
diffstrata – A SAGE PACKAGE FOR CALCULATIONS IN THE

TAUTOLOGICAL RING OF THE MODULI SPACE OF ABELIAN

DIFFERENTIALS

MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

Abstract. The boundary of the multi-scale differential compactification of
strata of abelian differentials admits an explicit combinatorial description.

However, even for low-dimensional strata, the complexity of the boundary

requires use of a computer. We give a description of the algorithms implemented
in the SageMath package diffstrata to enumerate the boundary components
and perform intersection theory on this space. In particular, the package can

compute the Euler characteristic of strata using the methods developed by the
same authors in [CMZ20b].

Contents

1. Introduction 1
2. Generalised Strata 5
3. Calculations in the Tautological Ring 14
4. Interface and examples 19
References 30

1. Introduction

An important tool in studying the moduli space of (meromorphic) abelian differen-
tials PΩMg(µ) is its modular compactification, the space of multi-scale differentials

PΞMg,n(µ) for µ an integer partition of 2g− 2. The boundary is of a combinatorial
nature, parameterised, for any µ, by finitely many labeled level graphs [BCGGM3].
However, already listing isomorphism classes of these graphs is a non-trivial task,
and even for g = 3 the number of components becomes so large that just listing
them is unfeasible by hand.

Moreover, in [CMZ20b] the tautological ring of PΞMg,n(µ) is described and
calculations therein may be expressed purely in terms of the combinatorics of the
boundary. Again, even the simplest calculations are extremely cumbersome to
perform without the assistance of a computer.

The diffstrata package provides a framework for calculations in the tautological
ring of PΞMg,n(µ). It is implemented in sage [SageMath] and it is inspired by

the package admcycles [DSZ20] for calculations in the tautological ring of Mg,n.
However, due to the differences in the structure of the boundary, the implementation

Research of the second and third author is supported by the DFG-project MO 1884/2-1 and by
the LOEWE-Schwerpunkt “Uniformisierte Strukturen in Arithmetik und Geometrie”.

1

2 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

and interface of the two packages have only little in common. A key step in the
evaluation process is performed by admcycles, though.

1.1. Applications. First, diffstrata may be used naively for basic inquiries about
strata and the compactification constructed in [BCGGM3].

sage: from admcycles.diffstrata import *

sage: X=Stratum((2,2))

sage: X.info()

Stratum: (2, 2)

with residue conditions: []

Genus: [3]

Dimension: 6

Boundary Graphs (without horizontal edges):

Codimension 0: 1 graph

Codimension 1: 20 graphs

Codimension 2: 86 graphs

Codimension 3: 147 graphs

Codimension 4: 110 graphs

Codimension 5: 30 graphs

Total graphs: 394

Second, several important invariants of strata can be computed via intersection
theory. Recall from [CMZ20b, Theorem 1.3] that the (orbifold) Euler characteristic
of the (projectivized, but not compactified) moduli space B = PΩMg,n(µ) is the
dimension-weighted sum over all level graphs Γ ∈ LGL(B) without horizontal nodes

χ(B) = (−1)d
d∑

L=0

∑
Γ∈LGL(B)

`ΓN
>
Γ

∫
DΓ

L∏
i=0

(ξ
[i]
Γ)d

[i]
Γ

of the product of the top power of the of the first Chern class ξ
[i]
Γ of the tautological

bundle at each level, where d
[i]
Γ is the dimension of the projectivized moduli space

at level i of the boundary stratum DΓ, and where d = dim(B) = N − 1. The
following example contains the complete code required to calculate the (orbifold)
Euler characteristic of PΩM2(2):

sage: from admcycles.diffstrata import *

sage: X=Stratum((2,))

sage: X.euler_characteristic()

-1/40

Another example for such a quantity is the Masur–Veech volume, that, according
to [CMSZ19], can be written as

vol (ΩMg,n(m1, . . . ,mn)) = − 2(2iπ)2g

(2g − 3 + n)!

∫
PΞMg,n(µ)

ξ2g−2 ·
n∏
i=1

ψi .

In diffstrata the computation (without the prefactor) is accomplished by:

sage: from admcycles.diffstrata import *

sage: X=Stratum((1,1))

sage: (X.xi^2 * X.psi(1) * X.psi(2)).evaluate()

-1/720

diffstrata – A SAGE PACKAGE 3

We remark that the recursive algorithms in [CMSZ19] to evaluate Masur–Veech
volume are much faster than the direct evaluation via intersection numbers. This
is quite parallel to the evaluation of Weil-Petersson volumes as κ-integrals via
admcycles, which is much slower than specialised recursions as e.g. in [MZ11].

Third, and most important, the program should be used as development tool
for testing formulas. Many topics well-studied for the moduli space of curves (such
as the Picard group, relations in the tautological ring, divisor class computations,
Kodaira dimension, ample cone) are hardly understood for PΞMg,n(µ) at the time of
writing. E.g. any relation in the tautological ring of strata can immediately be tested
for plausibility in diffstrata by intersecting with all classes of complementary
dimension.

1.2. Algorithmic aspects. The new algorithmic concept of diffstrata is to
work with (enhanced) profiles to encode boundary strata. We compare this to
the situation of Mg (and admcycles), where boundary strata are given by stable
graphs. Their number grows rapidly with (g, n) and presents the main performance
obstacle. The boundary strata of PΞMg,n(µ) are encoded by enhanced level graphs,
whose precise definition is recalled in Section 2. Due to the level structure and
enhancements, there are even more of these graphs. However, all the calculations
of the Chern classes of the logarithmic cotangent bundle, in particular of the
Euler characteristic ([CMZ20b]), and also the computation of Masur-Veech volumes
([CMSZ19]) happen in the tautological ring defined by clutching of non-horizontal
divisors. The diffstrata package treats exclusively graphs without horizontal edges.
The number of levels of an enhanced level graph (plus the number of horizontal
edges) encodes the codimension of the boundary stratum defined by the graph, and
the (enhanced) profile is a way of encoding which boundary divisors have to be
intersected to define such locus. Using this method, we can avoid often to invoke
expensive graph comparison algorithms.

Implementing the compactification PΞMg,n(µ) poses a series of challenges not

encountered in the boundary of Mg,n. Constructing all level graphs satisfying pre-
cisely the conditions of [BCGGM3, Def. 1.1] is a non-trivial problem. First, checking
the validity of a graph requires checking the Global Residue Condition (GRC)
discovered in [BCGGM1]. The corresponding algorithm is given in Proposition 2.2,
which refines the combinatorial criterion of [MUW17]. Second, while generating a
codimension-one degeneration of a stable graph insideMg,n is straight-forward (add
an edge either as a loop or by splitting a vertex subject to the stability condition), for
a level graph this is the more subtle problem of splitting a level. To solve it, we must
construct all divisors in any generalised stratum, i.e. parameterizing meromorphic
differentials on possibly disconnected curves and with residue conditions, as these
appear as levels already inside low-genus holomorphic strata. An efficient algorithm
for this is given in Section 2.2. We usually refer to two-level graphs, which define
all divisors considered here, for brevity as BICs (bicoloured graphs, as in [FP18]).

Having generated all BICs, this allows us to construct any graph by recursively
clutching BICs (one for each level-crossing). As a by-product, this yields discrete
coordinates for the enhanced level graphs, as any graph splits uniquely into a product
of distinct BICs: we therefore number the BICs of a stratum and associate to each
level graph its profile, the tuple of indices of BICs appearing as levels of this graph.
Unfortunately, this is not always injective: profiles may be reducible and we need
an enhanced profile to refer to a graph uniquely.

4 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

The tautological ring of PΞMg,n(µ) is abstractly defined as the smallest subring of
the Chow ring that contains ψ-classes and is stable under push-forward of clutching
maps and marked point forgetful maps. It is finitely generated by boundary strata
decorated with products of ψ-classes on each of its levels, see [CMZ20b, Thm. 1.5] for
details. Performing computations in the tautological ring requires intersecting such
decorated boundary strata and evaluating elements of dimension zero. Algorithms
for these steps are given in Section 3.

The novel ingredient in diffstrata is that all standard operations in the intersec-
tion ring, computations of normal bundles, pullbacks and the implementation of the
excess intersection formula for PΞMg,n(µ) [CMZ20b, §8] have to be dealt with simul-
taneously in an algorithm that terminates thanks to a dimension induction. This is
in contrast withMg and admcycles, since normal bundles of boundary components

in Mg are plain ψ-class expressions that do not need recursive treatment.
For implementing the multiplication of tautological classes the notion of profile

is again key, since it allows us to efficiently determine which graphs appear as
degenerations and is essential in the computation of normal bundles and general
intersections, see Section 3.

In Section 4 we give a brief introduction to working with the package, including
some sample calculations and a summary of the implemented algorithms for calcu-
lating the Euler characteristic. We end with an example illustrating the caching
mechanisms of diffstrata and giving a flavour of the complexity of the Euler char-
acteristic calculation even for fairly small strata. We also describe some crosschecks
for the algorithms of Section 3. More details on the subtleties and caveats of the
implementation and caching, as well as an extended guide to the interface are given
in the longer version of this text available as [CMZ20a].

Performance. We present data about the time and memory consumption of some
algorithms, in order to give to the reader an idea of what is possible to compute on
a standard laptop. The growth of complexity is illustrated on the algorithm that
generates all BICs of a stratum. Table 1 shows that the growth is roughly governed
by the dimension of the stratum.

More relevant in practice is the construction of the whole boundary. This is
significantly more time and memory expensive, since it is build by recursively
using the BICs generation algorithm for every level graph. While for the minimal
stratum µ = (4) in genus three this is instantaneous, we can already see that for
the principal stratum µ = (14) the memory used is around 3.7 GB.

sage: before = get_memory_usage()

sage: %time len(flatten(Stratum((1,1,1,1)).all_graphs))

CPU times: user 3min 9s, sys: 4.68 s, total: 3min 13s

Wall time: 3min 16s

22976

sage: get_memory_usage(before)

3669.03515625

Open questions. For the moduli space of (pointed) curves Mg,n enumerating the
boundary strata, also known as tropical curves, and providing a tight estimate for
their growth rate has been discussed at various places ([Cha12], [MP11]), but we
are aware of a complete solution only in genus zero ([McM14]). It seems interesting
to address the analogous problem in PΞMg,n(µ), to count the number of boundary

diffstrata – A SAGE PACKAGE 5

µ dim]BICs memory CPU time

(6) 7 23 3 MB 0.20 s

(14) 8 102 17 MB 1.14 s

(3, 2, 1) 9 103 10 MB 2.01 s

(23) 9 194 69 MB 16.1 s

(3, 13) 10 316 60 MB 16.0 s

(22, 12) 10 374 144 MB 24.5 s

(2, 14) 11 1308 800 MB 2 min 41 s

(16) 12 5846 10711 MB 2 h 13 s

Table 1. Performance of the BICs generation algorithm, run on a
2018 laptop.

strata (see above for the case µ = (2, 2)) or at least provide tight estimates for their
number. Such estimates would also be the basis for serious run-time analysis of the
algorithms in diffstrata.1

Acknowledgements. We thank Vincent Delecroix and Johannes Schmitt for many
helpful suggestions for implementing this package. We are also grateful to the
Mathematical Sciences Research Institute (MSRI, Berkeley) and the Hausdorff
Institute for Mathematics (HIM, Bonn), where significant progress on this project
was made during their programs and workshops. The authors thank the MPIM,
Bonn, for hospitality and support for [SageMath] computations.

2. Generalised Strata

The moduli space of multi-scaled differentials is a compactification of strata of
differentials which has many desirable properties similar to the Deligne-Mumford
compactification of the moduli space of curves. For example it is a smooth modular
compactification with normal crossing divisors and its boundary components pa-
rametrize products of lower dimensional moduli spaces of multi-scaled differentials.
In this section we use these properties, especially the recursive structure of the
boundary, in order to encode all boundary components of a stratum by iteratively
clutching 2-level graphs. These graphs appear as BICs boundary components of
level strata, which in general parametrize meromorphic differentials on disconnected
curves and with residue conditions. We begin by briefly recalling the notions from
[BCGGM3] and [CMZ20b] in the generality that we here require.

1In practice, one runs out of memory before speed becomes a serious issue: Calculations in
genus four take several hours but need several TB of RAM.

6 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

2.1. Strata with residue conditions. To obtain a recursive structure on the
boundary of PΞMg,n(µ), recall the definition of a generalised stratum, introduced in
[CMZ20b, §4] to cover the case of a level of an enhanced level graph. More precisely,
we allow differentials on disconnected surfaces: denote by µi = (mi,1, . . . ,mi,ni

) ∈
Zni the type of a differential, i.e., we require that

∑ni

j=1mi,j = 2gi − 2 for some

gi ∈ Z and i = 1, . . . , k. Then we define, for a tuple g = (g1, . . . , gk) of genera and
a tuple n = (n1, . . . , nk) together with µ = (µ1, . . . , µk), the disconnected stratum

ΩMg,n(µ) =

k∏
i=1

ΩMgi,ni
(µi) .

Note that the projectivized stratum PΩMg,n(µ) is the quotient by the diagonal
action of C∗, not the quotient by the action of (C∗)k.

Moreover, we consider subspaces of these cut out by residue conditions. More
precisely, denote by Hp ⊆ ∪ki=1{(i, 1), · · · (i, ni)} the subset of the marked points
such that mi,j < −1. Now consider vector spaces R of the following special shape,
modelled on the global residue condition from [BCGGM1]: for λ a partition of Hp,

with parts denoted by λ(k), and a subset λR of the parts of λ, we define the C-vector
space

(1) R :=
{
r = (ri,j)(i,j)∈Hp

∈ CHp and
∑

(i,j)∈λ(k)

ri,j = 0 for all λ(k) ∈ λR
}
.

We denote the subspace of surfaces with residues in R by ΩMR
g,n(µ).

In [CMZ20b, Prop. 4.2] a modular compactification PΞMR

g,n(µ) of PΩMR
g,n(µ)

is constructed in analogy to [BCGGM3]. Consequently, the boundary components
are parametrised by enhanced level graphs. More precisely, a level graph is defined
to be a stable graph together with a level function. Recall that a stable graph is a

tuple Γ =
⊔k
i=1 Γi, where Γi = (Vi, Hi, Ei, gi, vi, ιi) are the connected components

of the graph consisting of vertices Vi, a genus map gi : Vi → Z≥0, legs Hi that are
associated to the vertices by a vertex map vi : Hi → Vi and come with an involution
ιi : Hi → Hi, the two-cycles of which form the oriented edges Ei ⊆ Hi ×Hi while
the fixed points (denoted Hm

i) are in bijection with the ni marked points. The k
graphs Γi = (Vi, Hi, Ei, gi, vi, ιi) are required to be connected and satisfy the usual
stability conditions. Moreover, we set g = tgi, v = tvi, E = tEi, H = tHi, and
V = tVi. Note that this data induces a unique bijection o :

⊔
Hm
i → µ associating

to each marked point (i, j) the order mi,j of the differential.
A level function on the vertices is a map ` : V → Z, which we normalise to take

values in {0,−1, . . . ,−L} and require that, for all edges e ∈ E, `(v(e+)) ≥ `(v(e−)),
where we write e =: (e+, e−) ∈ H ×H.

Moreover, an enhancement is a map κ : E → Z≥0 such that κ(e) = 0 if and
only if e is horizontal (i.e. `(v(e+)) = `(v(e−))), subject to the following stability
condition: define the degree of a vertex v in V to be

deg(v) =
∑

h∈Hm, v(h)=v

o(h) +
∑

e∈E, v(e+)=v

(κ(e)− 1)−
∑

e∈E, v(e−)=v

(κ(e) + 1) .

Then the enhancement is admissible, if deg(v) = 2g(v)− 2 holds for every vertex v
of Γ.

diffstrata – A SAGE PACKAGE 7

The enhanced level graph then consists of the triple (Γ, `, κ). We denote the

corresponding boundary component of PΞMR

g,n(µ) by DΓ. All the figures in this
text give examples of enhanced level graphs, see in particular the box in Figure 2
bottom left for a disconnected stratum and the reason for decorating it with residue
conditions.

Remark 2.1. Note that κ(e) corresponds to the number of prongs at e and, for a
non-horizontal edge, the associated differential has a zero of order κ(e)− 1 on the
vertex at the top end of the edge and a pole of order −κ(e)− 1 on the vertex at the
bottom end. (For horizontal edges there is a simple pole on each adjacent vertex).
This gives an extension of o to H.

Using this identification, the stability condition of [BCGGM3, §2] is simply the
requirement that the orders of zeros and poles sum to 2gi,j − 2 on each vertex. See
[BCGGM3, §2] and [CMZ20b, §3.2] for details.

To determine, for a generalised stratum PΞMR

g,n(µ), which enhanced level graphs
give non-empty boundary components, we recall the R-GRC from [CMZ20b, §4]
using notation from (1): Starting with an enhanced level graph Γ, we construct a

new auxiliary level graph Γ̃ by adding, for each λ(k) ∈ λR, a new vertex vλ(k) to Γ
at level ∞ and converting a tuple (i, j) ∈ λ(k) into an edge from the marked point
(i, j) to the vertex vλ(k) . We then say that Γ satisfies the R-global residue condition
(R-GRC) if the tuple of residues at the legs in Hp belongs to R and for every level

J < ∞ of Γ̃ and every connected component Y of the subgraph Γ̃>J one of the
following conditions holds.

(1) The component Y contains a marked point with a prescribed pole that is
not in λR.

(2) The component Y contains a marked point with a prescribed pole (i, j) ∈ Hp

and there is an r ∈ R with r(i,j) 6= 0.

(3) Let e1, . . . , eb denote the set of edges where Y intersects Γ̃=J . Then

b∑
j=1

Rese−j
ηv(e−j) = 0 ,

where v(e−j) ∈ Γ̃=J .

By [CMZ20b, Prop. 4.2], the boundary components DΓ of PΞMR

g,n(µ) are parametri-
sed by enhanced level graphs (Γ, `, κ) satisfying the R-GRC.

For applications such as listing all graphs in the boundary of a stratum, it
is convenient to have a purely graph-theoretic criterion in analogy to the one
shown for the classical GRC in [MUW17]. The following proposition strips the
tropical language away in the criterion [MUW17, Theorem 1] and generalises it to
meromorphic strata with residue conditions.

Let (Γ, `, κ) be an enhanced level graph. We call a vertex v of Γ inconvenient
if g(v) = 0, if it is not adjacent to any edge e with enhancement κ(e) = 0 and if
it is adjacent to a leg with a very high enhancement in the following precise sense:
denote by p(v) the set of half-edges on the vertex v that are poles (in the sense of
Remark 2.1). Then the condition is that there is a p ∈ p(v) such that

o(p) >
∑

p′∈p(v)

(o(p′)− 1)− 1.

8 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

1 1

2

1 1

1 1

2

1 1

Figure 1. An illegal (left) and legal (right) graph in the boundary
of ΩM3(2, 1, 1).

Proposition 2.2. The boundary stratum DΓ of PΞMR

g,n(µ) associated with the
enhanced level graph (Γ, `, κ) is non-empty if and only if both of the following
conditions are satisfied

(1) For every inconvenient vertex v of Γ there is
(a) a simple cycle based at v that does not pass through any vertex of level

smaller than v, or
(b) the graph of levels ≥ `(v) deprived of the vertex v has two components,

each of which has a marked pole in Hp whose residue is not constrained
to zero for all elements of R.

(2) For every horizontal edge e of Γ there is
(a) a simple cycle based through e that does not pass through any vertex

of level smaller than `(e), or
(b) the graph of levels ≥ `(e) deprived of the edge e has two components,

each of which has a marked pole in Hp whose residue is not constrained
to zero for all elements of R.

Proof. Consider first the case that Γ̃ is connected. We view Γ̃ as an enhanced level

graph of an auxiliary stratum X̃ as follows: we add prongs to the new edges of Γ̃ in
accordance with the pole orders of the half-edges on Γ. For each vertex v at level
∞, we then extend the genus function by gv setting 2gv − 2 as the sum of orders of
the half-edges on v induced by the newly added prongs, possibly adding an extra
simple zero to fix parity issues. Note that all new vertices are of positive genus, so

stability is not an issue. Therefore, for the stratum X̃, we are now reduced to the
situation of [MUW17, Theorem 1].

In a product of strata, clearly a graph is admissible if and only if each component
is admissible. �

Example 2.3. Consider the graphs in the boundary of the stratum PΞM3,3((2, 1, 1))
that are depicted in Figure 1. Note that the left graph is illegal, as the bottom-left
vertex is inconvenient: it is a stratum with signature (2,−2,−2) and both residues
are forced zero, as there is no cycle or pole in the graph above to rectify this. This
problem does not occur in the right graph.

Consider the situation now as a degeneration of the bottom level of the “zigzag-
graph”, the BIC that is the common undegeneration of the two graphs depicted in
Figure 2. Note that there are residue conditions intertwining the simple zeros on

diffstrata – A SAGE PACKAGE 9

1 1

2 1 1
2

−2 −2
1 1

−2 −2

2

−2 −2

1 1

−2 −2

Figure 2. The “zigzag-graph” (left) in the boundary of the stra-
tum ΩM3(2, 1, 1) and a legal (center) and illegal (right) degenera-
tion of its bottom level.

G =

1

1 1

1 3

4

1

2 H =

1

1

1

1

3

4

1

2

δ1(H) =
δ1(G) =

1

1

1 1

4

δ2(H) =
δ2(G) =

2

1 3

4

Figure 3. An example of a reducible profile: the two non-
isomorphic three-level graphs G and H have the same two-level
graphs as undegenerations. The level crossings are denoted by
dotted lines.

the two components. These imply that the middle graph is legal, while the right
one is not.

This criterion allows us to explicitly construct all graphs in a given stratum.
In fact, we can construct all graphs with no horizontal edges recursively from the
two-level graphs.

2.2. Constructing Level Graphs. Recall the undegeneration maps δi [CMZ20b,
§3.3], contracting all level crossing of an enhanced level graph Γ without horizontal
edges except for the i-th level crossing, yielding a two-level graph. The boundary
component defined by Γ is contained in the intersection of the divisors defined by
δi(Γ), but in general this intersection can contain also other components defined by
other level graphs.

Definition 2.4. Let (Γ, `, κ) be an enhanced level graph with L levels and without
horizontal edges. We define the profile of Γ to be the tuple (δ1(Γ), . . . , δL(Γ)). The
enhanced profile of Γ is its profile together with an assignment of a number recovering
uniquely Γ among all enhanced level graph with same profile.

Example 2.5. Note that the association of a profile to a graph is not injective.
Indeed, consider the following level graphs in the boundary of ΩM3(4) depicted in
Figure 3.

10 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

1

1

1 1

1 3

4

1

1

1

1

1

3

4

1

1 1

1

1 3

4

1

1

1 11

3

4

1

1

1

1

1

3

4

Figure 4. The four-level graphs degenerating from the reducible
profile consisting of the graphs G and H above. Note that the
left two graph share a (reducible) profile, as do the right two.
The middle graph, however, is unique inside its irreducible profile.
Observe also that the right two graphs cannot be distinguished by
their levels.

A profile is primarily useful to encode efficiently how graphs degenerate. By
definition, the information of an enhanced profile of Γ is equivalent to the data of Γ.

Generating all non-horizontal graphs inside a stratum is thus equivalent to listing
all non-empty enhanced profiles. We do this recursively. For X a generalised
stratum, denote by BIC(X) the (non-horizontal) two-level graphs parametrizing the
boundary divisors of X.

Definition 2.6. Let X be a generalised stratum. For each Γ ∈ BIC(X) we define:

(1) the generalised strata X>Γ and X⊥Γ , the top and bottom levels of the divisor
DΓ defined by Γ;

(2) a map β>Γ : BIC(X>Γ) → BIC(X) that associates to a 2-level graph Γ′ ∈
BIC(X>Γ) the graph δ1(Λ) ∈ BIC(X) where Λ is the graph obtained by
clutching Γ′ to Γ;

(3) a map β⊥Γ : BIC(X⊥Γ) → BIC(X) that associates to a 2-level graph Γ′ ∈
BIC(X⊥Γ) the graph δ2(Λ) ∈ BIC(X) where Λ is the graph obtained by
clutching Γ′ to Γ.

The following proposition is the most important feature of the boundary that
we need in order to efficiently code the components. It also implies that the
non-horizontal boundary components are simple normal crossings.

Proposition 2.7. Let X be a generalised stratum and Γ,Γ′ ∈ BIC(X).

(1) The images of β>Γ and β⊥Γ are disjoint.
(2) The profile (Γ′,Γ) is non-empty if and only if Γ′ is in the image of β>Γ .
(3) The profile (Γ,Γ′) is non-empty if and only if Γ′ is in the image of β⊥Γ .

Proof. The proof follows directly from [CMZ20b, Prop. 5.1]. We recall that the
argument consists of checking the dimensions of the top and bottom levels of the
undegenerations of boundary strata, which determine uniquely the profile. �

diffstrata – A SAGE PACKAGE 11

1

1 1 1

4

2

1 3

4

3

4−2

−2−2

1

1 1

1

3

4

Figure 5. From left to right: the “triple banana”; the “asym-
metric banana”; the compact type BIC inside ΩM0(4,−2,−2,−2),
the bottom level of the “triple banana”; the unique graph in the
intersection of the triple and asymmetric banana.

As a consequence, we may define a partial order ≺ on BIC(X) by defining Γ ≺ Γ′

if and only if (Γ′,Γ) is non-empty.

Remark 2.8. Profiles can be reducible and determining the reducibility of a profile
is a delicate issue. In particular, each of the following may occur:

(1) a degeneration of an irreducible profile can be reducible (Figure 3);
(2) a degeneration of a reducible profile can be irreducible (Figure 4);
(3) Whenever a profile (Γ1,Γ2) is reducible, the corresponding maps β>Γ2

and

β⊥Γ1
are not injective. However, non-injectivity does not imply reducibility.

Degenerating a level in different ways may give isomorphic graphs.

In the sequel we will call 2-level graphs of banana type if they have only two
vertices which are joined by more than one edge. We will call them of compact type
if they have two vertices joined by only one edge. (The name is justified by the fact
that the generalised Jacobians of the associated nodal curves are of compact type).

Example 2.9. We give an example for the last point: consider the “triple banana”,
the BIC with a non-trivial S3 action (cf. Figure 5) in the boundary of ΩM3(4).
The bottom level is the stratum ΩM0(4,−2,−2,−2), which is one-dimensional and
contains three BICs of compact type, distinguished only by the numbering of their
marked points. However, no matter how we glue the compact type graph into the
bottom level, the resulting graphs are always isomorphic: each gives the intersection
with the “asymmetric banana”. Thus the profile of the intersection is irreducible
even though β⊥ is not injective (all three compact type BICs map to the asymmetric
banana).

The previous proposition allows us to recursively compute all profiles.

Proposition 2.10. Let X be a generalised stratum.

(1) The number of enhanced 2-level graphs in BIC(X) is finite and the graphs
can be listed explicitly.

(2) All non-empty profiles in X can be constructed recursively from BIC(X).
(3) All graphs inside a profile can be constructed explicitly from the profile’s

components.

Proof. The generation of BIC(X) may be accomplished in several steps: first, a list
of all combinatorially possible 2-level graphs is generated for each component of

12 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

the stratum, then the GRC is checked for each graph and these are then combined
to give all possible BICs for a Generalised Stratum. Finally, they are sorted by
isomorphism class and checked against the R-GRC. Since for each step there are
explicit bounds (see Algorithm 2.11), it follows that the number of BICs is finite.

The non-empty profiles are constructed recursively: a non-empty profile (Γ1, . . . ,Γl)
of length l may be extended to a non-empty profile (Γ0,Γ1, . . . ,Γl) if and only if
Γ1 ≺ Γ0. Indeed, Γ>1 is also the top level of any graph Λ in (Γ1, . . . ,Γl) and thus a
preimage (β>Γ1

)−1(Γ0) exists in BIC(X>Γ1
) and can be clutched to Λ to yield a graph

in (Γ0,Γ1, . . . ,Γl). Similarly, the profile may be extended to (Γ1, . . . ,Γl,Γl+1) if
and only if Γl+1 ≺ Γl.

The converse direction is simply given by the undegeneration obtained by the
contraction of a level crossing.

To get all the graphs we follow the above procedure, noting that we might obtain
several graphs in the same profile if β is non-injective (we clutch each preimage with
each other graph). �

Next, we provide an efficient algorithm for listing BIC(X). We stress that the
naive approach of considering all stable graphs in the corresponding moduli space of
curves and trying to put all possible enhanced level structures on each one of them
is a much less efficient procedure.

We start with some elementary bounds: We denote the maximal sum of genera
of vertices on bottom level by g⊥max and the minimal sum of genera of vertices on
top level by g>min. As every top-level vertex v with gv = 0 requires at least one pole,
g⊥max = g − 1 and g>min = 1 for holomorphic strata and correspondingly g⊥max = g
and g>min = 0 for meromorphic strata.

Algorithm 2.11 (BIC Generation).

Step 1: We begin by iterating over the possible number v⊥ of vertices on
bottom level. As every bottom-level vertex needs at minimum either a zero
or (if it’s genus 0 and has only one edge going up) two marked points, we
note that z + n is an upper bound for v⊥.

Step 2: Next, we distribute the zeros between upper and lower level by
iterating over all 2-length partitions of z (and also include the case where
all zeros are on bottom level), ensuring at each step that we have enough
zeros to satisfy v⊥.

Step 3: The zeros are distributed onto the bottom components. If there are
no marked points, every component needs at least one zero, otherwise we
are more flexible.

Step 4: The genus is partitioned into the contribution g> from the top vertices,
g⊥ from the bottom vertices and the graph. For this, we iterate over g>

and g⊥ (using the bounds g⊥max and g>min).
Step 5: g⊥ is distributed onto the bottom components. At this point, we

have added all zeros and will have to add (at least) double poles for the
edges. Thus, if the orders on any vertex v sum up to less than 2gv, we can
move on to the next iteration.

Step 6: We now distribute the poles p. This is again achieved via 2-length
partitions. Note that every g = 0 vertex on top needs at least one pole (to
compensate the edge(s) going down), so this gives an immediate check for
the partitions.

diffstrata – A SAGE PACKAGE 13

Step 7: Next, we distribute the poles among the bottom components. At this
point, we also check that the difference of 2gv − 2 and the orders distributed
to v, i.e. the “space” left for half-edges, is at least −2 on each component,
so that there is potential for at least one edge going up for every vertex.

Step 8: Now we consider the top level for the first time. We iterate through
the number of top-level vertices, v>, which is bounded by the sum of g⊥

and the number of poles on top-level. As we know the number of vertices
and the distribution of genus, the Euler formula determines the number of
edges, |E|. This gives a “global” check for the “spaces” left on the bottom
components: they must sum up to −2 · |E|.

Step 9: Similar to above, we now distribute genus, poles and zeros on top
level. We also do the obvious checks on the orders and record the spaces on
top (there are much fewer constraints here, as the spaces may well be zero).

Step 10: We now place the half-edges. We again start on bottom-level,
because the poles give stronger constraints. Moreover, the half-edge orders
on bottom determine those on top.

Step 11: Next we check that the graph we have created is connected, if not
we proceed with the next iteration.

Step 12: The only thing missing are the marked points. These are distributed
and we check for stability.

Step 13: In the final step, we check the GRC.

While we do not claim that algorithm is optimal, the implementation in diffstrata

certainly runs in a reasonable time:

sage: from admcycles.diffstrata.bic import bic_alt_noiso

sage: %time len(bic_alt_noiso((1,1,1,1)))

CPU times: user 678 ms, sys: 9.38 ms, total: 688 ms

Wall time: 691 ms

384

This algorithm does not yet sort BICs into isomorphism classes yet, which is
a subsequent time-consuming step. In the stratum µ = (14) there are 102 non-
isomorphic BICs among the 384 generated above, see Table 1. An algorithm that
directly produces only non-isomorphic BICs could lead to significantly improved
performance.

The key observation for generating all graphs is that BICs and three-level graphs
are sufficient for constructing the entire stratum. In particular, all levels are seen
by these.

Remark 2.12. Let X be a generalised stratum. Note that any level L appearing
in any graph in X is one of the following three types:

(1) a top level of a BIC,
(2) a bottom level of a BIC, or
(3) a middle level of a three-level graph.

Indeed, given a graph Γ, level l of Γ remains unchanged by contracting any level
crossing not adjacent to l. Contracting all non-adjacent levels results either in a
BIC (if l is top or bottom level) or in a three-level graph around level l.

14 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

3. Calculations in the Tautological Ring

The purpose of the diffstrata package is to facilitate calculations in the tauto-
logical ring of strata. In light of [CMZ20b, Theorem 1.5], any tautological class may
be expressed as a formal sum of additive generators given by products of ψ-classes
supported on single level graphs.

Let X be a generalised stratum. Any tautological classes on X can be added,
multiplied and evaluated (i.e. integrated against the class of X). The intersection
of tautological classes is developed by implementing the excess intersection formula
proven in [CMZ20b, Proposition 8.1]. In particular we present three intertwined
algorithms, the intersection, pull-back and normal bundle algorithms, which together
implement a recursive procedure to intersect tautological classes. Finally, the
evaluation works by breaking down the expression into ψ-products on meromorphic
strata and using the admcycles package [DSZ20] to evaluate these. We describe
more in detail in this section the algorithms involved.

3.1. Evaluation. Any tautological class can be evaluated, i.e. integrated against
the fundamental class of the corresponding stratum. If an additive generator is not
of top degree, it automatically evaluates to 0.

sage: X=Stratum((2,))

sage: (X.psi(1)).evaluate()

0

sage: (X.psi(1)^3).evaluate()

1/1920

The key to evaluating a tautological class is to split it into pieces that can
be evaluated by admcycles, using the expression of the class of a stratum in the
tautological ring of Mg,n by Sauvaget [Sau19]. For this purpose, the stack factor sf
of an additive generator is defined as follows: let G be the associated graph, then sf
is the quotient of the product of the prongs of G and the product of `B for every B
appearing in the profile of G and the number of automorphisms of G. For a BIC B,
the number `B is the lcm of the prongs of B. By [CMZ20b, Lemma 9.12] this factor
is necessary to convert an integral over a boundary stratum DΓ into the product of
level-wise evaluations.

Algorithm 3.1 (Evaluation).

Step 1: Take the sum of the evaluation of the additive generators multiplied
with their respective coefficients.

Step 2: Each additive generator is evaluated by sorting the ψ-classes by level
and taking the product of the evaluations of these ψ-polynomials on each
level. This product is then multiplied with the stack factor.

Step 3: If the residue space R is empty, we evaluate as follows. If the level
is disconnected, it evaluates to 0; if it is 0-dimensional, it evaluates to 1;
otherwise we use the function of admcycles that computes the tautological
class of the image of the stratum in Mg,n and integrate this against the
ψ-classes, using admcycle’s evaluation method.

Step 4: If the level splits as a product (with residue conditions, i.e. with

respect to the underlying graph Γ̃), it evaluates to 0, since the fiber dimension
to the product of moduli spaces is positive and the ψ-classes are pullbacks
from there.

diffstrata – A SAGE PACKAGE 15

29

523

−13−17

11

−1323

5−17

7

−1723

5−13

Figure 6. The boundary divisors Γ1, Γ2 and Γ3 of the stratum
PΞM0,4(23, 5,−13,−17).

Otherwise, we create a new Generalised Stratum with one residue condi-
tion removed. We repeat until this condition is non-trivial (or R = ∅) and
evaluate the product of the (original) ψ-expression and the class cut out by
this residue condition (using [CMZ20b, Prop. 8.3]).

The evaluations in Step 3 are based on the algorithms in [DSZ20]. In particular
the Strataclass function is based on the description of fundamental classes of
(non-generalised) strata conjectured in [FP18] and [Sch18] and proven recently in
[BHPSS20] based on results from [HS19].

Example 3.2. We illustrate the calculation of a class cut out by a residue condition:

sage: X=GeneralisedStratum([Signature((23,5,-13,-17))])

sage: assert X.res_stratum_class([(0,2)]).evaluate() == 5

In fact, this stratum has three boundary points corresponding to graphs Γ1, Γ2

and Γ3 (see Figure 6) that have respectively the marked points of order (23, 5),
(23,−13) and (23,−17) on lower level. By [CMZ20b, Prop. 8.2] we can express ξ
using the first ψ-class as

∫
X
ξ = 24− 29− 11− 7 = −23. Now in [CMZ20b, Prop.

8.3] the contributing boundary graphs are Γ2 (because the point with order −13
is on lower level) and Γ3 (because the zero residue at the point of order −13 on
upper level is automatic), but not Γ1. We find that the evaluation of the boundary
stratum is −(−23)− 11− 7 = 5, as claimed.

3.2. Intersections. While adding two additive generators is straight-forward, ex-
pressing the intersection of two additive generators again as a sum of additive
generators is subtle, in particular if the intersection is not transversal.

A first approximation is finding common degenerations of two graphs, but if these
graphs have a common undegeneration, there is a normal bundle contribution. The
precise answer is the excess intersection formula [CMZ20b, Prop. 8.1].

In diffstrata, we implement the general version of the excess intersection
formula [CMZ20b, eq. (61)].

Let Λ1 and Λ2 be degenerations of a k-level graph Γ. A level graph Π is
a (Λ1,Λ2)-graph if there are undegeneration morphisms ρi : Π → Λi, i.e. edge
contraction morphisms with the property that there are subsets I and J of levels
such that δI(Π) = Λ1 and δJ (Π) = Λ2. Denote the associated boundary components

16 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

by DΠ, DΛ1
, DΛ2

and DΓ, as in the following diagram:

DΠ DΛ2

DΛ1
DΓ

jΠ,Λ2

jΠ,Λ1 jΛ2,Γ

jΛ1,Γ

Furthermore, we define νΠ
(Λ1∩Λ2)/Γ to be the product of the pullback to DΠ of the

normal bundles NΓ′,Γ where Γ′ ranges over all k + 1-level graphs Γ′ that are a
degeneration of Γ and that are moreover common to Λ1 and Λ2, see Section 3.3.
For any α ∈ CH•(DΛ2

) we can then express its push-forward pulled back to Λ1 as

j∗Λ1,ΓjΛ2,Γ∗α =
∑
Π

jΠ,Λ1,∗

(
νΠ

(Λ1∩Λ2)/Γ · j
∗
Π,Λ2

α
)
,

where the sum ranges over all (Λ1,Λ2)-graphs Π. This corresponds to the product
of α with the class of Λ2 in CH(DΓ). For more details, see [CMZ20b, §8.1].

Of course, the product of two additive generators on the same graph is simply
the product of their ψ-polynomials and the product of two tautological classes is
the sum of the products of their additive generators.

Therefore, the excess intersection formula is given by a pullback as the base case
(no common intersection) and recursive multiplication with normal bundles. Note
that the codimension of the ambient stratum increases at each step and therefore
the normal bundle becomes trivial after finitely many iterations. In Example 4.1 we
illustrate the intersection procedure in more detail.

3.3. Normal bundles. The key ingredient for the multiplication is the calculation
of normal bundles. The first Chern class of the normal bundle of a divisor is
computed in [CMZ20b, Thm 7.1]. In diffstrata, this can be computed using
normal_bundle:

sage: X=Stratum((2,))

sage: X.normal_bundle(((0,),0)) == X.taut_from_graph((0,),0)^2

True

sage: X.normal_bundle(((1,),0)) == X.taut_from_graph((1,),0)^2

True

However, for the excess intersection formula, we need to compute νΠ
(Λ1∩Λ2)/Γ.

The situation is summarised in the following diagram of the involved graphs:

Λ1 ∩ Λ2 Λ2

Γ′′

Γ′

Λ1 Γ

codim1

where the arrows represent undegeneration maps. The graph Γ′′ is the minimal
common undegeneration of Λ1 and Λ2, corresponding to the intersection of the
profiles, while Λ1 ∩ Λ2 corresponds to the union of the profiles (up to reducibility

diffstrata – A SAGE PACKAGE 17

issues, cf. Example 2.5). The graph(s) Γ′ are codimension one degenerations of Γ
that are common undegenerations of Λ1 and Λ2.

For the excess intersection formula, we need the product of the normal bundles
NΓ′,Γ = NDΓ′/DΓ

where Γ′ is a k+ 1-level degeneration of the k-level graph Γ. More
precisely, the normal bundles NDΓ′/DΓ

are pulled back to DΓ′′ and the product is
computed in CH(DΓ′′). The normal bundle is computed in [CMZ20b, Prop. 7.5]:

c1(NΓ′,Γ) =
1

`δi(Γ′)

(
−ξ′[i]Γ − c1(L′[i]Γ) + ξ

′[i+1]
Γ

)
in CH1(DΓ′) ,

where

L[i]
Γ′ = OD′Γ

(∑
Γ′

[i]
 ∆̂

`δi+1(∆̂)D∆̂

)
,

where the sum runs over all graphs ∆̂ ∈ LGk+2(B) that yield divisors in D′Γ by
splitting the i-th level. These are then pulled back to DΓ′′ , see Section 3.4, and
then they are multiplied in CH(DΓ′′). In Example 4.1 we show how to apply this
common normal bundle procedure in diffstrata.

Remark 3.3. Observe that this recursive procedure terminates: indeed, the product
in CH(DΓ) has been transformed to a product in CH(DΓ′′) which is of strictly smaller
dimension. Moreover, if the dimension is small enough, transversality is ensured by
dimension reasons.

We summarise the normal bundle algorithm:

Algorithm 3.4 (Normal Bundle).

Step 1: Compute the minimal common undegeneration Γ′′.
Step 2: If Γ′′ is Γ the intersection is transversal, we are in the base case.
Step 3: Loop through the codimension one common undegenerations Γ′ of Γ′′.
Step 4: Calculate the level i where Γ′ and Γ′′ differ.

Step 5: Calculate the normal bundle by computing ξ
[i]
Γ and L[i]

Γ (see Algo-
rithm 3.5).

Step 6: Pull this normal bundle back to Γ′′, cf. Section 3.4.
Step 7: Return the product of the normal bundles (one for each Γ′) inside Γ′′.

We explain how to compute ξ
[i]
Γ and L[i]

Γ , which was required in the fifth step of
the previous algorithm. These objects are computed by clutching the pull back of
the corresponding classes ξ

B
[i]
Γ

and L
B

[i]
Γ

which are elements of the Chow ring of the

level stratum B
[i]
Γ . Even though, in contrast to the moduli space of curves, there is

no clutching morphism from the product of the level strata B
[i]
Γ to DΓ, there is a

correspondence between the product of level strata and the associated boundary
component. The details are explained in [CMZ20b, Sec. 4.2].

It remains to explain only how to “glue” or clutch a tautological class on B
[i]
Γ

into DΓ, in order to obtain an element of the Chow ring of the original stratum X.
Since we are only interested in ξ

B
[i]
Γ

and L
B

[i]
Γ

, we can focus on clutching ψ-classes

and divisors, and ignore classes of higher codimension.
Inserting ψ-classes on a level is straight-forward, since we only need to take care of

the numbering of the marked points in the level stratum B
[i]
Γ and the corresponding

half-edge in Γ. This information is stored by diffstrata during level extraction
and is available.

18 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

Consider the situation that Γ′ is a BIC in B
[i]
Γ . We want to clutch this in,

obtaining a graph Λ in X with one more level than Γ. However, the implementation

of this is rather delicate: in light of Remark 2.12, we can realise B
[i]
Γ as a level in a

BIC or three-level graph and for these we can use the maps β of Definition 2.6 to
translate the BICs of the level into BICs of X. But for graphs with several levels,
we must first undegenerate to the appropriate BIC or three-level graph and thus
the extracted levels could differ by an automorphism from the levels used by β. See
[CMZ20a] for more examples and details on how this is resolved.

We summarise how to determine the enhanced profile of the one-level degeneration
Λ of Γ:

Algorithm 3.5 (Gluing in a BIC).

Step 1: Determine the new profile. This is given by the degeneration graph

via the maps β of Definition 2.6, depending on the location of B
[i]
Γ .

Step 2: Determine the graph by “gluing” in the BIC on the level of graphs.
Step 3: Find the enhanced profile by locating the isomorphism class of the

clutched graph inside the new profile.

Moreover, we need to weight the clutched in class with the contribution from
comparison of multiplicities in the level projections as given in [CMZ20b, Prop. 4.7].
The correction factor is the product of the edge contribution and the automorphism
contribution. The edge contribution is the quotient of `Λ′ , where Λ′ is the BIC of X

that extended the profile of Γ and `Γ′ of the BIC Γ′ of B
[i]
Γ that was inserted. The

automorphism factor is the quotient of the number of automorphisms of the glued
graph and the product of the number of automorphisms of Γ and Γ′.

3.4. Pulling back classes. To calculate the pullback of an additive generator, we
consider first the base case and then the generalised case.

Consider a graph Λ in X, α an additive generator on corresponding to a class
on DΛ and a degeneration Π of Λ, i.e. we obtain Λ by contracting some of the
level-crossings of Π. Then there are finitely many contraction morphisms ρ : Π→ Λ
and each of these gives a well-defined pullback map of α. The pullback is the
weighted sum of these.

Example 3.6. Consider the class S of one of the top half-legs of the banana graph
in the minimal stratum in genus 2. Pulling it back to the intersection will also vanish
for dimension reasons, but pulling it back to the banana graph itself illustrates the
weighted sum: there are two graph morphisms (switching the edges).

sage: X=Stratum((2,))

sage: S=X.additive_generator(((0,),0), {1:1}); print(S)

Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0)

sage: print(S.pull_back(((0,),0)))

Tautological class on Stratum: (2,)

with residue conditions: []

1/2 * Psi class 2 with exponent 1 on level 0 * Graph ((0,), 0) +

1/2 * Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0) +

diffstrata – A SAGE PACKAGE 19

However, for the excess intersection formula, we require a more general notion
of pullback. As above, let Λ be a graph in X and α a class on DΛ, but now we do
not require the “target” graph Λ′ to be a degeneration of Λ. Instead, we will pull α
back to the intersection Λ ∩ Λ′:

Λ ∩ Λ′ Λ

Γ′′

Λ′ Γ

Note that this must include the normal bundle contribution of the minimal common
undegeneration Γ′′ of Λ and Λ′ (in DΓ).

More precisely, the algorithm to compute the pullback of α to Λ ∩ Λ′ is:

Algorithm 3.7 (Pullback).

Step 1: Compute the common normal bundle of α and Λ′ in DΓ (Section 3.3).
Step 2: If it is transversal, perform the pullback to each graph of Λ ∩ Λ′ as

described above.
Step 3: Otherwise, multiply (in CH(Λ ∩ Λ′)) the pullback to each graph of

Λ ∩ Λ′ with the normal bundle, with ambient Γ′′.

Remark 3.8. Observe that this recursive procedure terminates: indeed, as for the
normal bundle calculation, the involved intersections are always performed in an
ambient stratum of strictly lower dimension, cf. Remark 3.3.

In Example 4.1 we show how to apply this generalized pullback in diffstrata.

4. Interface and examples

Installation. The package diffstrata is included with admcycles version 1.1 or
greater. See [DSZ20] for a detailed guide to installing it.

From now on, all examples will assume that the line

sage: from admcycles.diffstrata import *

has been executed!

4.1. Working with diffstrata. We firstly briefly revisit the examples of the
introduction. The first step is always generating a stratum:

sage: X=Stratum((2,))

sage: print(X)

Stratum: (2,)

with residue conditions: []

Here we have defined a Stratum object. The argument is a Python tuple and may
contain integers that sum to 2g − 2 to define any meromorphic stratum (note the
trailing , if there is only one entry!). The print statement displays information
about the object and hints that this is in fact an instance of a GeneralisedStratum

that can be disconnected and have residue conditions at the poles.
Creating a Stratum automatically performs a series of calculations. For example,

all non-horizontal divisors (BICs) are generated and can now be accessed through X:

20 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

sage: X.bics

[EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3]],[(1, 3)],{1: 0, 2: 2,

3: -2},[0, -1],True),dmp={2: (0, 0)},dlevels={0: 0, -1: -1}),

EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5]],[(1, 4), (2, 5)

],{1: 0, 2: 0, 3: 2, 4: -2, 5: -2},[0, -1],True),dmp={3: (0, 0)},

dlevels={0: 0, -1: -1})]

This illustrates how diffstrata represents level graphs internally. The multitude of
decorations makes the classes EmbeddedLevelGraph and LevelGraph a bit unwieldy
and there should be little reason to enter them by hand. But they do store the
essential information, they are a backbone of diffstrata, and they appear frequently
in the output.

For a single EmbeddedLevelGraph, e.g. an element of X.bics, we may use its
explain method to produce a human-readable description of the graph:

sage: X.bics[0].explain()

LevelGraph embedded into stratum Stratum: (2,)

with residue conditions: []

with:

On level 0:

* A vertex (number 0) of genus 1

On level 1:

* A vertex (number 1) of genus 1

The marked points are on level 1.

More precisely, we have:

* Marked point (0, 0) of order 2 on vertex 1 on level 1

Finally, we have one edge. More precisely:

* one edge between vertex 0 (on level 0) and vertex 1 (on level 1) with

prong 1.

Instead of entering graphs by hand, we should always use (enhanced) profiles to
refer to them inside X. For BICs, this is simply their index in X.bics. Recall that
the length of a profile is the number of level crossings of the level graphs with the
profile, or equivalently to the codimension of the associated boundary components.
We can list all profiles of a given length :

sage: X.enhanced_profiles_of_length(2)

(((0, 1), 0),)

sage: X.enhanced_profiles_of_length(3)

()

Recall that an enhanced profile is given by a pair, where the first entry is the profile,
and the second entry is a number corresponding to the enhancement determining
uniquely level graphs with the same profile. For example, the enhanced profiles of
the level graphs G and H of Example 2.5 are (((0, 1), 0),) and (((0, 1), 1),).

Note that in the running example of the minimal stratum in genus 2 there are no
profiles of length 3 even though

sage: X.dim()

3

diffstrata – A SAGE PACKAGE 21

The reason is that diffstrata ignores all graphs with horizontal edges in the
boundary. We can also retrieve the EmbeddedLevelGraph from an (enhanced)
profile:

sage: X.lookup_graph((0,1))

EmbeddedLevelGraph(LG=LevelGraph([1, 0, 0],[[1], [2, 3, 4], [5, 6, 7]],[(1,

4), (2, 6), (3, 7)],{1: 0, 2: 0, 3: 0, 4: -2, 5: 2, 6: -2, 7: -2},[0,

-1, -2],True),dmp={5: (0, 0)},dlevels={0: 0, -1: -1, -2: -2})

The examples of the introduction also illustrated working in the tautological ring
of X. We may inspect the individual classes. Using print gives a more readable
output:

sage: print(X.psi(1))

Tautological class on Stratum: (2,)

with residue conditions: []

1 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

sage: X.psi(1)

ELGTautClass(X=GeneralisedStratum(sig_list=[Signature((2,))],res_cond=[]),

psi_list=[(1, AdditiveGenerator(X=GeneralisedStratum(sig_list=[

Signature((2,))],res_cond=[]),enh_profile=((), 0),leg_dict={1: 1}))])

This illustrates how diffstrata encodes elements of the tautological ring: a tau-
tological class is represented by an ELGTautClass, which is in turn a sum of
AdditiveGenerators. Each AdditiveGenerator corresponds to a ψ-monomial on
a graph and thus carries the information of an enhanced profile and a leg_dict

encoding the ψ-powers: every ψ-class is associated to a marked point of a level
[CMZ20b, Theorem 1.5], i.e. a leg of the graph. A ψ-monomial is thus encoded by
a Python dict with entries of the form l : n where l is the number of a leg of the
graph and n is the exponent of the ψ-class associated to this leg. For example, we
saw above that X.bics[0] is the compact-type graph in the boundary of ΩM2(2).
We see from the LevelGraph that the marked point is at leg 2, the ψ-class at this
point is therefore represented by the leg_dict {2 : 1}. We can enter this into
diffstrata as follows:

sage: A = X.additive_generator(((0,), 0), {2 : 1})

sage: print(A)

Psi class 2 with exponent 1 on level 1 * Graph ((0,), 0)

Note that we had to use the enhanced profile ((0,), 0) to refer to the graph.
Tautological classes may be added and multiplied. We can check that the class A

we defined agrees with the product of the ψ-class on the stratum with the class of
the graph:

sage: A == X.psi(1) * X.additive_generator(((0,), 0))

True

Moreover, when squaring, e.g., the class of a graph, a normal bundle contribution
appears:

sage: print(X.additive_generator(((0,), 0))^2)

Tautological class on Stratum: (2,)

with residue conditions: []

22 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

1

1

1

11
D0

1

1

1

1

1

11

D1

1

1 1

11

D2

2

3

11

D3

Figure 7. The boundary divisors of the principal stratum
PΞM2,2(1, 1): the compact type with genus 1 on top, the V-graph,
the banana graph and the compact type with genus 2 on top.

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0) +

-1 * Psi class 3 with exponent 1 on level 1 * Graph ((0,), 0) +

In the formulas for the Euler characteristic [CMZ20b], the class ξ = c1(O(−1))
of the tautological bundle and its restriction ξ

B
[i]
Γ

to a level i of a graph Γ were key.

For a stratum, the class ξ is easily accessible:

sage: print(X.xi)

Tautological class on Stratum: (2,)

with residue conditions: []

3 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

-1 * Graph ((0,), 0) +

-1 * Graph ((1,), 0) +

Moreover, it is not difficult to compute ξ
B

[i]
Γ

(here for the top-level of the compact-

type graph):

sage: print(X.xi_at_level(0, ((0,),0)))

Tautological class on Stratum: (2,)

with residue conditions: []

1 * Psi class 1 with exponent 1 on level 0 * Graph ((0,), 0) +

We end this section by illustrating, in diffstrata, the methods explained in
Section 3.

Example 4.1. Consider the stratum ΩM2(1, 1) and let us look at the boundary
divisors (see Figure 7):

sage: Y.bics[0]

EmbeddedLevelGraph(LG=LevelGraph([1, 1],[[1], [2, 3, 4]],[(1, 4)],{1: 0,

2: 1, 3: 1, 4: -2},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0:

0, -1: -1})

sage:Y.bics[1]

EmbeddedLevelGraph(LG=LevelGraph([1, 1, 0],[[1], [2], [3, 4, 5, 6]],[(2,

5), (1, 6)],{1: 0, 2: 0, 3: 1, 4: 1, 5: -2, 6: -2},[0, 0, -1],True),

dmp={3: (0, 0), 4: (0, 1)},dlevels={0: 0, -1: -1})

sage: Y.bics[2]

diffstrata – A SAGE PACKAGE 23

EmbeddedLevelGraph(LG=LevelGraph([1, 0],[[1, 2], [3, 4, 5, 6]],[(1, 5),

(2, 6)],{1: 0, 2: 0, 3: 1, 4: 1, 5: -2, 6: -2},[0, -1],True),dmp={3: (0,

0), 4: (0, 1)},dlevels={0: 0, -1: -1})

sage: Y.bics[3]

EmbeddedLevelGraph(LG=LevelGraph([2, 0],[[1], [2, 3, 4]],[(1, 4)],{1: 2,

2: 1, 3: 1, 4: -4},[0, -1],True),dmp={2: (0, 0), 3: (0, 1)},dlevels={0:

0, -1: -1})

We first of all show the use and necessity of intersection inside an ambient stratum.
Consider and the boundary divisor represented by a compact-type graph with a
genus two component on top and a genus zero component on bottom level. By
inspecting the list of BICs we find that it is the third BIC. The standard operations
* and ^ are performed in the Chow ring of the stratum. We can instead work in
the Chow ring of any boundary stratum DΓ by specifying as ambient the enhanced
profile of Γ. As the stratum Y is four-dimensional, we can multiply this graph with
ξ3 to obtain a top-degree class that we may evaluate to find a number:

sage: Y.dim()

4

sage: (Y.xi^3*Y.additive_generator(((3,),0))).evaluate()

-1/640

This matches the observation that the top level is the minimal stratum in genus
two where ξ3 evaluates to − 1

640 , the bottom level is a point and there are no prongs
or automorphisms involved, compare [CMZ20b, §4.3 and Lemma 9.12]:

sage: Y.bics[3].top

LevelStratum(sig_list=[Signature((2,))],res_cond=[],leg_dict={1: (0, 0)})

sage: (Y.bics[3].top.xi^3).evaluate() # calculating on Y.bics[3].top

-1/640

We can perform the same calculation in Y using xi_at_level. However, as the

class ξ
[i]
Γ correspoding to xi_at_level lives not on Y but on the BIC 3, performing

the normal multiplication with * or ^ will not yield the correct result: we must use
our BIC Γ as the ambient stratum, as we want to perform the multiplication in
CH(DΓ), i.e. before pushing forward to Y.

Indeed, while the evaluation of the cube of xi_at_level performed in Y is

sage: (Y.xi_at_level(0, ((3,),0))^3).evaluate()

0

we obtain the expected result when using the correct ambient stratum, the BIC 3:

sage: CT_xi_top = Y.xi_at_level(0, ((3,),0))

sage: (Y.intersection(Y.intersection(CT_xi_top, CT_xi_top, ((3,),0)),

CT_xi_top, ((3,),0))).evaluate()

-1/640

In the special case of taking exponents of xi_at_level, we can use the method
xi_at_level_pow, which computes the exponent with the correct ambient graph:

sage: (Y.xi_at_level_pow(0, ((3,),0), 3)).evaluate()

-1/640

24 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

Indeed, in this case we may even use the method top_xi_at_level which computes
and evaluates the top-power of ξ:

sage: Y.top_xi_at_level(((3,),0), 0)

-1/640

In fact, whenever possible this method should be used (even for ξ on the whole
stratum), as the results are cached and reused.

We continue in the same setting and show how to use the common normal bundle
method. Recall that Y.bics[3] is the compact-type graph with top-level anM2(2).
We may intersect this graph with the banana graph and the other compact-type
graph in Y. Calculating the common normal bundle of these intersections we obtain:

sage: print(Y.cnb(((0,3),0),((2,3),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((3,), 0) +

As expected, this is the normal of the third BIC, as the other two BICs intersect
transversally:

sage: print(Y.normal_bundle(((3,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((3,), 0) +

Calculating, e.g.

sage: print(Y.cnb(((2,3),0),((2,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1/2 * Psi class 2 with exponent 1 on level 0 * Graph ((2,), 0) +

-1/2 * Psi class 1 with exponent 1 on level 0 * Graph ((2,), 0) +

-1/2 * Psi class 5 with exponent 1 on level 1 * Graph ((2,), 0) +

-1/2 * Psi class 6 with exponent 1 on level 1 * Graph ((2,), 0) +

gives the normal bundle of the banana graph.
We finally illustrate the generalized pullback method. The normal bundle of the

compact type graph with genus 2 on top, is simply a ψ-class on top-level:

sage: N = Y.normal_bundle(((3,),0))

sage: print(N)

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((3,), 0) +

Here, the V-graph is BIC number one. It has empty intersection with the third BIC.
We may still perform the pullback and obtain the ZERO class:

sage: print(Y.gen_pullback_taut(N, ((1,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

diffstrata – A SAGE PACKAGE 25

Note that we must use gen_pullback_taut if we want to pull back an ELGTautClass

instead of an AdditiveGenerator!
Consider now the normal bundle N0 of the BIC number zero (the other compact

type graph). Pulling this back to the third BIC, we obtain the normal bundle on
the intersection:

sage: N0=Y.normal_bundle(((0,),0))

sage: print(Y.gen_pullback_taut(N0, ((3,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((0, 3), 0) +

-1 * Psi class 3 with exponent 1 on level 1 * Graph ((0, 3), 0) +

However, this is N0 pulled back to (0, 3) inside BIC number two:

sage: print(Y.gen_pullback_taut(N0, ((0,3),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

2 * Psi class 1 with exponent 1 on level 0 * Psi class 3 with exponent 1

on level 1 * Graph ((0, 3), 0) +

sage: print(Y.gen_pullback_taut(N0, ((0,3),0), ((0,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

-1 * Psi class 1 with exponent 1 on level 0 * Graph ((0, 3), 0) +

-1 * Psi class 3 with exponent 1 on level 1 * Graph ((0, 3), 0) +

The generalised pullback in Y is this pullback multiplied with N0 inside the BIC 0:

sage: print(Y.intersection(Y.gen_pullback_taut(N0, ((0,3),0), ((0,),0)),N0

, ((0,),0)))

Tautological class on Stratum: (1, 1)

with residue conditions: []

2 * Psi class 1 with exponent 1 on level 0 * Psi class 3 with exponent 1

on level 1 * Graph ((0, 3), 0) +

4.2. Euler Characteristics and Caching. We illustrate the methods described
above to implement [CMZ20b, Thm. 1.3] for computing the Euler characteristics of
strata. Recall from Section 1 that the (orbifold) Euler characteristic of the moduli
space PΩMg,n(µ) is the dimension-weighted sum over all level graphs Γ ∈ LGL(B)
without horizontal nodes of the product of the top power of the of the first Chern

class ξ
[i]
Γ of the tautological bundle at each level. The equivalence of this formula

and the one stated in [CMZ20b, Eq. (2)], which involves ξ
B

[i]
Γ

instead, follows from

[CMZ20b, Lemma 9.12], or equivalently from the discussion about clutching BICs
of Section 3.3.

Since we already described how to construct all level graphs and how to compute
top powers of level-wise tautological classes, the Euler-characterstic algorithm
consists in a simple loop that sums over all levels of all enhanced levels graphs. The
main computational issue is that boundary strata grow in size very quickly. Even

26 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

for holomorphic strata in genus 3, these types of calculations would not be possible
without extensive caching.

We already emphasized the use of enhanced profiles instead of graphs. This way,
each graph and (essentially) also each additive generator is created only once and
then reused. Therefore, AdditiveGenerators should always be created and used
via X.additive_generator as this stores them in the _AGs dictionary of X and
allows them to be reused (instead of being created newly on each call):

sage: a=X.additive_generator(((0,),0))

sage: a is X.additive_generator(((0,),0))

True

sage: a is AdditiveGenerator(X, ((0,),0))

False

This allows computations in strata of genus 3 and 4 in feasible time. However,
the memory footprint is considerable: already in genus 3, the larger strata use about
20GB, while in genus 4 already more than a TB is required.

As described in Section 3.1, diffstrata uses the package admcycles to evaluate
top-degree ELGTautClasses. As the computations of admcycles are also very
involved, we cache every use and, in fact, (attempt to) write any computed value
into a local file that is automatically (attempted to be) reused.

More precisely, given the signature sig of a stratum (note that admcycles works
only with connected strata without residue conditions, cf. Section 3.1) and a ψ-
polynomial psis (as a dict mapping points of the stratum to exponents), the
method adm_evaluate uses adm_key to compute a key consisting of the signature
and psis transformed into a tuple. To avoid recomputations, the signature is
sorted and psis renumbered accordingly:

sage: from admcycles.diffstrata.levelstratum import adm_key

sage: adm_key((2,-2), {1: 2, 2: 1})

((-2, 2), ((1, 1), (2, 2)))

If the key exists in the cache, we return its value, otherwise we use admcycles to
compute the value, store it in the cache and write this back into the file.

Similarly, whenever we evaluate a top-power of ξ, we cache this, as the Euler
characteristic can be computed purely from the degeneration graph and this in-
formation. The ξ-cache uses LevelStratum’s method dict_key to compute a key,
again with the aim of performing as few evaluations as necessary.

Example 4.2. We illustrate the dict_keys in the stratum ΩM2(1, 1). For the
V-graph, the top stratum is disconnected and produces:

sage: VT= Y.bics[1].top

sage: print(VT)

Product of Strata:

Signature((0,))

Signature((0,))

with residue conditions:

dimension: 3

leg dictionary: {1: (0, 0), 2: (1, 0)}

leg orbits: [[(1, 0), (0, 0)]]

sage: VT.dict_key()

diffstrata – A SAGE PACKAGE 27

(((0,), (0,)), ())

The bottom stratum has residue conditions:

sage: VT= Y.bics[1].top

sage: print(VB)

Stratum: Signature((1, 1, -2, -2))

with residue conditions: [(0, 3)] [(0, 2)]

dimension: 0

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)}

leg orbits: [[(0, 0)], [(0, 1)], [(0, 3), (0, 2)]]

sage: VB.dict_key()

(((-2, -2, 1, 1),), (((0, 0),), ((0, 1),)))

By contrast, the bottom level of the banana graph produces:

sage: VT= Y.bics[2].top

sage: print(BB)

Stratum: Signature((1, 1, -2, -2))

with residue conditions: [(0, 2), (0, 3)]

dimension: 1

leg dictionary: {3: (0, 0), 4: (0, 1), 5: (0, 2), 6: (0, 3)}

leg orbits: [[(0, 0)], [(0, 1)], [(0, 3), (0, 2)]]

sage: BB.dict_key()

(((-2, -2, 1, 1),), (((0, 0), (0, 1)),))

Example 4.3. The computation of the Euler characteristic of strata is implemented
by euler_characteristic. We run this with an empty cache:

sage: print_adm_evals()

Stratum | Psis | eval

--

sage: print_top_xis()

Stratum | Residue Conditions | xi^dim

--

sage: X=Stratum((4,))

sage: %time X.euler_characteristic()

CPU times: user 7.31 s, sys: 108 ms, total: 7.41 s

Wall time: 7.43 s

-55/504

Re-inspecting the cache, we see that it has been filled:

sage: print_top_xis()

Stratum | Residue Conditions | xi^dim

--

(-4, -2, 4) | [(0, 0), (0, 1)] | 1

(-4, 0, 2) | [(0, 0)] | 1

(-4, 1, 1) | [(0, 0)] | 1

(-4, 4) | [(0, 0)] | -15/8

(-3, -3, 4) | [(0, 0), (0, 1)] | 1

(-2, -2, -2, 4) | [(0, 0), (0, 1), (0, 2)] | -4

(-2, -2, -2, 4) | [[(0, 0), (0, 2)], [(0, 1)]] | 1

28 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

(-2, -2, 0, 2) | [(0, 0), (0, 1)] | -2

(-2, -2, 1, 1) | [[(0, 0)], [(0, 1)]] | 1

(-2, -2, 1, 1) | [(0, 0), (0, 1)] | -1

(-2, -2, 2) | [(0, 0), (0, 1)] | 1

(-2, -2, 4) | [[(0, 0)], [(0, 1)]] | -11/12

(-2, -2, 4) | [(0, 0), (0, 1)] | 13/8

(-2, 0, 0) | [(0, 0)] | 1

(-2, 0, 0, 0) | [(0, 0)] | -1

(-2, 0, 2) | [(0, 0)] | 1/8

(-2, 1, 1) | [(0, 0)] | 0

(-2, 2) | [(0, 0)] | -1/8

(-2, 4) | [(0, 0)] | -23/1152

(0,) | () | 1/24

[(0,), (-2, 0, 0)] | [(1, 0)] | -1/24

[(0,), (0,)] | () | -1/576

[(0,), (0, 0)] | () | 0

(0, 0) | () | 0

(0, 0, 0) | () | 0

(0, 2) | () | 0

(1, 1) | () | 0

(2,) | () | -1/640

(4,) | () | 305/580608

sage: print_adm_evals()

Stratum | Psis | eval

--

(0,) | {1: 1} | 1/24

(-2, 2) | {1: 1} | 1/8

(-2, 0, 0, 0) | {1: 1} | 1

(-2, -2, -2, 4) | {1: 1} | 1

(-2, -2, 1, 1) | {1: 1} | 1

(-4, 4) | {1: 1} | 5/8

(-2, -2, 0, 2) | {1: 1} | 1

(0, 0) | {1: 1, 2: 1} | 1/24

(-2, -2, 4) | {1: 1, 2: 1} | 11/12

(-2, 0, 2) | {1: 1, 2: 1} | 1/4

(-2, 1, 1) | {1: 1, 2: 1} | 1/6

(0, 0, 0) | {1: 1, 2: 1, 3: 1} | 1/12

(-2, 4) | {1: 1, 2: 2} | 73/1152

(0, 0, 0) | {1: 1, 2: 2} | 1/12

(1, 1) | {1: 1, 2: 3} | 1/720

(-2, -2, 4) | {1: 1, 3: 1} | 11/12

(0, 0) | {1: 2} | 1/24

(-2, -2, 4) | {1: 2} | 19/24

(-2, 0, 2) | {1: 2} | 1/8

(-2, 1, 1) | {1: 2} | 1/24

(-2, 4) | {1: 2, 2: 1} | 97/1152

(1, 1) | {1: 2, 2: 2} | 1/720

(2,) | {1: 3} | 1/1920

(0, 0, 0) | {1: 3} | 1/24

(-2, 4) | {1: 3} | 43/1152

(0, 2) | {1: 4} | 11/1920

(1, 1) | {1: 4} | 1/720

(4,) | {1: 5} | 13/580608

diffstrata – A SAGE PACKAGE 29

(-4, 4) | {2: 1} | 5/8

(-2, 2) | {2: 1} | 1/8

(-2, 0, 0, 0) | {2: 1} | 1

(-2, 1, 1) | {2: 1, 3: 1} | 1/6

(-2, 0, 2) | {2: 2} | 1/4

(-2, 1, 1) | {2: 2} | 1/6

(-2, 4) | {2: 3} | 19/1152

(-2, -2, 0, 2) | {3: 1} | 1

(-2, -2, 1, 1) | {3: 1} | 1

(-2, -2, 4) | {3: 2} | 7/24

(-2, -2, -2, 4) | {4: 1} | 1

Of course this affects any future calculations:

sage: %time X.euler_characteristic()

CPU times: user 2.52 ms, sys: 5.39 ms, total: 7.91 ms

Wall time: 22.3 ms

-55/504

In fact, the cache was even used in the first calculation, as all levels appear already
in the two and three-level graphs (see Remark 2.12).

Example 4.4. The Euler characteristic can also be computed by calculating the
Chern character of the logarithmic cotangent bundle using [CMZ20b, Thm. 1.2]
and using Newton’s identity to calculate the Chern polynomial. Of course, this is a
longer calculation and there is less caching (top_xi_at_level is not called), but it
may be used to check the consistency of the formulas:

sage: X=Stratum((2,))

sage: X.top_chern_class().evaluate()

1/40

sage: X.euler_char()

-1/40

By the same method we can compute in general all Chern classes of the logarithmic
cotangent bundle in terms of additive generators, even though as explained before,
this takes more time than the Euler characteristic since the direct formula for that
makes use of many cancellations happening for dimension reasons.

sage: print(X.chern_class(1))

Tautological class on Stratum: (2,)

with residue conditions: []

12 * Psi class 1 with exponent 1 on level 0 * Graph ((), 0) +

-2 * Graph ((0,), 0) +

-3 * Graph ((1,), 0) +

The result will be a tautological class of the correct codimension, written as the
sum of ψ-classes on graphs.

4.3. Crosschecks. The module tests includes some more cross-checks and ex-
ample computations using diffstrata. For example, leg_tests tests on each

one-dimensional graph Γ of a stratum if the evaluation of the ξ
[i]
Γ at that level is the

30 MATTEO COSTANTINI, MARTIN MÖLLER, AND JONATHAN ZACHHUBER

same (for every leg!) as the product of Γ with ξ. Note that these expressions can
be evaluated and the numbers compared.

The class BananaSuite tests the strata ΩM1(k, 1,−k − 1) (cf. [CMZ20b, §10.3])
implementing the D-notation introduced there and including a method to test
[CMZ20b, Prop. 10.2].

Example 4.5. We illustrate the tests on some small strata:

sage: leg_test((4,))

Graph ((3, 6, 7, 2), 0): xi evaluated: 1/48 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/48

Graph ((3, 6, 7, 2), 1): xi evaluated: 1/24 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/24

Graph ((3, 6, 5, 2), 0): xi evaluated: 1/48 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/48

Graph ((3, 6, 5, 4), 0): xi evaluated: 1/48 (dim of Level 0: 1)

level: 0, leg: 1, xi ev: 1/48

sage: B=BananaSuite(2)

sage: B.check()

D(1,1)^2 = -1, RHS = -1

D(1,2)^2 = -1, RHS = -1

D(5,1)^2 = -3/2, RHS = -3/2

True

Finally, the method commutativity_check runs an extensive commutativity
check on a stratum, i.e. multiplying products of BICs in various orders to give
top-level classes and check that these evaluate to the same number, testing the
normal bundle and intersection formulas along the way.

References

[BCGGM1] M. Bainbridge et al. “Compactification of strata of Abelian differen-
tials”. In: Duke Math. J. 167.12 (2018), pp. 2347–2416.

[BCGGM3] M. Bainbridge et al. The moduli space of multi-scale differentials.
Preprint. 2019. arXiv: 1910.13492.

[BHPSS20] Y. Bae et al. Pixtons formula and Abel-Jacobi theory on the Picard
stack. (2020). arXiv: 2004.08676.

[Cha12] M. Chan. “Combinatorics of the tropical Torelli map”. In: Algebra
Number Theory 6.6 (2012), pp. 1133–1169.

[CMSZ19] D. Chen et al. Masur-Veech volumes and intersection theory on moduli
spaces of abelian differentials. (2019). arXiv: 1901.01785. to appear
in Invent. Math.

[CMZ20a] M. Costantini, M. Möller, and J. Zachhuber. diffstrata – a Sage package
for calculations in the tautological ring of the moduli space of Abelian
differentials. Long version, including manual. (2020). arXiv: 2006.
12815.

[CMZ20b] M. Costantini, M. Möller, and J. Zachhuber. The Chern classes and
the Euler characteristic of the moduli spaces of abelian differentials.
(2020). arXiv: 2006.12803.

[DSZ20] V. Delecroix, J. Schmitt, and J. van Zelm. admcycles – a Sage package
for calculations in the tautological ring of the moduli space of stable
curves. (2020). arXiv: 2002.01709.

http://arxiv.org/abs/1910.13492
http://arxiv.org/abs/2004.08676
http://arxiv.org/abs/1901.01785
http://arxiv.org/abs/2006.12815
http://arxiv.org/abs/2006.12815
http://arxiv.org/abs/2006.12803
http://arxiv.org/abs/2002.01709

REFERENCES 31

[FP18] G. Farkas and R. Pandharipande. “The moduli space of twisted canon-
ical divisors”. In: J. Inst. Math. Jussieu 17.3 (2018), pp. 615–672.

[HS19] D. Holmes and J. Schmitt. Infinitesimal structure of the pluricanonical
double ramification locus. (2019). arXiv: 1909.11981.

[McM14] C. McMullen. “Moduli spaces in genus zero and inversion of power
series”. In: Enseign. Math. 60.1-2 (2014), pp. 25–30.

[MP11] S. Maggiolo and N. Pagani. “Generating stable modular graphs”. In:
J. Symbolic Comput. 46.10 (2011), pp. 1087–1097.

[MUW17] M. Möller, M. Ulirsch, and A. Werner. “Realizability of tropical canon-
ical divisors”. In: (2017). arXiv: arXiv:1710.0640. to appear in: J.
Eur. Math. Soc.

[MZ11] M Mirzakhani and P. Zograf. “Towards large genus asymtotics of
intersection numbers on moduli spaces of curves.” In: (2011). Preprint.
arXiv: 1112.1151.

[SageMath] The Sage Developers. SageMath, the Sage Mathematics Software Sys-
tem (Version 9.0). https://www.sagemath.org. 2020.

[Sau19] A. Sauvaget. “Cohomology classes of strata of differentials”. In: Geom.
Topol. 23.3 (2019), pp. 1085–1171.

[Sch18] J. Schmitt. “Dimension theory of the moduli space of twisted k-
differentials”. In: Doc. Math. 23 (2018), pp. 871–894.

E-mail address: costanti@math.uni-bonn.de

Institut für Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Ger-
many

E-mail address: moeller@math.uni-frankfurt.de

E-mail address: zachhuber@math.uni-frankfurt.de

Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 6–8,
60325 Frankfurt am Main, Germany

http://arxiv.org/abs/1909.11981
http://arxiv.org/abs/arXiv: 1710.0640
http://arxiv.org/abs/1112.1151

	1. Introduction
	2. Generalised Strata
	3. Calculations in the Tautological Ring
	4. Interface and examples
	References

