + 2))

of εr ·∆N,r under the cycle class map

clét : CHr+2(Er1 (N))Q → H2r+4
ét (Er1 (N),Qp(r + 2))

belongs to

Fil0H2r+4
ét (Er1 (N),Qp(r + 2))

= ker
(
H2r+4

ét (Er1 (N),Qp(r + 2))
π∗−→ H2r+3

ét (Er1 (N)Q̄,Qp(r + 2))
)
,
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where π : Er1 (N)Q̄ → Er1 (N) is the projection. As a consequence one can consider
the Abel–Jacobi image

AJét
p

(
εr ·∆N,r

)
= HS ◦ clét

(
εr ·∆N,r

)
∈ H1(Q, εr ·H2r+3

ét (Er1 (N)Q̄,Qp(r + 2)))

of εr ·∆N,r under the composition of the cycle class map clét with the morphism

(58) HS : Fil0H2r+4
ét (Er1 (N),Qp(r + 2)) −→ H1(Q, H2r+3

ét (Er1 (N)Q̄,Qp(r + 2)))

arising from the Hochschild–Serre spectral sequence. According to the Lieberman
trick the Leray spectral sequence associated with the structural map Er1 (N)→ Y1(N)3

induces a natural isomorphism

(59) Lr : εr ·H2r+3
ét (Er1 (N)Q̄,Qp(r+2)) ∼= H1

ét(Y1(N)3
Q̄,S[r])⊗ZpQp(r+2) = WN,r.

Denote by

Lr∗ : H1(Q, εr ·H2r+3
ét (Er1 (N)Q̄,Qp(r + 2))) ∼= H1(Q,WN,r)

the isomorphism induced in Galois cohomology by Lr.

Proposition 3.7. — The image of AJét
p (εr · ∆N,r) under the isomorphism Lr∗ is

equal (up to sign) to κ̃N,r.

Proof. — To ease notation set E· = E·1(N), Y = Y1(N), ιr = ιN,r, and denote by
ur = urN the structural morphism

ur1N ×Q ur2N ×Q ur3N : Er1 (N)→ Y1(N)3.

Let ιr : Er → E2r be the proper morphism defined by

ιr(P1, . . . , Pr) = ({Paj}, {Pbj}, {Pcj}),

so that ιr is the composition of ιr with the natural map dr : E2r → Er.
Define

R2r = R2ru2r
∗ Zp, Rr = R2rur∗Zp and R[r] = R2rur∗Zp.

Then ιr induces relative pull-back and pushforward maps

ϑ∗r : R2r(r) −→ Zp and ϑr∗ : Zp −→ R2r(r)

which are adjoint to each other under the perfect relative Poincaré duality

R2r(r)⊗Zp R2r(r) −→ R4ru2r
∗ Zp(2r) ∼= Zp

induced by the cup-product pairing. (They induce on the stalks at a geometric point
y : Spec(Q̄) → Y the pull-back H2r

ét (E2r
y ,Zp(r)) → H2r

ét (Ery ,Zp(r))
∼= Zp and push-

forward Zp = H0
ét(E

r
y ,Zp) → H2r

ét (E2r
y ,Zp(r)) associated with ιr ×y Q̄ respectively.)

The Leray spectral sequences associated with the morphisms u2r and ur identify
the Qp-linear extensions of H0

ét(Y,R
2r(r)) and H4

ét(Y
3,R[r](r+ 2)) with direct sum-

mands of H2r
ét (E2r,Qp(r)) and H2r+4

ét (Er,Qp(r + 2)) respectively. (This is again a
consequence of the Lieberman trick, cf. [Del71].) By the functoriality of the Leray
spectral sequence, under these identifications ϑr∗ and d∗ are compatible with the
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absolute push-forward maps attached to ιr and dr, viz. the following diagram is
commutative:
(60)

Qp
ϑr∗ // H0

ét(Y,R
2r(r))Qp

d∗ //

Leray
��

H4
ét(Y

3,R[r](r + 2))Qp

Leray
��

H0
ét(E

r,Qp)
ιr∗ // H2r

ét (E2r,Qp(r))
dr∗ // H2r+4

ét (Er,Qp(r + 2)).

On the other hand the compatibility of the cycle class

clét : CHr+2(Er)Q → H2r+4
ét (Er,Qp(r + 2))

with proper push-forwards and the definition of the diagonal cycle ∆r = ∆N,r yield
the identities

clét(∆r) = clét ◦ ιr∗(Er) = ιr∗(1) = dr∗ ◦ ιr∗(1).

In addition, using again the functoriality of the Leray spectral sequences, one has the
commutative diagram

H4
ét(Y

3,R[r](r + 2))Qp

p[r] // //

Leray

��

H4
ét(Y

3,S[r](r + 2))Qp

HS // H1(Q,Wr)

Leray

��
Fil0H2r+4

ét (Er,Qp(r + 2))
εr∗◦HS // H1(Q, εr ·H2r+3

ét (Er
Q̄
,Qp(r + 2))),

where p[r] : R[r] � S[r] is the natural projection and Wr = WN,r. Since εr acts as
the identity on S[r], the previous three equations prove that (cf. Equation (59))

Lr∗
(
AJét

p (εr ·∆r)
)

= HS ◦ p[r] ◦ d∗ ◦ ϑr∗(1).

After setting Detr = DetrN , to conclude the proof of the proposition it is then sufficient
to show that

(61) Detr = pr ◦ ϑr∗(1) ∈ H0
ét(Y,Sr(r)),

where pr : R2r(r) � Sr(r) is the natural projection. Let S = S1(Zp) be the
standard representation of GL2(Zp). Recall the geometric point η : Spec(Q̄)→ Y and
the isomorphism ξ : Tη

∼= S ⊗ det−1 fixed above (cf. Equations (39) and (44)). The
GL2(Zp)-representation R2r(r)η contains S⊗2r⊗ det−r as a direct summand, and pr :

R2r(r)η → Sr(r)η = Sr ⊗ det−r is the composition of pr : R2r(r)η � S⊗2r ⊗ det−r

and the natural projection prr : S⊗2r ⊗ det−r � Sr ⊗ det−r. Let ϑor∗ : Zp → R2r(r)
be the relative push-forward associated (as above) with the morphism Er → E2r

which sends the point (P1, . . . , Pr) to (P1, P1, . . . , Pr, Pr). Then

(62) ϑr∗ = σr ◦ ϑor∗,
where σr = σA,B,C is any fixed permutation of {1, . . . , 2r} satisfying

σr(P1, P1, . . . , Pr, Pr) = (Pa1 , . . . , Par1 , Pb1 , . . . , Pbr2 , Pc1 , . . . , Pcr3 )

for every point (P1, . . . , Pr) of Er. The image of 1 under the composition

pr ◦ ϑor∗ : Zp = H0
ét(E

r
η ,Zp) −→ H2r

ét (E2r
η ,Zp(r)) = R2r(r)η � S⊗2r ⊗ det−r
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(where one writes again ϑor∗ for the morphism induced by ϑor∗ on the stalks at η) is
equal to

Fr =
(
x⊗ y − y ⊗ x

)⊗r
,

where x and y give a Zp-basis of S ⊂ Zp[x, y]. It then follows by the definition of
Detr (see Equation (42)) and Equation (62) that in order to prove the claim (61) is
it sufficient to prove (setting Detr = DetrN )

(63) Detr = prr ◦ σr(Fr).

The previous formula is easily verified if r 6 2 or r = (2, 2, 2) (hence r = 3). Assume
now r > 3 and r 6= (2, 2, 2). Then at least one of |A∩B|, |A∩C| and |B∩C| is greater
or equal than 2. Without loss of generality one can then assume r2 = min{r1, r2, r3}
and that the sets A and C are of the form

A = {1, r, a3, . . . , ar1} and C = {c1, . . . , cr3−2, 1, r}.

Let s = (r1 − 2, r2, r3 − 2) and s = r − 2. Then s satisfies Assumption 3.1 and
one can chose as above a permutation σs = σAo,B,Co of {1, . . . , 2 · (r − 1)} relative
to Ao = {a3, . . . , ar1−1}, B and Co = {c1, . . . , cr3−2}. Extend σs to a permutation
(denoted by the same symbol) of {1, . . . , 2r} by σs(i) = i for i = 1, 2, 2r−1, 2rWithout
loss of generality one can then assume that σr = σA,B,C is the composition of σs with
the permutation σr|s of {1, . . . , 2r} defined by σr|s(2) = 2r − 1 and σr|s(i) = i for
i 6= 2, 2r − 1, hence by induction on r one has

prr ◦ σr(Fr) = prr ◦ σr|s
(
F1 ⊗ σs(Fs)⊗ F1

)
= det

(
x1 x2

z1 z2

)2

·Dets.

Since r− r2 = s− s2 + 2 and r− rj = s− sj for j 6= 2, this proves Equation (63), and
with it the proposition.

4. Big étale sheaves and Galois representations

Sections 4.1 and 4.2 collect the technical background entering the construction of
the three-variable diagonal class of Theorem A. In particular they present a slight
extension of the overconvergent cohomology theory developed by Ash–Stevens and
Andreatta–Iovita–Stevens in [AS08, AIS15].

Notation. In this section N is a positive integer coprime with p. Set Γ = Γ1(N, p),
let Y denote the affine modular curve Y1(N, p) of level Γ defined over Z[1/Np] and
let u : E → Y be the universal elliptic curve E1(N, p). Denote by Cp the universal
order-p cyclic subgroup C1(N, p) of E1(N, p).

4.1. Locally analytic functions and distributions. — Let L be a finite exten-
sion of Qp with ring of integers O and maximal ideal m = π · O. Let W be the
weight space over Qp, viz. the rigid analytic space over Qp which parametrises the
continuous characters of Z∗p. It is isomorphic to p − 1 copies of the open unit disc,
indexed by the powers ωj of the Teichmüller character ω : F∗p → Z∗p. We identify
Z × Z/(p − 1)Z with a subset of W(Qp) by sending the pair (n, a) to the character
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(n, a) : Z∗p → Z∗p defined by (n, a)(u · ω) = un · ωa for every u ∈ 1 + pZp and ω ∈ F∗p.
Given κ ∈ W and z ∈ Z∗p we often write zκ for κ(z).

Let U ⊂ W be a connected wide open disc defined over L. Write U ∩Z for the set
of characters in U(Qp) of the form (n, iU ) for some n ∈ Z with n(mod p − 1) = iU ,
where iU ∈ Z/(p − 1)Z satisfies κ|F∗p = ωiU for every κ ∈ U . Denote by O(U) the
ring of rigid analytic functions on U , and by ΛU ⊂ O(U) the set of a ∈ O(U) such
that ordp(a(x)) > 0 for every x ∈ U . The O-algebra ΛU is isomorphic to the power
series ring OJT K. In particular it is a regular local ring, complete with respect to the
topology defined by its maximal ideal mU ∼= (π, T ). Let

κU : Z∗p −→ Λ∗U

be the character sending z ∈ Z∗p to the analytic function κU (z) ∈ Λ∗U which on t ∈ U
takes the value

κU (z)(t) = zt−2.

In what follows let (B, κ) denote either the pair (ΛU , κU ) or (O, r) for some r ∈ W(L),
and write mB for the maximal ideal of B. For every nonnegative integer m > 0 let
LAm(Zp, B) be the space of functions γ : Zp → B converging on balls of width m,
viz. for every [a] ∈ Z/pmZ one has γ(a+pmz) =

∑
n>0 cn(γ) · zn for a sequence cn(γ)

in B which converges to zero in the mB-adic topology. We always assume that U is
contained in a connected affinoid domain in W and that the function sending z to
κU (1 + pz) belongs to LAm(Zp,ΛU ). The latter condition is guaranteed by taking
m = m(U) big enough.

Define T = Z∗p × Zp and T′ = pZp × Z∗p. Right multiplication on Z2
p by the

semi-group

Σ0(p) =

(
Z∗p Zp
pZp Zp

)
⊂ Mat2×2(Zp)

(
resp., Σ′0(p) =

(
Zp Zp
pZp Z∗p

)
⊂ Mat2×2(Zp)

)
preserves the subset T (resp., T′). In particular both T and T′ are preserved by scalar
multiplication by Z∗p and right multiplication by the Iwahori subgroup

Γ0(pZp) = Σ0(p) ∩ Σ′0(p)

of GL2(Zp). Define

Aκ,m =
{
f : T −→ B

∣∣ f(1, z) ∈ LAm(Zp, B) and

f(a · t) = κ(a) · f(t) for every a ∈ Z∗p, t ∈ T
}
,(64)

and similarly define A′κ,m as the space of functions f : T′ → B such that f(pz, 1)
belongs to LAm(Zp, B), and f(a · t) = κ(a) · f(t) for all a ∈ Z∗p and t ∈ T′. Set

A·κ,m = A·κ,m ⊗O L, D·κ,m = HomB(A·κ,m, B) and D·κ,m = D·κ,m ⊗O L,

where the superscript · denotes either ∅ or ′. We equip A·κ,m with the mB-adic
topology and D·κ,m with the weak-∗ topology, viz. the weakest topology which makes
the evaluation-at-f morphism continuous for every f in A·κ,m. The B-module A·κ,m
is preserved by the left action of Σ·0(p) on functions f : T· → B given by γ · f(t) =
f(t · γ), for every γ ∈ Σ·0(p) and t ∈ T·. This equips A·κ,m with the structure of a
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B[Σ·0(p)]-module, and induce on D·κ,m the structure of a right B[Σ·0(p)]-module. If
(B, κ) = (ΛU , κU ) we write A·U,m and D·U,m as shorthands for A·κU ,m and D·κU ,m.

Remark 4.1. — For any function f : T→ B define fo : Zp → B by fo(z) = f(1, z).
The map which to f associates fo gives an isomorphism of B-modules between Aκ,m
and LAm(Zp, B). This intertwines the action of Σ0(p) on Aκ,m with the one on
LAm(Zp, B) given by

σ · fo(z) = (a+ cz)κ · fo
(
b+ dz

a+ cz

)
, where σ =

(
a b
c d

)
.

The B-module LAm(Zp, B) is isomorphic to the product
∏pm−1
a=0 BJT Ko, where BJT Ko

is the set of power series
∑
n>0 bn · Tn in BJT K with limn→∞ bn = 0 in the mB-adic

topology. Under this isomorphism, for every 0 6 a 6 pm − 1 and every n > 0, the
power Tn in the a-th factor of LAm(Zp, B) corresponds to an element fa,n ∈ Aκ,m.
Every f ∈ Aκ,m can be written uniquely as f =

∑
06a6pm−1,n>0 ba,n(f) · fa,n with

limn→∞ ba,n(f) = 0 for every 0 6 a 6 pm − 1. A similar discussion applies to A′κ,m.

4.1.1. Hecke operators. — Set Ξ·0(p) = Σ·0(p) ∩GL2(Qp), and recall that Γ denotes
the congruence subgroup Γ1(N) ∩ Γ0(p) of SL2(Z). Let M be a right Ξ·0(p)-module
(e.g. M = D·κ,m). Given σ ∈ Ξ·0(p) one defines a Hecke operator

Tσ : Hj(Γ,M)→ Hj(Γ,M)

as follows (cf. [AS86a, Section 1.1]). Write ΓσΓ =
∐nσ
i=1 Γσi with σi ∈ Ξ·0(p), and

define ti : Γ −→ Γ by σi · γ = ti(γ) · σi(γ) (for some 1 6 i(γ) 6 nσ). If ξ ∈ Hj(Γ,M)

is represented by the homogeneous j-cochain ξ : Γj+1 −→ M then Tσ(ξ) = cl(ξσ),
where ξσ : Γj+1 −→M is defined by

ξσ(γ0, . . . , γj) =

nσ∑
i=1

ξ(ti(γ0), . . . , ti(γj)) · σi.

For every prime ` denote by σ` (resp., σ′`) the diagonal matrix with diagonal (1, `)
(resp., (`, 1)). If σ` (resp., σ′`) belongs to Ξ·0(p) set T` = Tσ` (resp., T ′` = Tσ′`). As
usual one also writes U ·` for T

·
` if ` divides Np. The previous discussion then equips

Hi(Γ,Dκ,m) (resp., H1(Γ,D′κ,m)) with the action of the p-th Hecke operator Up (resp.,
p-th dual Hecke operator U ′p), as well as with the action of the Hecke operators T`
and T ′` for every prime ` 6= p.

Let N be a left Ξ·0(p)-module (e.g. N = A·κ,m) and let Nop denote the abelian
group N equipped with the structure of right Ξ·0(p)−1-module by n · τ = τ−1 · n for
every n ∈ N and τ ∈ Ξ·0(p)−1. After identifying Hi(Γ, N) and Hi(Γ, Nop) define
for every σ ∈ Ξ·0(p) the Hecke operator Tσ on Hi(Γ, N) to be the Hecke operator
Tσ−1 on Hi(Γ, Nop) defined in previous paragraph. This equips Hi(Γ,Aκ,m) (resp.,
Hi(Γ,A′κ,m)) with the action of the p-th Hecke operator Up = Tσp (resp., p-th dual
Hecke operator U ′p = Tσ′p), as well as with the action of the Hecke operators T` = Tσ`
and T ′` = Tσ′` for every prime ` different from p.



30 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

4.1.2. Atkin–Lehner operators. — Let Q be a positive divisor of Np, such that Q
and Np/Q are coprime. Consider any matrix

wQ =

(
Qa b
Np Qd

)
∈M2(Z)

such that det(wQ) = Q and d ≡ 1 (mod Np/Q). Such a matrix satisfies

(65) Γ = wQ · Γ · w−1
Q .

If p divides Q, then right multiplication by wQ on Z2
p maps T onto T′, hence

induces a topological morphism of B-modules wQ : A′κ,m −→ Aκ,m. Together with
conjugation by the inverse of wQ on Γ (cf. Equation (65)), it yields a morphism of
pairs wQ : (Γ,A′κ,m) −→ (Γ,Aκ,m), which in turn induces a morphism

(66) wQ : H1(Γ,A′κ,m) −→ H1(Γ,Aκ,m).

A direct computation proves that, for each x in H1(Γ,A′κ,m), one has

Up ◦ wp(x) = wp ◦ U ′p ◦ 〈p〉N (x) and Up ◦ wNp(x) = wNp ◦ U ′p(x),

where 〈p〉N = Tαp is the Hecke operator on H1(Γ,A′κ,m) associated with any matrix
αp in SL2(Z) of the form αp =

(
a b
Npc d

)
with d ≡ 1 (mod p) and d ≡ p (mod N). The

dual of wQ : A′κ,m −→ Aκ,m yields a map wQ : Dκ,m −→ D′κ,m, which together with
conjugation by wQ on Γ induces as above a morphism

(67) wQ : H1(Γ,Dκ,m) −→ H1(Γ,D′κ,m).

For each y in H1(Γ,Dκ,m) one has

(68) wp ◦ Up(y) = U ′p ◦ wp ◦ 〈p〉N (y) and wNp ◦ Up(y) = U ′p ◦ wNp(y).

If p does not divide Q, then wQ belongs to Γ0(pZp), and for · = ∅, ′ one defines

(69) wQ : H1(Γ,D·κ,m) −→ H1(Γ,D·κ,m) and wQ : H1(Γ,A·κ,m) −→ H1(Γ,A·κ,m)

to be the Hecke operators TwQ introduced in Section 4.1.1.

4.1.3. Specialisations and comparison. — Let k = r + 2 ∈ U and let πk ∈ ΛU be a
uniformiser at k − 2 (hence π and πk generate mU ). There are short exact sequences
of Σ·0(p)-modules (cf. [AIS15, Proposition 3.11])

(70) 0 // A·U,m
πk // A·U,m

ρk // A·r,m // 0;

0 // D·U,m
πk // D·U,m

ρk // D·r,m // 0.

The morphisms ρk are defined by the formulae

ρk(f)(x, y) = f(x, y)(k) and ρk(µ)(γ) = µ(γU )(k)

for every f ∈ A·U,m, (x, y) ∈ T·, µ ∈ D·U,m, and γ ∈ A·r,m, where γU (x, y) = κU (x) ·
γ(1, y/x) if T· = T and γU (x, y) = κU (y) · γ(x/y, 1) if T· = T′.

Let r ∈ U ∩ Z>0 be a nonnegative integer. Viewing two-variable polynomials as
analytic functions on T· gives a natural map of Σ·0(p)-modules Sr(O) −→ A·r,m, and
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dually a morphism of Σ·0(p)-modules D·r,m −→ Lr(O). Together with the comparison
isomorphisms between étale and Betti cohomology:

(71) H1
ét(YQ̄,Sr(O)) ∼= H1(Γ, Sr(O)) and H1

ét(YQ̄,Lr(O)) ∼= H1(Γ, Lr(O))

they induce comparison morphisms

(72) H1
ét(YQ̄,Sr(O)) −→ H1(Γ,A·r,m) and H1(Γ,D·r,m) −→ H1

ét(YQ̄,Lr(O)).

The second isomorphism in Equation (71) is Hecke equivariant, hence so is the second
morphism in Equation (72). On the other hand the first isomorphism in Equation
(71) (resp., morphism in Equation (72)) intertwines the actions of the Hecke opera-
tors Up, T`, U ′p, T ′` on the left hand side with those of Hecke operators U ′p, T ′` , Up, T`
respectively on the right hand side (whenever the latter are defined).

4.1.4. Slope decompositions. — Let B be a Qp-Banach algebra, let N be a module
over B, let u be a B-linear endomorphism of N , and let h ∈ Q>0. Following [AS08]
one says that N admits a slope 6 h decomposition with respect to u if there exists a
(necessarily unique) direct sum decomposition

N = N6h ⊕N>h

into B[u]-modules such that the conditions 1–3 below are satisfied. One says that a
polynomial P (t) in B[t] has slope 6 h if every edge of its Newton polygon has slope
6 h. Let B[t]6h be the set of polynomials in B[t] of slope 6 h and whose leading
coefficient is a multiplicative unit. For every P (t) ∈ B[t] write P ∗(t) = tdeg(P )·P (1/t).

1. N6h is finitely generated over B.
2. There exists P (t) ∈ B[t]6h such that P ∗(u) kills N6h.
3. For every P (t) ∈ B[t]6h the endomorphism P ∗(u) of N>h is an isomorphism.
Let m and U be as in Section 4.1, let k = r + 2 ∈ U(L), and let h ∈ Q>0. Set

Tr =
{

(L,Ar,m, Up), (L,A
′
r,m, U

′
p), (L,Dr,m, Up), (L,D

′
r,m, U

′
p)
}

and

TU =
{

(OU , AU,m, Up), (OU , A
′
U,m, U

′
p), (OU , DU,m, Up), (OU , D

′
U,m, U

′
p)
}
,

where OU is a shorthand for ΛU [1/p]. Recall that ΛU is isomorphic to the power series
ring OJT K, equipped with the topology defined by the maximal ideal mU ∼= (π, T ),
hence OU is isomorphic to the L-module LJT Ko of power series in LJT K with bounded
Gauß norm. If s is a real number satisfying 0 < s < 1, define |·|s : LJT Ko −→ R>0

by |
∑
n>0 an · Tn|s = supn>0 s

n · |an|p. Then | · |s is an L-Banach algebra norm on
LJT Ko, which is independent of s and induces the (π, T )-adic topology on OJT K. This
corresponds to an L-Banach algebra norm on OU , which restricts to the mU -adic
topology on the O-submodule ΛU . The discussion on slope 6 h decompositions then
applies to each triple (B,M,u) in Tr∪TU . The following proposition is a consequence
of the work of Coleman and Ash–Stevens [Col97, AS08] (see also [AIS15]).

Proposition 4.2. — Let (B,M,u) be a triple in Tr ∪ TU . If r ∈ U ∩Z>0, one also
allows (B,M,u) to denote either (L, Sr(L), U ·p) or (L,Lr(L), U ·p), with U ·p = Up, U

′
p.
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1. Up to shrinking U if necessary, the B-module H1(Γ,M) admits a slope 6 h
decomposition with respect to u. Moreover, for · = ∅, ′, the specialisation maps ρk
defined in Equation (70) induce Hecke equivariant isomorphisms

ρk : H1(Γ, A·U,m)6h ⊗ΛU ΛU/πk ∼= H1(Γ, A·r,m)6h

and ρk : H1(Γ, D·U,m)6h ⊗ΛU ΛU/πk ∼= H1(Γ, D·r,m)6h.

2. Assume that r = (n, a) ∈ Z>0×Z/(p− 1)Z with n ≡ a (mod p− 1) and h < n+ 1.
Then (for · = ∅, ′) the natural maps Sr(L) −→ A·r,m and D·r,m −→ Lr(L) induce
Hecke equivariant isomorphisms

H1(Γ, Sr(L))6
·h ∼= H1(Γ, A·r,m)6h and H1(Γ, D·r,m)6h ∼= H1(Γ, Lr(L))6

·h,

where the superscript 6·h in H1(Γ, –)6
·h refers to the slope decomposition with respect

to the endomorphism U ·p.

Let r be a nonnegative integer and let h ∈ Q>0 such that h < r + 1. As the
étale cohomology groups H1

ét(YQ̄,Sr)L and H1
ét(YQ̄,Lr)L are finite-dimensional over

L, they admit slope 6·h decompositions with respect to U ·p. Part 2 of Proposition
4.2 then implies that the comparison maps defined in Equation (72) induce natural
isomorphisms of L-modules (cf. the last lines of the previous section)

(73) H1
ét(YQ̄,Sr)

6′h
L
∼= H1(Γ, Ar,m)6h and H1(Γ, Dr,m)6h ∼= H1

ét(YQ̄,Lr)
6h
L .

One obtains similar isomorphisms after replacing Ar,m and Dr,m with A′r,m and D′r,m
respectively.

4.2. Étale sheaves. — Let T = T1(p),N be the relative Tate module R1u∗Zp(1)

of E over Y (cf. Equation (10)). Fix a geometric point η : Spec(Q̄) −→ Y and
denote by G = GN,p the fundamental group πét

1 (Y, η). Fix in addition an isomorphism
ξ : Tη

∼= Zp ⊕ Zp of Zp-modules such that, for every x, y ∈ Tη, one has

(74) 〈x, y〉Ep∞ = ξ(x) ∧ ξ(y) and ξ̄(Cp,η) = Fp · (1, 0),

where 〈·, ·〉Ep∞ is the Weil pairing,
∧2

Z2
p = Zp via (1, 0) ∧ (0, 1) = 1, and ξ̄ : Ep,η ∼=

Fp ⊕Fp is the reduction of ξ modulo p. The action of G on Tη and the isomorphism
ξ give a continuous morphism % : G → GL2(Zp). Since the subgroup Cp,η of Ep,η
is preserved by the action of G, the second condition in Equation (74) implies that
% factors through a continuous morphism % : G −→ Γ0(pZp). Let Sf (Yét) be the
category of locally constant constructible sheaves on Yét with finite stalk of p-power
order at η, and for every topological group G denote by Mf (G) the category of
finite sets of p-power order, equipped with a continuous action of G. Taking the
stalk at η defines an equivalence of categories ·η : Sf (Yét) ∼= Mf (G), whose inverse
·ét : Mf (G) ∼= Sf (Yét) restricts via % to a functor ·ét : Mf (Γ0(pZp)) −→ Sf (Yét).
(Here both G and Γ0(pZp) have the profinite topology.) Define Mcts(G) to be the
category of G-modules M which are filtered unions M =

⋃
i∈IMi with Mi ∈Mf (G)

for every i ∈ I, and M(G) ⊂ Mcts(G)N to be the category of inverse systems of
objects of Mcts(G). Define similarly Scts(Yét) and S(Yét) ⊂ Scts(Yét)

N. If G denotes
one of G and Γ0(pZp), the functor ·ét extends to ·ét : M(G) −→ S(Yét). Let (Mi)i∈N



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 33

be an inverse system of G-modules and let M = lim←−Mi. If the inverse system (Mi)i
defining M is clear from the context, we say that M belongs to M(G) to mean that
(Mi)i does. If this is the case we write M ét for (Mi)

ét
i .

More generally for every scheme S one defines the category S(Sét) as above. For
every F = (Fi)i∈N ∈ S(Sét) set

Hj
ét(S,F ) = Rj

(
lim
←i

Γ(S, ·)
)
(Fi)i and H

j
ét(S,F ) = lim

←i
Hj

ét(S,Fi),

so that (Hj
ét(S,F ) is the continuous étale cohomology in the sense of [Jan88] and)

there are short exact sequences

(75) 0 −→ R1lim
←i

Hj−1
ét (S,Fi) −→ Hj

ét(S,F ) −→ H
j
ét(S,F ) −→ 0.

One similarly defines compactly supported cohomology groups Hj
ét,c(S,F ) and

H
j
ét,c(S,F ) (cf. [Jan88]).
Let (B, κ) be as in Section 4.1. The modulesA·κ,m andD·κ,m belong to M(Γ0(pZp)):

D·κ,m = lim
←j
D·κ,m/FiljD·κ,m,

A·κ,m = lim
←j
A·κ,m/m

j
BA
·
κ,m

and A·κ,m/miB · A·κ,m =
⋃
j>i

Fili,jA·κ,m,

where (FiljD·κ,m)j>0 is a decreasing filtration by B[Σ·0(p)]-submodules on D·κ,m, such
that D·κ,m/Filj is finite for every j, and where (Fili,jA·κ,m)j>i is an increasing filtration
on A·κ,m/miB ·A·κ,m by B[Σ·0(p)]-submodules of finite cardinality. Precisely one defines

FiljD·κ,m =
{
µ ∈ D·κ,m

∣∣ µ(fa,n) ∈ mj−nB for every 0 6 a 6 pm − 1 and n 6 j
}

(cf. [AIS15, Definition 3.9 and Proposition 3.10]) and

Fili,jA·κ,m =
⊕

06a6pm−1,n6j

B ·
(
fa,n + miB

)
⊂ A·κ,m/miB · A·κ,m,

where (fa,n)06a6pm−1,n>0 is the orthonormal basis of A·κ,m defined in Remark 4.1.
Denote by

A·κ,m = A· étκ,m and D·κ,m = D· étκ,m

the images of A·κ,m and D·κ,m respectively under ·ét : M(Γ0(pZp)) → S(Yét). For
every j > 0 set

A·κ,m,j = A·κ,m/m
j
B · A

·
κ,m,

D·κ,m,j = D·κ,m/Filj ,

A·κ,m,j = A· étκ,m,j

and D·κ,m,j = D· étκ,m,j ,

so that A·κ,m is a shortened notation for the inverse system (A·κ,m,j)j∈N and similarly
D·κ,m = (D·κ,m,j)j∈N. If S is a Z[1/Np]-scheme one can define for every prime ` - Np
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(resp., prime `|Np, unit d ∈ (Z/NZ)∗) Hecke operators T ·` (resp., U ·`, 〈d〉) acting on
Hi

ét(YS ,A
·
κ,m,j) and Hi

ét(YS ,D
·
κ,m,j) (cf. Section 2.3 or [AIS15, Section 5]). We list

below some of the basic properties satisfied by A·κ,m and D·κ,m. Let S be a Z[1/Np]-
scheme and let χ : Z∗p → B∗ be a continuous character. Let B/miB(χ) ∈Mf (Γ0(pZp))

be a copy of B/miB equipped with the action of Γ0(pZp) defined by γ ·b = χ(det(γ))·b,
and let B(χ) = lim←iB/m

i
B(χ). If C·κ,m,· denotes either A·κ,m,· or D·κ,m,· define

C·κ,m,·(χ) = C·κ,m,· ⊗B B(χ) and C·κ,m(χ) = C·κ,m(χ)ét = C·κ,m ⊗ (B/miB(χ))éti∈N. As
usual, if (B, κ) = (ΛU , κU ), one sets C·U,m,· = C·κU ,m,·.
• For each k = r + 2 ∈ U(L), each j ∈ N and · = ∅, ′, the specialisation maps

(70) induce morphisms

ρk : A·U,m,j(χ)→ A·r,m,j(χ) and ρk : D·U,m,j(χ)→ D·r,m,j(χ),

which in turn induce in cohomology specialisation maps

ρk : H1
ét(YS ,A

·
U,m(χ)) −→ H1

ét(YS ,A
·
r,m(χ))(76)

and ρk : H1
ét(YS ,D

·
U,m(χ)) −→ H1

ét(YS ,D
·
r,m(χ)).

• There are natural isomorphisms H1
ét(YQ̄,D

·
κ,m,j)

∼= H1(Γ,D·κ,m,j), which in-
duce isomorphisms (cf. Theorem 3.15 of [AIS15])

H1
ét(YQ̄,D

·
κ,m) ∼= H1

ét(YQ̄,D
·
κ,m) ∼= H1(Γ,D·κ,m)(77)

and H1
ét,c(YQ̄,D·κ,m) ∼= H1

ét,c(YQ̄,D
·
κ,m) ∼= H1

c (Γ,D·κ,m)

of B-modules compatible with the action of the Hecke operators and with the
specialisation maps ρr. Here Hj

c (Γ, ·) = Hj−1(Γ, I(·)) is defined to be the
(j − 1)-th cohomology group of Γ with values in the Γ-module

I(·) = HomZ(Div0(P1(Q)), ·)

(cf. Proposition 4.2 of [AS86b]).
• There are natural maps H1

ét(YQ̄,A
·
κ,m,j) −→ H1(Γ,A·κ,m,j), inducing an iso-

morphism of B-modules (cf. Lemma 4.3 below and the discussion preceding
it)

(78) H1
ét(YQ̄,A

·
κ,m) ∼= H1(Γ,A·κ,m)

compatible with the action of the Hecke operators and with the specialisation
maps. In light of the exact sequence (75), the isomorphism (78) yields a Hecke
equivariant short exact sequence of B-modules

(79) 0 −→ R1lim
←j

H0(YQ̄,A·κ,m,j) −→ H1
ét(YQ̄,A

·
κ,m) −→ H1(Γ,A·κ,m) −→ 0.

• The B-modules H1
ét(YQ̄,D

·
κ,m) and H1

ét(YQ̄,A
·
κ,m) are equipped with natural

continuous actions of GQ which commute with the Hecke operators and the
specialisation maps. Moreover as GQ-modules

H1
ét(YQ̄,D

·
κ,m(χ)) = H1

ét(YQ̄,D
·
κ,m)(χQ)(80)

and H1
ét(YQ̄,A

·
κ,m(χ)) = H1

ét(YQ̄,A
·
κ,m)(χQ),
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where χQ = χ ◦ χ−1
cyc : GQ → B∗ and χcyc : GQ → Z∗p is the p-adic cyclotomic

character. A similar statement holds for the compactly supported cohomology
H1
ét,c(YQ̄,D

·
κ,m).

• We equip H1(Γ,D·κ,m), H1
c (Γ,D·κ,m) and H1(Γ,A·κ,m) with the structures of

continuous GQ-modules via the isomorphisms (77) and (78) respectively. If
h ∈ Q>0 (and U is sufficiently small) the slope 6 h submodules H1(Γ, D·κ,m)6h,
H1

c (Γ, D·κ,m)6h and H1(Γ, A·κ,m)6h of H1(Γ,D·κ,m)Qp
, H1

c (Γ,D·κ,m)Qp
and

H1(Γ,A·κ,m)Qp respectively (cf. Proposition 4.2) are preserved by the action
of GQ.
• Set ΛU,j = (ΛU/m

j)ét and ΛU = (ΛU,j)j∈N ∈ S(Yét). There are canonical
isomorphisms of ΛU -modules

(81) traceU : H2
c (Γ,ΛU ) ∼= H2

ét,c(YQ̄,ΛU ) ∼= ΛU .

The evaluation morphism A·U,m⊗ΛU D·U,m −→ ΛU and the trace traceU induce
a cup-product

H1(Γ,A·U,m)⊗ΛU H
1
c (Γ,D·U,m) −→ H2

c (Γ,ΛU ) ∼= ΛU ,

under which the Hecke operator U ·p acting on H1(Γ,A·U,m) is adjoint to U ·p
acting on H1

c (Γ,D·U,m). This in turn induces for h ∈ Q>0 (and U sufficiently
small) morphisms of ΛU [1/p]-modules

ξ·U,m : H1(Γ, A·U,m)6h −→ HomΛU [1/p]

(
H1

c (Γ, D·U,m)6h,ΛU [1/p]
)
.

• Define det : T×T′ −→ Z∗p by det((x1, x2), (y1, y2)) = x1y2−x2y1, and denote by
detU : T× T′ −→ Λ∗U the composition of det with κU : Z∗p −→ Λ∗U . Evaluation
at detU defines a Γ-equivarint bilinear form DU,m ⊗ΛU D′U,m −→ ΛU . Together
with traceU (cf. Equation (81)) this induces a cup-product pairing

(82) det∗U : H1(Γ,DU,m)⊗ΛU H
1
c (Γ,D′U,m) −→ H2

c (Γ,ΛU ) ∼= ΛU

under which the Hecke operators Up and U ′p are adjoint to each other. For
every h ∈ Q>0 the (inverse of the) adjoint of det∗U induces an isomorphism of
ΛU [1/p]-modules

ζ ′U,m : HomΛU [1/p]

(
H1

c (Γ, D′U,m)6h,ΛU [1/p]
) ∼= H1(Γ, DU,m)6h.

Similarly one defines an isomorphism

ζU,m : HomΛU [1/p]

(
H1

c (Γ, DU,m)6h,ΛU [1/p]
) ∼= H1(Γ, D′U,m)6h.

• Let h ∈ Q>0. If U is sufficiently small the composition of ζU,m with ξU,m gives
a morphism of GQ-modules

(83) sU,h : H1(Γ, AU,m)6h(κU ) −→ H1(Γ, D′U,m)6h,

where κU : GQ −→ Λ∗U is defined by κU (g) = κU (χcyc(g)) for every g ∈ GQ.
For every integer k = r+ 2 in U ∩Z such that h < k− 1, the following diagram
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of L[GQ]-modules commutes.

(84) H1(Γ, AU,m)6h(κU )
sU,h //

ρk

��

H1(Γ, D′U,m)6h

ρk

��
H1

ét(YQ̄,Sr)
6′h
L (r)

sr // H1
ét(YQ̄,Lr)

6′h
L

By a slight abuse of notation, here one writes again ρk for the composi-
tion of the specialisation map ρk : H1(Γ, AU,m)6h → H1(Γ, Ar,m)6h (resp.,
ρk : H1(Γ, D′U,m)6h → H1(Γ, D′r,m)6h) with the comparison isomorphism
H1(Γ, Ar,m)6h ∼= H1

ét(YQ̄,Sr)
6′h (resp., H1(Γ, D′r,m)6h ∼= H1(Γ,Lr)

6′h
L )

defined in Equation (73). Similarly the composition of ζ ′U,m with ξ′U,m gives a
morphism of GQ-modules

s′U,h : H1(Γ, A′U,m)6h(κU ) −→ H1(Γ, DU,m)6h

and the diagram of GQ-modules obtained by replacing AU,m, D′U,m and sU,h
with A′U,m, DU,m and s′U,h respectively in Equation (84) commutes.
• The Atkin–Lehner operators wp (resp., wNp) defined in Equations (66) and (67)

are GQ-equivariant (resp., GQ(µN )-equivariant).
Due to the lack of a reference, we explain how to construct the crucial isomorphism

(78). Let · denote either the empty symbol or ′, and let Fili,jA·κ,m = (Fili,jA·κ,m)ét

be the étale sheaf on Y associated with the finite B/miB[Γ]-module Fili,jA·κ,m. The
comparison isomorphisms between étale and Betti cohomology yields isomorphisms

compi,j : H1
ét(YQ̄,Fili,jA·κ,m) ∼= H1(Γ,Fili,jA·κ,m).

The étale cohomology of the affine scheme YQ̄ commutes with filtered direct limits.
Moreover, since the group Γ is finitely generated, the cohomology functor H1(Γ, ·)
commutes with filtered direct limits (cf. Exercises 1 and 4 on page 196 of [Bro94]).
Taking the direct limit for j → ∞ of the isomorphisms compi,j then gives isomor-
phisms of B/miB-modules

compi : H1(Γ,A·κ,m,i) ∼= H1
ét(YQ̄,A

·
κ,m,i),

which in turn entail an isomorphism of B-modules

comp : lim
←i

H1(Γ,A·κ,m,i) ∼= H1
ét(YQ̄,A

·
κ,m).

The sought for isomorphism (78) is defined as the composition of the comparison
isomorphism comp and the natural map H1(Γ,A·κ,m) −→ lim←−iH

1(Γ,A·κ,m,i), which
is an isomorphism by Lemma 4.3 below. The Hecke equivariance of the isomorphism
(78) is proved precisely as in Sections 3.2 and 3.3 of [AIS15].

Lemma 4.3. — The natural maps

H1(Γ,A·κ,m) −→ lim←−
i

H1(Γ,A·κ,m,i)

are isomorphisms of B-modules.
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Proof. — We adapt the proof of [AIS15, Lemma 3.13] to our setting. To ease nota-
tion, set Ai = A·κ,m,i and A = A·κ,m. For each Γ-module M , let

C•(Γ,M) : 0 −→M
d0−→ C1(Γ,M)

d1−→ C2(Γ,M) −→ · · ·

be the usual complex of inhomogeneous cochains computing the cohomology groups
Hj(Γ,M) = Zj(Γ,M)/im(dj−1), where Cj(Γ,M) is the group of maps from Γj to
M and Zj(Γ,M) = ker(dj). Denote by d• (resp., d•i ) the differentials in C•(Γ,A)
(resp., C•(Γ,Ai)), so that one has the following commutative diagram with exact
rows. (Recall that by definition Ai is a shorthand for A/miB · A.)

A d0 // Z1(Γ,A)

ζ

��

// H1(Γ,A)

ϑ

��

// 0

lim←−iAi
(d0i ) // lim←−i Z

1(Γ,Ai)
ε // lim←−iH

1(Γ,Ai)

To prove that ϑ is an isomorphism, it is then sufficient to show that ε is surjective and
that ζ is an isomorphism. The cokernel of ε is contained in R1 lim←−i(Ai/H

0(Γ,Ai)),
which vanishes since the maps Ai+1/H

0(Γ,Ai+1) −→ Ai/H0(Γ,Ai) are surjective.
Moreover, as A = lim←−iAi, the natural map C•(Γ,A) −→ lim←−i C

•(Γ,Ai) is an isomor-
phism, hence so is ζ by the left exactness of the inverse limit.

4.3. The ordinary case. — This section explains the relations between the ordi-
nary (id est slope 6 0) parts of the modules H1(Γ, D·U,m) and the big ordinary Galois
representations considered in [Hid86, Oht95, Oht00]. This will be particularly rel-
evant for the study of the eigencurve in a neighbourhood of a classical weight-one
eigenform (where the Eichler–Shimura isomorphism of [AIS15] does not apply).

Since H1(Γ,D·κ,m) is a profinite group (as D·κ,m is), the limit e·ord = limn→∞ U ·n!
p

defines an idempotent in the B-endomorphism ring of H1(Γ,D·κ,m). (Here as usual
(B, κ) denotes either (ΛU , κU ) or (O, r) with r in W(L), and · denotes either the
empty symbol or ′.) Set

H1(Γ,D·κ,m)60 = e·ord ·H1(Γ,D·κ,m).

This is a finite ΛB-module, which recasts H1(Γ, D·κ,m)60 after inverting p.
Following [Hid86, Oht95], define

T = lim
←r

H1
ét(Y1(Npr)Q̄,Zp(1)),

where r ∈ Z>1 and the transition maps are given by the traces pr1∗ induced in
cohomology by the degeneracy maps pr1 : Y1(Npr+1) −→ Y1(Npr) introduced in
Equation (8). As the maps pr1∗ are Hecke-equivariant, the module T is equipped
with the action of Hecke operators T ·` (resp., U ·`), for each prime ` not dividing
(resp., dividing) Np. Moreover, the action of (Z/prZ)∗ on H1

ét(Y1(Npr)Q̄,Zp(1)) via
diamond operators makes T a module over � = Zp[[Z

∗
p]]. Let

D′ = HomZp(Step(T′),Zp)
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be the right Σ′0(p)-module of measures on T′, where Step(T′) is the set of Zp-valued
step functions on T′. Section 4.1.1 equipsH1(Γ,D′) with the action of Hecke operators
U ′p and T ·` , for · = ∅, ′ and ` a rational prime different from p. A slight variant of
Lemma 6.8 of [GS93] yields a Hecke-equivariant isomorphism of �-modules

(85) T ∼= H1(Γ,D′),

where the action of the Iwasawa algebra � on the right hand side arises from that of
the group Z∗p = Z∗p · ( 1

1 ) ↪−→ Σ′0(p) on D′.
Each measure µ in D′ extends to a ΛU -linear morphism µU : C (T′,ΛU ) −→ ΛU on

the space C (T′,ΛU ) of ΛU -valued continuous functions on T′. The map sending µ to
the restriction of µU to A′U,m ↪−→ C (T′,ΛU ) defines a morphism of Σ′0(p)-modules

D′ −→ D′U,m,
which in turn induces a Hecke-equivariant morphism of ΛU -modules

(86) H1(Γ,D′)⊗� ΛU −→ H1(Γ,D′U,m),

where ΛU has the structure of �-algebra arising from κU : Z∗p −→ Λ∗U .
After setting

T60
U = e′ord ·T⊗� ΛU ,

the composition of the maps (85) and (86) yields an isomorphism of ΛU -modules

(87) ShU,m : T60
U
∼= H1(Γ,D′U,m)60(1),

which is Hecke-equivariant and GQ-equivariant. In order to prove this, let r be a
positive integer in U . Since H2(Γ, ·) vanishes for each Γ-module · of finite cardinality
(and D′U,m is profinite), evaluation at k = r + 2 on ΛU induces an isomorphism

(88) H1(Γ,D′U,m)60 ⊗ΛU ΛU/πk ∼= H1(Γ,D′r,m)60.

Moreover, for each j > 0, the natural map D′r,m −→ Lr(O) induces an isomorphism

(89) Hj(Γ,D′r,m)60 ∼= Hj(Γ, Lr(O))6
′0,

which for j = 1 recasts the isomorphism displayed in Part 2 of Proposition 4.2 after
inverting p. (Indeed a direct computation shows that

(
p 0
pNi 1

)
∈ Σ′0(p) maps the

kernel K′r,m of D′r,m −→ Lr(O) into pr+1 ·K′r,m for each 0 6 i 6 p−1, from which one
deduces that the anti-ordinary projector e′ord kills Hj(Γ,K′r,m) for each j > 0.) On
the other hand, the inclusion Sr(Zp) ↪−→ C (T′,Zp) dualises to a specialisation map
ρk : D′ −→ Lr(Zp), and Hida’s control theorem (cf. [Hid86, Oht95]) shows that the
isomorphism (85) and ρk induce a Hecke-equivariant isomorphism

(90) e′ord ·T⊗� �/Ik ∼= H1(Γ, Lr(Zp))
6′0,

where Ik is the ideal of � generated by [1+p]−(1+p)r and [µ]−µr, with µ a generator
of F∗p and [·] : Z∗p −→ �∗ the tautological map. It follows from Equations (88)–(90)
that the base change of ShU,m along the projection ΛU −→ ΛU/πk is an isomorphism.
Together with Nakayama’s Lemma, this implies that ShU,m is surjective, and that
ker(ShU,m) ⊗ΛU ΛU/πk is a quotient of the πk-torsion submodule of H1(Γ,D′U,m)60.
The latter is in turn a quotient of H0(Γ,D′r,m)60, which vanishes by Equation (89).
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Another application of Nakayama’s Lemma then proves that ShU,m is injective, thus
concluding the proof of the claim (87).

Set OU = ΛU [1/p] and denote by

h(U) = h(N,U) ↪−→ EndΛU (H1(Γ,D′U,m)60)[1/p]

the Hecke algebra generated over OU by the dual Hecke operators (U ′q)q|Np, (T ′`)`-Np
and (〈d〉)d∈(Z/NZ)∗ acting on H1(Γ, D′U,m)60. For each positive integer r and · = ∅, ′,
let h·(Npr) be the ring generated by the Hecke operators (U ·q)q|Np, (T ·`)`-Np and
(〈d〉)d∈(Z/NZ)∗ acting on the space M2(Npr) of complex modular forms of weight 2.
Conjugation by the Atkin–Lehner isomorphism wNpr ∈ IsoC(M2(Npr)) restricts to
an isomorphism h(Npr) ∼= h′(Npr), sending Uq and T` to U ′q and T ′` respectively. Set

(91) h·Np∞ = e·ord · lim
←r

(h·(Npr)⊗Z Zp) and h·Np∞(U) = h·Np∞ ⊗� OU ,

where the transition maps in the inverse limit defining hNp∞ (resp., h′Np∞) are induced
by the inclusions M2(Npr) ⊂M2(Npr+1) (resp., the maps M2(Npr) ↪−→M2(Npr+1)
sending f(z) to f(pz)). The Atkin–Lehner operators (wNpr )r>1 induce an isomor-
phism of ΛU -modules between hNp∞(U) and h′Np∞(N), and since h(Npr) acts faith-
fully on H1

ét(Y1(Npr)Q̄,Zp(1)) (cf. Equation (19)), the Shapiro isomorphism ShU,m
defined in Equation (87) yields an isomorphisms of OU -modules

(92) hNp∞(U) ∼= h(N,U).

sending the Hecke operators T` and Uq to the corresponding duals T ′` and U
′
q.

Denote by C = C(N) = Spf(hNp∞)Qp
Berthelot’s rigid fibre of the formal spectrum

of hNp∞ (cf. Section 7 of [dJ95]). The structural maps � −→ hNp∞ yield a finite and
flat morphism κ : C −→ W, and Equation (92) gives an isomorphism of OU -modules

(93) h(U) ∼= O(C ×W U)

mapping the dual Hecke operators T ′` (` - Np) and U ′q (q|Np) in the left hand side
to the corresponding Hecke operators T` and Uq in the right hand side, where O(·)
denotes the ring of bounded analytic functions on ·.

Section 6 of [Pil13] gives an isomorphism between C and the ordinary locus
C ord = C ord(N) of the Buzzard–Coleman–Mazur eigencurve C = C (N) of tame
level N , mapping the Hecke operators in hNp∞ to the corresponding Hecke operators
in O(C ord). In light of Equation (93), this gives isomorphisms

(94) h(U) ∼= O(C ord ×W U)

mapping the dual Hecke operators in the left hand side to the corresponding Hecke
operators in the right hand side.

Remark 4.4. — If U is a sufficiently small open disc in W centred at an integer
ko > 2, and h is a non-negative rational number satisfying h < ko − 2, then the
overconvergent Eichler–Shimura isomorphism [AIS15, Theorem 1.3] implies that the
isomorphism (94) holds after replacing C ord with the slope 6 h locus of C , and h(U)
with the Hecke algebra acting on the slope 6 h subspace of H1(Γ, D′U,m). On the
other hand, their result does not apply when U is centred at ko = 1 (and h = 0), a



40 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

crucial scenario for the applications of the main results of this paper to the arithmetic
of elliptic curves (cf. [BSV20a]).

5. Hida families

As explained in Section 6 of [AIS15] (see also Section 6 of [GS93]), the big Ga-
lois representations associated to p-adic Coleman–Hida families (generically) appear
as direct factors of the cohomology groups H1(Γ,D·U,m). This section recalls these
results, paying particular attention to the case (not covered in loc. cit.) where the
open disc U is centred at weight 1 in W(Qp). To simplify the exposition we limit the
discussion to Hida families. This suffices for the applications we have in mind (and
requires no mention of the theory of (ϕ,Γ)-modules and trianguline representations).

Let M be a positive integer coprime to p, let U ⊂ W be an L-rational open disc
centred at a positive integer ko ∈ Z>1, and let χ be a Dirichlet character modulo M .
Let OU = ΛU [1/p] be the ring of bounded analytic functions on U , and let

U cl =
{
k ∈ U ∩ Z

∣∣ k > 2 and k ≡ ko mod 2 · (p− 1)
}

be the set of classical points of U . An OU -adic cusp form of tame level M and tame
character χ is a formal q-expansion

f =
∑
n>1

an(f ;k) · qn ∈ OU JqK

such that, for each classical weight k ∈ U cl, the weight-k specialisation

fk =
∑
n>1

an(f ; k) · qn ∈ Sord
k (Mp,χ)L

is the q-expansion of a p-ordinary cusp form in Sord
k (Mp,χ)L. Here

Sord
k (Mp,χ)L = eord · Sk(Mp,χ)L,

where eord = limn→∞ Un!
p is Hida’s ordinary projector acting on the L-module

Sk(Mp,χ)L of cusp forms of weight k, level Γ1(M) ∩ Γ0(p), character χ and Fourier
coefficients in Q̄ ∩ L (under the fixed embedding Q̄ ↪→ Q̄p). Denote by Sord

U (M,χ)
the OU -module of OU -adic cusp forms of tame level M and character χ. It is
equipped with the action of Hecke operators T`, for primes ` -Mp, and U`, for primes
`|Mp, which are compatible with the usual Hecke operators on Sord

k (Mp,χ) for each
k ∈ U cl. A cusp form f in Sord

U (M,χ) is normalised if a1(f ;k) is the constant
function with value one on U . A (L-rational) Hida family of tame level M , tame
character χ and centre ko ∈ Z>1 is an OU -adic cusp form f ∈ Sord

U (M,χ), for some
U as above, which is an eigenvector for the Hecke operators Up and T`, for each
prime ` - Mp (equivalently such that, for each k ∈ U cl, the weight-k specialisation
fk is an eigenvector for the Hecke operators Up and T`, for all primes ` - Mp.) A
normalised Hida family f ∈ Sord

U (M,χ) is new (or primitive) of tame level M if the
conductor of the eigenform fk is equal to M for all k > 2 in U cl. To each Hida family
f ∈ Sord

U (M,χ) is associated a unique pair (Mf ,f
]), where Mf is a positive divisor

of M and f ] =
∑
n>1 an(k) ·qn in Sord

U (Mf , χ) is a new Hida family of tame level Mf



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 41

such that Up(f) = ap(k) · f and T`(f) = a`(k) · f for all primes ` - M . We call Mf

the conductor of f and f ] the primitive Hida family associated with f . Moreover, we
denote by

Sord
U (M,χf )[f ]] ↪−→ Sord

U (M,χf )

the OU -module of Hida families in Sord
U (M,χf ) having f ] as associated primitive Hida

family. A level-N test vector for f ] is an element of Sord
U (M,χf )[f ]] of the form

(95) f =
∑

0<d|M/Mf

rd · f ](qd),

for analytic functions (rd)d in OU without common zeros in U .
Fix in the rest of this section a positive divisor Nf of N and a normalised eigenform

f ]ko =
∑
n>1

an · qn ∈Mko(Γ1(Nf ) ∩ Γ0(p), χf )L

of weight ko > 1, level Nfp, character χf : (Z/NfZ)∗ −→ L∗ and Fourier coefficients
in L, satisfying the following (cf. Assumption 1.1)

Assumption 5.1. — One of the following statements 1–2 holds true.
1. The form f ]ko is cuspidal of weight ko > 2, p-ordinary (id est ap is a p-adic unit

under the fixed embedding Q̄ ↪−→ Q̄p) and its conductor is divisible by Nf .
2. The form f ]ko is a p-stabilisation of a cuspidal and p-regular weight-one newform

of level Nf , without real multiplication by a quadratic field in which p splits.

The previous assumption guarantees that the eigencurve κ : C (Nf ) −→ W (cf.
Section 4.3) is étale at (the L-rational point corresponding to) f ]ko . In case 5.1(1)
(resp., case 5.1(2)) this follows from Corollary 1.4 of [Hid86] and Section 6 of [Pil13]
(resp., Theorems 1.1 and 7.2 of [BD16]). As a consequence, there exists an open
connected disc Uf inWL centred at ko, and a section Uf ↪−→ C (Nf )⊗Qp L of κ⊗Qp L
mapping Uf isomorphically onto an open admissible neighbourhood of f ]ko . In light
of Equation (94), this yields an idempotent ef] in the Hecke algebra (cf. Section 4.3)

H def
= h(Nf , Uf ),

and an isomorphism of OUf -algebras between ef] · H and OUf . Let

(96) ϕ : H −→ OUf

be the composition of this isomorphism with the projection onto ef] · H.
For each positive integer n, denote by ∆′n ⊂ Σ′0(p)∩M2(Z) the set of integral matri-

ces α =
(
a b
c d

)
satisfying det(α) = n, d ≡ 1 mod N , p - d and c ≡ 0 mod Np. Define

T ′n =
∑
α∈∆′n

Tα, where Tα is the endomorphism of H1(Γ1(Nf ) ∩ Γ0(p),D′Uf ,m)60

introduced in Section 4.1.1 (and m = m(Uf ) is sufficiently large). The dual Hecke
operator T ′n belongs to H (cf. [Shi71, Chapter 3]), and after setting

an(k) = an(f ],k) = ϕ(T ′n),

the formal q-expansion
f ] =

∑
n>1

an(k) · qn ∈ OUf [[q]]
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is the (unique) cuspidal primitive Hida family in Sord
Uf

(Nf , χf ) of tame level Nf and
character χf specialising to f ]ko at ko. For each positive integer n, it is an eigenvector
for the Hecke operator Tn with eigenvalue an(k).

The rest of this section summarises the main result from Hida theory needed in
the sequel of the paper. Fix a level-N test vector

f ∈ Sord
Uf

(N,χf )[f ]]

for f ]. To ease notation, set Λf = ΛUf , Of = OUf , D·f ,m = D·Uf ,m and D·f ,m = D·Uf ,m
(where as usual · denotes either the empty symbol or ′). Denote by k−ko a uniformiser
at ko in Λf , so that Of is a module of power series in LJk − koK which converge for
any k in Uf . One has κUf (t) = ω(t)ko−2 · 〈t〉k−2 for all t ∈ Z∗p, and

(97) κUf = ωko−2
cyc · κk−2

cyc : GQ −→ Λ∗f .

Here ωcyc and κcyc denote the composition of the p-adic cyclotomic character

χcyc : GQ −→ Z∗p

with the projections ω : Z∗p −→ F∗p and 〈·〉 : Zp −→ 1 + pZp respectively, and κk−2
cyc is

the Λ∗f -valued character which on g ∈ GQ takes the value κcyc(g)k−2.
• For every classical weight k > 2 in U cl

f the weight-k specialisation fk is old at
p. Indeed fk = fα is the ordinary p-stabilisation of an eigenform f = fk in
Sk(N,χf ) (cf. Equation (54)), hence ap(k) = αf is the unit root of

X2 − ap(f)

a1(f)
·X + χf (p)pk−1 = (X − αf ) · (X − βf ).

(We refer the reader to [Hid86] for more details.)
• To ease notation, set

V = H1(Γ1(Nf ) ∩ Γ0(p), D′f ,m)60(1) and H = h(Nf , Uf ).

According to the main results of [Oht00] and the isomorphism (92), there is a
short exact sequence of H[GQp

]-modules

(98) 0 −→ V+ −→ V −→ V− −→ 0,

where V± are finite free Of -modules. The GQp
-module V− is the maximal

unramified Of -quotient of V , and an arithmetic Frobenius acts on it as mul-
tiplication by the p-th Fourier coefficient ap(k) of f ]. Moreover, there are
canonical isomorphisms of H-modules V+ ∼= Hpar and V− ∼= HomOU (H,OU ),
where Hpar is the quotient of H acting faithfully on the parabolic subspace
H1

par(Γf , D
′
f ,m)60(1) of the cohomology group V .

Applying the idempotent ef] (defined before Equation (96)) to the short
exact sequence (98) gives a short exact sequence of Of [GQp

]-modules

(99) 0 −→ V (f ])+ −→ V (f ]) −→ V (f ])− −→ 0,

where (for · equal to one of the symbols ∅,+ and −)

V (f ])· = ef] · V ·
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is a free Of -direct summand of V ·.
• The Of [GQ]-module V (f ]) has rank two over Of , and is unramified outside
Nfp. For every prime ` not dividing Nfp, the characteristic polynomial of an
arithmetic Frobenius Frob` in GQ at ` is given by (cf. Equation (106) below)

det
(
1− Frob`|V (f ]) ·X

)
= 1− a`(k) ·X + χf (`) · κUf (`) · ` ·X2.

In particular the determinant of V (f ]) is given by (cf. Equation (97))

(100) detOfV (f) = χf · χcyc · κUf = χf · ωko−1
cyc · κk−1

cyc .

As the arithmetic Frobenius Frobp ∈ GQp acts on V− as multiplication by
ap(k), one deduces isomorphisms of Of [GQp

]-modules

(101) V (f ])+ ∼= Of
(
1 + κUf + χf − ǎp(k)

)
and V (f ])− ∼= Of (ǎp(k)),

where for every a ∈ Λ∗f one writes ǎ : GQp → Λ∗f for the continuous unramified
character satisfying ǎ(Frobp) = a.

• Recall the level-N test vector f for f ] fixed above, and define

H1(Γ, D′f ,m)60(1) −� V (f)

to be the maximal Of -quotient of H1
· (Γ, D

′
f ,m)60(1) on which the dual Hecke

operators T ′` , U
′
p, and 〈d〉

′ act respectively as multiplication by a`(k), ap(k) and
χf (d), for each prime ` not dividing Np and each unit d in (Z/NZ)∗. This is
equal to the GQ-modules V (f ]) = ef] ·V introduced above when N = Nf and
f = f ]. In general, the OU [GQ]-module V (f) is (non-canonically) isomorphic
to the direct sum of a finite number of copies of V (f ]). In particular, V (f) is
a free OU -module, and there is a short exact sequence of Of [GQp

]-modules

(102) 0 −→ V (f)+ −→ V (f) −→ V (f)− −→ 0

with V (f)± free of finite rank over Of , and V (f) −� V (f)− the maximal
unramified Of -quotient of V (f).

Dually, define

V ∗(f) ↪−→ H1
c (Γ, Df ,m)60(−κUf )

be the maximal Of -submodule of H1
c (Γ, Df ,m)60(−κUf ) on which the Hecke

operators T`, Up and 〈d〉 act respectively as multiplication by a`(k), ap(k) and
χf (d), for every prime ` - Np and every unit d in (Z/NZ)∗. Then V ∗(f) is an
Of [GQ]-direct summand of H1

c (Γ, Df ,m)60(−κUf ), isomorphic to the Of -dual
of V (f). Indeed the bilinear form det∗Uf defined in Equation (82) induces a
perfect pairing of Of [GQ]-modules (cf. [Oht00] and Section 4.3)

(103) 〈·, ·〉f : V (f)⊗Of V
∗(f) −→ Of .

Let V ∗(f)+ ↪−→ V ∗(f) be the maximal unramified submodule of the restriction
of V ∗(f) to GQp

, and let V ∗(f)− be the quotient of V ∗(f) by V ∗(f)+. There
is then a short exact sequence of Of [GQp

]-modules

0 −→ V ∗(f)+ −→ V ∗(f) −→ V ∗(f)− −→ 0,
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and the bilinear form 〈·, ·〉f induces perfect, GQp
-equivariant pairings

(104) 〈·, ·〉f : V (f)± ⊗Of V
∗(f)∓ −→ Of .

Because H1
· (Γ, D

·
f ,m)60 is an Of -direct summand of H1

· (Γ, D
·
f ,m), there are

natural Of [GQ]-projections

(105) prf : H1(Γ, D′f ,m)(1) −� V (f) and pr∗f : H1
c (Γ, Df ,m)(−κUf ) −� V ∗(f).

• For all classical points k in U cl
f the specialisation map ρk in the right column

of Equation (84) gives rise to an isomorphism of L[GQ]-modules

(106) ρk : V (f)⊗Λf Λf/(πk) ∼= H1
ét(Y1(N, p)Q̄,Lk−2(1))f∗k

∼= V (fk).

Here

H1
ét(Y1(N, p)Q̄,Lk−2(1))L −→ H1

ét(Y1(N, p)Q̄,Lk−2(1))f∗k

is the maximal quotient on which T ′` , U
′
p and 〈d〉′ act respectively as multiplica-

tion by a`(k), ap(k) and χf (p) for any prime ` - Np and any unit d in (Z/NpZ)∗.
If t : Y1(Np)→ Y1(N, p) is the natural projection (viz. the one induced by the
identity on H under (6)), the second isomorphism in Equation (106) is the one
induced by the pull-back

t∗ : H1
ét(Y1(N, p)Q̄,Lk−2(1)) −→ H1

ét(Y1(Np)Q̄,Lk−2(1)).

If ko = 1, so that f1 =
∑
n>1 an(1) · qn is a classical, cuspidal weight-one

Hecke eigenform (cf. Assumption 5.1), then the weight-one specialisation

V (f ]1) = V (f ])⊗Λf Λf/(π1)

of V (f ]) yields a canonical model of the dual of the Deligne–Serre representation
attached to f ]1 . More generally, if f1 is classical, set V (f1) = V (f)⊗Λf Λf/π1

(which is non-canonically isomorphism to the direct sum of a finite number of
V (f ]1).) In order to have coherent notation and terminology, we still denote by

(107) ρ1 : V (f)⊗Λf Λf/(π1) −→ V (f1)

the identity map, and refer to it as the specialisation map at weight one.
Similarly for each classical weight k in U cl

f there are natural isomorphisms
of L[GQp ]-modules

(108) ρk : V ∗(f)⊗Λf Λf/(πk) ∼= V ∗(fk)

(cf. the discussion following Equation (84)). Moreover for each x ∈ V (f) and
y ∈ V ∗(f) one has

(109) 〈x, y〉f (k) = 〈ρk(x), ρk(y)〉fk ,

where 〈·, ·〉fk is the perfect bilinear form defined in Equation (24).
• For each k in U cl

f and · = ∅, ∗, one has short exact sequences of L[GQp ]-modules

(110) 0 −→ V ·(fk)+ −→ V ·(fk) −→ V ·(fk)− −→ 0,
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where V (fk)− is the maximal GQp
-unramified L-quotient of V (fk), and

V ∗(fk)+ is the maximal GQp
-unramified L-submodule of V ∗(fk). The special-

isation maps (106) and (108) induce isomorphisms

(111) ρk : V ·(f)± ⊗k L ∼= V ·(fk)±.

According to Equation (101) the inertia subgroup IQp
of GQp

acts on V (fk)+

via χk−1
cyc , and trivially on V (fk)−. If k > 2, applying DdR(·) to the previous

exact sequence and using Equation (28) gives natural isomorphisms

(112) Dcris(V (fk)+) ∼= VdR(fk)/Fil0 and Fil0VdR(fk) ∼= Dcris(V (fk)−).

Similarly IQp
acts trivially on V ∗(fk)+ and via χ1−k

cyc on V ∗(fk)−, hence Equa-
tions (28) and (110) give

(113) Dcris(V
∗(fk)+) ∼= V ∗dR(fk)/Fil1 and Fil1V ∗dR(fk) ∼= Dcris(V

∗(fk)−).

• The Atkin–Lehner operator wNp introduced in Equation (67) induces an iso-
morphism of Of [GQ(ζN )]-modules (cf. Equation (68))

wNp : H1(Γ, DU,m)60 ∼= H1(Γ, D′U,m)60,

intertwining the action of the dual Hecke operators U ′p, T ′` and 〈d〉 on the left
hand side with that of the Hecke operators Up, T` and 〈d〉−1 on the right hand
side, for each prime ` not dividing Np and each unit d modulo N . Since the
form f ]ko is cuspidal, it induces Galois equivariant isomorphisms

(114) w·Np : V ∗(f)·(1 + κUf + χf ) ∼= V (f)·,

for · equal to one of the symbols ∅,+ and −.
• Set

(115) D∗(f)− =
(
V∗(f)−(1 + κUf + χf )⊗̂ZpẐ

nr
p

)GQp [1/p],

where V∗(f)− is a GQp
-stable Λf -lattice in V ∗(f)−, and Ẑnr

p is the ring of
integers of the p-adic completion Q̂nr

p of the maximal unramified extension
of Qp. (Note that V ∗(f)−(1 + κUf + χf ) is an unramified GQp -module, cf.
Equations (101) and (104).) It is a free finite Of -module (of rank one if f = f ]

is primitive). For each classical point k in U cl
f , the isomorphism (111) and the

second isomorphism in Equation (113) induce a specialisation isomorphism

(116) ρk : D∗(f)− ⊗k L ∼=
(
V ∗(fk)−(k − 1 + χf )⊗Qp

Q̂nr
p

)GQp ∼= Fil1V ∗dR(fk).

As V ∗(fk)−(k − 1) is unramified, in the previous equation one identifies the
middle term with the tensor product of Dcris(V

∗(fk)−), Dcris(Qp(k − 1)) and
Dcris(L(χf )). The second isomorphism then arises from Equation (113), the
canonical isomorphism Dcris(Qp(k − 1)) ∼= Qp, and the isomorphism between
Dcris(L(χf )) and L sending the Gauß sum

∑
a∈(Z/c(χf )Z)∗ χ̌f (a) ⊗ ζac(χf ) of

the primitive character χ̌f attached to χf to the identity, where c(χf ) is the
conductor of χf and ζc(χf ) is a primitive c(χf )-th root of unity.



46 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

In light of the isomorphisms (87) and (114), the main result of [Oht00] and
Theorem 9.5.2 of [KLZ17] yield an Eichler–Shimura isomorphism

(117) ES−f : D∗(f)− ∼= Sord
Uf

(N,χf )[f ]],

whose base change along evaluation at a classical point k ∈ U cl
f is equal to

the composition of the specialisation isomorphism (116) with the isomorphism
Fil1V ∗dR(fk) ∼= Sk(Np,L)fk defined in Equation (27). One defines

(118) ωf ∈ D∗(f)−

to be the image of the Hida family f under the inverse of ES−f , so that

(119) ρk(ωf ) = ωfk

for each classical point k in U cl
f (cf. Equation (30)). (When ko > 2, the overcon-

vergent Eichler–Shimura isomorphism proved in [AIS15] extends these results
to Coleman families of slope at most ko − 2.)

• Set

(120) D∗(f)+ =
(
V∗(f)+⊗̂ZpẐ

nr
p

)GQp [1/p],

where V∗(f)+ is a GQp
-stable Λf -lattice in V ∗(f)+. The perfect duality 〈·, ·〉f

(cf. Equation (104)), the Atkin–Lehner isomorphism w+
Np (cf. Equation (114))

and the Eichler–Shimura isomorphism ES−f give rise to an isomorphism

ES+
f : D∗(f)+ ∼= HomOf (Sord

Uf
(N,χf )[f ]],Of ),

whose base change along evaluation at k ∈ U cl
f on Of equals the composition

of the specialisation isomorphism

(121) ρk : D∗(f)+ ⊗k L ∼=
(
V ∗(fk)+ ⊗Qp

Q̂nr
p

)GQp ∼= V ∗dR(fk)/Fil1

arising from Equations (111) and (113), and the isomorphism

V ∗dR(fk)/Fil1 ∼= HomL(Sk(Np,L)f∗k , L) ∼= HomL(Sk(Np,L)fk , L),

where the first map is the adjoint of the perfect duality 〈·, ·〉fk defined in Equa-
tion (32) (cf. Equation (109)), and the second is the dual of

(−1)ko−2 · wNp : Sk(Np,L)fk
∼= Sk(Np,L)f∗k .

We claim that (shrinking Uf if necessary) there exists

(122) ηf ∈ D∗(f)+

such that, for each classical point k in U cl
f , one has (cf. Equation (34))

(123) ρk(ηf ) = (p− 1)ap(k) · ηfk .

Indeed, write f =
∑
d rd · f

](qd), with functions (rd)d|(N/Nf ) in Of without
common zeros. For each positive divisor d of N/Nf , the Q-rational morphism
vd : Y1(N, p)Q −→ Y1(Nf , p)Q arising from multiplication by d on H (cf. Equa-
tion (6)) induces a GQ-equivariant morphism vd∗ : V ∗(f) −→ V ∗(f ]) (cf.
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Equation (77)), which in turn induces vd∗ : D∗(f)− −→ D∗(f ])−. Under the
Eichler–Shimura isomorphism ES−f , the latter gives rise to a map

vd∗ : Sord
Uf

(N,χf )[f ]] −→ Sord
Uf

(Nf , χf )[f ]] = Of · f ].

Set Tracef =
∑
d rd · vd∗, and define the big differential η̌f ∈ D∗(f)+ to be the

image under the inverse of ES+
f of the linear form sending the Hida family f ′

in Sord
Uf

(N,χf )[f ]] to the first Fourier coefficient of Tracef (f ′):

ES+
f (η̌f )(f ′) = a1(Tracef (f ′)).

It follows from the definitions and Equation (109) that

ρk(η̌f ) = (−1)ko−2 · (fk,fk)Np
(f ]k,f

]

k)Nfp
· ηfk

for each classical point k in U cl
f . As explained in the proof of Lemma 2.19

of [DR14], the elements (−1)ko−2 · (fk,fk)Np

(f]k ,f
]
k)Nf p

are interpolated by an analytic

function Ef on Uf , which does not vanish at ko (as fko is non-zero by the
definition of level-N test vector for f ]). Shrinking Uf if necessary, one can then
assume that Ef is a unit in Of , and define the sought-for Of -adic differential
ηf to be (p− 1) · E−1

f · ap(k) times η̌f .
• Similarly as in Equations (115) and (120), for · = ±, define the Of -module

(124) D(f)· =
(
V(f)·(ν·)⊗̂ZpẐ

nr
p

)GQp [1/p],

where V(f)· is a GQp -stable Of -lattice in V (f)·, ν− is the trivial character and
ν+ = −1 − κUf (so that the twist of V (f)· by ν· is unramified, cf. Equation
(101)). The pairings 〈·, ·〉f defined in Equation (104) and the isomorphism
Dcris(L(χf )) ∼= L sending the Gauß sum G(χf ) to the identity induce perfect
dualities of Of -modules (denoted again by the same symbols)

(125) 〈·, ·〉f : D(f)± ⊗Of D
∗(f)∓ −→ Of .

Similarly as in Equations (116) and (121), for each classical point k ∈ U cl
f , the

specialisation maps (111) and the isomorphisms (112) give rise to specialisation
isomorphisms of L-modules

(126) ρk : D(f)+ ⊗k L ∼= VdR(fk)/Fil0 and ρk : D(f)− ⊗k L ∼= Fil0VdR(fk).

Under the isomorphisms (116), (121) and (126), the base change of (125) along
evaluation at k on Of is compatible with the perfect duality (31).

• If ko = 1, the representations V (f1) and V ∗(f1) are Artin representations
unramified at p. After setting V ·(f1)± = V ·(f)± ⊗1 L (for · = ∅, ∗), one has a
decomposition of GQp

-modules

V ·(f1) ∼= V ·(f1)+ ⊕ V ·(f1)−.

Indeed, according to Assumption 5.1(2) one has

V (f1)+ = V (f1)Frobp=βf1 and V (f1)− = V (f1)Frobp=αf1 ,
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where Frobp is an arithmetic Frobenius, αf1 = ap(1) and αf1 · βf1 = χf (p).
In order to have a uniform notation (cf. Equation (112)), if ko = 1 one sets

V ·dR(f1) = Dcris(V
·(f1)) and defines

(127) VdR(f1)/Fil0 = Dcris(V (f1)+) and Fil0VdR(f1) = Dcris(V (f1)−).

Similarly set Fil1V ∗dR(f1) = Dcris(V
∗(f1)−) and V ∗dR(f1)/Fil1 = Dcris(V

∗(f1)+).
The pairing (103) then induces a perfect and GQ-equivariant duality

V (f1)⊗L V ∗(f1) −→ L,

under which V (f1)+ is the orthogonal complement of V ∗(f1)+. This in turn
induces on the crystalline Dieudonné modules a perfect pairing

(128) 〈·, ·〉f1 : VdR(f1)⊗L V ∗dR(f1) −→ L,

which identifies Fil0VdR(f1) and VdR(f1)/Fil0 with the duals of V ∗dR(f1)/Fil1

and Fil1V ∗dR(f1) respectively. One finally defines

(129) ωf1 = ρ1(ωf ) ∈ Fil1V ∗dR(f1) and ηf1 = ρ1(ηf ) ∈ V ∗dR(f1)/Fil1

as the specialisations of ωf and ηf respectively at weight one.

6. Garrett–Rankin p-adic L-functions

Fix three primitive L-rational Hida families

f ]=
∑
n>1

an(k) · qn ∈ Sord
Uf

(Nf , χf ),

g]=
∑
n>1

bn(l) · qn ∈ Sord
Ug (Ng, χg)

and h]=
∑
n>1

cn(m) · qn ∈ Sord
Uh

(Nh, χh).

Let N be the least common multiple of Nf , Ng and Nh, and let

f ∈ Sord
Uf

(N,χf ), g ∈ Sord
Ug (N,χg) and h ∈ Sord

Uh
(N,χh)

be Hida families with associated primitive forms f ], g] and h] respectively. Suppose
that Assumption 1.2 holds true, namely χf · χg · χh is the trivial character modulo
N . Denote by Σgen

f the set of classical triples w = (k, l,m) in Σf such that p does
not divide the conductor of fk, gl and hm.

For any w ∈ Σgen
f one has fk = (fk)α, gl = (gl)α and hm = (hm)α for (unique)

p-ordinary eigenforms fk, gl and hm of common level N (cf. Equation (54)). Similarly
f ]k, g

]

l and h
]

m are the ordinary p-stabilisations of newforms f ]k, g
]

l and h]m of levels
Nf , Ng and Nh respectively.

Lemma 6.1. — There exists a Hida family wN (f) in Sord
Uf

(N, χ̄f ) such that, for any
k ∈ U cl

f with p not dividing the conductor of fk, the weight-k specialisation wN (f)k
is the ordinary p-stabilisation of fwk = wN (fk).
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Proof. — A direct computation (see Proposition 1.5 of [AL78]) shows that

wN ◦ pr∗p = 〈(p, 1)〉 · pr∗p ◦ wN and wN ◦ pr∗1 = pr∗1 ◦ wN
as morphisms from H1

dR(Y1(N)Qp ,SdR,k−2)L to H1
dR(Y1(Np)Qp ,SdR,k−2)L, where

〈(p, 1)〉 is the diamond operator associated with (p, 1) under the identification
Z/NpZ = Z/NZ× Fp. As a consequence

(fwk )α =

(
pr∗1 ◦ wN −

χ̄f (p)βfk
pk−1

· pr∗p ◦ wN
)
fk(130)

= wN ◦
(

pr∗1 −
βfk
pk−1

· pr∗p

)
fk = wN (fk).

The lemma follows from the previous equation and [KLZ17, Proposition 10.1.2],
namely the existence of a morphism wN : Sord

Uf
(N,χf ) → Sord

Uf
(N, χ̄f ) which spe-

cialises to the Atkin–Lehner operator wN on the ordinary part of Sk(Γ1(N, p), χf ) for
each classical weight k in U cl

f (cf. Equations (69) and (117)).

According to the previous lemma and the results of [HT01, DR14, Hid85] Hida’s
method (cf. [Hid85]) can be applied to construct a square-root Garrett–Rankin p-adic
L-function

L f
p (f , g,h) ∈ Ofgh

such that, for each classical triple w = (k, l,m) in Σgen
f , one has

(131) L f
p (f , g,h)(w) = L f

p (fk, gl,hm),

where L f
p (fk, gl,hm) is the p-adic period associated in Equation (55) to the p-

stabilisation of the triple (fk, gl, hm).

Remark 6.2. — The p-adic L-function L f
p (f , g,h) slightly differs from the one

denoted by the same symbol in [DR14]. Precisely our L f
p (f , g,h) is equal to their

L f
p (wN (f∗), g,h), where f∗ is the Hida family which specialises to the dual of fk for

each k in U cl
f .

6.1. Test vectors and special value formulae. — In this section assume the
following hypotheses (cf. [Hsi20]).

Assumption 6.3. —
1. There is a triple (k, l,m) in Σ such that the local sign εq(f ]k, g

]

l ,h
]

m) is equal to
+1 for all primes q|N .

2. The greatest common divisor of Nf , Ng and Nh is squarefree.
3. There is a classical point k in U cl

f such that V (f ]k) is residually irreducible and
p-distinguished.

Under these assumptions, Section 3.5 of [Hsi20] implies the existence of an explicit
level-N test vector (f?, g?,h?) for (f ], g],h]) such that the Garrett–Rankin triple
product p-adic L-function

Lp(f
], g],h]) = L f

p (f?, g?,h?)2
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satisfies the following interpolation property (see Theorem A of loc. cit.). For all
w = (k, l,m) in Σgen

f

(132)

Lp(f
]

k, g
]

l ,h
]

m) =
Γ(k, l,m)

2α(k,l,m)
·
E(f ]k, g

]

l ,h
]

m)2

E0(f ]k)2 · E1(f ]k)2
·
∏
q|N

Locq ·
L(f ]k ⊗ g

]

l ⊗ h]m,
k+l+m−2

2 )

π2(k−2) · (f ]k, f
]

k)
2

Nf

,

where the notations are as follows.
• α(k, l,m) ∈ Ofgh is a linear form in the variables k, l and m and

(133)
Γ(k,m, l) =

(
(k+l+m−4)/2

)
!·
(
(k+l−m−2)/2

)
!·
(
(k+m−l−2)/2

)
!·
(
(k−l−m)/2

)
!.

• Set cw = (k + l + m − 2)/2, αk = ap(k), βk = χf (p)pk−1/αk, αl = bp(l) et
cetera. Then

(134)

E(f ]k, g
]

l ,h
]

m) =

(
1− βkαlαm

pcw

)(
1− βkβlαm

pcw

)(
1− βkαlβm

pcw

)(
1− βkβlβm

pcw

)
,

(135) E0(f ]k) = 1− βk
αk

and E1(f ]k) = 1− βk
p · αk

.

• For each rational prime q dividing N , Locq is an explicit non-zero rational
number, independent of w.
• Let π(f ]k), π(g]l ) and π(h]m) be the cuspidal automorphic representations of GL2

attached to f ]k, g
]

l and h]m respectively, and set Πx = π(f ]k) ⊗ π(g]l ) ⊗ π(h]m).
Then

L(f ]k ⊗ g
]

l ⊗ h
]

m, s) = L(Πw, s+ (3− k − l −m)/2).

Thanks to the results of Garrett and Harris–Kudla [Gar87, HK91] one knows
that L(f ]k⊗ g

]

l ⊗h]m, s) admits an analytic continuation to all of C and satisfies
a functional equation with global epsilon factor ε(Πx, 1/2) equal to +1 relating
its values at s and k + l +m− 2− s.

This is proved by Hsieh in Theorem A of [Hsi20] relying on the special value
formulae of Garrett, Harris–Kudla and Ichino [Gar87, HK91, Ich08].

7. Selmer groups and big logarithms

Let (f ], g],h]) and (f , g,h) be as in Section 6.

7.1. A four-variable big logarithm. — Let (cf. Section 5, in particular Equa-
tions (97), (102) and (101))

M(f , g,h)f = V (f)−⊗̂LV (g)+⊗̂LV (h)+
(
ω2−lo−mo

cyc · κ2−l−m
cyc

)
.

This is a free Ofgh-module on which GQp
acts via the unramified character

Ψ : GQp
−� Gur

Qp
−→ O∗fgh
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defined by

(136) Ψ(Frobp) =
χgχh(p) · ap(k)

bp(l) · cp(m)

(cf. Equation (101)). Let Ocyc ⊂ QpJj−joK be the ring of bounded analytic functions
on an open disc Ucyc centred at jo = (ko − lo −mo)/2, and let κ−jcyc : GQ → O∗cyc be
defined by κ−jcyc(g) = expp(−j · logp(χcyc(g))). Denote by Ōfgh the tensor product
Ofgh⊗̂Qp

Ocyc and define the Ōfgh[GQp
]-module

(137) M̄(f , g,h)f = M(f , g,h)f ⊗̂Qp
Ocyc

(
ω−jocyc · κ−jcyc

)
.

Denote by Z = Zfgh the set of integers such that j ≡ jo (mod p − 1) and set
Σ̄ = Σ × Z. For all w = (k, l,m) ∈ Σ let Ψw : GQp

→ L∗ be the composition of
Ψ with evaluation at w on Ofgh and define M(fk, gl,hm)f = M(f , g,h)f ⊗w L as
the base change of M(f , g,h) under evaluation at x on Ofgh, which is isomorphic to
L(Ψw)a for some positive integer a > 1. If x = (w, j) ∈ Σ̄ then evaluation at x on
Ōfgh induces a natural isomorphism of L[GQp

]-modules

ρx : M̄(f , g,h)f ⊗x L ∼= M(fk, gl,hm)f (−j).

If
Λfgh = Λf ⊗̂OΛg⊗̂OΛh

then
M(f , g,h)f = M(f , g,h)f [1/p]

for a Λfgh[GQp
]-module M(f , g,h)f , free of finite rank over Λfgh. Let Ẑnr

p = W (F̄p)
be the ring of Witt vectors of an algebraic closure of Fp and define

D(f , g,h)f =
(
M(f , g,h)f ⊗̂ZpẐ

nr
p

)GQp

[1/p]

and
D̄(f , g,h)f = D(f , g,h)f ⊗̂Qp

Ocyc.

(Note that D(f , g,h)f is naturally isomorphic to D(f)−⊗̂LD(g)+⊗̂LD(h)+, cf.
Equation (124).) As M(f , g,h)f is unramified and free over Λfgh, D(f , g,h)f is a free
Ofgh-module of the same rank as M(f , g,h)f . For all classical triples w = (k, l,m)
in Σ the specialisation maps (106) induce a natural isomorphism

ρw : D(f , g,h)f ⊗w L ∼= Dcris(M(fk, gl,hm)f )

Let to denote Fontaine’s p-adic analogue of 2πi, which depends on a fixed choice of a
compatible sequence ζp∞ of pn-th roots of unit for n > 0. The element t = t−1

o ⊗ζp∞ is
a canonical generator of Dcris(Qp(1)), and gives rise to a generator ti of Dcris(Qp(i))
for each i ∈ Z. For any x = (w, j) in Σ̄ define the isomorphism

(138) ρx : D̄(f , g,h)f ⊗x L ∼= Dcris

(
M(fk, gl,hm)f (−j)

)
.

by the formulae ρx(α⊗̂β) = β(j) ·ρw(α)⊗ t−j , for each α ∈ D(f , g,h)f and β ∈ Ocyc.
If j < 0 then the Bloch–Kato exponential map gives an isomorphism

expx : Dcris

(
M(fk, gl,hm)f (−j)

) ∼= H1(Qp,M(fk, gl,hm)f (−j)),
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and one writes logx for its inverse. If j > 0 denote by

exp∗x : H1(Qp,M(fk, gl,hm)f (−j)) −→ Dcris(M(fk, gl,hm)f (−j))

the Bloch–Kato dual exponential map. The following proposition is a consequence
of the work of Ochiai [Och03] and Loeffler–Zerbes [LZ14], which extends previous
work of Coleman–Perrin-Riou [Col79, PR94] (see also Theorem 8.2.3 of [KLZ17]).

Proposition 7.1. — There exists a unique morphism of Ōfgh-modules

L̄f : H1(Qp, M̄(f , g,h)f ) −→ D̄(f , g,h)f

such that for any x = (w, j) in Σ̄ with Ψw(Frobp) 6= p1+j and any Z in
H1(Qp, M̄(f , g,h)f ) one has

L̄f (Z )x =

(
1− pj

Ψw(Frobp)

)(
1− Ψw(Frobp)

p1+j

)−1

·

{
(−1)j+1

(−j−1)! logx(Zx) if j < 0

j! exp∗x(Zx) if j > 0
,

where L̄f (Z )x and Zx are shorthands for ρx ◦ L̄f (Z ) and ρx∗(Z ) respectively.

7.1.1. Ofgh-adic differentials. — Recall the Of -modules D∗(f)± (resp., D(f)±) in-
troduced in Equations (115) and (120) (resp., Equation (124)), and define similarly
D∗(ξ)± and D(ξ)± for ξ = g,h. Then (cf. Section 7.1)

D̄(f , g,h)f = D(f)−⊗̂LD(g)+⊗̂LD(h)+⊗̂QpOcyc,

and one defines dually

D̄∗(f , g,h)f = D∗(f)+⊗̂LD∗(g)−⊗̂LD∗(h)−⊗̂Qp
Ocyc,

so that the perfect dualities 〈·, ·〉ξ, for ξ = f , g,h (cf. Equation (125)) yield a pairing

(139) 〈·, ·〉fgh : D̄(f , g,h)f ⊗Ōfgh D̄
∗(f , g,h)f −→ Ōfgh.

Moreover, identifying Dcris(Qp(i)) = Qp · ti with Qp (i ∈ Z), the isomorphisms (116),
(121), (126) (and their analogues for g and h) give specialisation isomorphisms

(140) ρx : D̄(f , g,h)f ⊗x L ∼= Fil0VdR(fk)⊗L VdR(gl)/Fil0 ⊗L VdR(hm)/Fil0

and

(141) ρx : D̄∗(f , g,h)f ⊗x L ∼= V ∗dR(fk)/Fil1 ⊗L Fil1V ∗dR(gl)⊗L Fil1V ∗dR(hm),

for each classical 4-tuple x = (k, l,m, j) in Σ̄ with k, l,m > 2.
Define the Ōfgh-adic differential (cf. Equations (118) and (122))

(142) ηfωgωh = ηf ⊗ ωg ⊗ ωh ⊗ 1 ∈ D̄∗(f , g,h)f .

According to Equation (119), Equation (123), and the discussion following Equation
(126), for each x = (k, l,m, j) ∈ Σ̄ with k, l,m > 2 and each µ in D̄(f , g,h)f one has

(143) 〈µ, ηfωgωh〉fgh (x) = (p− 1)ap(k) ·
〈
ρx(µ), ηfk⊗ ωgl⊗ ωhm

〉
fkglhm

,

where 〈·, ·〉fkglhm is the product of the perfect dualities 〈·, ·〉ξ introduced in Equation
(32), for ξ equal to fk, gl and hm.
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Define the four-variable f -big logarithm

(144) L̄f = L̄og(f , g,h)
def
=
〈
L̄f (·), ηfωgωh

〉
fgh

: H1(Qp, M̄(f , g,h)f ) −→ Ōfgh

to be the composition of L̄f with the linear form 〈·, ηfωgωh〉fgh on D̄(f , g,h)f .
Mutatis mutandis the previous constructions apply after replacing f with a = g,h.

One obtains four-variable a-big logarithms L̄a : H1(Qp, M̄(f , g,h)a) −→ Ōfgh.

7.1.1.1. Weight-one specialisations. — With the notations introduced in the last
part of Section 5 (cf. Equations (127)–(129)), the isomorphisms (140) and (141) and
the definition of the pairing 〈·, ·〉fkglhm extend to all classical 4-tuples x = (k, l,m, j)

in Σ̄, independently on whether the weights k, l and m are geometric or not (id est
equal to 1). Moreover, if k > 2, Equation (143) still holds.

7.2. The balanced Selmer group. — Define the continuous character

Ξfgh : GQ −→ O∗fgh

by the formula

Ξfgh(g) = ωcyc(g)(4−ko−lo−mo)/2 · κcyc(g)(4−k−l−m)/2,

for every g in GQ, and the Ofgh[GQ]-representation

V (f , g,h) = V (f)⊗̂LV (g)⊗̂LV (h)⊗Ofgh Ξfgh.

Equations (103) and (114) imply that V (f , g,h) is Kummer self-dual: the product
of the perfect dualities [·, ·]ξ : V (ξ) ⊗Oξ V (ξ) −→ Oξ(1 + κUξ + χξ) defined by
[x, y]ξ = 〈x,w−1

Np(y)〉ξ yields a perfect, skew-symmetric duality (cf. Assumption 1.2)

[·, ·]fgh : V (f , g,h)⊗Ofgh V (f , g,h) −→ Ofgh(1),

whose adjoint identifies V (f , g,h) with its own Kummer dual. Moreover, for all
w = (k, l,m) in Σ the specialisation maps (106) induce isomorphisms

(145) ρw : V (f , g,h)⊗w L ∼= V (fk, gl,hm)

(cf. Equation (47)), where · ⊗w L denotes the base change under evaluation at w.
Define a decreasing filtration F ·V (f) on V (f) by F jV (f) = V (f) for every j 6 0,

F 1V (f) = V (f)+ and F jV (f) = 0 for j > 2, and similarly F ·V (g) and F ·V (h).
Let F ·V (f , g,h) be the tensor product filtration:

FnV (f , g,h) =

[ ∑
p+q+r=n

F pV (f)⊗̂LF qV (g)⊗̂LF rV (h)

]
⊗Ofgh Ξfgh.

This is a decreasing filtration of V (f , g,h) by Ofgh[GQp
]-submodules, satisfying

F 4V (f , g,h) = 0 and F 0V (f , g,h) = V (f , g,h). The annihilator of F iV (f , g,h)
under the duality [·, ·]fgh is equal to F 4−iV (f , g,h), hence the adjoint of [·, ·]fgh
induces isomorphisms of Ofgh[GQp

]-modules

(146) griV (f , g,h) ∼= HomOfgh(gr3−iV (f , g,h),Ofgh(1))

(where griV (f , g,h) = F iV (f , g,h)/F i+1). If one sets

V (f , g,h)f = V (f)−⊗̂LV (g)+⊗̂LV (h)+ ⊗Ofgh Ξfgh,
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and defines similarly V (f , g,h)g and V (f , g,h)h, then

(147) gr2V (f , g,h) = V (f , g,h)f ⊕ V (f , g,h)g ⊕ V (f , g,h)h

as Ofgh[GQp
]-modules. It follows form Equation (146) and the definitions that the

inertia subgroup IQp(µp) of the absolute Galois group of Q(µp) acts on gr3V (f , g,h)

and gr0V (f , g,h) via the characters κ(k+l+m−2)/2
cyc and κ(4−k−l−m)/2

cyc respectively. In
addition, Equations (146) and (147) show that gr2V (f , g,h) and gr1V (f , g,h) are
isomorphic respectively to the direct sum of a finite number of copies of

κ
l+m−k

2
cyc ⊕ κ

l+k−m
2

cyc ⊕ κ
k+m−l

2
cyc and κ

k−l−m+2
2

cyc ⊕ κ
m−l−k+2

2
cyc ⊕ κ

l−k−m+2
2

cyc

as IQ(µp)-modules (where κ•cyc = Ofgh(κ•cyc)). In particular, for each i ∈ Z one has

(148) H0(Qp, griV (f , g,h)) = 0.

Define the balanced local condition

H1
bal(Qp, V (f , g,h)) = H1(Qp,F

2V (f , g,h)).

In light of Equation (148), the morphism induced on the first GQp -cohomology groups
by the inclusion F 2V (f , g,h) ↪−→ V (f , g,h) is injective, hence we can, and will,
identify the balanced local condition with a submodule of H1(Qp, V (f , g,h)), namely

H1
bal(Qp, V (f , g,h)) = Im

(
H1(Qp,F

2V (f , g,h)) −→ H1(Qp, V (f , g,h))
)
.

For · = f, g, h, one denotes by p· both the natural GQp -equivariant projection

p· : F 2V (f , g,h) −� V (f , g,h)·

arising from Equation (147) and the morphism

p· : H1
bal(Qp, V (f , g,h)) −→ H1(Qp, V (f , g,h)·)

it induces in cohomology.
For all morphisms of L-algebras ϕ : Ofgh −→ Oϕ, set

Vϕ(f , g,h)· = V (f , g,h)· ⊗ϕ Oϕ and F ·Vϕ(f , g,h) = F ·V (f , g,h)⊗ϕ Oϕ,

denote again by by p· : Vϕ(f , g,h)� Vϕ(f , g,h)· the natural projections, and define

H1
bal(Qp, Vϕ(f , g,h)) = Im

(
H1(Qp,F

2Vϕ(f , g,h)) −→ H1(Qp, Vϕ(f , g,h))
)
.

If w = (k, l,m) is a triple in Σ and ϕ is evaluation at w, we identify Vϕ(f , g,h) with
V (fk, gl,hm) under the specialisation isomorphism ρw (cf. Equation (145)).

One has the following crucial lemma.

Lemma 7.2. — If w = (k,m, l) ∈ Σbal is a balanced classical triple, then

(149) H1
bal(Qp, V (fk, gl,hm)) = H1

fin(Qp, V (fk, gl,hm)),

where H1
fin(Qp, ·) is the Bloch–Kato finite local condition (cf. Lemma 3.5). As a

consequence, the Bloch–Kato exponential map gives an isomorphism

expp : VdR(fk, gl,hm)/Fil0 ∼= H1
bal(Qp, V (fk, gl,hm)).
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Proof. — Set V = V (fk, gl,hm), and consider the exact sequence of GQp
-modules

0 −→ F 2V −→ V −→ V/F 2 −→ 0.

The discussion preceding Equation (148) shows that F 2V has Hodge–Tate weights
k + l +m− 2

2
,
k + l −m

2
,
k +m− l

2
and

l +m− k
2

,

while V/F 2 has Hodge–Tate weights
k − l −m+ 2

2
,
l − k −m+ 2

2
,
m− k − l + 2

2
and

4− k − l −m
2

.

Since w is a balanced classical triple, it follows that all the Hodge–Tate weights of
F 2V (resp., V/F 2) are positive (resp., non-positive), hence

(150) tgdR(F 2V ) = DdR(F 2V ) and Fil0DdR(V/F 2) = DdR(V/F 2)

(where tgdR(·) = DdR(·)/Fil0). The second equality implies that H1
exp(Qp, V/F 2)

vanishes (cf. Corollary 3.8.4 of [BK90]), and since F 2V is isomorphic to the Kummer
dual of V/F 2, this in turn implies H1(Qp,F 2V ) = H1

geo(Qp,F 2V ) (cf. Proposition
3.8 of [BK90]). As H1

fin(Qp, V ) = H1
geo(Qp, V ) by Lemma 3.5, one deduces that

H1
fin(Qp, V ) contains the balanced subspace H1

bal(Qp, V ). On the other hand, Equa-
tion (150) shows that the inclusion F 2V ↪−→ V induces an isomorphism between the
tangent space of F 2V and that of V . It follows that H1

exp(Qp, V ) is contained in
the image of H1

exp(Qp,F 2V ), hence a fortiori in the balanced subspace H1
bal(Qp, V ).

Since H1
exp(Qp, V ) = H1

fin(Qp, V ) by Lemma 3.5, this concludes the proof of the first
statement. The second statement follows from the first and Lemma 3.5.

7.3. The three-variable big logarithms. — Let w = (k, l,m) be a classical
triple in Σ. If w ∈ Σbal is balanced, then the differential ηαfk⊗ ωgl⊗ ωhm belongs
to Fil0V ∗dR(fk, gl,hm) by Equation (53). In this case denote by

logp : H1
bal(Qp, V (fk, gl,hm)) ∼= VdR(fk, gl,hm)/Fil0

the inverse of the Bloch–Kato exponential (cf. Lemma 7.2), and define

logp(·)f = logp(·)
(
ηαfk⊗ ωgl⊗ ωhm

)
: H1

bal(Qp, V (fk, gl,hm)) −→ L

to be the composition of logp with evaluation on ηαfk⊗ ωgl⊗ ωhm . Here one identifies
VdR(fk, gl,hm)/Fil0 with the dual of Fil0V ∗dR(fk, gl,hm) under the product of the
perfect dualities 〈·, ·〉ξu introduced in Equation (31), for ξu = fk, gl,hm.

If w belongs to Σf denote by

exp∗p : H1(Qp, V (fk, gl,hm)) −→ Fil0VdR(fk, gl,hm)

the Bloch–Kato dual exponential map, and by

exp∗p(·)f = exp∗p(·)
(
ηαfk⊗ ωgl ⊗ ωhm

)
: H1(Qp, V (fk, gl,hm)) −→ L

its composition with evaluation at ηαfk ⊗ ωgl ⊗ ωhm . As above, here one identifies
Fil0VdR(fk, gl,hm) with a subspace of the dual of V ∗dR(fk, gl,hm) under the tensor
product of the pairings 〈·, ·〉ξu defined in (31) and (128). (If either l or m is equal to
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1, the definitions of VdR(fk, gl,hm) and V ∗dR(fk, gl,hm) given in Equations (50) and
(51) are understood in light of the conventions of Section 5, cf. Equation (127).)

To ease notation set αk = ap(k), βk = χf (p)pk−1/αk, αl = bp(l) et cetera. Recall
that for each classical triple w = (k, l,m) in Σ one writes cw = (k + l + m − 2)/2
(which belongs to N by Assumption 1.2).

Proposition 7.3. — There is a unique morphism of Ofgh-modules

Lf = Log(f , g,h) : H1
bal(Qp, V (f , g,h)) −→ Ofgh

such that, for all w = (k, l,m) ∈ Σ with αkβlβm 6= pcw and Z ∈ H1
bal(Qp, V (f , g,h))

Lf (Z)(w) = (p− 1)αk ·

(
1− βkαlαm

pcw

)
(

1− αkβlβm
pcw

) · { (−1)cw−k

(cw−k)! logp(Zw)f if w ∈ Σbal

(k − cw − 1)! exp∗p(Zw)f if w ∈ Σf
,

where Zw = ρw∗(Z). Moreover Lf factors through

pf∗ : H1
bal(Qp, V (f , g,h))→ H1(Qp, V (f , g,h)f ).

Proof. — Set M̄f = M̄(f , g,h)f , V = V (f , g,h) and Vf = V (f , g,h)f . Let

ϑ : Ōfgh −→ Ofgh

be the surjective morphism of L-algebras which sends the analytic function
F (k, l,m, j) to its restriction F (k, l,m, (k − l − m)/2) to the hyperplane de-
fined by the equation 2j = k − l −m. (Here we implicitly shrink the discs Uf , Ug
and Uh if necessary, in order to guarantee that (k − l −m)/2 takes values in the
disc Ucyc fixed in Section 7.1.) Unwinding the definitions one finds that ϑ induces an
isomorphism of Ofgh[GQp ]-modules (denoted by the same symbol)

(151) ϑ : M̄f ⊗ϑ Ofgh ∼= Vf .

We claim that this map entails an isomorphism

(152) ϑ∗ : H1(Qp, M̄f )⊗ϑ Ofgh ∼= H1(Qp, Vf ).

Granting this, one can define Lf by the composition

Lf : H1
bal(Qp, V (f , g,h))

pf∗−→ H1(Qp, V (f , g,h)f )

ϑ−1
∗−→ H1(Qp, M̄(f , g,h)f )⊗ϑ Ofgh

L̄f⊗id−→ Ofgh,

where L̄f is the four-variable f -big logarithm defined in Equation (144). Unravelling
the definitions, one checks that the interpolation property satisfied by Lf is a direct
consequence of Proposition 7.1. It then remains to prove the claim (152).

As M̄f is a free module over the domain Ōfgh, the claim (152) is equivalent to the
vanishing of the (2j − k + l+m)-torsion submodule of H2(Qp, M̄f ). Set

Λ̄ = Λfgh⊗̂ZpΛcyc,

where Λcyc is the Zp-module of functions in Ocyc bounded by one. The O-algebra
Λ̄fgh is isomorphic to a power series ring in four variables with coefficients in O.
In particular, it is a regular local complete Noetherian ring with finite residue field
(hence a UFD). Write M̄f = M̄f [1/p] for a Λ̄[GQp

]-module M̄f free of finite rank over
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Λ̄. For every discrete or compact Λ̄-module · write D(·) = Homcont(·,Qp/Zp) for its
Pontrjagin dual. According to the local Tate duality and the Pontrjagin duality

(153) H2(Qp, M̄f )[2j − k + l+m] = D
(
D(M̄f (−1))GQp

/
(2j − k + l+m)

)
[1/p].

Let Frobp be the arithmetic Frobenius in Gnr
p = Gal(Qnr

p /Qp) and let γ be a topo-
logical generator of Gtr

p = Gal(Qp(µp∞)/Qp) (recall that p is odd). By construction
(after identifying Gab

Qp
with the product of Gnr

p and Gtr
p ) Frobp acts on M̄f as multi-

plication by Ψo = Ψ(Frobp) and γ acts on M̄f (−1) as multiplication by the inverse of
Γo = ω1+jo

o · γ1+j
o , where ωo = ωcyc(γ) and γo = κcyc(γ). This yields

D(M̄f (−1))GQp
/

(2j − k + l+m) ∼=
a⊕
i=0

D

(
Λ̄

(Ψo − 1,Γo − 1)
[2j − k + l+m]

)
for some positive integer a (cf. Equation (137)). We prove that the module

Λ̄

(Ψo − 1,Γo − 1)
[2j − k + l+m]

is killed by a power of p, which together with Equation (153) proves the claim (152).
If jo 6= −1, the function Γo − 1 is a unit in Λcyc[1/p], hence Λ̄/(Ψo − 1,Γo − 1) is
killed by a power of p. Assume then jo = −1 and let F = F (w, j) be an element of
Λ̄ whose image in Λ̄/(Ψo − 1,Γo − 1) is killed by 2j − k + l+m. This implies that

(l+m− k − 2) · F (w,−1) = (Ψo(w)− 1) ·G(w)

for some G(w) in Λfgh. As jo = −1 there is a classical triple w = (k, l,m) ∈ Σ
such that l + m − k − 2 = 0 and such that p does not divide the conductor of fk, gl
and hm. According to the Ramanujan–Petersson conjecture the inverse of Ψo(w) has
complex absolute value √p for every such w (cf. Equation (136)). As a consequence
l+m−k− 2 is not an irreducible factor of Ψo− 1, hence the latter divides F (w,−1)
by the previous equation. This proves that F belongs to the ideal generated by Ψo−1
and j + 1. As (Γo − 1)/(1 + j) is a unit in Λcyc[1/p], it follows that pN(γo) · F maps
to zero in Λ̄/(Ψo − 1,Γo − 1) for a non-negative integer N(γo) independent of F , as
was to be shown.

We call Lf the three variable f -big logarithm. Mutatis mutandis, for a = g,h one
defines a-big logarithms

La : H1
bal(Qp, V (f , g,h)) −→ Ofgh,

which factor through pa∗ : H1
bal(Qp, V (f , g,h)) −→ H1(Qp, V (f , g,h)a) and satisfy

similar interpolation properties.

8. Proof of Theorem A

This section proves Theorem A stated in the Introduction.
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8.1. Construction of κ(f , g,h). — Fix a nonnegative integer ı > 1, which will be
made sufficiently large below. For ξ = f , g,h and · = ∅, ′ set A·ξ = A·Uξ,ı, A

·
ξ = A·Uξ,ı

D·ξ = D·Uf ,ı and D·ξ = D·Uξ,ı (cf. Section 4 for the relevant definitions). Similarly, for
any u ∈ Uξ ∩ Z, set A·u = A·u,ı, D·u = D·u,ı, A

·
u = A·u,ı and D·u = D·u,ı.

Set
(T× T)0 =

{
(t1, t2) ∈ T× T | det(t1, t2) ∈ Z∗p

}
,

where det((x1, x2), (y1, y2)) = x1y2−x2y1. Let (T×T)0 be the complement of (T×T)0

in T × T. Note that (T × T)0 and (T × T)0 are open compact subsets of T × T,
preserved by the diagonal action of Γ0(pZp). Identify Ag⊗̂Ah = Ag⊗̂OAh with a
space of locally analytic functions on T × T, homogeneous of weights κg = κUg and
κh = κUh in the first and second variable respectively. The orthonormal basis of
Ag⊗̂Ah arising from Remark 4.1 gives a decomposition of Γ0(pZp)-modules

Ag⊗̂Ah = (Ag⊗̂Ah)0 ⊕ (Ag⊗̂Ah)0,

where (Ag⊗̂Ah)0 and (Ag⊗̂Ah)0 consist in locally analytic functions supported on
(T × T)0 and (T × T)0 respectively. Let Λfgh = Λf ⊗̂OΛg⊗̂OΛh and define the
characters κ∗f : Z∗p → Λ∗fgh and κ∗fgh : Z∗p → Λ∗fgh by

κ∗f (u) = ω(u)(lo+mo−ko−2)/2 · 〈u〉(l+m−k−2)/2

and κ∗fgh(u) = ω(u)(ko+lo+mo−6)/2 · 〈u〉(k+l+m−6)/2

for every u = ω(u) · 〈u〉 in Z∗p = F∗p × 1 + pZp. (Recall by the discussion preceding
Equation (97) that κf (u) is equal to ω(u)ko−2 · 〈u〉k−2, and similarly for κg and κh.)
Here one uses Assumption 1.2, which guarantees that the quantity ko + lo +mo is an
even integer. Define similarly κ∗g and κ∗h, so that κ∗fgh = κ∗f + κ∗g + κ∗h (again with
additive notation). After noting that det : Z2

p × Z2
p → Zp maps T′ × T to Z∗p, let

Det = DetfghN,p : T′ × T× T −→ Λfgh

be the function which vanishes identically on T′×(T×T)0 and on an element (x,y, z)
in T′ × (T× T)0 takes the value

Det(x,y, z) = det(x,y)κ
∗
h · det(x, z)κ

∗
g · det(y, z)κ

∗
f .

Because κ∗g+κ∗h = κf , one has Det(u·x,y, z) = κf (u)·Det(x,y, z) for every u ∈ Z∗p,
hence for ı big enough Det(x,yo, zo) belongs to A′f for every (yo, zo) ∈ T × T.
Similarly Det(xo,y, zo) ∈ Ag and Det(xo,yo, z) ∈ Ah for every (xo, zo) ∈ T′ × T
and (xo,yo) ∈ T′ × T respectively. Moreover

Det(x · γ,y · γ,z · γ) = det(γ)κ
∗
fgh ·Det(x,y, z)

for every γ ∈ Γ0(pZp). As a consequence Det can be identified with an element of
A′f ⊗̂Ag⊗̂Ah(−κ∗fgh), which is invariant under the diagonal action of Γ0(pZp) (cf.
Section 4.2). Since the Γ0(pZp)-representation A′f ⊗̂Ag⊗̂Ah corresponds to the pro-
sheaf A′f ⊗ Ag ⊗ Ah on Y = Y1(N, p) under the functor ·ét (cf. loco citato) this
yields

(154) DetfghN,p ∈ H
0
ét(Y,A

′
f ⊗Ag ⊗Ah(−κ∗fgh)).
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Let Γ = Γ1(N, p) and let d : Y −→ Y 3 be the diagonal embedding. Define

(155) κ(f , g,h) =
1

ap(k)
· κ(f , g,h)o ∈ H1(Q, V (f , g,h)),

where
κ(f , g,h)o = AJfghét

(
DetfghN,p

)
is the image of the big invariant DetfghN,p under the big Abel–Jacobi map AJfghét defined
by the following composition.

H0
ét(Y,A

′
f⊗Ag ⊗Ah(−κ∗fgh))

d∗−→ H4
ét(Y

3,A′f �Ag �Ah(−κ∗fgh)⊗Zp Zp(2))

HS−→ H1
(
Q, H3

ét

(
Y 3
Q̄,A

′
f �Ag �Ah

)
(2 + κ∗fgh)

)
K−→ H1

(
Q, H1(Γ, A′f )⊗̂LH1(Γ, Ag)⊗̂LH1(Γ, Ah)(2 + κ∗fgh)

)
(156)

(wp⊗id⊗id)∗−→ H1
(
Q, H1(Γ, Af )⊗̂LH1(Γ, Ag)⊗̂LH1(Γ, Ah)(2 + κ∗fgh)

)
sfgh∗−→ H1

(
Q, H1(Γ, D′f )60⊗̂LH1(Γ, D′g)60⊗̂LH1(Γ, D′h)60(2− κ∗fgh)

)
prfgh∗−→ H1

(
Q, V (f)⊗̂LV (g)⊗̂LV (h)(−1− κ∗fgh)

)
= H1(Q, V (f , g,h)).

Here κ∗fgh : GQ → Λ∗fgh denotes the composition of κ∗fgh with the p-adic cyclotomic
character χcyc. The first arrow is the push-forward by the diagonal embedding d.
The morphism HS arises from the Hochschild–Serre spectral sequence and Equation
(80). (Note that H4

ét(Y
3
Q̄
,F ) vanishes for every pro-sheaf F ∈ S(Y 3

ét), as follows
easily from Equation (75) and [Mil80, Chapter VI, Theorem 7.2].) The map K comes
from the Künneth decomposition and the projection in Equation (79). The morphism
(wp⊗ id⊗ id)∗ is the one induced in cohomology by the GQ-equivariant Atkin–Lehner
operator wp : H1(Γ,A′f )→ H1(Γ,Af ) (cf. Sections 4.1.2 and 4.2). The penultimate
arrow sfgh∗ is induced by the tensor product of the morphisms of GQ-modules

H1(Γ, Aa) −� H1(Γ, Aa)60 sa−→ H1(Γ, D′a)60(−κUa)

for a = f , g,h, where the first map is the projection to the slope 6 0 part and
sa = sUa,0 is defined in Equation (83). Finally prfgh denotes the tensor product of
the GQ-equivariant projections pra defined in Equation (105).

8.2. Balanced specialisations of κ(f , g,h). — Let w = (k, l,m) ∈ Σbal be a
balanced triple of classical weights, let r = (k − 2, l − 2,m − 2) = w − 2, and let
r = (r1 + r2 + r3)/2. Recall the diagonal classes

κ̃Np,r ∈ H1
geo(Q,WNp,r) and κNp,r = sr∗(κ̃Np,r) ∈ H1

geo(Q, VNp,r)

introduced in Equations (43) and (46), and define the twisted diagonal class
(157)
κ†(fk, gl,hm) = prfkglhm∗

(
sr∗

(
(w′p ⊗ id⊗ id)∗

(
κ̃Np,r

)))
∈ H1

geo(Q, V (fk, gl,hm)).

Here prfkglhm is the projection defined in Equation (48) and

(w′p ⊗ id⊗ id)∗ : H1(Q(µp),WNp,r) −→ H1(Q(µp),WNp,r)
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is the map induced by the dual Atkin–Lehner operator

w′p : H1
ét(Y1(Np)Q̄,Sr1) ∼= H1

ét(Y1(Np)Q̄,Sr1)

(cf. Section 2.3.1) and the Künneth decomposition on WNp,r. A priori the class
κ†(fk, gl,hm) then lives in the geometric subgroup of H1(Q(µp), V (fk, gl,hm)). On
the other hand the forms fk, gl and hm have level Γ1(N, p) = Γ1(N)∩Γ0(p), hence the
cohomology class κ̃Np,r is in the image of the map induced in GQ-cohomology by the
pull-back H3

ét(Y1(N, p)3
Q̄
,S[r])(cw) −→ H3

ét(Y1(Np)3
Q̄
,S[r])(cw) = WNp,r. Because

the Atkin–Lehner operator w′p acting on H1
ét(Y1(N, p)Q̄,Sk−2) is GQ-equivariant,

this implies that κ†(fk, gl,hm) is fixed by the action of the Galois group of Q(µp)
over Q, hence can naturally be viewed as a geometric class in H1(Q, V (fk, gl,hm)).

With the notations already introduced one has the following

Theorem 8.1. — For each balanced triple w = (k, l,m) in Σbal one has

(p− 1)αfk · ρw
(
κ(f , g,h)

)
=

(
1−

αfkβglβhm
pr+2

)
· κ†(fk, gl,hm).

Before giving the proof of Theorem 8.1 we deduce the following

Corollary 8.2. — κ(f , g,h) lies in the balanced Selmer group H1
bal(Q, V (f , g,h)).

Proof. — By definition one has to prove that the class

resF ,p(κ(f , g,h)) ∈ H1(Q, V (f , g,h)/F 2V (f , g,h))

is zero, where resF ,p is the composition of the restriction at p and the map induced by
V (f , g,h) � V (f , g,h)/F 2. According to Proposition 3.2 for every balanced triple
w = (k, l,m) in Σbal one has

resp
(
κ†(fk, gl,hm)

)
∈ H1

geo(Qp, V (fk, gl,hm)).

Let Σobal be the set of (k, l,m) in Σbal such that p does not divide the conductors of
fk, gl and hm. One has

H1
geo(Qp, V (fk, gk,hm)) = ker

(
H1(Qp, V (fk, gl,hm))→ H1(Qp, V (fk, gl,hm)/F 2)

)
and

αfkβglβhm 6= pr+2

for all w = (k, l,m) in Σobal (by the Ramunajan–Petersson conjecture). The previous
two equations and Theorem 8.1 imply that the class resF ,p(κ(f , g,h)) specialises to
zero in H1(Qp, V (fk, gl,hm)/F 2) at every w in Σobal. Because Σobal is dense in Uf ×
Ug×Uh, to conclude the proof it is then sufficient to show thatH1(Qp, V (f , g,h)/F 2)
is Ofgh-torsion free (hence a submodule of a reflexive Ofgh-module), which implies
that

⋂
w∈Σobal

(k−k, l− l,m−m) ·H1(Qp, V (f , g,h)/F 2) = 0. This is a consequence
of the following claim. If ℘ ∈ Ofgh is irreducible and one sets O℘ = Ofgh/(℘), then

(158) H0(Qp, V (f , g,h)/F 2 ⊗Ofgh O℘) = 0.

The rest of the proof is then devoted to the proof of this claim.
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Section 7.2 shows that there is a short exact sequence of GQp(µp)-modules

O℘(θf )⊕a ⊕ O℘(θg)⊕a ⊕ O℘(θh)⊕a ↪−→ V (f , g,h)/F 2 ⊗Ofgh O℘ −� O℘(θfgh)⊕a,

where a is a positive integer and the characters θ· : GQp(µp) → O∗℘ are defined by

θfgh = κ(4−k−l−m)/2
cyc · ǎp(k) · b̌p(l) · čp(m),

θf = κ(k−l−m+2)/2
cyc · χf · b̌p(l) · čp(m) · ǎp(k)−1

and similarly for θg and θh. Set ℘fgh = 4−k−l−m, set ℘f = k−l−m+2 and define
similarly ℘g and ℘h. Denote by ℘a and θa one of ℘· and θ· respectively. If ℘ ·Ofgh is
different from one of the ideals ℘a ·Ofgh, then H0(IQp(µp), V (f , g,h)/F 2 ⊗Ofgh O℘)
is trivial and (158) holds true. Assume now ℘ = u · ℘a for a unit u in Ofgh, so that
θa is an unramified character of GQp(µp). According to the Ramanujan–Petersson
conjecture one has

|θa(Frobp)(w)| = √p
for all w ∈ Σobal ∩ V (℘) (where | · | is the complex absolute value and V (℘) is the zero
locus of ℘). Shrinking the discs U· if necessary, we can assume that Σobal ∩ V (℘) is
non-empty (otherwise ℘ would be a unit). The previous equation then implies that
the characters θ· are non-trivial and (158) follows.

Proof of Theorem 8.1. — According to [Mil06, Section II.7] for every n, i > 1 there
is a trace isomorphism

TraceY n : H2n+3
ét,c (Y n,O/mi(n+ 1)) ∼= O/mi.

(See Chapter II, Section 2 of loc. cit. for the definition of H ·ét,c(Y n, ·), denoted
H ·c(Y

n, ·) there.) For all finite smooth sheaves F of O/mi-modules on Y nét , TraceY n

and the cup-product define perfect pairings

(159) (·, ·)Y n = TraceY n ◦ ∪ : Hj
ét(Y

n,F )⊗L H2n+3−j
ét,c (Y n,G (n+ 1)) −→ O/mi,

where G is the dual of F (cf. Chapter II, Corollary 7.7 of [Mil06]). Denote by F ·u in
Sf (Yét) the sheaf associated to Fili,jA·u,ı for u > 0 and fixed j > i > 0, and by G ·u the
O/mi-dual of F ·u . One has a Hecke equivariant diagram of adjoint morphisms, where
the Hecke operators are defined by constructions similar to those of Section 2.3.
(160)

H0
ét(Y,F

′
r1 ⊗Fr2 ⊗Fr3(r))

d∗

��

× H5
ét,c(Y,G ′r1 ⊗ Gr2 ⊗ Gr3(2− r))

(·,·)Y // O/mi

H4
ét(Y

3,F ′r1 �Fr2 �Fr3(r + 2)) × H5
ét,c(Y 3,G ′r1 � Gr2 � Gr3(2− r))

d∗

OO

(·,·)Y 3 // O/mi

Let A·· and A·· be shorthands for A··,ı and A··,ı respectively. Similarly as above,
the orthonormal basis of Au⊗̂Av arising from Remark 4.1 gives a decomposition of
Γ0(pZp)-modules

Au⊗̂Av = (Au⊗̂Av)0 ⊕ (Au⊗̂Av)0,
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where (Ar⊗̂As)0 (resp., (Ar⊗̂As)0) can be identified with a space of locally analytic
functions on T × T supported on (T × T)0 (resp., (T × T)0). This in turn induces
similar decompositions

Fu ⊗Fv = (Fu ⊗Fv)0 ⊕ (Fu ⊗Fv)
0 and Gu ⊗ Gv = (Gu ⊗ Gv)0 ⊕ (Gu ⊗ Gv)

0.

Let t : Y1(Np) → Y1(N, p) = Y be the natural projection. To ease notations, let
Det ∈ H0

ét(Y,A
′
r1 ⊗Ar2 ⊗Ar3(r)) denote the image of DetrNp under the composition

of the push-forward t∗ with the natural map

H0
ét(Y,Sr1 ⊗Sr2 ⊗Sr3(r)) −→ H0

ét(Y,A
′
r1 ⊗Ar2 ⊗Ar3(r)).

For j = j(i) large enough, let D = Dri,j ∈ H0
ét(Y,F

′
r1 ⊗Fr2 ⊗Fr3(r)) be a represen-

tative of Det(mod mi) (cf. Section 4.2), and let D0 = Dri,j,0 be its projection to the
cohomology group H0

ét(Y,F
′
r1 ⊗ (Fr2 ⊗Fr3)0(r)). By construction

(161) (p− 1) · ρw(Det) = lim
←i

Dri,j,0.

For all z in H5
ét,c(Y 3,G ′r1�Gr2�Gr3(2−r)) one has the equalities (cf. Equation (160))(

d∗(D− D0), 1⊗ U⊗2
p (z)

)
Y 3 =

(
D− D0, d

∗(1⊗ U⊗2
p (z)

))
Y

=
(
D− D0, δ

∗(1⊗ δ∗(1⊗ U⊗2
p (z)

)))
Y

= (D, δ∗(1⊗ Up(1⊗ δ∗(z))))Y(162)

= pr−r1 ·
(
D, δ∗

(
U ′p ⊗ 1 (1⊗ δ∗(z))

))
Y

= pr−r1 ·
(
D, d∗

(
U ′p ⊗ 1⊗ 1(z)

))
Y

= pr−r1 ·
(
d∗(D), U ′p ⊗ 1⊗ 1(z)

)
Y 3 ,

where δ : Y → Y 2 is the diagonal embedding. To justify the third equality one notes
that

1⊗ δ∗ ◦ 1⊗ U⊗2
p − 1⊗ Up ◦ 1⊗ δ∗

(resp., 1⊗Up ◦1⊗δ∗) takes values in the submodule H5
ét,c(Y,G ′r1⊗(Gr2⊗Gr3)0(2−r))

(resp., inH5
ét,c(Y,G ′r1⊗(Gr2⊗Gr3)0(2−r))), and thatH5

ét,c(Y,G ′r1⊗(Gr2⊗Gr3)0(2−r)) is
orthogonal toH0

ét,c(Y,F ′r1⊗(Fr2⊗Fr3)0(r)). (Compare with the proof of Proposition
5.4 of [GS20].)

All the other equalities in Equation (162) but the fourth are standard. To prove the
remaining equality, let π : Y → Spec(Z[1/Np]) and π = π× π : Y 2 → Spec(Z[1/Np])
be the structural maps. Let Rπ! and Rπ! be the δ-functors associated in [FK88,
Chapter I, Definition 8.6] with the compactifiable maps π and π, so that by definition
Hq

ét,c(Y, ·) = Hq
ét,c(Z[1/Np], Rπ!·) and Hq

ét,c(Y 2, ·) = Hq
ét,c(Z[1/Np], Rπ!·) for any

q > 0 (cf. Section II.7 of [Mil06]). If G denotes the étale sheaf G ′r1�(Gr2⊗Gr3)(2−r)
on Y 2, one can lift the Hecke operators 1⊗Up and U ′p⊗1 onH ·ét,c(Y 2,G ) to morphisms
(denoted by the same symbols) Rπ!G −→ Rπ!G (cf. Section 2.3). The diagonal
embedding δ∗ : Y −→ Y 2, the morphism of sheaves

β : δ∗G = G ′r1 ⊗ Gr2 ⊗ Gr3 (2− r) −→ O/mi(2)
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defined by the cup product with D, and the trace morphism

trY : Rπ!O/m
i(2) −→ O/mi[−2]

(see the discussion preceding Theorem 7.6 in [Mil06, Chapter II, Section 7]) induce
a map ϑ = trY ◦ β ◦ δ∗ : Rπ!G −→ O/mi[−2]. In order to prove the forth equality
in Equation (162) it is then sufficient to prove that the composition Ξ = ϑ ◦ 1 ⊗ Up
agrees with Ψ = χ̄f (p)pr−r1 · ϑ ◦ U ′p ⊗ 1. By using the Künneth isomorphism

Rπ!G ∼= Rπ!G
′
r1 ⊗

L
O Rπ!(Gr2 ⊗ Gr3(2− r)),

the sought for equality Ξ = Ψ follows from the same formal computation as in the
proof of Proposition 2.9 of [GS20].

Since the operators 1⊗U⊗2
p and U ′p⊗1⊗1 acting on H5

ét,c(Y 3,G ′r1�Gr2�Gr3(2−r))
are the adjoints under (·, ·)Y 3 of the operators 1 ⊗ U⊗2

p and U ′p ⊗ 1 ⊗ 1 acting on
H4

ét(Y
3,F ′r1 �Fr2 �Fr3(r + 2)), and since (·, ·)Y 3 is perfect, Equation (162) yields

(1⊗ Up ⊗ Up) ◦ d∗(D− D0) = pr−r1 · (U ′p ⊗ 1⊗ 1) ◦ d∗(D).

In light of Equation (161), this implies

(p− 1) · (1⊗ Up ⊗ Up) ◦ K ◦ HS ◦ d∗ ◦ ρw(Det)(163)

=
(
1⊗ Up ⊗ Up − pr−r1 · U ′p ⊗ 1⊗ 1

)
◦ K ◦ HS ◦ d∗(Det)

in H1
ét

(
Q, H1(Γ, A′r1)⊗̂LH1(Γ, Ar2)⊗̂LH1(Γ, Ar3)(r+2)

)
, where A·u is a shorthand for

A·u,ı, and the morphisms K, HS and d∗ are defined as in Equation (156), after replacing
the big étale sheaf A′f ⊗Ag ⊗Ah with A′r1 ⊗Ar2 ⊗Ar3 . To ease notations write ♥
(resp., ♠) for the left (resp., right) hand side of Equation (163).

For each nonnegative integer u and Fu = Su,Lu, let

H1
ét(Y1(Np)Q̄,Fu)o ↪−→ H1

ét(Y1(Np)Q̄,Fu)L

be the L-direct summand on which the diamond operator 〈d〉 acts trivially for each
integer d coprime to p and congruent to one modulo N , so that the pull-back t∗

yields an isomorphism between H1
ét(YQ̄,Fu)L and H1

ét(Y1(Np)Q̄,Fu)o, with inverse
1
p−1 times the push-forward t∗. For · = ∅, ′ denote by

c·u : H1
ét(Y1(Np)Q̄,Su)o −→ H1(Γ, A·u)

the composition of t∗ with the comparison morphism introduced in Equation (72).
By construction

(c′r1⊗̂cr2⊗̂cr3)∗ ◦ K (κ̃Np,r) = K ◦ HS ◦ d∗(Det)

(where the morphism K which appear in the left hand side refers to the Künneth
decomposition of WNp,r = H3

ét(Y1(Np)Q̄,S[r])(r + 2)), hence

♠ = (c′r1⊗̂cr2⊗̂cr3)∗ ◦
(
1⊗ U ′p ⊗ U ′p − pr−r1 · Up ⊗ 1⊗ 1

)
◦ K (κ̃Np,r)

(cf. the discussion following Equation (72)). Since wp ◦ c′u = cu ◦ w′p, where w′p
is the Atkin–Lehner operator defined in Section 2.3.1 and wp is the one defined in
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Equation (66), and since w′pUp = 〈p〉N U ′pw′p as endomorphisms of H1
ét(Y1(Np)Q̄,Su),

one deduces

(164) wp,f∗(♠) = cr∗ ◦
(
1⊗ U ′p ⊗ U ′p − pr−r1 · 〈p〉N U

′
p ⊗ 1⊗ 1

)
◦ w′p,f∗ ◦ K (κ̃Np,r),

where wp,f = wp ⊗ id⊗ id, w′p,f = w′p ⊗ id⊗ id and cr = cr1⊗̂cr2⊗̂cr3 .
Taking h = 0 and replacing AU and D′U with Au and D′u (for u ∈ N) respectively in

the definition of the map sU,h (cf. Equation (83)) yields a GQ-equivariant morphism

su,0 : H1(Γ, Au)60(u) −→ H1(Γ, D′u)6
′0,

which intertwines the action of Up on the source with that of U ′p on the target. If

compu : H1(Γ, D′u)6
′0 −→ H1

ét(Y1(Np)Q̄,Lu)6
′0

o

denotes the composition of t∗ : H1
ét(YQ̄,Lu)L −→ H1

ét(Y1(Np)Q̄,Lu)o with the com-
parison isomorphism defined in Equation (73), then (cf. Equation (44))

(165) compu ◦ su,0 ◦ cu =
1

p− 1
· su∗

as maps from H1
ét(Y1(Np),Su)6

′0
L (u) to H1(Γ,Lu)6

′0
L . Set sr,0 = sr1,0⊗sr2,0⊗sr3,0

and compr = compr1 ⊗ compr2 ⊗ compr3 . It then follows from Equation (164) and
the definition of the twisted diagonal class κ†(fk, gl,hm) that the equality
(166)

prfkglhm∗ ◦compr∗ ◦sr,0∗ ◦wp,f∗(♠) =
αglαhm
p− 1

(
1−

χ̄f (p)pr−r1αfk
αglαhm

)
·κ†(fk, gl,hm)

holds in H1
ét(Z[1/Np], V (fk, gl,hm)). (Here prfkglhm is the tensor product of the

projections pr· defined in Equation (23), for · equal to fk, gl and hm.)
By construction, one has

K ◦ HS ◦ d∗ ◦ ρw(Det) = ρw ◦ K ◦ HS ◦ d∗(Det),

where the maps K, HS and d∗ which appear in the right hand side are the ones in-
troduced in Equation (156). Since the maps ρw and compr are Hecke-equivariant,
and since su,0 intertwines the action of Up on H1(Γ, Au)60 with that of U ′p on
H1(Γ, D′u)6

′0 (for each nonnegative integer u), it follows that

(167) ♦ = (p− 1)αglαhm · prfkglhm ◦ compr∗ ◦ sr,0∗ ◦ wp,f∗ ◦ ρw ◦ K ◦ HS ◦ d∗(Det),

where one defines

♦ = prfkglhm∗ ◦ compr∗ ◦ sr,0∗ ◦ wp,f∗(♥).

One has wp,f∗ ◦ρw = ρw ◦wp,f∗. Moreover the diagram (84) and Equation (165) yield

compu ◦ su,0 ◦ ρu+2 =
1

p− 1
· su∗ ◦ c−1

u ◦ ρu+2 =
1

p− 1
· compu ◦ ρu+2 ◦ sUξ,0

as morphisms fromH1(Γ, Aξ)
60(κξ) −→ H1

ét(Y1(Np)Q̄,Lu)6
′0

o , for (ξ, u) equal to one
of the pairs (f , k−2), (g, l−2) and (h,m−2), (cf. the discussion following the diagram
(84)). (With a slight abuse of notation, in the previous equation one writes c−1

u for the
inverse of the isomorphism between H1

ét(Y1(Np)Q̄,Su)6
′0

o and H1(Γ, Au)60 induced
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by cu.) Finally, with the notations introduced in Equations (105) and (106), one has
the following equality of GQ-equivariant maps from H1(Γ, D′ξ)

60(1) to V (fk):

prξu ◦ compu ◦ ρu+2 = ρu+2 ◦ prξ.

It then follows from Equation (167) and the definitions of (♦ and) κ(f , g,h)o that

(168) prfkglhm∗ ◦ compr∗ ◦ sr,0∗ ◦ wp,f∗(♥) = αglαhm · ρw
(
κ(f , g,h)o

)
.

As χfχgχh = 1 by Assumption 1.2, and by definition αglβgl = χg(p)pr2+1,
αhmβhm = χh(p)pr3+1 and 2r = r1 + r2 + r3, the theorem follows from Equations
(163), (166) and (168). (Recall that κ(f , g,h)o = ap(k) · κ(f , g,h).)

8.3. p-stabilisation of diagonal classes. — Write in this section

Y1(M) = Y1(M)Q,

for every integer M > 3. Recall the degeneracy maps pri : Y1(Np) → Y1(N), for
i = 1, p, defined in Section 2.2.

Let w ∈ Σbal and r = w − 2 be as in the previous section. Assume k, l,m > 3
and that p does not divide the conductors of fk, gl and hm. As in Section 6 let
f = fk (resp., g = gl and h = hm) be the cusp form of weight k (resp., l, m), level
Γ1(N) and character χf (resp., χg, χh) whose ordinary p-stabilisation is fk (resp.,
gl, hm). It is an eigenvector for the Hecke operator T`, with the same eigenvalue as
fk (resp., gl, hm), for every prime ` - Np, and an eigenvector for Tp with eigenvalue
ap(f) = αfk + βfk (resp., ap(g) = αgl + βgl , ap(h) = αhm + βhm). Assume without
loss of generality that βa belongs to L for a = fk, gl,hm, and denote by

Πα
r∗ : VNp,r ⊗Qp

L −→ VN,r ⊗Qp
L

the morphism (cf. Equations (20) and (45))

Πα
r∗ =

(
pr1∗ −

βfk
pk−1

· prp∗

)
⊗
(

pr1∗ −
βgl
pl−1

· prp∗

)
⊗
(

pr1∗ −
βhm
pm−1

· prp∗

)
.

(169)

A direct computation shows that the composition prfgh ◦ Πα
r∗ factors through the

projection prfkglhm , hence Πα
r∗ induces a morphism

Πα
fkglhm∗ : V (fk, gl,hm) −→ V (fk, gl, hm)

of L[GQ]-modules, which is indeed an isomorphism (see Equation (48) for the defini-
tion of the projections prfgh and prfkglhm). Note that r = (r1, r2, r3) and (fk, gl, hm)

satisfy Assumption 3.1 and Assumption 3.4 respectively, hence the class κ(fk, gl, hm)
in H1(Q, V (fk, gl, hm)) is defined. Denote again by

Πα
fkglhm∗ : H1(Q, V (fk, gl,hm))→ H1(Q, V (fk, gl, hm))

the morphism induced in Galois cohomology by Πα
fkglhm∗.
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Proposition 8.3. — Assume k, l,m > 3 and that p does not divide the conductors
of fk, gl and hm. Then

Πα
fkglhm∗

(
κ†(fk, gl,hm)

)
is equal to

(p− 1)αfk

(
1−

βfkαglβhm
pr+2

)(
1−

βfkβglαhm
pr+2

)(
1−

βfkβglβhm
pr+2

)
· κ(fk, gl, hm).

Proof. — Fix a geometric point η : Spec(C)→ Y (1, N(p)), corresponding to the class
of z in H under the isomorphism (6). With a slight abuse of notation denote again by
η the complex point νp ◦ η : Spec(C) → Y (1, N), and by η̌ both the complex points
ϕp ◦ η : Spec(C) → Y (1(p), N) and ν̌p ◦ ϕp ◦ η : Spec(C) → Y (1, N). Then η and η̌
correspond respectively to the classes of z and p · z under the analytic isomorphisms
(6). With the notations of Section 2.3 (see in particular the diagram (9)) write

T(p) = R1v1,N(p)∗Zp(1), T (p) = R1v1(p),N∗Zp(1) and T = R1v1,N∗Zp(1)

for the relative Tate modules of E(1, N(p)) → Y (1, N(p)), E(1(p), N) → Y (1(p), N)
and E(1, N) → Y (1, N) respectively (cf. Section 2.3). There are then natural iso-
morphisms

(170) T(p),η
∼= Zp ⊕ Zp · z ∼= Tη and T

(p)
η̌
∼= Zp ⊕ Zp · pz ∼= Tη̌.

Here the subscripts η and η̌ denote the stalks at η and η̌ respectively, and for each ω
in H one writes

Zp ⊕ Zp · ω = H1(C/Λω,Z)⊗Z Zp

for the p-adic completion of the integral homology of the complex elliptic curve C/Λω,
where Λω = Z⊕Z ·ω. As in Sections 3 and 4.2, after identifying T(p),η with Zp ⊕Zp
under the Zp-basis {1, z}, the natural action of the étale fundamental group G(p) =

πét
1 (Y (1, N(p)), η) (resp., G(p) = πét

1 (Y (1(p), N), η̌)) on T(p),η (resp., T
(p)
η̌ ) gives a

continuous representation %(p) : G(p) → Γ(1, N(p)) ⊗Z Zp ↪→ GL2(Zp) (%(p) : G(p) →
Γ(1(p), N)⊗Z Zp ↪→ GL2(Zp)), where Γ(1, N(p)) (resp., Γ(1(p), N)) is the subgroup
of matrices in

(
a b
c d

)
in SL2(Z) with c ≡ 0, d ≡ 1 (mod N) and c ≡ 0 (mod p) (resp.,

b ≡ 0 (mod p)). For each i > 0 set

S(p),i = Symmi
ZpT(p)(−1) and S

(p)
i = Symmi

ZpT
(p)(−1),

where as in Section 2.3 the Tate twists T(p)(−1) and T (p)(−1) are identified with
the duals of T(p) and T (p) under the Weil pairings on E(1, N(p)) and E(1(p), N)

respectively. Then the stalks of S(p),i and S
(p)
i at η and η̌, viewed as representations

of G(p) and G(p) respectively, correspond via %(p) and %(p) to the Γ(1, N(p))-module
Si = Si(Zp) and the Γ(1(p), N)-module Si (cf. Section 3). As a consequence, for each



RECIPROCITY LAWS FOR BALANCED DIAGONAL CLASSES 67

j > 0 and u ∈ Z there is a natural inclusion (cf. Section 4.2)

(171) H0(Γ(1, N(p)), Si ⊗ det−u) // H0(G(p), Si ⊗ det−u)

H0
ét(Y (1, N(p)),S(p),i ⊗Zp Zp(u)),

and an isomorphism

Hj
ét(Y (1, N(p))Q̄,S(p),i) ∼= Hj(Γ(1, N(p)), Si),

and similarly for the data (Γ(1(p), N),G(p),S
(p)
i ) in place of (Γ(1, N(p)),G(p),S(p),i).

As already explained in Section 3, there are similar isomorphisms after replacing %(p)

with the representations % : G → GL2(Zp) (resp., %̌ : Ǧ → GL2(Zp)) arising from the
action of G = πét

1 (Y (1, N), η) (resp., Ǧ = πét
1 (Y (1, N), η̌)) on the stalk at η (resp., η̌)

of Si = Si(Zp). Under these isomorphisms, the maps

λip∗ = (λip∗)η̌ : Si ∼= (S(p),i)η −→ (S
(p)
i )η̌ ∼= Si(172)

and λi∗p = (λi∗p )η : Si ∼= (S
(p)
i )η̌ −→ (S(p),i)η ∼= Si

induced respectively on the stalks at η̌ and η by the morphisms (16) are given by

(173) λip∗(P ) =

(
1 0
0 p

)
· P and λi∗p (P ) =

(
p 0
0 1

)
· P,

for P in Si. Indeed the base change λη̌ : C/Λz = E(1, N(p))×η C −→ E(1(p), N)×η̌
C ∼= C/Λpz of the p-isogeny λp along η̌ is induced by multiplication by p on C, hence
the map λη̌∗ : T (p) −→ T(p) it induces on the Tate modules is represented by

(
p 0
0 1

)
,

once one identifies T(p) and T (p) with Z2
p under the Zp-bases {1, z} and {1, pz} (cf.

Equation (170)). Because the dual isogeny λ′η̌ of λη̌ is the map C/Λpz → C/Λz
induced by the identity on C, and λη̌∗ and λ′η̌∗ are adjoint to each other under the
Weil pairings on C/Λz and C/Λpz, Equation (173) follows.

After this preliminary discussion, we divide the proof into three steps. For each
triple i, j, k of elements of {1, p} write

prijk∗ = pri∗ ⊗ prj∗ ⊗ prk∗ : ZNp,r(n)→ ZNp,r(n),

for n ∈ Z and Z = V or Z = W , and denote by the same symbol the map they induce
in GQ-cohomology. For any curve X over Q write d : X −→ X3 for the diagonal
embedding.

Step 1. One has the identities in H1(Q, VN,r(r + 2)):

(174) pr111∗(κNp,r) = (p2 − 1) · κN,r and prppp∗(κNp,r) = (p2 − 1)pr · κN,r.

As the element Detr = DetrN is invariant under GL2(Zp), it defines under the
inclusion (171) an element Detr in H0

ét(Y (1, N(p)),S(p),i(r)), and similarly elements
(denoted by the same symbol) in H0

ét(Y (1(p), N),S(p),i(r)) and H0
ét(Y (1, N),Si(r)).

According to Equation (173) and the definition of Detr in Equation (41) one has

(175) λrp∗(Detr) = pr ·Detr,
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where λrp∗ = λr1p∗ ⊗ λr2p∗ ⊗ λr3p∗ ⊗ id : Sr ⊗ det−r → Sr ⊗ det−r, hence (since ν̌p has
degree p+ 1)

ν̌p∗ ◦ ϕp∗ ◦ λrp∗(Detr) = (p+ 1)pr · Detr ∈ H0
ét(Y (1, N),Sr(r)).

Retracing the definitions of Section 2.3 and using Equation (21) this gives

prp∗(Det
r) = (p2 − 1)pr · Detr.

The previous equation and the functoriality of the Hochschild–Serre spectral sequence
implies (cf. Section 3)

prppp∗(κNp,r) = sr∗◦HS◦prppp∗◦d∗(Detr) = sr∗◦HS◦d∗◦prp∗(Det
r) = (p2−1)pr ·κN,r.

This proves the second identity in Equation (174). The first one is proved by a similar
(and simpler) argument.

Step 2. The following identities hold in H1(Q, VN,r(r + 2)):
(176)
prp11∗(κNp,r) = (p− 1) · Tp ⊗ id⊗ id(κN,r); pr1pp∗(κNp,r) = (p− 1)pr−r1 · T ′p ⊗ id⊗ id(κN,r);

pr1p1∗(κNp,r) = (p− 1) · id⊗ Tp ⊗ id(κN,r); prp1p∗(κNp,r) = (p− 1)pr−r2 · id⊗ T ′p ⊗ id(κN,r);

pr11p∗(κNp,r) = (p− 1) · id⊗ id⊗ Tp(κN,r); prpp1∗(κNp,r) = (p− 1)pr−r3 · id⊗ id⊗ T ′p(κN,r).

We prove the second identity in the first line. Note that the finite étale cover ν̌p is
not Galois. To remedy this let ϑ : Y −→ Y (1, N) be a finite étale Galois morphism
which factors through ν̌p ◦ ϕp : Y (1, N(p)) −→ Y (1, N), say ϑ = ν̌p ◦ ϕp ◦ α with
α : Y −→ Y (1, N(p)). Denote by G = Gal(ϑ) its Galois group. For each u > 1
denote by πu1∗ = νp∗ : H1(Y (1, N(p)),S(p),u) → H1(Y (1, N),Su), and similarly set
πu∗1 = ν∗p . Set

πup∗ = ν̌p∗ ◦ ϕp∗ ◦ λup∗,
πu∗p = λu∗p ◦ ϕ∗p ◦ ν̌∗p ,
πr∗ijk = πr1∗i ⊗ πr2∗j ⊗ πr3∗k

and πrijk∗ = πr1i∗ ⊗ π
r2
j∗ ⊗ π

r3
k∗,

where i, j, k is any triple of elements of {1, p}. Moreover for each morphism a : X → Y
of curves over Q write a = a×Q a×Q a : X3 → Y 3. With these notations it follows
directly from the definitions that

(177) πr1pp∗ ◦ πr∗ppp = (p+ 1)2pr2+r3 · T ′p ⊗ id⊗ id.

On the other hand, after setting

κ?Np,r = sr∗ ◦ HS ◦ d∗ ◦ ϑ∗(Detr),

one has (p+ 1) deg(α) · κN,r = ϑ∗(κ
?
Np,r), hence

(p+ 1) deg(α)4 · πr∗ppp(κN,r) = λr∗p ◦α∗ ◦ ϑ
∗ ◦ ϑ∗(κ?Np,r)

=
∑

(g1,g2,g3)∈G3

λr∗p ◦α∗ ◦ (g1 × g2 × g3)∗(κ
?
Np,r).
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For each g, h ∈ G one has πrip∗ ◦ λri∗p ◦ α∗ ◦ g∗ = pri · ϑ∗ = pri · ϑ∗ ◦ h∗, hence the
previous equation yields

(p+1) deg(α)4 · πr1pp∗ ◦ πr∗ppp(κN,r)

(178)

= pr2+r3
∑

(g1,g2,g3)∈G3

(
νp∗ ◦ λr1∗p ⊗ ν̌p∗ ◦ ϕp∗ ⊗ ν̌p∗ ◦ ϕp∗

)
◦α∗ ◦ g1∗(κ

?
Np,r)

= (p+ 1)3pr2+r3 deg(α)4 · (νp∗ ⊗ ν̌p∗ ◦ ϕp∗ ⊗ ν̌p∗ ◦ ϕp∗) ◦ (λr1∗p ⊗ id⊗ id)(κ•Np,r),

where κ•Np,r = sr∗ ◦HS ◦d∗ ◦ (ν̌p ◦ϕp)∗(Detr). According to Equations (41) and (173)

λrp∗(κ
•
Np,r) = λr1p∗ ⊗ λr2p∗ ⊗ λr3p∗(κ•Np,r) = pr · κ•Np,r

and λr1∗p ◦ λr1p∗(P ) =

(
p 0
0 p

)
· P = pr1 · P,

for P in Sr1 , hence (since 2r = r1 + r2 + r3) one can rewrite Equation (178) as

(179) πr1pp∗ ◦ πr∗ppp(κN,r) = (p+ 1)2pr · πr1pp∗(κ•Np,r).

(Note that, regarding the natural isomorphism of Equation (171) and its analogue for
Y (1, N(p)) as equalities, the pullback by ν̌p ◦ ϕp is identified with the identity.) In
addition Equation (8) gives

(180) pr1pp∗(κNp,r) = πr1pp∗ ◦ µp∗(κNp,r) = (p− 1) · πr1pp∗(κ•Np,r).

Equations (177), (179) and (180) finally give

(p+ 1)2pr · pr1pp∗(κNp,r) = (p− 1)(p+ 1)2pr2+r3 · T ′p ⊗ id⊗ id(κN,r).

This proves the second identity in the first line of Equation (176). The other equalities
in the second column (resp., the equalities in the first column) are proved by a similar
(resp., similar and simpler) argument.

Step 3. We can now conclude the proof of the proposition.
Applying the projector prfkglhm (see Equation (48)) to the identities (174) and

(176) gives

pr111∗(κNp,r)fgh = (p2 − 1) · κ(f, g, h);

prppp∗(κNp,r)fgh = pr(p2 − 1) · κ(f, g, h);

prp11∗(κNp,r)fgh = (p− 1)χ̄f (p)ap(f) · κ(f, g, h);

pr1pp∗(κNp,r)fgh = (p− 1)pr−r1ap(f) · κ(f, g, h);(181)
pr1p1∗(κNp,r)fgh = (p− 1)χ̄g(p)ap(g) · κ(f, g, h);

prp1p∗(κNp,r)fgh = (p− 1)pr−r2ap(g) · κ(f, g, h);

pr11p∗(κNp,r)fgh = (p− 1)χ̄h(p)ap(h) · κ(f, g, h);

prpp1∗(κNp,r)fgh = (p− 1)pr−r3ap(h) · κ(f, g, h).

Here (f, g, h) = (fk, gl, hm), prijk∗(κNp,r)fgh is a shorthand for the image of
prijk∗(κNp,r) under prfgh∗ = prfkglhm∗, and we used the identity T ′p = Tp ◦ 〈p〉′ as



70 MASSIMO BERTOLINI, MARCO ADAMO SEVESO, AND RODOLFO VENERUCCI

endomorphisms of H1
ét(Y1(N)Q̄,Li(j))Qp

. Because the map

si : H1
ét(Y1(Np)Q̄,Si)→ H1

ét(Y1(Np)Q̄,Li)(−i)

intertwines the action of the dual Atkin–Lehner operators w′p on both sides, it follows
from the definitions that

(182) Πα
fgh∗

(
κ†(fk, gl,hm)

)
= prfgh∗

(
Πα
r∗

((
w′p ⊗ id⊗ id

)
∗(κNp,r)

))
.

It it easily checked that

prp∗ ◦ w′p = pi · pr1∗ and pr1∗ ◦ w′p = 〈p〉′ · prp∗

as morphisms from H1
ét(Y1(Np)Q̄,Li) to H1

ét(Y1(N)Q̄,Li). As a consequence, setting
〈p〉′f = 〈p〉′ ⊗ id⊗ id and writing αf = αfk , βf = βfk , αg = αgl et cetera, one has

Πα
r∗ ◦

(
w′p ⊗ id⊗ id

)
=

(
〈p〉′ · prp∗ −

βf
p
· pr1∗

)
⊗
(

pr1∗ −
βg
pr2+1

· prp∗

)
⊗
(

pr1∗ −
βh
pr3+1

· prp∗

)
= 〈p〉′f · prp11∗ −

βf
p
· pr111∗ −

βg 〈p〉′f
pr2+1

· prpp1∗ −
βh 〈p〉′f
pr3+1

· prp1p∗ +
βfβg
pr2+2

· pr1p1∗

+
βfβh
pr3+2

· pr11p∗ +
βgβh 〈p〉′f
pr2+r3+2

· prppp∗ −
βfβgβh
pr2+r3+3

· pr1pp∗.

Together with Equations (181) and (182) this yields

Πα
fgh∗

(
κ†(fk, gl,hm)

)
= (p− 1) · Ef (f, g, h) · κ(f, g, h),

where (recalling that ap(ξ) = αξ + βξ and αξβξ = χξ(p)p
s−1 for ξ ∈ Ss(N,χξ), that

2r = r1 + r2 + r3 and that χfχgχh(p) = 1 by Assumption 1.2)

Ef (f, g, h) = αf + βf − βf −
βf
p
− χf (p)βgαh
pr2+r3−r+1

− χf (p)βgβh
pr2+r3−r+1

− χf (p)αgβh
pr3+r2−r+1

− χf (p)βgβh
pr3+r2−r+1

+
χ̄g(p)βfαgβg

pr2+2
+
χ̄g(p)βfβ

2
g

pr2+2
+
χ̄h(p)βfβhαh

pr3+2
+
χ̄h(p)βfβ

2
h

pr3+2

+
χf (p)βgβh
pr2+r3−r+1

+
χf (p)βgβh
pr2+r3−r+2

− αfβfβgβh
pr1+r2+r3−r+3

−
β2
fβgβh

pr1+r2+r3−r+3
(183)

= αf ·
(

1− βfβgαh
pr+2

− βfαgβh
pr+2

− βfβgβh
pr+2

+
χh(p)β2

fβ
2
g

pr1+r2+3

+
χ̄f (p)β2

f

pr1+2
+
χg(p)β2

fβ
2
h

pr1+r3+3
−
χ̄f (p)β3

fβgβh

pr+r1+4

)

= αf ·
(

1− βfαgβh
pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
.

This concludes the proof of the proposition.
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8.4. p-stabilisation of de Rham classes. — Let w = (k, l,m) be a classical triple
in Σ, such that p does not divide the conductors of fk, gl and hm. As in the previous
section denote by fk, gl and hm the modular forms of level Γ1(N) with ordinary p-
stabilisations fk, gl and hm respectively. For each integerM > 3 denote by V ∗dR,r(M)

the (k+ l+m− 2)/2-th Tate twist of the tensor product of the de Rham cohomology
groups H1

dR(Y1(M)Qp
,SdR,rj )L, for j = 1, 2, 3. Then the restriction of the morphism

V ∗dR,r(N) −→ V ∗dR,r(Np)

defined by(
pr∗1 −

βfk
pk−1

· pr∗p

)
⊗
(

pr∗1 −
βgl
pl−1

· pr∗p

)
⊗
(

pr∗1 −
βhm
pm−1

· pr∗p

)
to the (f, g, h)-isotypic component of V ∗dR,r(N) gives a p-stabilisation isomorphism

Πα∗
fkglhm

: V ∗dR(fk, gl, hm) ∼= V ∗dR(fk, gl,hm).

Lemma 8.4. — Assume that p does not divide the conductors of fk, gl and hm.
Then

Πα∗
fkglhm

(
ηαfk ⊗ ωgl ⊗ ωhm

)
= (p− 1)αfk

(
1−

βfk
αfk

)(
1−

βfk
pαfk

)
· ηαfk⊗ ωgl⊗ ωhm .

Proof. — Set Πα∗
k = pr∗1 −

βfk
pk−1 · pr∗p, set Πα

k∗ = pr1∗ −
βfk
pk−1 · prp∗ and define simi-

larly Πα∗
l and Πα∗

m . By the definition of p-stabilisation (cf. Equation (54)), one has
Πα∗
k (ωξ) = ωξα for any ξ ∈ Sk(N,L)fk , and similarly for Πα∗

l and Πα∗
m . In particular

(184) Πα∗
l (ωgl) = ωgl and Πα∗

m (ωhm) = ωhm .

According to Equation (3.4.5) on Page 76 of [Shi71], one has

(aw, bw)M = Mn−2 · (a, b)M
for any cuspidal forms a and b of weight n and level Γ1(M), where we recall that
·w = wM (·) is a shorthand for the image of · under the Atkin–Lehner operator wM
defined in Equation (33), and (·, ·)M is the Petersson product on Sn(M,C) defined
after Equation (35). It follows that (cf. Equation (34) and the discussion following it)

(185)
〈
ηfk , wNp ◦Πα∗

k (ωξ)
〉
fk

=
(fwk , ξ

w
α )Np

(fwk ,f
w
k )Np

=
(fk, ξα)Np
(fk,fk)Np

=
(fk, ξ)N
(fk, fk)N

.

for each ξ in Sk(N,L)fk , where ξwα = wNp(ξα).
The (easily verified) relations wNp ◦pr∗1 = pr∗p ◦wN and wNp ◦pr∗p = pk−2 ·pr∗1 ◦wN

yield

Πα
k∗ ◦ wNp ◦Πα∗

k =

(
pr1∗ −

βfk
pk−1

· prp∗

)
◦
(

pr∗p −
βfk
p
· pr∗1

)
◦ wN

= (p− 1)

(
T ′p −

2(p+ 1)βfk
p

+
β2
fk

pk
· Tp

)
◦ wN .
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As ap(fk) = αfk + βfk and T ′p ◦ wN and Tp ◦ wN act respectively as ap(fk) · wN and
χ̄f (p)ap(fk) · wN on V ∗dR(fk), a direct computation then gives (cf. Equation (183))

Πα
k∗ ◦ wNp ◦Πα∗

k = (p− 1)αfk

(
1−

βfk
αfk

)(
1−

βfk
pαfk

)
· wN

as morphisms from V ∗dR(fk) to V ∗dR(f∗k ). Because Πα∗
k and Πα

k∗ are adjoint to each
other under the pairings 〈·, ·〉fk and 〈·, ·〉fk , this implies

〈Πα∗
k (ηfk), wNp ◦Πα∗

k (ωξ)〉fk
(p− 1)αfk

(
1− βfk

αfk

)(
1− βfk

pαfk

) = 〈ηfk , wN (ωξ)〉fk(186)

=
(fwk , ξ

w)N
(fwk , f

w
k )N

=
(fk, ξ)N
(fk, fk)N

for each ξ in Sk(N,L)fk = Fil1V ∗dR(fk). As the composition wNp ◦ Πα∗
k gives an

isomorphism between Sk(N,L)fk and Sk(Np,L)f∗k , and the isomorphism

Πα∗
k : V ∗dR(fk) ∼= V ∗dR(fk)

commutes with the action of the Frobenius endomorphism on both sides, comparing
Equation (185) with Equation (186) yields the identity

Πα∗
k (ηαfk) = (p− 1)αfk

(
1−

βfk
αfk

)(
1−

βfk
pαfk

)
· ηαfk

(cf. Equation (37) for the definition of the differential ηαfk). The lemma follows from
the previous equation and Equation (184).

8.5. Conclusion of the proof. — This section concludes the proof of Theorem A.
According to Corollary 8.2 the class κ(f , g,h) belongs to H1

bal(Q, V (f , g,h)). Let
Σobal be the set of balanced triples (k, l,m) such that k, l,m > 3 and p does not divide
the conductors of fk, gl and hm. Let ξ denote one of f , g and h. Because Σobal is
dense in Uf × Ug × Uh, in order to prove Theorem A it is sufficient to show that

(187) Lξ

(
κ(f , g,h)

)
(w) = L ξ

p (fk, gl,hm)

for every w = (k, l,m) in Σobal, where to ease the notation one writes

Lξ(κ(f , g,h)) = Lξ(resp(κ(f , g,h))).

Fix such a triple w and to ease notation set αf = αfk , βf = βfk , αg = αgl et cetera.
Consider first the case ξ = f . Write as usual r = (r1, r2, r3) = (k− 2, l− 2,m− 2).

Since p does not divide the conductor of fk, gl and hm, the Ramanujan–Petersson
conjecture gives (

1− βf
αf

)(
1− βf

pαf

)(
1− αfβgβh

pr+2

)
6= 0.

Moreover fk = fα (resp., gl = gα, hm = hα) is the ordinary p-stabilisation of a cusp
form f = fk (resp., g = gl, h = hm) of level Γ1(N). Proposition 7.3, the definition of
logp(·)f and Lemma 8.4 then prove that

(−1)r−r1(r − r1)! ·Lf

(
κ(f , g,h)

)
(w)
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is equal to (
1− βfαgαh

pr+2

)
(

1− βf
αf

)(
1− βf

pαf

)(
1− αfβgβh

pr+2

) · logp
(
κ(f , g,h)w

)(
Πα∗
fgh

(
ηαf ⊗ ωg ⊗ ωh

))
,

where κ(f , g,h)w ∈ H1
bal(Qp, V (fk, gl,hm)) is the image of κ(f , g,h) under the spe-

cialisation map ρw (and as usual logp(·) is a shorthand for logp(resp(·)) for all global
classes · in H1

bal(Q, V (fk, gl,hm))). As Πα∗
fgh is the transpose of Πα

fgh∗, the functori-
ality under correspondences of the Faltings comparison isomorphism for E·1(N) and
of the Leray spectral sequence (from which Equation (26) is deduced) imply that

(188) logp
(
κ(f , g,h)w

)
◦Πα∗

fgh = logp

(
Πα
fgh∗

(
κ(f , g,h)w

))
as functionals on Fil0V ∗dR(f, g, h). According to Theorem 8.1 and Proposition 8.3

Πα
fgh∗

(
κ(f , g,h)w

)
equals (

1− αfβgβh
pr+2

)(
1− βfαgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
· κ(f, g, h).(189)

The previous three equations show that Lf

(
κ(f , g,h)

)
(w) is equal to the product of

(−1)r−r1

(r − r1)!

(
1− βfαgαh

pr+2

)(
1− βfαgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
(

1− βf
αf

)(
1− βf

pαf

)
and

logp
(
κ(f, g, h)

)
(ηαf ⊗ ωg ⊗ ωh),

which in turn is equal to L f
p (fk, gl,hm) by the explicit reciprocity law Proposition

3.6. This proves Equation (187), and with it Theorem A, for ξ = f .
The proofs of Equation (187) for ξ = g,h are similar. We give the details for

ξ = g. Exchanging the roles of f and g in the constructions of Sections 7.1, 7.3, and
8.4, (the resulting) Propositions 7.3 and 8.4 proves that

(−1)r−r2(r − r2)! ·Lg

(
κ(f , g,h)

)
(w)

is equal to (
1− αfβgαh

pr+2

)
(

1− βg
αg

)(
1− βg

pαg

)(
1− βfαgβh

pr+2

) · logp
(
κ(f , g,h)w

)(
Πα∗
fgh

(
ωf ⊗ ηαg ⊗ ωh

))
.

Equations (188)–(189) (which are symmetric in (f , g,h)) then prove that the special
value Lg(κ(f , g,h))(w) is the product of

(−1)r−r2

(r − r2)!
·

(
1− αfβgαh

pr+2

)(
1− αfβgβh

pr+2

)(
1− βfβgαh

pr+2

)(
1− βfβgβh

pr+2

)
(

1− βg
αg

)(
1− βg

pαg

) .
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and
logp

(
κ(f, g, h)

)
(ωf ⊗ ηαg ⊗ ωh)

This is precisely the formula for L g
p (fk, gl,hm) obtained by replacing the triple

(fk, gl,hm) with (gl,fk,hm) in the statement of the explicit reciprocity law Propo-
sition 3.6, thus concluding the proof of Theorem A.

9. Proof of Theorem B

This section proves Theorem B stated in the Introduction. The notations and
assumptions are as in Section 1.2. Then (f , g,h) is a level-N test vector for (f ], g],h])
and wo = (k, l,m) is an unbalanced triple in Σf .

For the convenience of the reader, we briefly describe the contents of the different
subsections. Section 9.1 proves Theorem B assuming that wo is not exceptional in
the sense of Section 1.2. Section 9.2 proves an exceptional zero formula for the big
logarithm Lf when wo is exceptional of type (5), viz. in the exceptional case arising
from the vanishing at wo of the analytic f -Euler factor E∗f (f , g,h) introduced in
Equation (4). Section 9.3 constructs the improved diagonal classes κ∗g(f , g,h) and
κ∗h(f , g,h) introduced in Section 1.2. Their construction is nontrivial only when the
g-Euler factor Eg(f , g,h) defined in Equation (1) vanishes at wo, that is when wo is
exceptional of type (3) (cf. Section 1.2). Section 9.4 finally proves Theorem B when
wo is exceptional.

9.1. Proof in the non-exceptional case. — This section proves Theorem B when
wo is not exceptional.

Lemma 9.1. — The Bloch–Kato finite, exponential and geometric subspaces of the
local cohomology group H1(Qp, V (fk, gl,hm)) are all equal.

Proof. — We use the notations introduced in the proof of Lemma 3.5. As in loco
citato, it is sufficient to prove that Dϕ=1,N=0

st vanishes.
Since k > l+m, one has ordp(α

f
w) 6 − 1 and ordp(β

·
w) 6 − 1 for · = ∅, g, h, hence

Dϕ=1
st is contained in the L-module generated by aw,a

g
w,a

h
w and bfw. Moreover

|αw|∞ = p(εw−1)/2, |αξw|∞ = p(εw−2·εξ−1)/2 and |βfw|∞ = p(2·εf−εw−1)/2

for ξ = g, h (cf. loco citato for the notation). It follows that Dϕ=1
st is equal to zero if

εw = 0 or εw = 2. If εw = 3, then Dϕ=1
st is contained in L · agw ⊕ L · ahw and

N(r · agw + s · ahw) = (r + s) · bfw + r · bhw + s · bgw,

for each r, s in L, hence Dϕ=1,N=0
st = 0. If εw = εξ = 1 for ξ = g, h and {ξ, ζ} = {g, h},

then Dϕ=1
st is contained in the L-module generated by aw and aζw, and

N(r · aw + s · aζw) = r · aξw + s · bfw,

hence Dϕ=1,N=0
st = 0. Finally, if εw = εf = 1, one has

N(r · aw + s · agw + t · ahw + u · bfw) = r · afw + s · bhw + t · bgw + u · bw,
hence Dϕ=1,N=0 vanishes also in this case, concluding the proof of the lemma.
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In light of Lemma 9.1, in order to prove Theorem B it is sufficient to show that

(190) exp∗p(κ(fk, gl,hm)) = 0 if and only if L(f ]k⊗g
]

l⊗h
]

m, (k+ l+m−2)/2) = 0,

where exp∗p is the Bloch–Kato dual exponential and exp∗p(·) = exp∗p(resp(·)) for any ·
in the global cohomology group H1(Q, V (fk, gl,hm)).

Set

(191) V ·(fk, gl,hm)± = V ·(fk)± ⊗L V ·(gl)⊗L V ·(hm)(c·),

where c· = (4 − k − l − m)/2 and c· = (k + l + m − 2)/2 if · = ∅ and · = ∗
respectively. Because k > l + m the inclusion V ∗(fk, gl,hm)+ ↪−→ V ∗(fk, gl,hm)
and the projection V (fk, gl,hm) −� V (fk, gl,hm)− induce isomorphisms

Dst(V
∗(fk, gl,hm)+) ∼= V ∗dR(fk, gl,hm)/Fil0(192)

and Fil0VdR(fk, gl,hm) ∼= Dst(V (fk, gl,hm)−)

respectively. (If gl or hm is a weight-one modular form, the modules VdR(fk, gl,hm)
and V ∗dR(fk, gl,hm) are defined using the conventions introduced in the last item of
Sections 5, cf. Equations (127) and (129) and Section 7.1.1.1.) Let

〈·, ·〉fkglhm : Fil0VdR(fk, gl,hm)⊗L V ∗dR(fk, gl,hm)/Fil0 −→ L

be the perfect pairing induced on the de Rham modules by the specialisation at wo (cf.
Equations (106)–(109)) of the tensor product of the pairings 〈·, ·〉ξ defined in Equation
(103), for ξ = f , g,h. (According to Equation (109), if k, l andm are all geometric this
is also induced by the tensor product of the pairings 〈·, ·〉ξ introduced in Equation
(31), for ξ = fk, gl,hm.) By construction V (fk, gl,hm)f is a GQp

-submodule of
V (fk, gl,hm)−, and the image of

Dcris(V (fk, gl,hm)f ) ↪−→ Dst(V (fk, gl,hm)−) ∼= Fil0VdR(fk, gl,hm)

(cf. Equation (192)) is orthogonal under 〈·, ·〉fkglhm to the kernel of the projection

V ∗dR(fk, gl,hm)/Fil0 ∼= Dst(V
∗(fk, gl,hm)+) −� Dcris(V

∗(fk, gl,hm)f ),

where V ∗(fk, gl,hm)f is the c∗-th Tate twist of V ∗(fk)+ ⊗L V ∗(gl)− ⊗L V ∗(hm)−.
Moreover, after setting xo = (wo, (k − l −m)/2) (and identifying Dcris(Qp(i)) with
Qp · ti), one has by definition (cf. Section 7)

Dcris(V (fk, gl,hm)f ) = D̄(f , g,h)f ⊗xo L
and Dcris(V

∗(fk, gl,hm)f ) = D̄∗(f , g,h)f ⊗xo L.
By Corollary 8.2 the class κ(f , g,h) is balanced, viz. its restriction at p is the

image of a (unique) class κ̌(f , g,h) in H1(Qp,F 2V (f , g,h)). Let κ̌(fk, gl,hm)
be the specialisation of κ̌(f , g,h) at wo, and let κ(fk, gl,hm)f be its image in
H1(Qp, V (fk, gl,hm)f ) under the morphism pf∗ (cf. Section 7.2). As the diagram

(193) H1(Qp,F 2V (fk, gl,hm))

pf∗

��

// H1(Qp, V (fk, gl,hm))

��
H1(Qp, V (fk, gl,hm)f ) // H1(Qp, V (fk, gl,hm)−)
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commutes, the previous paragraph reduces the proof of Equation (190) to the following
claim.

(α) The Garrett L-function L(f ]k ⊗ g
]

l ⊗ h]m, s) vanishes at s = (k + l +m− 2)/2
if and only if 〈

exp∗p(κ(fk, gl,hm)f ), µ
〉
fkglhm

= 0

for all differentials µ in D̄(f , g,h)f ⊗xo L. Here exp∗p is the Bloch–Kato dual
exponential on H1(Qp, V (fk, gl,hm)f ) and 〈·, ·〉fkglhm is the specialisation at
xo of the bilinear form 〈·, ·〉fgh defined in Equation (139).

As (f , g,h) varies through the level-N test vectors for (f ], g],h]), the speciali-
sations at xo of the associated Ōfgh-adic differentials ηfωgωh (cf. Equation (142))
generate D̄∗(fk, gl,hm)f ⊗xo L. This follows from the results of Sections 2.5, 5 and
7.1.1. As a consequence the claim (α) is equivalent to

(β) The Garrett L-function L(f ]k ⊗ g
]

l ⊗ h]m, s) vanishes at s = (k + l +m− 2)/2
if and only if 〈

exp∗p(κ(fk, gl,hm)f ), ηfkωglωhm
〉
fkglhm

= 0

for all level-N test vectors (f , g,h) for (f ], g],h]), where ηfkωglωhm in
Dcris(V

∗(fk, gl,hm)f ) is the specialisation of ηfωgωh at xo (cf. Section 7.1.1).

Remark 9.2. — As explained in Remark 1.3(3), the class κ(f , g,h), hence κ̌(f , g,h)
and a fortiori κ(fk, gl,hm)f , is independent of the choice of the level-N test vector
(f , g,h) for (f ], g],h]).

Assume in the rest of this section that wo is not exceptional. This implies that

βfkαglαhm 6= p(k+l+m−2)/2

for each test vector (f , g,h). (As usual βfk = χf (p)pk−1/ap(k), hence the previous
equation is a consequence of Equation (5) and the Ramanujan–Petersson conjecture.)
According to Theorem A, (the proof of) Proposition 7.3 and the previous equation,
for each level-N test vector (f , g,h) one has

L f
p (fk, gl,hm) = Ewo ·

〈
exp∗p(κ(fk, gl,hm)f ), ηfkωglωhm

〉
fkglhm

for a non-zero algebraic number Ewo . The statement (β) can then be rephrased as
(γ) L(f ]k ⊗ g

]

l ⊗ h]m, (k + l + m − 2)/2) = 0 if and only if L f
p (fk, gl,hm) = 0 for

all level-N test vectors (f , g,h) for (f ], g],h]).
Under the current Assumption 1.7 on the local signs ε`(f ]k, g

]

l , h
]
m), the claim (γ) is a

consequence of Jacquet’s conjecture proved by Harris–Kudla in [HK91]. Indeed, as
wo is not exceptional, there exist test vectors (f , g,h) such that L f

p (fk, gl,hm) is a
non-zero multiple of the complex central value L(f ]k ⊗ g

]

l ⊗ h]m, (k+ l+m− 2)/2) (cf.
Section 6 and [DR14, Theorems 4.2 and 4.7]).
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9.2. Derivatives of big logarithms I. — Assume in this section that the unbal-
anced classical triple wo in Σf satisfies the conditions displayed in Equation (5) of
Section 1.2. In particular wo = (2, 1, 1).

Denote by I = Iwo the ideal of functions in Ofgh which vanish at wo. The
exceptional zero condition (5) and Proposition 7.3 imply that the big logarithm Lf

takes values in I . According to loc. cit. Lf factors through the morphism induced
by the projection pf : F 2V (f , g,h)) −→ V (f , g,h)f and we write again

Lf : H1(Qp, V (f , g,h)f ) −→ I

for the resulting map. The aim of this section is to prove Proposition 9.3 below, which
gives a formula for the derivative of Lf at wo, namely for the the composition of Lf

with the projection I → I /I 2. In order to state it we need to introduce further
notations.

Since χ̄f (p) = χgχh(p) and χ̄f (p) · ap(2) = bp(1) · cp(1) under the current assump-
tions, the GQp -representation

V (f2)−ββ
def
= V (f , g,h)f ⊗wo L = V (f2)− ⊗L V (g1)+ ⊗L V (h1)+

is isomorphic to the direct sum of a finite number of copies of the trivial p-adic
representation of Gp = GQp (cf. Section 7.2). Let Gab

p be the Galois group of the
maximal abelian extension of Qp, and let

recp : Q∗p⊗̂Qp
∼= Gab

p ⊗̂Qp

be the reciprocity map of local class field theory, normalised by requiring that
recp(p

−1) is an arithmetic Frobenius. Identify H1(Qp,Qp) = Homcont(G
ab
p ,Qp) with

Homcont(Q
∗
p,Qp) under recp, so that

H1(Qp, V (f2)−ββ) = Homcont(Q
∗
p,Qp)⊗Qp

V (f2)−ββ(194)

and Dcris(V (f2)−ββ) = V (f2)−ββ .

Under these identifications the Bloch–Kato dual exponential exp∗p onH1(Qp, V (f2)−ββ)
satisfies

(195) exp∗p(ψ ⊗ v) = ψ(e(1)) · v ∈ V (f2)−ββ

for all ψ ⊗ v in Homcont(Q
∗
p,Qp)⊗Qp

V (f2)−ββ , where

e(1) = (1 + p)⊗̂ logp(1 + p)−1 ∈ Z∗p⊗̂Qp.

Similarly the GQp
-module

V ∗(f2)+
ββ

def
= V ∗(f2)+ ⊗L V ∗(g1)− ⊗L V ∗(h1)−

is isomorphic to the direct sum of several copies of the trivial representation of GQp ,
hence Dcris(V

∗(f2)+
ββ) = V ∗(f2)+

ββ and Paragraph 7.1.1.1 give a perfect pairing

〈·, ·〉f2g1h1
: V (f2)−ββ ⊗L V

∗(f2)+
ββ −→ L.
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For each z = ψ⊗ v in H1(Qp, V (f2)−ββ), with ψ ∈ Homcont(Q
∗
p,Qp) and v ∈ V (f2)−ββ ,

and each q in Q∗, define (cf. Equation (129) and the discussion preceding it)

z(q) = ψ(q) · v ∈ V (f2)−ββ

and
z(q)f = (p− 1)ap(2) ·

〈
z(q), ηf2 ⊗ ωg1 ⊗ ωh1

〉
f2g1h1

∈ L.

Let z in H1(Qp, V (f2, g1,h1)) be the specialisation at wo of a balanced class Z in
H1

bal(Qp, V (f , g,h)), that is z = ρwo∗(Z). Then Z is the natural image of a unique
class Y in H1(Qp,F 2V (f , g,h)). Define

yf = pf∗
(
ρwo∗(Y)

)
∈ H1(Qp, V (f2)−ββ)(196)

and exp∗p(z)f =(p− 1)ap(2) ·
〈

exp∗p(yf ), ηf2 ⊗ ωg1 ⊗ ωh1

〉
f2g1h1

.

The following key proposition studies the derivatives of the logarithm Lf , extend-
ing some of the results of [Ven16]. Its proof exploits the existence of an improved big
logarithm for the restriction of Lf to the improving plane Hf defined by the equation
k = l +m. Part 1 of the proposition is a crucial ingredient in the proof of the main
result of our contribution [BSV20a], and Part 3 is essential for the ongoing proof of
Theorem B in the exceptional case (cf. Section 9.4). Part 2 is not used elsewhere in
the paper and is stated for completeness (and with future applications of this work
in mind). Before stating the proposition, we introduce some notation.

For the proof of Theorem B, we are especially interested in the improving line Hfg
in Uf ×Ug×Uh defined by the equations k = l+1 andm = 1; it is the intersection of
the improving planes Hg (introduced in Section 1.2) and Hf . Let resfg : Ofgh −→ Og
be the morphism sending the analytic function F (k, l,m) to its restriction F (l+1, l, 1)
to the improving lineHfg. For each Ofgh-moduleM , denote byM |Hfg = M⊗resfgOg
the base chance of M along resfg, and for each m in M denote by m|Hfg the image
of m under the projection M −→M |Hfg . Set

V (fg,h1) = V (f , g,h)|Hfg and V (fg,h1)f = V (f , g,h)f |Hfg .
Shrinking Ug and Uh if necessary, assume that l+m belongs to Uf for each (l,m)

in Ug × Uh, and recall the analytic f -Euler factor

(197) E∗f (f , g,h) = 1− bp(l) · cp(m)

χ̄f (p) · ap(l+m)
∈ Og⊗̂LOh

introduced in Equation (4). (We also recall that ap(k), bp(l) and cp(m) are the p-th
Fourier coefficients of the primitive Hida families f ], g] and h] associated respectively
with f , g and h.) In the present exceptional zero scenario (cf. Equation (5)) it vanishes
at (l,m) = (1, 1). Denote by

E∗f (fg,h1) = E∗f (f , g,h)|Hfg ∈ Og

the restriction of E∗f (f , g,h) to Hfg. Finally define the analytic L -invariants

Lan
f = −2 ·d log ap(k)|k=2, Lan

g = −2 ·d log bp(l)|l=1 and Lan
h = −2 ·d log cp(m)|m=1.

We can now state the main result of this section.

Proposition 9.3. —
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1. Let Z ∈ H1(Qp, V (f , g,h)f ) and let z = ρwo(Z) ∈ H1(Qp, V (f2)−ββ). Then

2(1− 1/p) ·Lf (Z) ≡
(
z(p−1)f − Lan

f · z(e(1))f

)
· (k − 2)

+
(
Lan
g · z(e(1))f − z(p−1)f

)
· (l− 1)

+
(
Lan
h · z(e(1))f − z(p−1)f

)
· (m− 1)

(
mod I 2

)
.

2. Let Z be a local balanced class in H1
bal(Qp, V (f , g,h)) and let z = ρwo(Z) be its

wo-specialisation in H1
bal(Qp, V (f2, g1,h1)). Then

2(1− 1/p) ·Lf (Z)

is congruent modulo I 2 to((
Lan
g − Lan

f

)
· (l− 1) +

(
Lan
h − Lan

f

)
· (m− 1)

)
· exp∗p(z)f .

3. There exists a morphism

L ∗V (fg,h1)f
: H1(Qp, V (fg,h1)f ) −→ Og

such that, for each local class Z in H1(Qp, V (fg,h1)f ) and each positive integer
l > 1 in Ug congruent to 1 modulo p− 1, one has

E (l) ·L ∗V (fg,h1)f
(Z)(l) = (p− 1)ap(l + 1) · 〈exp∗p(z), ηfl+1

ωglωh1
〉fl+1glh1

,

where E (l) = 1− χ̄f (p)·ap(l+1)
p·bp(l)·cp(1) and z = ρl(Z) in H1(Qp, V (fl+1, gl,h1)f ) is the

weight-l specialisation of Z. Moreover, the following diagram commutes.

H1(Qp, V (f , g,h)f )
Lf //

resfg∗

��

Ofgh

resfg

��
H1(Qp, V (fg,h1)f )

E∗f (fg,h1)·L ∗V (fg,h1)f // Og

Proof. — Let ε : Ōfgh −→ Ofgh be the map which sends the analytic function
F (k, l,m, j) in Ōfgh to its restriction F (k, l,m, 0) ∈ Ofgh to the hyperplane j = 0
(see Section 7.1 and note that jo = 0). Because M(f , g,h)f is equal (by definition)
to the base change M̄(f , g,h)f ⊗ε Ofgh, this induces in cohomology

ε∗ : H1(Qp, M̄(f , g,h)f ) −→ H1(Qp,M(f , g,h)f ).

A slight generalisation of [Ven16, Proposition 3.8] stated in Lemma 9.4 below gives
an improved big dual exponential

L∗f : H1(Qp,M(f , g,h)f ) −→ D(f , g,h)f

such that, for all classes Z in H1(Qp,M(f , g,h)f ) and all w = (k, l,m) ∈ Σ, one has

(198)
(
1− p−1 ·Ψw(Frobp)

)
· L∗f (Z)(w) = exp∗(Zw),

where Ψw is the composition of the unramified character Ψ : GQp
−→ O∗fgh introduced

in Equation (136) with evaluation at w, exp∗ is the Bloch–Kato dual exponential on
H1(Qp,M(fk, gl,hm)f ), and Zw is a shorthand for ρw∗(Z). (Precisely, after setting
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R = Ofgh, M = M(f , g,h)f and Φ = Ψ, then one has L∗f = Exp∗Ψ with the notations
of Lemma 9.4.) Recall the big logarithm L̄f introduced in Equation (144), and let

L ∗f : H1(Qp,M(f , g,h)f ) −→ Ofgh

be the composition of L∗f with the base change

〈·, ηfωgωh〉fgh ⊗ε Ofgh : D(f , g,h)f → Ofgh

of the linear form 〈·, ηfωgωh〉fgh along ε. Equation (198) and Proposition 7.1 yield

(199) ε ◦ L̄f =
(
1−Ψ(Frobp)

−1
)
·L ∗f ◦ ε∗.

Define % = ρwo : Ōfgh −→ Ocyc by %(F (k, l,m, j)) = F (wo, j) and denote by
M̄(f2, g1,h1)f the base change M̄(f , g,h)f ⊗%Ocyc. Note that in the present setting
GQp acts on M̄(f2, g1,h1)f via the character κ−jcyc, and for all integers j divisible by
p− 1, evaluation at j on Ocyc induces a natural isomorphism (cf. Sect. 7.1)

(200) V (f2)−ββ(−j) = M̄(f2, g1,h1)f ⊗j L.

The results of Coleman and Perrin-Riou (see Section 4 of [PR94]) then give a mor-
phism of Ocyc-modules

Lcyc : H1(Qp, M̄(f2, g1,h1)f ) −→ Ocyc

such that, for all classes Z in H1(Qp, M̄(f2, g1,h1)f ) and all integers j > 0 satisfying
j ≡ 0 (mod p− 1), one has

(201) Lcyc(Z)(j) = j!

(
1− pj

)
(1− p−j−1)

exp∗(Zj)f .

Here Zj is the image of Z in H1(Qp, V (f2)−ββ(−j)) under the morphism induced by
(200) and one writes again

exp∗(·)f = (p− 1)ap(2) ·
〈

exp∗(·), ηf2ωg1ωh1

〉
f2g1h1

for the composition of the linear form (p− 1)ap(2) ·
〈
·, ηf2ωg1ωh1

〉
f2g1h1

on V (f2)−ββ
with the Bloch–Kato dual exponential map

exp∗ : H1(Qp, V (f2)−ββ(−j)) −→ V (f2)−ββ ⊗Qp
Qp · t−j ∼= V (f2)−ββ

(cf. Section 7.1 and Equation (194)). According to Proposition 3.6 of [Ven16] (see
also [Ben14, Proposition 2.2.2]), for all classes Z in H1(Qp, M̄(f2, g1,h1)f ) one has

(202)
d

dj
Lcyc(Z)j=0 = (1− 1/p)−1 · z(p−1)f ,

where z is a shorthand for Z0. Moreover Proposition 7.1 and Equation (201) yield the
identity

(203) % ◦ L̄f = Lcyc ◦ %∗.

Let Z be a class in H1(Qp, V (f , g,h)f ) and let z = ρwo(Z) ∈ H1(Qp, V (f2)−ββ)

be its specialisation at wo. As explained in the proof of Proposition 7.3 (see in
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particular Equations (151) and (152)), the class Z can by lifted to an element Z in
H1(Qp, M̄(f , g,h)f ) via the map induced in cohomology by the isomorphism

M̄(f , g,h)f/(2j − k + l+m) · M̄(f , g,h) ∼= V (f , g,h)f ,

and one has

(204) Lf (Z)(k, l,m) = L̄f (Z )(k, l,m, (k − l−m)/2),

for any such lift Z . As (cf. Equation (136))

2 ·
(
1−Ψ(Frobp)

−1
)

= Lan
g · (l− 1) + Lan

h · (m− 1)− Lan
f · (k − 2) + · · · ,

where the dots denote the terms of higher degree in the Taylor expansion at wo,
Equations (199) and (203) yield that 2(1− 1/p) · L̄f (Z ) is equal to

2
(
1−Ψ(Frobp)

−1
)

(1− 1/p) ·L ∗f (ε∗(Z )) + 2(1− 1/p) ·Lcyc(%∗(Z )) + · · · ,

which in turn agrees with

z(e(1))f ·
(
Lan
g · (l− 1) + Lan

h · (m− 1)− Lan
f · (k − 2)

)
+ 2 · z(p−1)f · j + · · ·

by Equations (195), (198) and (202). This proves Part 1 in the statement.
To prove Part 2 let Z,Y, z and yf be as in Equation (196), so that

(205) exp∗p(z)f = yf (e(1))f

(cf. Equation (195)). Note that the L[Gp]-module F 2V (f2, g1,h1) splits as the direct
sum of its submodules V (f2)+

αβ = V (f2, g1,h1)g, V (f2)+
βα = V (f2, g1,h1)h and

V (f2)ββ = V (f2)⊗L V (g1)+ ⊗L V (h1)+

(cf. Section 7.2). Moreover, if V (f2)+
ββ denotes the tensor product of V (f2)+, V (g1)+

and V (h1)+ (that is F 3V (f2, g1,h1) with the notations of Section 7.2), the projection
V (f2)ββ −� V (f2)−ββ gives rise to a short exact sequence of GQp -modules

(206) 0 −→ V (f2)+
ββ

i+−→ V (f2)ββ
π−−→ V (f2)−ββ −→ 0.

It follows that the image of H1(Qp,F 2V (f2, g1,h1)) under pf∗ equals that of
H1(Qp, V (f2)ββ) under π−, hence

(207) yf ∈ π−∗
(
H1(Qp, V (f2)ββ)

)
.

The short exact sequence (206) defines an extension class qf in

Ext1
L[Gp]

(
V (f2)−ββ , V (f2)+

ββ

) ∼= H1(Qp, L(1))⊗L HomL

(
V (f2)−ββ , V (f2)+

ββ(−1)
)
.

After identifying H1(Qp, L(1)) with Q∗p⊗̂L under the Kummer isomorphism, this
defines a morphism

Lqf : H1(Qp, V (f2)−ββ) ∼= Homcont(Q
∗
p, L)⊗L V (f2)−ββ

−→ V (f2)+
ββ(−1) ∼= H2(Qp, V (f2)+

ββ),

where the last isomorphism arises from the invariant map H2(Qp, L(1)) ∼= L of local
class field theory. A direct computation, carried out in Lemma 9.5 below, shows
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that Lqf is equal to the connecting morphism H1(Qp, V (f2)−ββ) −→ H2(Qp, V (f2)+
ββ)

associated with the exact sequence (206). It then follows from Equation (207) that

(208) Lqf (yf ) = 0.

According to Theorem 3.18 of [GS93] qf is of the form qf ⊗ δf for some linear
form δf : V (f2)−ββ −→ V (f2)+

ββ and qf in Q∗p⊗̂L such that ordp(qf ) 6= 0 and

Lan
f = logp(qf )/ordp(qf ).

Then
logqf

= logp−Lan
f · ordp ∈ Homcont(Q

∗
p, L)

is the branch of the p-adic logarithm which vanishes at qf and L · logqf
⊗LV (f2)−ββ

is contained in the kernel of Lqf . Taking the long exact sequence associated with
(206) one easily checks that the kernel of Lqf has the same dimension as V (f2)−ββ ,
hence L · logqf

⊗LV (f2)−ββ is equal to the kernel of Lqf . Equation (208) then yields
yf = logqf

⊗vf for some vf in V (f2)−ββ , hence

(209) yf (p−1) = Lan
f · vf = Lan

f · yf (e(1)).

Part 1 of the proposition and Equations (205) and (209) give

2(1− 1/p) ·Lf (Z) = 2(1− 1/p) ·Lf ◦ pf∗(Y)

Part 1≡
(
yf (p−1)f − Lan

f · yf (e(1))f

)
· (k − 2)

+
(
Lan
g · yf (e(1))f − yf (p−1)f

)
· (l− 1) +

(
Lan
h · yf (e(1))f − yf (p−1)f

)
· (m− 1)

Eq. (209)
≡ yf (e(1))f ·

((
Lan
g − Lan

f

)
· (l− 1) +

(
Lan
h − Lan

f

)
· (m− 1)

)
Eq. (205)
≡ exp∗(z)f ·

((
Lan
g − Lan

f

)
· (l− 1) +

(
Lan
h − Lan

f

)
· (m− 1)

)
(mod I 2),

as was to be shown.
We finally prove Part 3. Taking R = Og, M = V (fg,h1)f and Φ = resfg ◦ Ψ in

Lemma 9.4 gives an improved big dual exponential

Exp∗V (fg,h1)f
: H1(Qp, V (fg,h1)f ) −→ D(fg,h1),

where D(fg,h1)f = (V(fg,h1)f ⊗̂ZpẐ
nr
p )GQp [1/p] and V(fg,h1)f is a GQp

-invariant
Λg-lattice in V (fg,h1)f . Note that D(fg,h1)f is naturally isomorphic to the base
change of D(f , g,h)f along resfg : Ofgh −→ Og, and define

L ∗V (fg,h1)f
: H1(Qp, V (fg,h1)f ) −→ Og

to be the composition of Exp∗V (fg,h1)f
with the base change

〈·, ηfωgωh〉 ⊗resfg Og : D(fg,h1)f −→ Og

along resfg of the linear form 〈·, ηfωgωh〉fgh on D(f , g,h)f . After noting that

1−Ψ(Frobp)
−1(l+m, l,m) = E∗f (f , g,h) and 1− p−1 ·Ψw(Frobp) = E (l)

for each positive integer l > 1 in Ug congruent to 1 modulo p−1, where w = (l+1, l, 1)
in Hfg, the interpolation property satisfied by LV (fg,h1)f and the commutativity of
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the diagram in the statement follow directly from Equation (143) (cf. Section 7.1.1.1
for the case l = 1), Proposition 7.3 (and its proof) and Lemma 9.4.

The following two lemmas have been invoked in the proof of Proposition 9.3.

Lemma 9.4. — Let R be a complete local Noetherian ring with finite residue field of
characteristic p, and let R = R[1/p]. LetM be a free R-module of finite rank, equipped
with the action of GQp

given by a continuous unramified character Φ : GQp
−→ R∗.

Set M = M [1/p]. Then there exists a morphism of R-modules

Exp∗Φ : H1(Qp,M ) −→ (M⊗̂ZpẐ
nr
p )GQp [1/p]

such that, for each continuous morphism of Zp-algebras ν : R → Q̄p and each class
Z ∈ H1(Qp,M ), one has

ν
(
Exp∗Φ(Z)

)
=
(
1− p−1 · Φν(Frobp)

)−1 · exp∗p(Zν),

where the notations are as follows. Set Oν = ν(R) and Lν = Frac(Oν). The un-
ramified character Φν : GQp

−→ O∗ν is the composition of Φ with ν, the class Zν in
H1(Qp, Lν(Φν)) is the image of Z under the map induced in cohomology by ν, and

exp∗p : H1(Qp, Lν(Φν)) −→ Dcris(Lν(Φ)) = (Oν(Φν)⊗̂ZpẐ
nr
p )GQp [1/p]

is the Bloch–Kato dual exponential.

Proof. — When R = Of and M = Of (ǎp(k)), this is [Ven16, Proposition 3.8].
Mutatis mutandis, the proof of loco citato works in this more general setting.

Lemma 9.5. — Let M and N be two finite dimensional L-vector spaces, equipped
with the trivial action of the absolute Galois group Gp of Qp, let

(210) 0 −→M(1)
α−→ V

β−→ N −→ 0

be a short exact sequence of (continuous) L[Gp]-modules, and let

qV ∈ Ext1
L[Gp](N,M(1)) ∼= Q̂∗p ⊗Zp HomL(N,M)

be the corresponding extension class (where one identifies H1(Qp,Zp(1)) with the
p-adic completion Q̂∗p of Qp via the Kummer map). Then the connecting morphism

δV : H1(Qp, N) −→ H1(Qp,M(1))

associated with the short exact sequence is equal to the composition

LV : H1(Qp, N) ∼= Homcont(Q̂
∗
p,Zp)⊗Zp N

eV−→M ∼= H2(Qp,M(1)),

where the first isomorphism arises from the local Artin map recp : Q∗p −→ Gab
p (send-

ing p−1 to an arithmetic Frobenius), the second isomorphism arises from the invariant
map invp : H2(Qp,Zp(1)) ∼= Zp, and eV is evaluation at qV (under the product of the
natural dualities Q̂∗p ⊗Zp Homcont(Q̂

∗
p,Zp) −→ Zp and HomL(N,M)⊗L N −→M).
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Proof. — Identify M(1) with a subspace of V via the injective morphism α, and fix
an L-linear section σ : N −→ V of β. Under the natural isomorphisms

Ext1
L[Gp](N,M(1)) = Ext1

L[Gp](L,HomL(N,M)(1)) = H1(Qp,HomL(N,M)(1)),

the extension class of (210) is represented by the 1-cocylce

ξV = ξV,σ : Gp −→ HomL(M,N)(1)

defined by the formulae

g(σ(n))− σ(n) = ξV (g)(n)

for each g in Gp and each n in N .
For each 1-cocycle (id est continuous morphism of groups) ϕ : Gp −→ N , the image

of ϕ under the connecting map δV is represented by the 2-cocycle δoV (ϕ) defined by

δoV (ϕ)(g, h) = g
(
σ(ϕ(h))

)
− σ

(
ϕ(gh)

)
+ σ(ϕ(g)) = ξV (g)(ϕ(h)) = ξV ∪ev ϕ (g, h),

where ∪ev : C•cont(Gp,HomL(N,M)(1))⊗LC•cont(Gp, N) −→ C•cont(Gp,M(1)) denotes
the cup-product induced on continuous cochains by the evaluation pairing

ev : HomL(N,M)⊗L N −→M

(cf. Sections 3.4.1.2 and 3.4.5.1 of [Nek06]). If 〈·, ·〉ev denotes the composition of the
cup-product pairing induced in (1, 1)-cohomology by ∪ev with theM -linear extension

invM : H2(Qp,M(1)) = H2(Qp,Zp(1))⊗Zp M
∼= M

of the local invariant map invp, it follows that

(211) invM (δV (ϕ)) = 〈cl(ξV ), ϕ〉ev ,

where cl(·) denotes the class represented by ·. Under the natural isomorphisms

H1(Qp,HomL(N,M)(1)) = H1(Qp,Zp(1))⊗Zp HomL(N,M)

and H1(Qp, N) = H1(Qp,Zp)⊗Zp N , the pairing 〈·, ·〉ev corresponds to the product
of ev and the local Tate duality

〈·, ·〉 : H1(Qp,Zp(1))⊗Zp H
1(Qp,Zp)

∪−→ H2(Qp,Zp(1))
invp−→ Zp

associated with the multiplication pairing Zp(1)⊗Zp Zp −→ Zp. Finally one has

〈κ(q), χ〉 = χ(recp(q))

for each χ in H1(Qp,Zp) and each q in Q∗p, where κ : Q∗p −→ H1(Qp,Zp(1)) denotes
the Kummer map (cf. Proposition 1 in Section 2.3 of [Ser67]), hence

〈cl(ξV ), ϕ〉ev = eV (ϕ),

which combined with Equation (211) concludes the proof.
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9.3. Improved diagonal classes. — This section proves the existence of the big
g-improved diagonal class introduced in Equation (2) of Section 1.2.

Section 8.1 associates to the ordered triple of Hida families (f , g,h) the big diag-
onal class κ(f , g,h) (which is symmetric in the forms g and h). After identifying
the big GQ-representations V (f , g,h), V (g,f ,h) and V (h,f , g) under the natural
isomorphisms, a priori the three classes

κ(f , g,h), κ(g,f ,h) and κ(h,f , g)

in H1(Q, V (f , g,h)) may be different. This is indeed not the case.

Lemma 9.6. — The classes κ(f , g,h), κ(g,f ,h) and κ(h,f , g) are equal.

Proof. — Let Σobal be the set of balanced triples w = (k, l,m) such that p does not
divide the conductors of fk, gl and hm. Since H1(Q, V (f , g,h)) is a torsion-free
Ofgh-module and Σobal is dense in Uf × Ug × Uh, one has⋂

w∈Σobal

(k − k, l− l,m−m) ·H1(Q, V (f , g,h)) = 0.

It is then sufficient to prove that the three classes in the statement have the same
specialisation at each balanced classical triple w in Σobal. Because the map Πα

fkglhm∗
(defined after Equation (169)) is an isomorphism at each point (k, l,m) of Σobal, this
is a consequence of Theorem 8.1 and Proposition 8.3.

We now construct the g-improved balanced diagonal class

(212) κ∗g(f , g,h) ∈ H1
bal(Q, V (f , g,h)|Hg )

satisfying Equation (2) of Section 1.2.
Set Λgh = Λg⊗̂OΛh, so that Ogh = Λgh[1/p]. For every Λgfh-module M , define

M |Hg = M ⊗νg Λgh

to be the base change of the Λgfh-module M under the morphism νg : Λgfh −→ Λgh
sending the analytic function F (k, l,m) to its restriction F (l −m + 2, l,m) to the
g-improving plane Hg (cf. Section 1.2). A similar notation applies to Ogfh-modules
and sheaves of Λgfh or Ogfh-modules.

Remark 9.7. — The space A′g⊗̂Af ⊗̂Ah|Hg is identified with a subspace of the
Λgh-valued functions f on T′ × T× T that are locally analytic and such that

f (tx · x, ty · y, tz · z) = νg(t
κf
x tκgy tκhz ) · f (x, y, z) .

(This can be seen by applying [GS16, Lemma 7.3] with X = T′ × T × T to reduce
the statement to the fact that the formation of locally analytic function - without the
homogeneity property imposed - is compatible with base change.) Conversely, such a
function f can be assumed to be in the image of A′f ⊗̂Ag⊗̂Ah|Hg , by increasing the
radius of convergence in the definition of A·f = A·Uf ,ı, A

·
g = A·Ug,ı and A

·
h = A·Uh,ı. .
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Consider the analytic function D∗g : T′ × T× T −→ Λgfh defined by the formula

D∗g(x,y, z) = det(x,y)κ
∗
h · det(x, z)κ

∗
f · det(y, z)(k+m−l−2)/2

for each (x,y, z) in T′ × T × T with a = (a1, a2) for a = x,y, z. (Because we
apply an integer power to the last determinant, there is no need to restrict to the
domain T′ × (T × T)0 as we did in the definition of Det in Section 8.1.) Then
Det∗g := νg ◦ D∗g : T′ × T × T −→ Λgh is a locally analytic function satisfying the
homogeneity property of Remark 9.7. It also satisfies the invariance property

Det∗g(x · γ,y · γ,z · γ) = det(γ)νg◦κ
∗
gfh ·Det∗g(x · γ,y · γ,z · γ).

Applying Remark 9.7 and recalling that κg = νg ◦ κ∗gfh, we have thus defined

(213) Det∗g ∈ H0(Γ0(pZp),A′g⊗̂Af ⊗̂Ah|Hg (−κg)).

With the notations of Sections 4.2 and 8.1, let

A′g�Af�Ah|Hg = A′g⊗̂Af ⊗̂Ah|étHg and A′g⊗Af⊗Ah|Hg = d∗
(
A′g�Af�Ah|Hg

)
be the étale sheaf on Y 3 associated with the representation Af ⊗̂A′g⊗̂Ah|Hg in
M(Γ0(pZp)

3) and its pull back under the diagonal embedding d : Y −→ Y 3

respectively, so that one has a natural inclusion

(214) H0(Γ0(pZp),A′g⊗̂Af ⊗̂Ah|Hg (−κg)) ↪−→ H0
ét(Y,A

′
g ⊗Af ⊗Ah|Hg (−κg)).

On the other hand, consider the following composition.

H0
ét(Y,A

′
g ⊗Af ⊗Ah|Hg (−κg))

d∗−→ H4
ét(Y

3,A′g �Af �Ah|Hg (−κg)⊗Zp Zp(2))(215)
HS−→ H1

(
Q, H3

ét

(
Y 3
Q̄,A

′
g �Af �Ah|Hg

)
(2 + κg)

)
Because H4

ét(Y
3
Q̄
,F ) vanishes for every pro-sheaf F ∈ S(Y 3

ét) (cf. the discussion fol-
lowing Equation (156)), one has a natural isomorphism

H3
ét

(
Y 3
Q̄,A

′
g �Af �Ah|Hg

)
= H3

ét

(
Y 3
Q̄,A

′
f �Ag �Ah

)
|Hg .

Moreover, as in Equation (156), the base change along νg of the projection arising
from the Künneth decomposition et cetera induce a map

(216) H1
(
Q, H3

ét

(
Y 3
Q̄,A

′
f �Ag �Ah

)
|Hg (2 + κg)

)
−→ H1(Q, V (g,f ,h)|Hg ),

and we denote by

(217) AJgfhét : H0
ét(Y,A

′
g ⊗Af ⊗Ah|Hg (−κg)) −→ H1(Q, V (g,f ,h)|Hg )

the composition of the maps (215) and (216).
Identifying V (f , g,h)|Hg and V (g,f ,h)|Hg , one defines the sought for g-improved

diagonal class (212) to be the image of Det∗g under the big Abel–Jacobi map defined
in Equation (217), multiplied by the normalising factor 1

bp(l) (cf. Equation (155)):

κ∗g(f , g,h) =
1

bp(l)
·AJgfhét

(
Det∗g

)
.
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(Here one views Det∗g as a global section of the étale sheaf A′g⊗Af⊗Ah|Hg (−κg) via
the inclusion (214).) The balancedness of κ∗g(f , g,h) follows from a similar argument
as the one in the proof of Corollary 8.2.

We now verify that κ∗g(f , g,h) satisfies the identity displayed in Equation (2):

(218) κ(f , g,h)|Hg = Eg(f , g,h) · κ∗g(f , g,h).

Let Hcl
g be the intersection of Hg with U cl

f × U cl
g × U cl

h . As H1(Q, V (f , g,h)|Hg ) is
a torsion-free Ogh-module, in order to prove the previous equation it is sufficient to
show that

(219) ρw∗(κ(f , g,h)) = Eg(fk, gl,hm) · ρw∗(κ∗g(f , g,h))

for each classical triple w = (k, l,m) in the subset

Hbal
g = {(k, l,m) ∈ Hcl

g | m > 3}

of Hcl
g , where ρw : V (f , g,h) −→ V (fl, gl,hm) is the specialisation map (cf. Equation

(145)) and Eg(fk, gl,hm) is the value of Eg(f , g,h) at (l,m). The set Hbal
g is the

intersection of Hg with the balanced region Σbal. Moreover Lemma 9.6 and Theorem
8.1 yield

(p− 1)bp(l) · %w∗(κ(f , g,h)) = Eg(fk, gl,hm) · κ†(gl,fk,hm)

for each w = (k, l,m) in Hbal
g . (Recall from Equation (157) that the definition of

the twisted diagonal class κ†(gl,fk,hm) is not symmetric in the forms fk, gl and hm.
Indeed, after identifying V (gl,fk,hm) with V (fk, gl,hm), it follows from Theorem 8.1
and Lemma 9.6 that the class κ†(gl,fk,hm) is in general not equal to κ†(fk, gl,hm).)
To prove Equation (219), and with it Equation (218), it then remains to prove that

(p− 1)bp(l) · ρw∗
(
κ∗g(f , g,h)

)
= κ†(gl,fk,hm)

for each w = (k, l,m) in Hbal
g . After unwinding the definition, this is in turn a direct

consequence of the identity
ρw(Det∗g) = Det

r(w)
Np ,

where r(w) = (l− 2, k− 2,m− 2), which holds true in Sr(w) ↪−→ A′l−2⊗̂Ak−2⊗̂Am−2

for each balanced triple w = (k, l,m) in Hbal
g by the very definitions of the invariants

Det∗g and DetrNp (cf. Equations (213) and (41)).

9.4. Conclusion of the proof. — Assume that wo = (2, 1, 1) is exceptional. As
in Section 9.2, denote by Hfg the intersection of the improving planes Hg and Hf ,
that is the set of triples in Uf × Ug × Uh of the form (l+ 1, l, 1). Denote by

L f
p (fg,h1) = L f

p (f , g,h)|Hfg ∈ Og

the analytic function on Ug which on l takes the value L f
p (fl+1, gl,h1) (cf. Equation

(55)). Define similarly

E∗f (fg,h1) = E∗f (f , g,h)|Hfg ∈ Og and Eg(fg,h1) = Eg(f , g,h)|Hfg ∈ Og.
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Lemma 9.8. — Let h1 be the modular form of weight one and level Γ1(N) with
p-stabilisation h1. One has

L f
p (fg,h1) = E∗f (fg,h1) · Eg(fg,h1) ·L f∗

p (fg, h1),

where L f∗
p (fg, h1) is the analytic function in Og which on the classical point l > 1

in U cl
g takes the value

L f∗
p (fl+1, gl, h1) =

(wN (f)l+1, h1 · gl)Np
(wN (f)l+1, wN (f)l+1)Np

.

Moreover, the following two conditions are equivalent.
1. L f∗

p (f2, g1, h1) is zero for all level-N test vectors (f , g,h) for (f ], g],h]).
2. The complex central value L(f ]2 ⊗ g

]

1 ⊗ h
]

1, 1) vanishes.

Proof. — Set U = Ug, denote by (·, ·)U : Sord
U (N, χ̄f ) ⊗O(U) S

ord
U (N, χ̄f ) −→ O(U)

the O(U)-adic Petersson product (cf. Section 7 of [Hid93]) and define

L f∗
p (fg, h1) =

(wN (f)+1, eord(h1 · g))U
(wN (f)+1, wN (f)+1)U

.

Here wN (f) is the Hida family introduced in Lemma 6.1, wN (f)+1 is the family in
Sord
U (N, χ̄f ) whose specialisation at the classical point m > 2 equals wN (fm+1) and
eord is Hida’s ordinary projector from the space of O(U)-adic cusp forms of tame level
N and character χ̄f onto Sord

U (N, χ̄f ), cf. [Hid93]. (Concretely eord(h1 · g)l equals
eord(h1 ·gl) for each classical point l in U cl, where the idempotent eord occurring in the
right hand side is equal to limn→∞ Un!

p .) By construction the value of L f∗
p (fg, h1)

at a classical point m > 1 equals L f∗
p (fl+1, gl, h1).

Recall the operator V = Vp on L[[q]] defined by V (
∑
cnq

n) =
∑
cnq

np. Then

h1 = (1− βh1
· V )h1 and h

[p]
1 = (1− αh1

· V )h1

with αh1
· βh1

= χh(p), and similarly g[p]
l = (1 − αgl · V )gl. Since g[p]

l · V (h1) is
p-depleted (viz. its n-th Fourier coefficient is zero if p|n), it is killed by eord, hence(

wN (fl+1), gl · V(h1)
)
Np

= αgl ·
(
wN (fl+1), V(gl · h1)

)
Np

=
αgl

χ̄f (p)αfl+1

·
(
wN (fl+1), gl · h1

)
Np
.

(To justify the last equality, note that eord ◦ V = U−1
p · eord and Up acts on wN (fl+1)

as χ̄f (p) · αfl+1
.) Then

(
wN (fl+1), eord

(
gl · h

[p]
1

))
Np

=

(
1−

αglαh1

χ̄f (p)αfl+1

)
·
(
wN (fl+1), gl · h1

)
Np
.

Similarly the vanishing of eord(g
[p]
l · V (h1)) yields

(
wN (fl+1), gl · h1

)
Np

=

(
1−

χ̄g(p)αgl
αh1

αfl+1

)
·
(
wN (fl+1), gl · h1

)
Np
.
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Using once again the identity eord(g
[p]
l ·V (h1)) = 0 one deduces that g[p] ·h1−gl ·h

[p]
1

is killed by eord, hence the previous two equations give (cf. Equations (55) and (131))

L f
p (f , g,h)(w) =

(wN (fl+1), eord(g
[p]
l · h1))Np

(wN (fl+1), wN (fl+1))

=

(
1−

αglαh1

χ̄f (p)αfl+1

)(
1−

χ̄g(p)αgl
αh1αfl+1

)
·

(wN (fl+1), gl · h1)Np

(wN (fl+1), wN (fl+1))Np

= E∗f (f , g,h)(w) · Eg(f , g,h)(w) ·L f∗
p (fl+1, gl, h1)

for each l > 1, where w = (l+ 1, l, 1). (See Equations (1) and (197) for the definitions
of Eg(f , g,h) and E∗f (f , g,h) respectively.) This proves the first statement.

The second statement follows from the main result of [HK91] and Theorem 3 of
[DN10]. (Note that (wN (f2), g1 · h1)Np = 0 for each level-N test vectors (f , g,h) for
(f ], g],h]), cf. the discussion preceding the statement of [DN10, Theorem 3].)

As in Section 9.2, for each Ofgh-module M denote by M |Hfg = M ⊗resfg Og the
base change of M along the morphism resfg : Ofgh −→ Og sending F (k, l,m) to
F (l + 1, l, 1), and for each m in M denote by m|Hfg the natural image of m in the
quotient M |Hfg of M . Finally, if ξ is equal to one of f, g and h, define

F •V (fg,h1) = F •V (f , g,h)|Hfg and V (fg,h1)ξ = V (f , g,h)ξ|Hfg .

Lemma 9.9. — The map

H1(Qp,F
2V (fg,h1)) −→ H1(Qp, V (fg,h1))

induced by the inclusion F 2V (fg,h1) ↪−→ V (fg,h1) is injective.

Proof. — SetM = V (fg,h1) andMξ = V (fg,h1)ξ. The statement follows from the
vanishing of H0(Qp, V (fg,h1)/F 2), which in turn follows from the claim:

(220) H0(Qp, gr0M) = H0(Qp, gr1M) = 0.

To prove the claim, recall from Section 7.2 that the inertia subgroup of GQ(µp) acts on
gr0M = M/F 1M via the character κ1−l

cyc , henceH0(Qp, gr0M) = 0. Moreover, denote
by Φf , Φg and Φh the Og-valued unramified characters of GQp sending an arithmetic
Frobenius to χ̄f (p)·ap(l+1)

bp(l)·cp(1) , χ̄g(p)·bp(l)
ap(l+1)·cp(1) and χ̄h(p)·cp(1)

ap(l+1)·bp(l) respectively. Then GQp(µp)

acts on Mf ,Mg and Mh via the characters Φf , Φg ·κlcyc and Φh ·κcyc respectively (cf.
Section 7.2). According to the Ramanujan–Petersson conjecture the complex numbers
ap(l+1) and bp(l) have absolute values pl/2 and p(l−1)/2 respectively for each classical
point l > 3 in Ug, hence H0(Qp,Mξ(j)) = 0 for ξ = f, g, h and each integer j.
Since gr2M is isomorphic to the direct sum of Mf ,Mg and Mh, and since gr1M is
isomorphic to the Kummer Og-dual of gr2M (cf. Section 7.2), the claim follows.

We can now conclude the proof of Theorem B in the exceptional case.
Recall the g-improved balanced class κ∗g(f , g,h) in H1

bal(Q, V (f , g,h)|Hg ) con-
structed in Section 9.3. By the definition of the balanced condition (cf. Section 7.2),
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the restrictions at p of the classes κ(f , g,h) and κ∗g(f , g,h) are the images of classes

κ̌(f , g,h) ∈ H1(Qp,F
2V (f , g,h)) and κ̌∗g(f , g,h) ∈ H1(Qp,F

2V (f , g,h)|Hg )

respectively. Denote by

κ̌(fg,h1) = κ̌(f , g,h)|Hfg and κ̌∗g(fg,h1) = κ̌∗g(f , g,h)|Hfg
their restrictions to the improving line Hfg, and set

κ(fg,h1)f = pf∗(κ̌(fg,h1)) and κ∗g(fg,h1) = pf∗(κ̌
∗
g(fg,h1)),

where pf : F 2V (fg,h1) −→ V (fg,h1)f is the natural projection (cf. Section 7.2).
According to Equation (218) and Lemma 9.9 one has

κ(fg,h1)f = Eg(fg,h1) · κ∗g(fg,h1)f .

It then follows from Theorem A, Part 3 of Proposition 9.3 and Lemma 9.8 that

L f∗
p (fg, h1) = L ∗V (fg,h1)f

(κ∗g(fg,h1)).

Evaluating both sides of the previous equation at l = 1 and using once again Part 3
of Proposition 9.3 one gets the identity

(221) L f∗
p (f2, g1, h1) = p · ap(2) ·

〈
exp∗p(κ

∗
g(f2, g1,h1)f ), ηf2ωg1ωh1

〉
f2g1h1

where κ∗g(f2, g1,h1)f is the weight-1 specialisation of κ∗g(fg,h1)f :

κ∗g(f2, g1,h1)f = ρ1∗(κ
∗
g(fg,h1)f ) ∈ H1(Qp, V (f2)−ββ).

Similarly as in Section 9.1, we claim that the following statements are equivalent.
(a) The complex central value L(f ]2 ⊗ g

]

1 ⊗ h
]

1, 1) vanishes.
(b) L f∗

p (f2, g1, h1) = 0 for all level-N test vectors (f , g,h) for (f ], g],h]).
(c) exp∗p(κ

∗
g(f2, g1,h1)f ) = 0.

(d) exp∗p(resp(κ
∗
g(f2, g1,h1))) = 0.

(e) κ∗g(f2, g1,h1) is crystalline at p.
(As usual, here κ∗g(f2, g1,h1) in H1(Qp, V (f2, g1,h1)) denotes the specialisation of
κ∗g(f , g,h) at wo.) The equivalence between (a) and (b) is proved in Lemma 9.8.

As (f , g,h) varies through the level-N test vectors for (f ], g],h]), the differen-
tials ηf2ωg1ωh1 generate the L-module V ∗(f2)+

ββ = DdR(V ∗(f2)+
ββ) (cf. Section 9.2).

Equation (221) then proves that (b) and (c) are equivalent to each other. (Recall that
κ(f , g,h), hence κ∗g(f , g,h), is independent of the choice of the level-N test vectors
(f , g,h) for (f ], g],h]), cf. Remark 1.3(3).)

The equivalence between (c) and (d) follows, as in Section 9.1, from the balanced-
ness of the improved diagonal class. More precisely, the projection

p− : V (f2, g1,h1) −→ V (f2, g1,h1)−

induces an isomorphism between Fil0VdR(f2, g1,h1) and DdR(V (f2, g1,h1)−), hence
(d) is equivalent to the vanishing of the dual exponential of p−∗ (resp(κ(f2, g1,h1))). In
addition, since V (f2)−ββ = V (f2, g1,h1)f is a GQp

-direct summand of V (f2, g1,h1)−

(cf. Section 9.2), and since κ∗g(f2, g1,h1) is balanced at p, the diagram (193) yields

p−∗
(
resp

(
κ∗g(f2, g1,h1)

))
= κ∗g(f2, g1,h1)f ,
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thus proving the equivalence between (c) and (d).
Finally, the equivalence between (d) and (e) follows from Lemma 9.1. This con-

cludes the proof of Theorem B in the exceptional case.
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