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Abstract. We generalize the definition of the Toledo invariant for representa-

tions of fundamental groups of smooth varieties of general type due to Koziarz
and Maubon to the context of singular klt varieties, where the natural funda-

mental groups to consider are those of smooth loci. Assuming that the rank of

the target Lie group is not greater than two, we show that the Toledo invariant
satisfies a Milnor-Wood type inequality and we characterize the corresponding

maximal representations.
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1. Introduction

The Toledo invariant is classically a characteristic number naturally associated
to representations of lattices of semisimple Lie groups of Hermitian type into other
semisimple Lie groups of Hermitian type. Recall that a real semisimple Lie group G
(with no compact factors) is said to be of Hermitian type if its associated symmet-
ric space is Hermitian symmetric, which means that it admits a G-invariant Kähler
form. The most general classical definition was given in [BI07] in terms of the
second bounded cohomology of the involved Lie groups and lattices. The Milnor-
Wood inequality and in particular maximal representations were deeply studied in
many works, see e.g. [Tol89], [Cor88], [GM87],[BGG06], [BIW10], [Poz15], [KM08],
[KM17], [Spi15] only to cite a few. In this paper we are interested in the gener-
alization considered by Koziarz and Maubon in [KM10], in which they no longer
considered representations of complex hyperbolic lattices, but more generally of
fundamental groups of smooth varieties of general type. This generalization was
possible since a proof of the Milnor-Wood inequality and the uniformizing equality
case can be given in differential geometric terms using the point of view of Higgs
bundles via Simpson’s correspondence.
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2 MATTEO COSTANTINI AND DANIEL GREB

Motivated by the fact that ball quotients can have finite quotient singularities,
which are particular examples of klt singularities, and by recent generalizations
([GKPT19; GKPT20]) of classical uniformization results to the klt setup, which
naturally appears when considering minimal models of varieties of general type, we
investigate representations of fundamental groups associated with singular varieties
of general type. It turns out that in the presence of singularities the natural rep-
resentations to consider are those of the fundamental groups of smooth loci. The
definition of Toledo invariant can be made in this more general context thanks to
the work of Mochizuki [Moc06], in which he generalizes the classical result of Cor-
lette and shows existence of harmonic metrics for flat bundles over quasi-projective
varieties. Moreover, the Higgs bundle approach of Koziarz and Maubon to prove the
Milnor-Wood inequality can be also applied in the singular klt setting because of the
extension of Simpson’s correspondence to this case by Greb-Kebekus-Peternell-Taji
[GKPT20].

We begin by defining the Toledo invariant. Let X be a complex klt variety
of dimension d ≥ 2 of general type with nef canonical bundle, cf. Section 2.1.
Let Xreg ⊆ X be its regular locus and let G be a Hermitian Lie group. Let
(Xreg)u → Xreg be the universal cover of the regular locus and f : (Xreg)u → YG be
the harmonic ρ-equivariant map to the symmetric space of G, whose existence and
uniqueness follows from the work of Mochizuki [Moc06, Prop. A.18]. Let finally
ωYG be the cohomology class of the Kähler form of the symmetric metric on YG.
Then, we define the Toledo invariant of the representation as

τ(ρ) :=
1

4π

∫
X

f∗(ωYG) ∧ c1(KX)d−1 ∈ Q.

Here, f∗(ωYG) is considered as a class on X (which we can due owing to ρ-
equivariance of f . Note that the previous definition is well-defined since KX is big
and nef, which implies that some power is base point free, and hence by Bertini’s
theorem that we can move a multiple of the class c1(KX)d−1 away from the singu-
larities.

The following is our main result.

Theorem 1.1. Let X be a projective variety of general type of dimension d ≥ 2
with at worst klt singularities and with nef canonical bundle, and let Xreg ⊆ X be its
regular locus. Let ρ : π1(Xreg) −→ G be a reductive representation into a classical
Hermitian Lie groups of rank rk(G) ≤ 2 other than G = SO∗(10).

Then, the following inequality holds:

|τ(ρ)| ≤ rk(G) · K
d
X

d+ 1
.

Equality holds if and only if the the canonical model Xcan of X is the quasi-étale
quotient of a smooth ball quotient by a finite group.

The hypothesis on the rank of G should morally not be there, since in the
homogeneous situation [KM17] it is not a needed as an assumption, and since
furthermore the uniformization result in the maximal case does not require it. The
low rank of the group is however important for the current proof of the Milnor-Wood
inequality via semistability considerations for Higgs bundles.

As already mentioned above, in the singular case considering fundamental groups
of varieties X of general type is not the correct thing to do, as we have examples of
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quotients of smooth ball quotients by finite groups acting freely in codimension one
that have trivial fundamental group (see [Keu08, Thm. 1.1]); for these examples the
Toledo invariant defined via a representation of π1(X) is not maximal, i.e., equality
in the Milnor-Wood inequality for the fundamental group is no longer a necessary
condition.

Outline of the paper. We will recall the notions and results about klt vari-
eties, G-Higgs bundles over quasi-projective varieties and semistability results in
Section 2.

We will then prove Theorem 1.1 in Section 3, by dividing the statement into
the Milnor-Wood inequality and the uniformization result in the maximal case.
To prove the main result we follow the strategy used in [KM10] for the case of
a smooth X. The Milnor-Wood inequality Theorem 3.1 is proven via considering
the Higgs bundle associated to the representations and using semistability results.
We will then show the uniformization result Theorem 3.2 in the maximal Toledo
invariant situation via translating the problem to the case of a representation of the
fundamental group of a smooth variety, making use of the existence of a maximally
quasi-étale cover for klt varieties established in [GKP16]. On this related smooth
variety, we can then implement the same approach as in [KM10] and conclude.

Acknowledgments. We thank Vincent Koziarz for inspiring discussions.

2. Foundational material

In this section we define the setting we are working in and recall notions and
results about klt spaces and Higgs bundles over quasi-projective varieties. We finally
state the two main ingredients that will be needed to prove the main inequality (3.1)
in the next section.

2.1. Klt spaces. Throughout the present paper, all varieties will be defined over
the complex numbers. For a variety X we will denote by Xreg the regular locus
and by i : Xreg → X the inclusion. We will also refer to [KM98] for the definition
of Kawamata log terminal singularities and we will say that a variety X is klt if it
has at worst Kawamata log terminal singularities; in particular, we require X to
be normal, and KX := i∗(KXreg

) to be a Q-Cartier divisor.
Recall that a variety is said to be of general type if the canonical divisor is big.

Since we will work with canonical models of klt varieties of general type with nef
canonical bundle, we remind the reader of the following property.

Reminder 2.1. If X is a projective klt variety of general type with nef canonical
bundle, by the Basepoint-Free Theorem [KM98, Thm. 3.3] the canonical bundle KX

is semiample, i.e., there is a power of KX that is base-point free and then defines
a birational morphism qX : X → Xcan to a klt projective variety whose canonical
divisor KXcan is ample and such that KX = q∗XKXcan , see [KM98, Lem. 2.30 or
Prop. 3.51]. The canonical model Xcan can be identified with Proj(R(KX)), where
R(KX) is the canonical ring of X, i.e., the section ring of KX .

We now recall an important result of Takayama relating the fundamental group
of X and the one of its canonical model.

Theorem 2.2 ([Tak03, Cor. 1.1(1)]). Let X be a projective klt variety of general
type with nef canonical divisor and let qX : X → Xcan be the canonical morphism.
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Then, the induced homomorphism of fundamental groups qX∗ : π1(X)→ π1(Xcan)
is an isomorphism.

In addition, we will often use the following comparison result for fundamental
groups, especially with V = Xreg.

Remark 2.3. If V is a smooth quasi-projective variety and Z is a closed subset
of codimension at least two, then the inclusion induces an isomorphism π1(V ) ∼=
π1(V \ Z) of fundamental groups.

On the other hand, even if the set of singular points of a variety has high codi-
mension, the difference between the fundamental group of the smooth locus and of
the entire variety may be huge; for example, the Kummer surface associated with
the product of two elliptic curves has trivial fundamental group while its regular
locus has infinite fundamental group.

We now recall the strategy used in [GKP16] to pass from studying represen-
tations and Higgs bundles over a quasi-projective variety to studying ones over a
projective variety, thus solving the above problem at least when it comes to linear
representations. For this we first introduce the following notion.

Definition 2.4 (Quasi-étale Galois morphisms). A morphism γ : X → Y between
normal varieties is called quasi-étale if it is of relative dimension zero and étale in
codimension one, i.e. if dim(X) = dim(Y ) and if there exists a closed subset Z ⊆ X
of codimension at least two such that γ|X\Z : X \ Z → Y is étale. The morphism
is moreover called Galois if there exists a finite group G ⊂ Aut(X) such that γ is
isomorphic to the quotient map.

With this terminology, we have the following useful result.

Theorem 2.5 ([GKP16, Thm. 1.5]). Let X be a quasi-projective klt variety. Then,
there exists a normal variety Y and a finite, surjective quasi-étale Galois morphism
γ : Y → X such that the natural map î∗ : π̂1(Yreg) → π̂1(Y ) of étale fundamental
groups1 induced by the inclusion of the smooth locus is an isomorphism. We call
such a morphism a maximal quasi-étale covering.

As already mentioned above, the main property of the existence of maximally
quasi-étale coverings used later is that it allows us to pass from a representation of
the fundamental group of the regular locus of a klt variety to the one of a projective
variety.

Proposition 2.6 ([GKP16, Sect. 8.1]). Let γ : Y → X be a maximal quasi-étale
covering. Then any linear representation ρ : π1(Yreg)→ GLn(C) factors through a
representation ρY : π1(Y )→ GLn(C).

In fact, the representation ρY is defined by using that î∗ : π̂1(Yreg) → π̂1(Y ) is

an isomorphism and setting ρY := ρ̂ ◦ î−1∗ ◦ c, where c : π1(Y )→ π̂1(Y ) and where
ρ̂ denotes the pro-finite completion of ρ.

1Recall that the étale fundamental group is isomorphic to the profinite completion of the
fundamental group of the underlying topological space (with the Euclidean topology).
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2.2. G-Higgs bundles over quasi-projective varieties. For a full treatment
of G-Higgs bundles we refer for example to [KM08], [Mau15] and [Moc06]. Here
we fix notation and recall the notions that are most relevant for the subsequent
discussion.

Let X be a variety, let Xu be its universal covering, and let ρ : π1(X)→ G be a
representation into a linear reductive algebraic group over R. We will denote by PG
the associated holomorphic flat G-principal bundle over X. Let K be a maximal
compact subgroup of G. We will denote by PK ⊂ PG a K-reduction, i.e. a C∞-
subbundle such that PK ×K G ∼= PG. Such a reduction is equivalent to a section
of PG ×G Y, where Y = G/K is the associated symmetric space, which is again
equivalent to a map fρ : Xu → Y since PG ∼= Xu ×ρ G is flat. Such a reduction is
called pluri-harmonic if the map fρ is pluri-harmonic.

Let now X, as above, be a klt variety and Xreg its regular locus. We recall now
the existence of pluri-harmonic equivariant harmonic maps in the case of reductive
representations of the fundamental group of quasi-projective varieties.

Theorem 2.7 ([Moc06, Prop. A.18]). Let ρ : π1(Xreg) → G be a reductive repre-
sentation into a linear reductive algebraic group over R or C. Then there exists a
unique tame purely imaginary pluri-harmonic reduction PK ⊂ PG and so there is
the corresponding ρ-equivariant pluri-harmonic map fρ : (Xreg)u → Y.

For any faithful complex representation G→ GL(E), we can construct the holo-
morphic flat vector bundle Ereg := PKC ×KC E associated to PG over Xreg. The
pluriharmonicity of fρ ensures that there is a holomorphic structure on Ereg and a
holomorphic Higgs field θreg : Ereg → Ereg ⊗Ω1

Xreg
, so that we can define the Higgs

bundle (Ereg, θreg) over Xreg. The Higgs field θreg can be constructed as a holomor-
phic (1, 0)-form taking values in PKC ⊗AdKC pC ∼= f∗ρ (TCY) and can be identified
with the derivative of fρ by using that pC can be seen as a subspace of End(E).

We will not recall the full definition of tame purely imaginary, since we will not
need it (see [Moc06, Def. A.6] for a full definition). This is a condition ensuring
that the growth of the harmonic bundle near the complement X \ Xreg yields a
well-defined theory.

Remark 2.8. If (Ereg, θreg) is the Higgs bundle associated to the harmonic bundle
PK ⊂ PG, then by [Moc06, Lem. A.12] (Ereg, θreg) is tame purely imaginary (as
defined in [GKPT20, Def. 3.5-3.6]). We will use this definition only implicitly
in Theorem 2.11, where we cite [GKPT20, Thm. 1.2], for which this property is
important.

Let H ∈ Div(X) be a nef Q-Cartier divisor with numerical class [H] ∈ N1(X)Q,
which we call a polarization. Then, since X is normal and hence non-singular in
codimension one, following for example [GKP16, Sect. 4.1] and extending it slightly
from the case of Cartier divisors to Q-Cartier divisors, we define the degree and slope
of a vector bundle Ereg with respect to H to be

degH(Ereg) := c1(i∗(Ereg)) · [H]d−1, µH(Ereg) :=
degH(Ereg)

rk(Ereg)
.

Note that we will mostly work with (big) semiample divisors H, for which the
intersection number can be computed by restricting the vector bundle Ereg to a
high degree complete intersection curve lying in the smooth locus of X, see [GKP16,
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Rem. 4.5] for more details. If the polarization H is clear, we will omit it from the
notation.

We recall now the notions of stability for the Higgs bundle (Ereg, θreg).

Definition 2.9. LetH ∈ Div(X) be a nef Q-Cartier divisor. We say that (Ereg, θreg)
is stable with respect to H if any generically Higgs-invariant subsheaf Freg ⊂ Ereg

with 0 < rk(Freg) < rk(Ereg) satisfies µH(Freg) < µH(Ereg). Analogously, we define
notions of semistable and polystable.

Note that also in the case of a representations of fundamental groups of quasi-
projective varieties, the Toledo invariant does not change under deformations in-
duced by the C∗-action that scales the Higgs field, see [Moc06, Thm. 10.1, Sec. 10]
and recall that the Toledo invariant takes rational values. Moreover, since in the
limit the Higgs bundle has the structure of a system of Hodge bundles ([Moc06,
Thm. 10.5]), as in the classical case we can reduce the computation to this situa-
tion. This is the approach used in [KM10] and by the previous discussion there are
no obstructions to applying the same strategy in the quasi-projective situation.

We finally recall the special situation where G = SU(p, q) following [KM08]. If
E = V ⊕W is the vector space where G acts, then K = S(U(p) × U(q)) preserves
the decomposition and so Ereg = PKC ×KC E splits holomorphically as the direct
sum of the rank p subbundle Vreg = PKC ×KC V and the rank q subbundle Wreg =
PKC ×KC W. Since the Higgs field θreg is the holomorphic (1, 0)-form taking values
in f∗(TCY) = Hom(Wreg, Vreg)⊕Hom(Vreg,Wreg), we can write θ as(

0 βreg
αreg 0

)
,

{
βreg : Wreg → Vreg ⊗ Ω1

Xreg

αreg : Vreg →Wreg ⊗ Ω1
Xreg

Since

(1) c1(KY) =
p+ q

4π
ωY , f∗(T 1,0Y) = Hom(Wreg, Vreg)

we can write the Toledo invariant as

(2) τ(ρ) =
degKX (KY)

p+ q
= −

p degKX (W∨reg) + q degKX (Vreg)

p+ q
= degKX (Wreg)

where the last equality follows from c1(i∗(Ereg)) = 0 stated in Theorem 2.11.
A similar analysis is possible for the group G = SOo(p, 2) (see [KM08, Sec. 4.2])

and can be used for the proof of the main result in the case of representations of
the spin groups Spin(p, 2) which we will not directly treat here.

2.3. Semistability results. The two main ingredients in order to prove the main
inequality are semistability results. The first result needed in [KM10] is a theorem
by Enoki ([Eno88]) about the semistability of the tangent bundle on good models
of varieties of general type. In our context of klt varieties, we need a generalization
of the previous result by Guenancia, or more specifically the following version by
Greb-Kebekus-Peternell-Taji which only assumes KX to be nef.

Theorem 2.10 ([Gue16], [GKPT19, Thm. 7.1]). Let X be a projective, klt variety
of general type whose canonical divisor KX is nef. Then the tangent sheaf TX is
semistable with respect to KX , when considered as a Higgs bundle with trivial Higgs
field on Xreg, cf. Definition 2.9.
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The second result needed in [KM10] was shown in loc. cit. and concerns the
polystability of the Higgs bundle associated to a representation of the fundamental
group of a smooth variety of general type. This result can be replaced in our
framework by the following.

Theorem 2.11. Let X be projective klt variety of general type with nef canonical
bundle and of dimension greater than one. Let ρ : π1(Xreg) → G be a reductive
representation into a linear reductive group. Then, the Higgs bundle (Ereg, θreg)
on the regular locus associated to ρ is KX-polystable. Moreover c1(i∗(Ereg)) = 0,
where i : Xreg → X is the inclusion of the regular locus.

Proof. By Remark 2.8, the Higgs bundle associated to the representation is tame
purely imaginary. Moreover, since by assumption the representation is reductive,
the associated flat bundle is semisimple. If KX is ample, the claim was then shown
in [GKPT20, Thm. 1.2]. If KX is only big and nef, then KX is semiample and it
induces a birational morphism to the canonical model q : X → Xcan, where KXcan

is ample and KX = q∗(KXcan), see Reminder 2.1. If we define U = Xcan,reg \
q(Xsing ∪Exc(q)) to be the complement of the image of the singular locus of X and
the exceptional set of q in the regular locus of Xcan, then q induces an isomorphism
between U ⊆ Xcan,reg and q−1(U) ⊆ Xreg, where the complement of the first
subset has codimension at least two. By Remark 2.3, we have the following natural
identifications and morphisms

π1(Xcan,reg) ∼= π1(U) ∼= π1(q−1(U))→ π1(Xreg),

where the last arrow is induced by the open inclusion q−1(U) ↪→ Xreg. De-
note by (Ecan,reg, θcan,reg) the Higgs bundle on Xcan,reg induced by the composed
map. Then (Ereg, θreg) ∼= q∗(Ecan,reg, θcan,reg) on q−1(U). Since KXcan

is ample,
(Ecan,reg, θcan,reg) is KXcan

-polystable and so the same is then true for its pull-
back (Ereg, θreg) with respect to [KX ] = [q∗KXcan

]; indeed, a general high degree
complete intersection curve for KXcan

will lie in U and will be the isomorphic im-
age of a general high degree complete intersection curve for q∗KXcan contained in
q−1(U). �

3. The main result

In this section we prove Theorem 1.1. We will follow the proof of the Milnor-
Wood inequality in the case of representations of fundamental groups of smooth
varieties of general type presented in [KM10]. As in loc. cit., we will split the proof
into the inequality part, which requires the rank of G to be at most two, and the
equality situation, which does not require the rank assumption.

3.1. The inequality. We show here the klt version of [KM10, Prop. 4.3]. The
two main ingredients for proving the inequality are the semistability results Theo-
rem 2.10 and Theorem 2.11 for klt varieties. We will use the notation introduced
at the end of Section 2.2.

Theorem 3.1. Let X be a projective klt variety of general type of dimension d ≥ 2
with nef canonical divisor KX . Let G be either SU(p, q) with 1 ≤ q ≤ 2 ≤ p,
Spin(p, 2) with p ≥ 3 or Sp(2,R). Finally let ρ : π1(Xreg) → G be a reductive
representation. Then the Milnor-Wood type inequality

|τ(ρ)| ≤ rk(G) · K
d
X

d+ 1
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holds. Moreover, if equality holds, then G = SU(p, q) and we have deg(Wreg) =
− deg(Im(βreg)) and βreg : Wreg ⊗ TXreg → Vreg is generically injective, where
Ereg = Wreg⊕Vreg is the splitting induced by the SU(p, q) structure and βreg is one
of the corresponding parts of the Higgs field.

As remarked right after the main theorem in the introduction of [KM10], the
statement is given in terms of groups whose complexification is simply connected,
since in this case it is possible to define the Toledo invariant as the degree of a
line bundle. However, Theorem 3.1 implies the analogous result for all classical
Hermitian Lie groups of rank rk(G) ≤ 2 apart from G = SO∗(10), as stated in
the introduction, see Theorem 1.1. This follows from [KM10, Lemma 2.2], which
implies that the main result is true for any representation in a quotient by a finite
normal subgroup of any of the groups G listed in Theorem 3.1, so for any classical
Hermitian Lie groups of rank less than three apart from G = SO∗(10).

Proof of Theorem 3.1. The proof proceeds along the same lines as the one in the
smooth case [KM10, Prop. 4.3], where we substitute the original ingredients by their
respective generalizations, namely Theorem 2.10 and Theorem 2.11. The proof uses
a case-by-case analysis depending on the type of the group G. We recall how it
works in the special case G = SU(p, 1) to show how to use the generalized results
in the klt setting, and refer to the original source for the full discussion.

Recall from Section 2.2 that for G = SU(p, q) the Higgs bundle splits as Ereg =
Vreg ⊕Wreg and the Higgs field splits as θreg = αreg ⊕ βreg. Moreover, by (2) we
have τ(ρ) = deg(Wreg), so in this case we need to show that

(3) degKX (Wreg) ≤ q K
d
X

d+ 1

We will omit the subscript when computing degrees for the remainder of this proof.
Consider the case of a reductive representation with G = SU(p, 1). Since TX is

semistable by Theorem 2.10 and Wreg a line bundle, the tensor product TXreg
⊗Wreg

is semistable. Hence, interpreting βreg as a map from Wreg⊗TXreg
to Vreg we obtain

a first inequality,
µ(kerβreg) ≤ µ(Wreg ⊗ TXreg).

Moreover, since Im(βreg)⊕Wreg is a Higgs subsheaf of (Ereg, θreg), semistability of
the latter Higgs bundle, Theorem 2.11, implies

deg(Wreg ⊕ Im(βreg)) ≤ 0.

Putting these preliminary considerations together we obtain

deg(Wreg ⊗ TXreg
) = deg(Im(βreg)) + deg(kerβreg

)

≤
rk(kerβreg

)

d
deg(Wreg ⊗ TXreg

)− deg(Wreg).

Noting that both Wreg and TXreg are locally free along any complete intersection
curve for KX used to compute the degrees so that tensor products work as expected,
we get

deg(Wreg) ≤
d− rk(kerβreg

)

d− rk(kerβreg
) + 1

deg(KX)

d
.

Using finally that rk(Imβreg) = d−rk(kerβreg) ≤ d, we arrive at the desired inequality
(3) (recall that we are in the special case where q = 1). Moreover, equality is
possible only if rk(kerβreg

) = 0 and deg(Wreg ⊕ Im(βreg)) = 0.
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For G = SU(p, 2) the arguments are similar, but they have to be applied to a
deformation of Ereg given by a system of Hodge bundles, which can be found as a
fixed point of the C∗-action that scales the Higgs field θreg.

This also settles the case G = Sp(2,R) ⊂ SU(2, 2) by a comparison of the con-
stants relating the Toledo invariant with the degree of the line bundle discussed in
[KM10, Sect. 2], which are given in the table on p. 216 of loc. cit.. This comparison
also implies that maximal representations are impossible for G = Sp(2,R). In case
G = Spin(p, 2), the situation is similar, i.e., deforming to a system of Hodge bundles
one obtains a stronger bound that makes the maximal situation impossible. We
refer to [KM08] for the full treatement of the previously mentioned cases. �

3.2. The equality case. In this section we want to show the klt version of [KM10,
Prop. 4.4], i.e. the uniformization result in the case of maximal representations.
Looking at the information about the equality case contained in Theorem 3.1, we
see that are left with proving the following result.

Theorem 3.2. Let X be a projective klt variety of general type with nef canonical
bundle of dimension d ≥ 2, and let Xreg ⊆ X be its regular locus. Let ρ : π1(Xreg)→
SU(p, q) with p ≥ qd and q ≥ 1 and (Ereg = Vreg ⊕Wreg, θreg = βreg ⊕ αreg) be

its associated Higgs bundle. Assume that ρ is maximal, i.e., deg(Wreg) = q
Kd
X

d+1 ,

that we have deg(Wreg) = −deg(Im(βreg)), and that βreg : Wreg ⊗ TXreg
→ Vreg

is generically injective. Then, the canonical model Xcan of X is the quasi-étale
quotient of a smooth ball quotient by a finite group.

In order to analyze the equality case, we use information on how the harmonic
metric on Xreg arises and compares to such metrics on associated covers and reso-
lutions, cf. the proof of [GKPT20, Thm. 1.2]. The situation is summarized by the
following diagram, whose notation will be discussed in the subsequent paragraph:

YG Ỹ u
can

(Xreg)u Ỹcan

γ−1(Xreg) Y Ycan

Xreg X

η̃

fρ
Ỹcan

η

fρ

ϕ

⊂

γ γ

qY

⊂

In the above diagram, the map γ : Y → X is a maximally quasi-étale cover,
i.e., a finite surjective quasi-étale Galois morphism such that the natural map î∗ :
π̂1(Yreg) → π̂1(Y ) is an isomorphism. The existence of this map is guaranteed
by Theorem 2.5. Since γ is unbranched over Xreg, the universal cover of Xreg

factorizes through γ−1(Xreg) ⊂ Y . Note that Y is a klt variety of general type with
nef canonical bundle, so KY is again semiample. We denote by Ycan its canonical

model, by ϕ : Ỹcan → Ycan a strong resolution of singularities of Ycan and by Ỹ u
can the

universal cover of the resolution. As the singularities can be worse than canonical,

note that Ỹcan usually will not be of general type, see for example [Keu08, Thm. 1.1],
which describes finite quasi-étale quotients of fake projective planes with resolution
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of Kodaira dimension one. On the other hand, ϕ∗KYcan
is still big and nef and so

can be used as a polarization on Ỹcan. Moreover, differently from the situation of

[KM10], ϕ is not the canonical morphism of Ỹcan; however, we will see that the
strategy of loc. cit. also works in this setting, once suitably modified.

The following result allows us to pass from the situation of a representation of
the fundamental group of the regular locus of a klt variety to a representation of
the fundamental group of a smooth compact variety.

Proposition 3.3. The representation ρ : π1(Xreg)→ G naturally induces a repre-

sentation ρỸcan
: π1(Ỹcan)→ G such that∫

X

f∗ρ (ωYG) ∧ c1(KX)d−1 =
1

deg(γ)

∫
Ỹcan

f∗ρỸcan
(ωYG) ∧ c1(ϕ∗KYcan)d−1.

Proof. Since γ is étale in codimension one, the representation ρ induces a represen-
tation γ∗ρ : π1(γ−1(Xreg))→ G, which by Remark 2.3 extends to a representation
of π1(Yreg). Recall now from Proposition 2.6 that, since by construction there is
an isomorphism π̂1(Yreg)→ π̂1(Y ) of étale fundamental groups, any representation
of π1(Yreg) factors through a representation of π1(Y ). Hence ρ induces a represen-
tation ρY : π1(Y ) → G which factorizes the representation γ∗ρ induced by γ. By
Takayama’s theorem, Theorem 2.2, the canonical map qY induces an isomorphism
of fundamental groups π1(Y ) ∼= π1(Ycan), which we can use to induce from ρY a
representation ρYcan

: π1(Ycan) → G. We finally denote by ρỸcan
:= ϕ∗ρYcan

the
representation obtained as pull-back via the resolution ϕ, which similarly to qY
induces an isomorphism on the level of fundamental groups.

Since γ is quasi-étale and since qY is the canonical map, we have the following
equalities that lead to analogous equalities for the first Chern classes:

(4) KY = γ∗(KX) = q∗Y (KYcan
).

Let us introduce the following collection of open subsets:

Ucan := Ycan,reg \ qY (γ−1(Xsing) ∪ Exc(qY )),

UY := (qY )−1(Ucan) ⊂ γ−1(Xreg),

Ũ := ϕ−1(Ucan),

UX := γ(UY ).

Note that owing to (4) the subset UY is equal to γ−1(UX) and that it is isomorphic

to Ucan via qY by definition. Furthermore, note that Ucan and Ũ are isomorphic
via ϕ. Moreover, since π1(Y ) and π1(Ycan) are isomorphic via (qY )∗, and π1(Ycan)

and π1(Ỹcan) are isomorphic via ϕ∗, also the map (ϕu)−1 ◦ quY : η−1(UY )
∼=→ η̃−1(Ũ)

induced on the lifts of UY and Ũ to the respective universal coverings is an isomor-
phism. Since by construction

ρỸcan
= ρ ◦ γ∗ ◦ (qY )−1∗ ◦ ϕ∗,

the uniqueness of the corresponding harmonic equivariant maps implies

(5) fρỸcan (p) = fρ ◦
(
(ϕu)−1 ◦ quY

)−1
(p) for all p ∈ η̃−1(Ũ).
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From the previous observations we deduce the following chain of equalities

deg(γ) ·
∫
UX

f∗ρ (ωYG) ∧ c1(KX)d−1 =

∫
UY

γ∗
(
f∗ρ (ωYG) ∧ c1(KX)d−1

)
=

∫
UY

γ∗
(
f∗ρ (ωYG)

)
∧ q∗Y c1(KYcan

)d−1

=

∫
Ucan

(q−1Y )∗γ∗
(
f∗ρ (ωYG)

)
∧ c1(KYcan)d−1

=

∫
Ũ

ϕ∗
(
(q−1Y )∗γ∗

(
f∗ρ (ωYG)

)
∧ c1(KYcan)d−1

)
=

∫
Ũ

f∗ρỸcan
(ωYG) ∧ c1(ϕ∗KYcan

)d−1.

Indeed, the first equality holds, since γ is a maximally quasi-étale morphism and
owing to the fact that UY = γ−1(UX), as noticed above. The second equality follows
from (4), the third and fourth ones use the fact that UY and Ucan are isomorphic

via qY , that and Ucan and Ũ are isomorphic via ϕ, and the last equality follows
from (5).

Note finally that, since KYcan
is ample, we can choose a smooth representative of

the curve class c1(KYcan
)d−1 completely contained in Ucan. This also means that we

can do the same for ϕ∗ c1(KYcan
)d−1 in Ũ and for q∗Y c1(KYcan

)d−1 = γ∗ c1(KX)d−1

in UY . Owing to UY = γ−1(UX), we can then finally also choose a smooth repre-
sentative of the curve class deg(γ) c1(KXcan

)d−1 completely contained in UX , and
hence all the previous integrals are indeed well-defined and extend to the respective
full spaces. This concludes the proof. �

Corollary 3.4. Let X and ρ as in Theorem 3.2 and ρỸcan
as above. Then the Higgs

bundle (VỸcan
⊕WỸcan

, αỸcan
⊕ βỸcan

) on Ỹcan induced by ρỸcan
satisfies

deg(WỸcan
) = q

Kd
Ycan

d+ 1
, deg(WỸcan

) = −deg(Im(βỸcan
))

and βỸcan
: WỸcan

⊗ TỸcan
→ VỸcan

is generically injective.

Proof. By the discussion around (1) and Proposition 3.3, we have

degWreg = τ(ρ) =
1

deg(γ)

∫
Ỹcan

f∗ρỸcan
(ωYG) ∧ c1(ϕ∗KYcan

)d−1 =
deg(WỸcan

)

deg(γ)
.

This implies, by the maximality of ρ and the relations (4) among the canonical
bundle, that

deg(WỸcan
) = deg(γ)

(
q
Kd
X

d+ 1

)
= q

(γ∗KX)d

d+ 1
= q

(q∗YKYcan
)d

d+ 1
= q

Kd
Ycan

d+ 1
.

For the other two claims we can use the compatibility (5) of the harmonic maps
and the fact that βreg, resp. βỸcan

, is the (1, 0)-component of dfρ, resp. dfρỸcan .

Then the same arguments as the proof of Proposition 3.3 yield deg(Im(βreg)) =
deg(Im(βỸcan

)). Moreover the previous comment also implies that, since γ is quasi-
étale and qY and ϕ are birational maps, the generic injectivity of βreg is equivalent
to the generic injectivity of βỸcan

. �
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At this point, the strategy is to follow the proof of [KM10, Prop. 4.4] for the
representation ρỸcan

of the full fundamental group of a compact smooth variety.

Note that, as remarked above, the smooth variety Ỹcan is not of general type in
general, so we cannot apply [KM10, Prop. 4.4] directly, but we can prove the
following variation.

Proposition 3.5. Let Z be a normal projective variety of dimension d ≥ 2 such

that KZ is ample and let ϕ : Z̃ → Z be a resolution of singularities. Let moreover
ρZ : π1(Z)→ SU(p, q) be a representation with p ≥ qd and q ≥ 1 and let ρ := ϕ∗ρZ :

π1(Z̃) → SU(p, q) be the pull-back representation. Let (E = V ⊕W, θ = β ⊕ α) be

the Higgs bundle on Z̃ associated to ρ. Assume that ρ is maximal with respect to the

polarization ϕ∗KZ , i.e. deg(W ) = q
Kd
Z

d+1 , that we have deg(W ) = −deg(Im(β)) and
that β : W ⊗ TZ̃ → V is generically injective. Then, Z is a smooth ball quotient.

Proof. We will follow the proof of [KM10, Prop. 4.4]. As shown in loc. cit., the fact
that β is generically injective implies that the harmonic map f associated to ρ is not
only a generic immersion, but in fact holomorphic. Moreover, if we denote by V ′ the
saturation of Im(β) in V , we have that detβ : det(W )d⊗K−q

Z̃
→ detV ′ is generically

injective, and so there exists a divisor D such that det(W )d ⊗K−q
Z̃
⊗D ∼= detV ′.

Since ρ is maximal, we must have deg(D) =
∫
D
ϕ∗(KZ) = 0. This in turn implies

that the support of D has to be contained in the exceptional set Ex(ϕ) of ϕ, since

KZ is ample. In summary, up to this point we have shown that f : Z̃u → Y is

holomorphic and an immersion outside the lift of Ex(ϕ) to Z̃u.
Using the argument presented on [KM10, pp. 226f], one shows that the image

of f lies in a totally geodesic submanifold Z, where Z ∼= Bd is a ball of maximal
possible holomorphic sectional curvature in Y. Note that the maximality of ρ as
a representation in SU(p, q) implies the maximality as a representation in Aut(Z)
since ωZ = 1

qωY|Z .

Since ρ is defined as the pull-back of the representation ρZ , the restriction of
the holomorphic map f to (ϕ−1(Zreg))u factors through the universal cover of the
regular locus of Z. Since Z is normal, the singular locus has codimension at least
two and we can extend the map to ρZ-equivariant holomorphic map fZ : Zu → Z.
Since f∗ZKZ descends to Z by equivariance, on the regular locus of Z we have
KZ = f∗ZKZ + R, where R is the zero locus of the Jacobian of fZ . Again by
normality of Z, the previous relation can be extended to the full of Z.

By the maximality of ρ and by (1) we have

Kd
Z = f∗KZ · (ϕ∗KZ)d−1 = f∗ZKZ ·Kd−1

Z = Kd
Z −R ·Kd−1

Z

which implies R = 0, since R is effective and KZ is ample. Hence fZ is a local
biholomorphism on Zreg. As explained at the end of the proof of loc. cit., the purity
of the ramification locus implies that fZ is a local biholomorphism on the full of
Z and so Z is smooth and can be endowed with a metric of constant holomorphic
sectional curvature −1, i.e. it is uniformized by the ball Bd. �

The last ingredient needed to prove Theorem 3.2 is the following lemma.

Lemma 3.6. Let γ : Y → X be a quasi-étale Galois cover of projective klt varieties
with big and nef canonical divisors. If the canonical model Ycan of Y is a smooth
ball quotient, then the canonical model Xcan of X is a quasi-étale finite quotient of
a smooth ball quotient.
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Proof. Recall that the canonical model of a variety Z can be defined as the Proj of
its canonical ring R(KZ). Since γ : Y → X is a quasi-étale Galois cover, i.e.,
in particular it is the quotient map by a finite group G ⊆ Aut(Y ), we have
H0(X,mKX) ∼= H0(Y,mKY )G for all m ∈ N0, where the right hand side is the
ring of G-invariant sections. This implies that there is an induced map

γcan : Proj (R(KY ))→ Proj
(
R(KY )G

) ∼= Proj (R(KX))

between the canonical models which is finite and such that γcan ◦ qY = qX ◦ γ,
where qX and qY are the canonical morphisms cf. Reminder 2.1. The previous
commutativity implies that if γ is quasi-étale, also γcan is, since if we could find a
divisor D ⊂ Ycan along which γcan ramifies, then γ would not be étale along the
strict transform of D. �

We are finally able to prove the main uniformization result.

Proof of Theorem 3.2. It is enough to put together all the ingredients we have
shown above. Thanks to Corollary 3.4, we can apply Proposition 3.3 with Z = Ycan
and Z̃ = Ỹcan. This gives that Ycan is a smooth ball quotient, and so by Lemma 3.6
we have that Xcan is a quasi-étale finite quotient of a smooth ball quotient, which
is what we needed to show. �
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