
Let us use the notation set up in the proof of Theorem 14.93 in [Görtz-
Wedhorn] (all references below also refer to that book). We are only inter-
ested in the situation over k̄, so everything is supposed to be over k̄ and the
subscript k̄ is omitted.

The case n = 1 should actually be handled separately (the proof given
does not work in that case as written, because E would be just one point,
and a “hyperplane” in E would be empty), but this case is actually easier,
because then the k-rational point x defines a divisor on X = X ′ and the
corresponding line bundle is O(1) (over k̄).

Now let n > 1 and let π : X ′ → Pn be the blow-up of the point (1 : 0 :
· · · : 0). We identify X ′ with the closed subscheme

X ′ = V+(TiXj − TjXi; 1 ≤ i, j ≤ n) ⊂ Pn−1 × Pn,

where T0, . . . , Tn are homogeneous coordinates on the second factor Pn, and
X1, . . . , Xn are homogeneous coordinates on the first factor Pn−1 in this
product.

Let E ⊂ X ′ be the exceptional divisor and let OX′(E) the associated
line bundle. We want to show that the line bundle Md := π∗OPn(d) ⊗OX′

OX′(−dE) is globally generated for every d ≥ 1, and want to understand
the morphism X ′ → P(H0(X ′,Md)) that it defines.

The key is to understand the case d = 1, so this is what we will do first.

The case d = 1. We start by defining some map and show afterwards
that it is in fact the map given by M1.

So consider the restriction of the projection Pn−1 × Pn → Pn−1 to the
first factor to X ′. This is a morphism r : X ′ → Pn−1. To show that it
corresponds to M1, we need to show the following claim:

Claim. We have

r∗OPn−1(1) ∼= M1.

Proof of claim. We will express both sides as the line bundles attached
to certain Cartier divisors. It is then enough to show that these Cartier
divisors are linearly equivalent. (In fact, with the choices we will make they
will even turn out to be equal.)

For OPn(1), we can fix any i and then can view it as the line bundle of the

Cartier divisor given by the tuple (D+(Tj),
Ti
Tj

)j . (This corresponds to the

Weil divisor V+(Ti).) Cf. Example 11.45 and Section (13.4). Below we will

choose i = 1, so we get (D+(Tj),
T1
Tj

)j . Similarly, we can express OPn−1(1)

as the line bundle for the divisor (D+(Xi),
X1
Xi

)i.

To describe E in a similar way, we denote by Uij ⊂ X ′ the open sub-
scheme where Xi and Tj are invertible. These open subschemes cover X ′.

The exceptional divisor E is given on Uij by the equation Ti
Tj

= 0 (because
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together with the equations TiXj −TjXi and the invertibility of Xi this im-
plies T1 = · · · = Tn = 0). (In particular, as a Weil divisor/closed subscheme,
E ∩ Uij = ∅ for all i > 0.)

Now let us compare the two line bundles r∗OPn−1(1) and M1 in terms of
the Cartier divisors we have just described.

We can view r∗OPn−1(1) as the line bundle attached to the Cartier divisor

(Uij ,
X1
Xi

)i,j .

For M1 = π∗OPn(1) ⊗ O(−E) we get (Uij ,
T1
Tj
· Tj

Ti
)i,j , or in other words

(Uij ,
T1
Ti

)i,j .

But X1
Xi

= T1
Ti

on X ′ (see the equations defining X ′), so the two Cartier
divisors are actually equal and in particular the corresponding line bundles
are isomorphic.

We can also write this down in coordinates. The map r is given by

((x1 : · · · : xn), (t0 : · · · : tn)) 7→ (x1 : · · · : xn).

Now let us take the specific hyperplane H = V+(Xn) ⊂ Pn−1 = E. Then
r−1(r(H)) consists of all points

((x1 : · · · : xn−1 : 0), (t0 : · · · : tn)) ∈ X ′.
All those points, lying on X ′, also satisfy xitn = xnti = 0. If we had tn 6= 0,
we would obtain x1 = · · · = xn = 0 which is not possible for a point in
projective space. Therefore tn = 0 for all those points, and one sees that
π(r−1(r(H))) = V+(Tn), a hyperplane in Pn.

Remark. In more geometric terms, the map r has the following descrip-
tion. Clearly, the restriction r|E (where we now view E as a closed subscheme
of X ′) is an isomorphism. Now let x ∈ X ′ \ E be a closed point. Let g be
the unique line in Pn which connects π(x) with (1 : 0 : · · · : 0). The strict
transform of g in X (i.e., the closure of π−1(g \ {(1 : 0 : · · · : 0)})) is a “line”
(a closed subscheme of X ′ isomorphic to P1) which intersects E in a unique
point y. Then r maps all points on this line to the point r(y).

In particular, if H ⊂ E is a hyperplane, then r−1(r(H)) consists of all
points on all those lines in X ′ as above which meet E in a point of H. If
we view E as the projective space of lines in the tangent space of Pn at
(1 : 0 : · · · : 0) (see the remark on top of p. 416), then we can describe
π(r−1(r(H))) as the union of all lines in Pn through (1 : 0 : · · · : 0) which
give rise to a tangent vector lying in H.

The case of general d ≥ 1.
From the above discussion, we easily can pass to the general case. In fact,

let ι : Pn−1 → PN be the d-fold Veronese embedding, i.e., the morphism
induced by the line bundle OPn−1(d) (i.e., ι∗OPN (1) ∼= OPn−1(d)).

Then for r : X ′ → Pn−1 as above, we have (ι ◦ r)∗OPN (1) ∼= M⊗d
1
∼= Md.

Now ι is a closed embedding, and therefore (ι◦r)−1((ι◦r)(H)) = r−1(r(H)),
so that part of the discussion does not change when we replace r by ι ◦ r.
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(But we need the result for arbitrary d because we do not know a priori,
in the proof of Theorem 14.93, that we can find a line bundle L before
passing to k̄ that would give rise to d = 1.)


