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1 How to visualize the existence of families of modular form
through the Eigencurve

We recall that around ten talks ago we had fixed a prime p. We keep it fixed also for today.

First we give an idea of why the existence of the Coleman-Mazur eigencurve κ : E → W gives
information about p-adic congruences of modular forms.

Proposition 1. Let f be a normalized eigenform of level Γ := Γ0(p) ∩ Γ1(N) and weight k new
away from p of slope ν < k − 1. Moreover, supposing that, if α is the eigenvalue for Up, then
α2 ̸= χN (p)p

k+1, where χN is the tame part of the character of f . Then for every n >> 0 there
exists k′ ̸= k and an eigenform f ′ of level Γ new away from p such that f ≡ f ′ mod pn (meaning
that aℓ(f) ≡ aℓ(f ′) mod pn for every prime ℓ ∤ Np). More precisely: there exists an open affinoid
B′ ⊂ E containing k and rigid analytic functions an(T ) ∈ O(B′) ∼= OE⟨T ⟩ (for E some finite
extension of Qp) such that for every k′ ∈ B ∩ Z such that k′ > ν + 1, the evaluation at k′ of the
q-expansion

F (q)(T ) :=
∑
n≥1

an(T )q
n

is the q-expansion of a cuspidal classical eigenform new away from p, of weight k′. Moreover, the
evaluation of F (q)(s) at s = k gives back f .

Proof. This is [Col97, Corollary B5.7.1]. We want to give a sketch of the proof knowing that
the Coleman-Mazur eigenvariety exists. By the general construction we know that there is an
affinoid B = Sp(R) around k that is ν-adapted. The corresponding local piece of the eigenvariety
is Sp(TB,ν) → B, where TB,ν is the eigenalgebra of (Mk(Γ)

†)≤ν ⊆ (Mk(Γ)
†)<k−1 = Mk(Γ)

<k−1,
where the last equality is a deep result known as Coleman classicality theorem. We also know
that the map Sp(TB,ν)→ B is unramified at every classical point (because the action of Tℓ, Sℓ for
ℓ ∤ Np is semisimple on classical forms and the condition α2 ≠ χN (p)pk+1 ensures that also Up acts
semisimply, by [Bel21, Exercise 2.6.21] and the fact that f has conductor N , so that N/N0 = p in
that exercise notation). In particular, up to an étale extension, there exists a section.

The existence of a section means that one has a map TB,ν ⊗R′ → R′ ← R (where the last is an étale
morphism of rings) where R′ ∼= OE⟨T ⟩s (localization at some element s) for some finite extension
E/Qp. In particular one has a map Tℓ → aℓ(T ) =

∑
i aℓ,iT

i ∈ O(B′) and Coleman shows that B′

can be taken so that |aℓ| ≤ 1 (i.e. |aℓ,i| ≤ 1 for every i), see the discussion after [Col97, Theorem
B5.7] .

But now the congruence is clear: suppose that n is large enough so that an integer k′ satisfying
k′ ≡ k mod (p− 1)pn belongs to B (such n exists because classical points are Zariski-dense in W).
As evaluating at the character z 7→ zk corresponds to evaluate at T = (1 + p)k − 1 in terms of T ,
one has the following estimate for the absolute value of aℓ(k′)− aℓ(k):

|
∑

aℓ,i((1 + p)k+c(p−1)pn − 1− ((1 + p)k − 1))| ≤ |(1 + p)c(p−1)pn − 1| ≤ p−n−1.

From this (sketch) of proof it is not clear that f ′ can be taken to be primitive away from p. To
obtain this one should construct the eigencurve using Banach modules of p-new overconvergent
modular forms, and the result would follow. A local version of this is discussed in the proof of
[Col97, Corollary B5.7.1].
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2 Why studying p-adic interpolation of modular forms
We now give some insight of how the existence of p-adic congruences of Fourier coefficients is used
in practice.

2.1 Galois representations
We use the following notation: E denotes a finite extension of Qp. We call OE its ring of integers
and we choose ϖ a uniformizer of OE and set F := OE/ϖ.

We follow [Bel11, §1] and [Bel21].

We start with defining p-adic representations:

Definition 1. Let K be a field. A p-adic representation of the Galois group GK := Gal(K/K) with
coefficients in E is the giving of a finite dimensional E-vector space V with a continuous action of
GK .

From this we immediately get a continuous group homomorphism

ρ : GK → GL(V ).

Indeed, we could have taken the giving of such a morphism as the definition of a Galois representation.

Usually K is taken to be a local or a global field.

Lemma 2. Given a E-valued p-adic representation V , it is always possible to find a GK-stable
lattice T , i.e. a OE-submodule T of V such that T ⊗OE

E = V and the map ρV factors through
AutOE

(T ).

Proof. For any lattice T , the subgroup GL(T ) ⊂ GL(V ) is open. In particular ρ−1(GL(T )) is open
in GK profinite and hence of finite index. Denote with {g1, . . . , gn} a system of representatives for
the quotient. Then

∑n
i=1 ρ(gi)T is a GK-stable lattice.

Choosing a lattice amounts to choosing a basis for V (just take the OE span of that basis). In
general, once we have chosen a basis, we can view the representation as having values in GLn(E)
for n the dimension of V . In this language, the above lemma is saying that, up to conjugation, we
can assume that the representation actually has values in GLn(OE).

Definition 2. In general, if R is a topological ring, we can speak of an (n-dimensional) R-valued
Galois representation of GK , defined to be a continuous group homomorphism

ρ : GK → GLn(R).

We say that ρ1, ρ2 are equivalent if one is obtained from the other by conjugation by an element
γ ∈ GLn(R).

In particular it is clear that any choice of basis of an E-valued p-adic representation V gives
equivalent representations, but this does not have to be true for OE , i.e. different choices of T might
give non-equivalent representations. However, the following is true:
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Proposition 3. Suppose that ρ is 2-dimensional and that the representation ρT,1 : GK → GL2(T )→
GL2(T/ϖ) is absolutely irreducible. Then any two choices of a lattice give equivalent representations.

Proof. We consider the set of homothety classes of lattices. We say that two lattices Λ,Λ′ in
E2 in different homothety classes are at distance n if n is the minimal positive integer such that
ϖnΛ ⊆ Λ′ ⊆ Λ (Once the lattice Λ in the first class is fixed, there is a unique maximal Λ′ contained
in Λ in the second class). Since the definition of distance in independent of the elements of the
classes, we give the correspondent definition for classes of lattices. Suppose that Λ,Λ′ are GK stable
classes of lattices. Then their elements are GK stable lattices because GK cannot scale them by
powers of ϖ (it would not act continuously). If two lattices are homotethic and G-stable, then
their associated representations are equivalent. We prove by induction on n ≥ 1 that if two lattices
at distance n induce non-equivalent representations, then the residual representation cannot be
(absolutely) irreducible. Suppose that the classes of Λ and Λ′ are at distance 1, then the induced
representation ρ1 : GK → GL(Λ/ϖ) is not irreducible, because it has the stable subspace Λ′/ϖΛ.
Suppose now that Λ,Λ′ are at distance n and G stable, then apply the induction hypothesis to
Λ′ +ϖn−1Λ which is clearly G-stable, at distance n− 1 form Λ and at distance 1 form Λ′.

Then, once we have chosen a lattice T , we can also reduce it mod ϖn for every n, thus obtaining a
collection of representations

ρT,n : GK → GL(T/ϖn) ∼= GLm(OE/ϖn) for some m.

Definition 3. When K is a local field,we say that ρ is unramified if its restriction to the inertia
group is trivial (equivalently: it factors through the Galois group Gal(Kunr/K), where Kunr is the
maximal unramified extension). If K is a number field, we say that ρ is unramified at a prime ℓ if
its restriction to any decomposition group at ℓ is unramified (notice that this does not depend on
the choice of a decomposition group, because they are all conjugate).

Remark 4. Let K be a number field and S a finite set of places of K (usually taken to contain
p). We sometimes write the product of the elements of S instead of S itself. A continuous p-adic
representation ρ : GK → GLn(E) is unramified at prime ℓ ̸∈ S (with the definition above) if and
only if ρ factors through the Galois group GS := Gal(KS/K), where KS is the maximal unramified
extension of K unramified outside S.

Indeed for a place v of KS above ℓ ̸∈ S, we have that (KS)v ⊆ Qunr
ℓ , i.e ρℓ = ρ|Dℓ

(where Dℓ is a
decomposition group at ℓ) factors through Gal(Qunr

ℓ /Qℓ), i.e. it is trivial on Iℓ.

Viceversa, if it is unramified outside S and does not factor through KS , then there is an induced
(w.l.o.g faithful) non trivial representation of Gal(L/KS) for some non trivial Galois extension L of
KS ramified at some ℓ ̸∈ S. But then Gal(L/KS) contains a non trivial quotient of Iℓ and this is
not possible, because of unramifiedness at ℓ and faithfulness.

Definition 4 (Semisimple representation). A representation ρ : G → GLn(R) (over a ring R) is
semisimple if every G invariant subspace W ⊆ Rn is a direct summand (as R[G]-module, where
R[G] is the group algebra).

The following theorem is taken from [Bel21, Theorem 2.6.22]:

Theorem 5. Let f ∈Mk(Γ1(N), χ) be a normalized primitive eigenform, so in particular its Fourier
coefficients are algebraic integers (χ is a Dirichlet character mod N and f ∈Mk(Γ1(N), χ) means
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that Sℓf = χ(ℓ)ℓk−2f , for ℓ ∤ Np a prime). Take S = Np. Then there exists a unique (up to
equivalence) semisimple Galois representation

ρf : GQ,S → GL2(Qp)

such that the characteristic polynomial of a Frobenius element Frℓ ∈ GQ,S at ℓ ∤ Np is given by

X2 − aℓ(f)X + χ(ℓ)ℓk−1.

Equivalently, there exits a unique (up to equivalence) semisimple representation

ρf : GQ → GL2(Qp)

such that it is unramified outside S = Np and the characteristic polynomial of a Frobenius element
Frℓ ∈ GQ is as above.

Proof. I will say a few words later about the construction of such representations. The unicity
statement follows from the following two facts (and the fact that ρ is continuous):

• (Brauer-Nesbitt theorem) If ρ1, ρ2 : G→ GLn(E) are two semisimple representations of a
group G valued in a field E, with characteristic polynomials of ρ1(g) and ρ2(g) equal for every
g ∈ G, then ρ1 ∼= ρ2. If moreover the characteristic of E is either 0 or ≥ n + 1, then the
condition Tr(ρ1(g)) = Tr(ρ2(g)) is enough.

• (Chebotarev density theorem) The union of all the Frobenius conjugacy classes for primes v of
a number field K such that v ̸∈ S are dense in GK,S .

A slightly variation of the statement might be more enlightening, in view of the notations that we
have followed in the seminar:

Theorem 6. Let f ∈ Mk(Γ1(N)) be a normalized primitive eigenform and let λf : T0 → Qp be
the associated system of eigenvalues (T0 being the good eigenalgebra of Mk(Γ1(N))). There exists a
unique (up to equivalence) semisimple representation

ρf : GQ,S → GL2(Qp)

such that the characteristic polynomial of a Frobenius element Frℓ ∈ GQ,S at ℓ ∤ Np is given by

X2 − λf (Tℓ)X + λf (ℓSℓ).

The following is one of the most interesting reasons for studying p-adic congruences of Hecke systems
of eigenvalues:

Theorem 7. Theorem Suppose that f ∈ Sk(Γ1(N),OE) and f ′ ∈ Sk′(Γ1(N),OE) are congruent
mod ϖn (that is aℓ(f) ≡ aℓ(f

′) for each ℓ ∤ Np). Moreover, suppose that the reduction mod ϖ of
their associated Galois representations Vf , Vf ′ are absolutely irreducible (that’s why I’ve reduced to
cusp forms: Eisenstein series have reducible Galois representations associated to them). Choose
lattices Tf , Tf ′ in Vf , Vf ′ respectively, then their associated mod ϖn Galois representations are
isomorphic:

ρTf ,n
∼= ρTf′ ,n.
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Proof. The theorem follows from applying the unicity statement in point two of theorem 9 to the
Henselian local ring OE/ϖn and pseudocharacters Tr(ρTf ,n) and Tr(ρTf ,n).

2.1.1 Construction of the modular representation

Let me start with the easy one. Let ψ be a Dirichlet character of conductor dividing N satisfying
ψ(−1) = (−1)k. We have the (normalized) Eisenstein series Ek,ψ ∈ Mk(Γ1(N)) associated to ψ
whose q-expansion is given by ([Bel21, (2.6.14)])

Ek,ψ(q) = c0 +
∑
n≥1

(
∑
m|n

ψ(m)mk−1)qn.

In particular for a prime ℓ we have

aℓ(Ek,ψ) = 1 + ψ(ℓ)ℓk−1

It is clear what the associated Galois representation should be: just take the representation

ρ : G := G(Q(µ∞
Np)/Q)→ GL2(Qp)

given by

g →
(
1 0
0 ψ′(g)χcyc(g)

)
where ψ(g) is computed by taking the quotient Gal(Q(µN )/Q) of G. Thus, representations of
Eisenstein series are just sums of characters (and in particular are not irreducible).

More interesting is to associate a Galois representation to cusp forms.

Let me first do the general construction (this works at least for k ≥ 2, for k = 1 the procedure is
different and in fact it uses congruences to deduce the result from higher weights) which is due to
Deligne [Del]: for this fix f ∈ Sk(Γ1(N)) whose coefficients are in a finite extension L/Qp.

One considers the universal elliptic curve π : E → Y (Γ1(N)) and the relative cohomology lisse étale
sheaf

T := R1πL(1).

The representation space Vf is then the maximal L-quotient of

H1
ét(Y (Γ1(N))Q,Symmk−2(T )(1))

on which Hecke operators (appropriately defined) act as multiplication by their eigenvalues on f .

Why should you expect that this has anything to do with modular forms? ([Wie, §6.4]) This follows
from the Shimura isomorphism, which I now explain. First of all notice that T is locally free of rank
two (the stalk at any point is the Tate module of the fiber) and one can identify (for any ring R)
Symmk−2(R2) with the space Vk−2(R) of homogeneous polynomials of degree k− 2 in two variables
X,Y . Next, one has the properly called Shimura isomorphism

Mk(Γ1(N),C)⊕ Sk(Γ1(N),C) ∼= H1(Γ1(N), Vk−2(C))
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(where H1 denotes group cohomology and the action on polynomials is precomposition by the action
of a matrix on the row vector (X,Y )) given by

(f, g) 7→ [γ →
∫ γz0

z0

f(z)(Xz + Y )k−2dz +

∫ γz0

z0

g(z)(Xz + Y )k−2dz].

(Here z0 ∈ H is fixed).

Finally one has a comparison isomorphism between étale cohomology (after choosing embedding
L → C and base changing to C) with singular cohomology and singular cohomology of an affine
curve with group cohomology of the fundamental group.

Actually for k = 2 and f with integer coefficients, the construction is much easier and was known
earlier than the general one ([Mil96, Theorem 6.3]): over C a cusp form f corresponds to a unique
holomorphic differential ωf on X1(N)(C). Fix a point P0 ∈ X1(N)(C). There is a well defined map
α : X1(N)(C)→ C/Λf given by

P 7→
∫ P

P0

ωf

where Λf is the lattice in C given by the image of integration of ωf along paths in H1(X1(N)(C),Z).

Then the complex elliptic curve Ef := C/Λf can be proven to have a model over Q and the Galois
representation attached to f is just Tp(Ef )⊗Qp where Tp(Ef ) := lim←−nEf [p

n] is the Tate module
of Ef .

2.2 Pseudocharacters
Definition 5. A 2-dimensional pseudocharacter of a group H valued in a commutative ring A is a
pair of functions τ : H → A, δ : H → A× satisfying

1. δ is a group homomorphism,

2. τ(xy) = τ(yx) for every x, y ∈ H,

3. τ(1) = 2,

4. τ(xy) + δ(y)τ(xy−1) = τ(x)τ(y).

Remark 8. Suppose that one has a representation ρ : H → GL2(A), then the pair (Tr(ρ),det(ρ))
is a 2 dimensional pseudocharacter.

Indeed, for matrices x =

(
a b
c d

)
, y =

(
a′ b′

c′ d′

)
we have

xy =

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
, xy−1 = det(y−1)

(
ad′ − bc′ ba′ − ab′
cd′ − dc′ da′ − cb′

)
and the fourth relation becomes the identity

(aa′ + bc′ + cb′ + dd′) + (ad′ − bc′ − cb′ + da′) = (a+ d)(a′ + d′).

In fact, if 2 is invertible in A, then it is enough to know Tr(ρ) because of the relation

2 det(x) = Tr(x)2 − Tr(x2)
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for every 2-dimensional matrix x (the same in fact holds for point 4 of the above definition: evaluate
at y = x).

One has the following reconstruction theorem ([Bel21, Theorem 2.6.24]):

Theorem 9. • Suppose that (τ, δ) is a 2-dimensional pseudocharacter of a group H valued
in a field L. Then there exists a finite extension L′ of L and a semisimple representation
ρ : H → GL2(L

′), unique up to isomorphism, such that Tr(ρ) = τ,det(ρ) = δ. If L is a local
field and (τ, δ) are continuous, then ρ is also continuous.

• Suppose that (τ, δ) is valued in a henselian local ring A with maximal ideal m and residue field
k and denote with π : A→ k the projection. Suppose that there exists an absolutely irreducible
representation ρ : H → GL2(k) such that (π ◦ τ, π ◦ δ) = (Tr(ρ),det(ρ)), then there exists a
representation ρ : H → GL2(A) such that (Tr(ρ),det(ρ)) = (τ, δ). Moreover, ρ is unique up to
isomorphism and it is continuous if A is a complete DVR and (τ, δ) are continuous.

Let E be a finite extension of Qp as before and consider the space Mk(Γ1(N),OE) of modular forms
of level Γ1(N) and weight k whose q-expansions are in OE . Let H0 denote the abstract good Hecke
algebra and T0 the associated eigenalgebra over OE acting faithfully over Mk(Γ1(N),OE) (of course
T0 depends on N, k even if it does not appear from the notation).

We can pack all the pseudocharacters attached to eigenforms in Mk(Γ1(N),OE) into a single one
valued in T0 ([Bel21, Theorem 2.8.5]):

Theorem 10. There exists a unique continuous 2-dimensional pseudocharacter

τ, σ : GQ,Np → T0 ⊗ E

such that τ(Frℓ) = Tℓ for every prime ℓ ̸= Np. Moreover, τ(c) = 0 for c any complex conjugation
and δ(Frℓ) = ℓSℓ.

Proof. We give a sketch: it is enough to prove for a finite extension L/E (indeed, by continuity,
the result would hold for E as well). Take L such that T0 ⊗ L ∼= Ln. Any factor corresponds to
an eigenform and we know out to attach to them a Galois representation. Now take trace and
determinant of their product.

In general we cannot do better than that. However, if f ∈Mk(Γ1(N),OE) is an eigenform whose
associated mod ϖ representation is absolutely irreducible, then we can apply point 2 of theorem 9
and get ([Bel21, Theorem 2.8.7]):

Theorem 11. Assume that m is a maximal ideal of T0 such that the composition of the pseudochar-
acter of theorem 10 with the reduction mod m arises from an absolutely irreducible representation.
Then there exists a unique continuous representation

ρm : GQ,Np → GL2(T0,m)

such that Tr(Frℓ) = Tℓ for every prime ℓ ̸= Np. Moreover, Tr(c) = 0 for c any complex conjugation
and δ(Frℓ) = ℓSℓ.
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2.3 Interpolating Galois representations along the eigencurve
With the eigenvariety at hand, we can actually construct a big p-adic family of Galois representations,
and in particular we can attach them also to non-classical modular forms. For this denote with E
the Coleman-Mazur eigenvariety of tame level N , denote with w : Z×

p → O(E )× the continuous
character corresponding to the weight map κ : E →W and denote with ψ the algebra homomorphism
ϕ : H0 → O(E ) associated with the eigenvariety construction (H0 being the algebra generated by Up
and good Hecke algebra of level Np). Here are the results. The first one is [Bel21, Theorem 7.4.1]:

Theorem 12. There exists a unique pseudocharacter

(τ, δ) : GQ,Np → O(E )

such that
τ(Frℓ) = ψ(Tℓ)

for every prime ℓ ∤ Np. Moreover, τ(c) = 0 for every complex conjugation c and δ factors through
the quotient Gal(Q(ζNp∞)/Q) ∼= Z×

p × (Z/NZ)× and its restriction to Z×
p is the character

Z×
p ∋ t 7→ t · w(t)

and its restriction to (Z/NZ)× is the character

(Z/NZ)× ∋ a 7→ ⟨a⟩.

I remark that the construction of the eigencurve in [Bel21] is not the same as the one we have seen,
and the relation is given in [Bel21, Theorem 7.2.3].

Definition 6. Recall ([Che05, §3.4]) that a subset of points Z of a rigid analytic space T is Zariski
dense if for every closed analytic subvariety X of T (i.e. a subset given by the zero locus of a finite
number of function on each element of an admissible covering) such that Z ⊂ X, then X = T .

Proof. We sketch a proof. We use the following facts: ψ(Tℓ) ∈ O(E )0 (the subring of power-bounded
elements) for all ℓ ∤ pN and O(E )0 is compact (as a subspace of O(E ) endowed with the coarsest
locally convex topology such that each restriction map to open affinoids is compact). We consider
the classical structure determined by taking N ⊂ W(Qp), which is very Zariski dense in W by [Bel21,
Lemma 6.7.3], and for k ∈ N we take as M cl

k the space Mk of modular forms of weight k and level
Γ1(N) ∩ Γ0(p). Since we have, for every ν ∈ R, that (M†

k)
≤ν ↪→ M cl

k for every k ≥ ν + 2 (i.e. for
every ν we are only excluding a finite number of k), then this satisfies the definition of a classical
structure.

Denote with Z the set of classical points of E coming from the classical structure just defined. They
are very Zariski-dense in E ([Bel21, proposition 3.8.6]). Moreover, for each z ∈ Z corresponding
to a modular form f of weight k, we have a pseudocharacter τz : GQ,Np → Qp that satisfies
τz(Frℓ) = ψ(Tℓ)(z) =: evz(ψ(Tℓ)) (and the other conditions in the statement), where evz is evaluation
at z: the trace of the associated Galois representation (recall that ψ(Tℓ)(z) = aℓ(f)).

We consider the map
evZ =

∏
z∈Z

evz : O(E )0 →
∏
z∈Z

Qp

9



this is injective by density and the image is a closed subspace. Moreover evZ is a homeomorphism
on the image by compactness.

Since ψ(Tℓ) ∈ O(E )0, we have that the image of
∏
z∈Z τz is contained in

∏
z∈Z evz and thus we can

define τ := ev−1
Z ◦

∏
z∈Z τz.

In particular we have a commutative diagram

O(E )0
∏
z∈Z Qp

GQ,Np

∏
z evz

τ

∏
z∈Z τz

Since evz(τ(1)) = 2 for every z ∈ Z and evz(τ(xy)− τ(yx)) = 0 for every z ∈ Z, the same holds for
every point of E and thus τ is the first part of a pseudocharacter. Since 2 is invertible in O(E ), δ is
completely determined from τ .

The second one is [Bel21, Corollary 7.4.2]:

Corollary 13. Let L/Qp be a finite extension and let x ∈ E (L). Then there exists a unique
semisimple representation

ρx : GQ,Np → GL2(L)

with the property that
Tr(ρx(Frℓ)) = Tℓ(x)

for all primes ℓ ∤ Np. Moreover, Tr(ρx(c)) = 0 for every complex conjugation c and det(ρx) factors
through the quotient Gal(Q(ζNp∞)/Q) ∼= Z×

p × (Z/NZ)× and its restriction to Z×
p is the character

Z×
p ∋ t 7→ t · w(t)

and its restriction to (Z/NZ)× is the character

(Z/NZ)× ∋ a 7→ ⟨a⟩.

Proof. By the reconstruction theorem there is a unique such representation with values in some
finite extension L′ of L and one has to show that this can be defined over L.

Moreover ([Bel21, lemma 7.4.9])

Proposition 14. The Hodge-Tate weights of ρx are 0 and −dw(x)− 1 where dw(x) is the derivative
of the character wx : Z×

p → O(E )× → L× at 1, if Hodge-Tate weights are normalized so that the
weight of the cyclotomic character is −1.
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3 p-adic Langlands

3.1 Characters again
Recall that we had also constructed the eigenvariety of tame level N for GL1: WN →W. Each of
the classical points of WN corresponded to a character of the form Z×

p × (Z/NZ)× ∋ z 7→ zkψ(z)Q×
p

where ψ is a finite character of conductor dividing Npr for some r ∈ N. We can certainly associate
Galois representations on them: just compose the character with the isomorphism

Gal(Q(µp∞N )/Q) ∼= Z×
p × (Z/NZ)×.

The Hodge-Tate weights of such characters are integers.

A similar argument to theorem 12 shows that we can attach (non Hodge-Tate) representations to any
point of WN . In fact, we do not need the argument to do that: it is enough to use the isomorphism

Gal(Q(µp∞N )/Q) ∼= Z×
p × (Z/NZ)×.

3.2 Interpolating p-adic Langlands at p-adic weights
We just say few words on how the story goes on. Fix a connected reductive linear algebraic group over
Q. The two examples above (for G = GL1, GL2) are the first historical examples that pointed to the
(conjectural existence) of a p-adic Langlands correspondence. This is some sort of correspondence
between

{ algebraic Hecke eigenforms for G } ↔
{

geometric continuous representations GQ → LG(Qp)
}

where geometric means that they are unramified outside a finite number of primes and de Rham at
p.

Here by Hecke eigenform one usually means a function on the double coset ([CE, §1.5], and I haven’t
considered their A◦

∞ for simplicity)

Xr := G(Q) \G(A)/K◦
∞K

∞,pGr

where K◦
∞ is the connected component of the identity in a maximal compact of real points, K∞,p is

an open compact subgroup of tame level, Gr some compact open subgroup of G(Qp).

For example for G = GL1 and K∞,p = UN (in the notation of Linda’s talk, for some N prime to p),
we get

Q× \ A×/R×
+UN

∼= Z×
p /Gr × (Z/NZ)×

and for G = GL2 and K∞,p = K1(N) :=

{
(xv)v ∈ A∞,p

∣∣∣∣ xv ≡ (
∗ ∗
0 1

)
mod v

}
, we get

GL2(Q) \GL2(A)/SO2(R)K1(N)Gr

which are the C point of a modular curve of some level depending on Gr. To see how to construct a
Hecke eigenform in the above sense form f ∈ Sk(Γ1(N),C) see the end of [DT94, §1].
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Elements in both sides of the above correspondence have some integral invariant associated to them:
Hodge numbers on the left (see discussion in [CE, §1.8] and references there) and Hodge-Tate weights
on the right.

We have seen above that interpolating Galois representations along the eigencurve(s) give Galois
representations which are non de Rham at p. This poses the question of how to enlarge the left
hand side to include objects corresponding to representations that are non de Rham at p. This
conjectural enlarged set is what one would call a space of p-adic automorphic forms for G.

Definitions of such objects that work in practice are given in terms of so called completed cohomology.
Emerton in his paper [Eme06] introduces the theory of completed cohomology and gives a different
construction of the Coleman-Mazur eigencurve by using completed cohomology of the modular
curve (no gluing process involved!). The advantage of this theory is that one can use representation
theoretic methods to study it.

Somewhat unusually, I conclude the presentation with the general definition ([CE, §1])

Definition 7. Let G0 be a profinite group (in our examples G(Zp) with a countable basis given by
normal open subgroups · · · ⊂ Gr ⊂ . . . G1 ⊂ G0. Consider a tower of topological spaces given by
finite coverings · · · → Xr → · · · → X1 → X0 ⊂ with G0 action such that Gr acts trivially on Xr

and realizes X0 as a G0/Gr-torsor.

The completed cohomology for this data is

H̃∗ := lim←−
s

lim−→
r

H∗(Xr,Z/ps).
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