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Abstra
tIn this thesis we examine the arithmeti
 of Brauer groups of lo
al and global�elds. Although Brauer groups are well studied from a theoreti
al point ofview, no one has yet addressed the question of making this theory expli
it.We propose to do exa
tly this in the 
ase of relative Brauer groups.Let L=K be a lo
al extension of degree l. Then the invariant map indu
esan isomorphism Br(L=K) ' Z=lZ. The �rst natural question is to 
omputethis invariant map expli
itly for a given element A 2 Br(K=L). In doingthis we show that this problem is intimately related to the arithmeti
 of theunderlying �nite �eld.This motivates the following approa
h: 
al
ulate a lo
al invariant map ata rami�ed pla
e p via the Hasse{Brauer{Noether lo
al{global prin
iple byrelating it to the invariant map at other (unrami�ed) pla
es q 6= p. We showthat { using the 
on
ept of smoothness { this leads to algorithms whi
h areknown as index 
al
ulus methods in order to 
ompute the dis
rete logarithmin �nite �elds.Moreover we show how this approa
h links the question of solving the dis
retelogarithm in �nite �elds to the problem of solving dis
rete logarithms in theGalois group of 
ertain global extensions.In order to apply the lo
al global prin
iple, we need to 
onstru
t or at leastprove the existen
e of global extensions with pres
ribed rami�
ation andorder. Ex
ept in the 
ases of K = Q and K an imaginary quadrati
 �eldwe provide results about extensions of this kind in the 
ase that K is a CM�eld.Using these results we are able to modify a well known algorithm in the 
aseof dis
rete logarithms in 
ertain subgroups of Fpn .We also give an interpretation of the fun
tion �eld sieve in the setting ofBrauer groups. This interpretation explains a notable di�eren
e betweennumber �eld sieve and fun
tion �eld sieve.Finally we link the dis
rete logarithm problem on abelian varieties to thearithmeti
 of Brauer groups using the Tate pairing.
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Chapter 1
Cryptographi
 Systems basedon Dis
rete Logarithms
Before introdu
ing Brauer groups, we brie
y explain whi
h kind of 
rypto-graphi
al appli
ations we are interested in.1.1 Introdu
tionFormally a 
rypto system is des
ribed by the following parameters:� A set P of plain texts.� A set C of 
ypher texts.� A set K of keys.� A family of en
ryption fun
tions E = fEk : P ! C; k 2 Kg.� A family of de
ryption fun
tions D = fDk : C ! P; k 2 Kg.Given an en
ryption key e 2 K the en
ryption pro
ess is applying the fun
-tion Ee to a plain text p. The de
ryption pro
ess is applying the fun
tionDd, where d is a suitable de
ryption key, to the 
ypher text 
 = Ee(p).In order to guarantee the de
ryption pro
ess to su

eed, we want that:For ea
h e 2 K there exists at least one d 2 K su
h that for all p 2 P theequation Dd(Ee(p)) = p holds. 4



1.1. INTRODUCTION 5In a symmetri
 
rypto system the de
ryption key d is easily 
omputable fromthe en
ryption key e. Therefore, both e and d have to be kept se
ret.In an asymmetri
 
rypto system d 
an only be 
omputed from e with a verylarge ( not feasible) 
omputational e�ort.In this 
ase the en
ryption key e 
an be made publi
 and only the de
ryptionkey d has to be kept se
ret. We 
all a system like this a publi
{key 
ryptosystem.For the 
onstru
tion of publi
{key 
rypto systems the 
onstru
tion of one{way fun
tions is of great importan
e. Here a one{way fun
tion is understoodto be a fun
tion f whose inverse is hard to 
ompute (for a more pre
isede�nition of this see for example [Gol01, Chapter 2℄).One possibility to 
onstru
t one{way fun
tions is to 
onsider an Abeliangroup G together with an eÆ
iently 
omputable group operation (G;+) and
onsider the hardness of the following problem:Given two elements g 2 G and h 2 hgi, �nd n mod jhgij su
h that gn = h ifsu
h n exists. We 
all this the dis
rete logarithm problem in G.On
e we have 
onvin
ed ourselves that the dis
rete logarithm problem in agroup G is hard, this 
an be seen as strong eviden
e for the fa
t that thefun
tion f : Z! G; n 7! n � gfor g 2 G is likely to be a one{way fun
tion.Here are some instan
es of the dis
rete logarithm problem used in 
ryptog-raphy:� The dis
rete logarithm in the multipli
ative group of a �nite �eld Fq ( orin 
y
li
 subgroup of this group) (�rst proposed by DiÆe and Hellman[DH76℄).� The dis
rete logarithm in the group of rational points of an ellipti

urve (or more general in the Ja
obian of a hyperellipti
 
urve) over a�nite �eld Fq (simultaneously proposed by Koblitz [Kob87℄ and Miller[Mil85℄ in the year 1985 in the 
ase of ellipti
 
urves and in the year1989 by Koblitz [Kob89℄ in the 
ase of hyperellipti
 
urves).5



1.2. DISCRETE LOGARITHMS IN FINITE FIELDS 61.2 Dis
rete Logarithms in Finite FieldsWhen 
onsidering the dis
rete logarithm in �nite �elds we 
an distinguishtwo 
ases:� The dis
rete logarithm problem in the full multipli
ative group F�q .� The dis
rete logarithm problem in subgroups of F�q .We will deal with the se
ond 
ase. Hen
e let k = Fq be a �nite �eld satisfyingljq � 1, meaning that the l{th roots of unity are 
ontained in k.We 
an then 
onsider the dis
rete logarithm problem in the group of l{throots of unity: given two non trivial l{th roots of unity �0 and �1 2 h�0i,determine n mod l su
h that �1 = �n0 holds.The diÆ
ulty of this problem relies 
riti
ally on the assumption that to solvea dis
rete logarithm in �l means essentially solving a dis
rete logarithm in F�q .It seems that the only possibility to atta
k the dis
rete logarithm dire
tlyin the 
y
li
 subgroup is to use generi
 methods whi
h have exponential
omplexity depending on the order of the subgroup. The subexponentialmethods used in order to 
ompute the dis
rete logarithm have 
omplexityvarying with q not with l.Hen
e the Digital Signature Standard as proposed by NIST 
hooses l to beabout 160 bit and q to be a also prime and of size about 1000 bit su
h thatljq � 1. While the dis
rete log in a �nite �eld of size 160 bit is 
ertainly notse
ure no one seems to be able to 
ompute dis
rete logarithms in �elds of sizemu
h larger than 280 bits in reasonable time (see [JL01℄), so at the moment1000 bit 
an be viewed as se
ure.Shoup [Sho97℄ has proven that the dis
rete logarithm in a group of primeorder l 
an not be solved in less than O(pl) operations, as long as onlygeneri
 algorithms are allowed. This means that you are only allowed to usethe group operations for 
omputations in the algorithm.It is therefore not surprising that the most e�e
tive methods to solve thedis
rete logarithm problem in �nite �elds make extensive use of lifting te
h-niques: avoiding generi
 algorithms means that the sour
e for extra informa-tion about relations in the group must be obtained from outside the group.6



1.2. DISCRETE LOGARITHMS IN FINITE FIELDS 7For example one may make use of the fa
t that we 
an lift the �nite �eldto a global �eld. We are then able to lift the group elements to the largerobje
t and 
onstru
t relations in this larger obje
t. Upon redu
tion to the�nite �eld this yields relations in the original group obtained without generi
methods. Having 
olle
ted enough relations, one 
an then hope to solve theoriginal dis
rete logarithm problem by applying linear algebra to the systemof relations. This approa
h is known as index 
al
ulus.We will give a new des
ription of index 
al
ulus using the theory of Brauergroups or equivalently 
y
li
 Galois 
ohomology. By this we show how to linkthe dis
rete logarithm problem in �nite �elds to 
ertain dis
rete logarithmsin 
lass groups of global �eld extensions.

7



Chapter 2
Brauer Groups
The following brief introdu
tion to the theory of Brauer groups is modeledafter [Ker90℄. Let K be a �eld, let K be a separable 
losure of K and G theGalois group Gal(K=K). Then K� is a G{module in a natural way. Hen
ewe 
an 
onsider the Galois 
ohomology of K� (a short introdu
tion to Galois
ohomology is given below).We want to study the properties of H2(G;K�). It is a 
lassi
al result thatthis is equivalent to 
lassifying �nite simple 
entral algebras over the �eld K.Using this interpretation we will be able to give a 
omplete 
lassi�
ation inthe 
ase that K is a lo
al �eld. It will be the aim of the following 
hapters toexamine to whi
h extent this 
lassi�
ation 
an be made 
ompletely expli
it.2.1 Algebras over FieldsAn algebra over a �eldK is a ring A, together with aK{ve
torspa
e stru
turesatisfying (�a)b = a(�b) = �(ab)for � 2 K and a; b 2 A. The dimension A is given by the dimension of Aviewed as a K{ve
torspa
e. An algebra in whi
h every element a 6= 0 isinvertible is 
alled skew �eld or division algebra over K.A K{algebra homomorphism f : A ! B is a K{linear ring homomorphismA! B. 8



2.1. ALGEBRAS OVER FIELDS 9An ideal I of a K{algebra A is an ideal of the underlying ring. A K{algebraA is 
alled simple, if A does not 
ontain any ideals ex
ept (0) and A.Theorem 2.1.1 (Wedderburn stru
ture theorem) Let A be a �nite sim-ple K{algebra. Then there exists exa
tly one n � 1 and up to K-algebraisomorphism exa
tly one skew �eld D over K su
h that A 'Mn(D).If A is a ring and B a subring of A, thenZA(B) = fa 2 Ajab = ba 8b 2 Bgis the 
entralisor of B in A. Let Z(A) := ZA(A) denote the 
entralisor ofA in A, this is also 
alled the 
enter of A. Let A be a K{algebra, we 
anassume K � A. Obviously we have K � Z(A). In the 
ase of K = Z(A) we
all A 
entral.The automorphisms of a �nite 
entral simple algebra A have a parti
ularlysimple form:Theorem 2.1.2 (Skolem{Noether) Let A be a �nite simple 
entral alge-bra, then every K{algebra automorphism � : A ! A is an inner automor-phism, meaning that there is a unit u 2 A su
h that �(a) = uau�1 for alla 2 A.Given two K{algebras A and B, A
K B is a K{algebra with unity element1
 1. Multipli
ation is de�ned via(a1 
 b1)(a2 
 b2) = a1a2 
 b1b2for a1; a2 in A and b1; b2 inB. The 
enter of A
KB is given by Z(A)
KZ(B).Hen
e, if A and B are 
entral K{algebras, so is A
 B.In the following we shall be 
onsidering 
entral simple algebras over a �eldK.Two algebras A and B are 
alled equivalent (A � B), if there exist r; s 2 N ,su
h that A
K Mr(K) ' B 
K Ms(K).The Brauer group of a �eld K is de�ned as the set of equivalen
e 
lasses[A℄ = fBjB �nite, 
entral, simple,B � Ag9



2.1. ALGEBRAS OVER FIELDS 10implying Br(K) = f[A℄; A �nite, 
entral, simpleg:Here multipli
ation is de�ned as follows: [A℄� [B℄ = [A
B℄, this is wellde-�ned. Properties of the tensor produ
t imply that multipli
ation is asso
ia-tive and 
ommutative, the unity element is given by 1Br(K) = [K℄.Let Aopp be the oppositional algebra of A, meaning that we have Aopp = Aas K{vektorspa
es with the multipli
ation in Aopp given byAopp � Aopp ! Aopp; a� b 7! ba;where the produ
t on the right hand side is the one in A. Then [A℄[Aopp℄ =[K℄ = 1Br(K). Hen
e Br(K) is indeed a group.Let L be an arbitrary algebrai
 �eld extension of K and A be a K{algebra,then A
K L is a L{algebra, more pre
isely there is a group homomorphismresL=K : Br(K)! Br(L); [A℄ 7! [A
K L℄:A �eld extension L of K is 
alled splitting �eld of A, if [A℄ 2 ker(resL=K).We 
all Br(L=K) = ker(resL=K) the relative Brauer group of K with respe
tto L.If L=K is a splitting �eld of A, this is equivalent to saying that there is analgebra ~A equivalent to A 
ontaining L with dimension dimK( ~A) = [L : K℄2.Let D be a �nite 
entral skew�eld over K and L its maximal sub�eld. ThenD is split by L and we have dimK(D) = [L : K℄2.Let A be a �nite 
entral simple K{algebra. Then there exists a splitting �eldof A, whi
h is of �nite dimension over K as well as Galois.It turns out that the Brauer group Br(K) 
an be des
ribed only in terms ofrelative Brauer groups: Br(K) = [L=K�nite, GaloisBr(L=K):Hen
e we 
an 
on
entrate on the study of Br(L=K) with L �nite Galois overK. 10



2.2. EXAMPLES 112.2 ExamplesTheorem 2.2.1 Let k be a �nite �eld. Then Br(k) = 1.Proof:LetD be a �nite 
entral skew �eld over k, then ea
h element ofD is 
ontainedin a maximal sub�eld of D. But all maximal sub�elds have the same degreepdimk(D) over k.Sin
e k is a �nite �eld, all extension �elds of given degree are k{isomorphi
.But now the theorem by Skolem{Noether (Theorem 2.1.2) says that these�elds are of the form xLx�1 with x 2 D� and a �xed maximal sub�eld L.Hen
e D� = [x2D� xLx�1:But if a �nite group G is the union of all the 
onjugates of a subgroup H, itfollows that G = H when
e D = L.Therefore D is 
ommutative, thus D = k, sin
e D is 
entral over k. ThereforeBr(k) = 1. 2Theorem 2.2.2 Let K be algebrai
ally 
losed. Then Br(K) = 1.Proof:Let D be a �nite division algebra over K, then we have to show:D is split by K.Let E be a 
ommutative subalgebra of D. Then E is an integral domain andhen
e �nite algebrai
 over K. Therefore E = K, sin
e K is algebrai
ally
losed.Now 
onsider the subalgebra K[a℄ for a 2 D, then a 2 K, hen
e D = K.Also D is split by K, hen
e: Br(K) = 1. 2Theorem 2.2.3 Is K real 
losed, then Br(K) ' Z=2Z.Proof:This is the statement of the 
elebrated theorem by Frobenius, saying thatthe Hamiltonians are the only proper skew �eld of �nite dimension over areal 
losed �eld K. 11



2.3. GALOIS COHOMOLOGY 122.3 Galois CohomologyIn the following we give a (very) short introdu
tion to the basi
s of Galois
ohomology, more details 
an be found for example in [Neu69, Teil I℄ (inGerman) or in [Ser64℄.Let G be a �nite group.De�nition 2.3.1 A dis
rete G{module is an Abelian group M with an a
-tion of G in su
h a way that for all a; b 2M and �; � 2 G:1. 1a = a 8a 2M2. �(a+ b) = �a+ �b 8� 2 G; a; b 2M3. (��)a = �(�a) 8�; � 2 G; a 2M .Let A be a G{module, then we denote by Aq the set of q{
o
hains, that isthe set of maps x : G� � � � �G| {z }q{times ! A:By (�1x)(�) = �x� x for x 2 A0 = A and in general by (�qx)(�1; : : : ; �q) =�1x(�2; : : : ; �q)+Pq�1i=1 (�1)ix(�1; : : : ; �i�i+1; : : : ; �q)+(�1)qx(�1; : : : ; �q�1)for x 2 Aq�1; q � 1 we de�ne maps �q : Aq�1 ! Aq, whi
h satisfy �q+1Æ�q = 0.Now de�ne q{
o
y
les Zq and q{
oboundaries Rq byZq = ker(�q+1) � Aq; Rq = Im(�q) � Aq:Sin
e �q+1 Æ �q = 0 we have Rq � Zq, hen
e we 
an 
onsider the quotient:De�nition 2.3.2 The fa
tor groupHq(G;A) = Zq=Rq; q � 1:is 
alled the 
ohomology group of dimension q of the G{module A.For q = 0 we de�ne H0(G;A) = AG = fa 2 A : �a = a 8� 2 Gg.In arithmeti
al appli
ations espe
ially the 
ohomology groups of lower dimen-sion are important. It turns out that we 
an give algebrai
 interpretationsof these groups. 12



2.3. GALOIS COHOMOLOGY 13In the 
ase of q = 1 the 1{
o
y
les are the fun
tions x : G ! A satisfying�2x = 0, hen
e x(��) = �x(�) + x(�); �; � 2 G:Therefore the 1{
o
y
les are also known as 
rossed homomorphisms. The1{
oboundaries are the fun
tionsx(�) = �a� a; � 2 G; for an a 2 AIn the 
ase that the a
tion of G on A is trivial we obviously get H1(G;A) =Hom(G;A).In the 
ase of q = 2 the 2{
o
y
les are the fun
tions satisfying �3x = 0, hen
ex(��; �) + x(�; �) = �x(�; �) + x(�; ��); �; �; � 2 G:The 2{
oboundaries satisfyx(�; �) = �y(�)� y(��) + y(�)with a 1{
o
hain y : G! A.The following theorem is most important in the subsequent 
omputations:Theorem 2.3.3 Let 0! A i! B j! C ! 0be an exa
t sequen
e of G{modules, then we have a long exa
t sequen
e0! AG i0! BG j0! CG Æ1! H1(G;A) i1! H1(G;B)! � � � ;whi
h is 
alled exa
t 
ohomology sequen
e.Here the Æ{map has the following expli
it realization:Let 
q 2 Hq(G;C) be given, then we 
an represent 
q by a q{
o
y
le Cq :Gq ! C. Sin
e j : B ! C is surje
tive, we 
an �nd a q{
o
hain Bq withvalues inB, su
h that j(Bq) = Cq. Now we have 0 = �Cq = �j(Bq) = j(�Bq),hen
e Bq is in the kernel of jq+1. Therefore there exists a q{
o
hain Aq+1satisfying �Bq = i(Aq+1). Now0 = ��Bq = �i(Aq+1) = i(�Aq+1);13



2.4. ALGEBRAS AND GALOIS COHOMOLOGY 14when
e �Aq+1 = 0, sin
e i is inje
tive. It follows that Aq+1 is a q{
o
y
le. Ifaq is the 
lass of Aq in Hq+1(G;A), we de�ne Æq(
q) = aq.Now letK be a perfe
t �eld, K an algebrai
 
losure ofK and G = Gal(K=K)the Galois group of K over K. Then G is the inverse limit of the groupsGal(L=K), where L runs through all �nite Galois extensions L of K. G hasthe stru
ture of a pro{�nite group, the basis of one of the topology of G isgiven by all the normal subgroups of G with �nite index.A G{module is then de�ned to be an Abelian group A with a 
ontinuousa
tion ofG, meaning that the mapG�A! A is 
ontinuous ifG is 
onsideredin the pro{�nite and A in the dis
rete topology.Example: K as well as K� together with the natural a
tion of G 
an be
onsidered as G{modules, sin
e for every x 2 K the extension K(x)=K is�nite.For a pro{�nite group G and a G{module M we 
an also de�ne 
ohomologygroups Hq(G;M) for q � 0 by restri
ting the 
o
hains to 
ontinuous mapsGq !M .In the 
ase of G = Gal(K=K) we haveHq(G;M) ' lim! Hq(Gal(L=K);M);where L=K runs through all �nite Galois extensions of K.2.4 The Conne
tion between Algebras andGalois CohomologyWe now 
onsider algebras with the following spe
ial property:A �nite 
entral simple algebra A over K is 
alled a 
rossed produ
t, if A
ontains a �eld L Galois over K su
h that dimL(A) = dimK(L).Ea
h �nite 
entral simple algebra A is split by a �nite Galois extension ofK, but this is equivalent to saying that A is at least equivalent to a 
rossedprodu
t over K.The great advantage of dealing with 
rossed produ
ts is that they have aremarkable simple stru
ture: 14



2.4. ALGEBRAS AND GALOIS COHOMOLOGY 15Let A be a 
rossed produ
t, then we 
an �nd for ea
h � 2 G = Gal(L=K)a unit u� 2 A su
h that fu�g�2G is a basis of A as a L left ve
torspa
e andfurthermore u�x = �(x)u� 8x 2 L; 8� 2 G;u�u� = f(�; �)u�� 8�; � 2 G;where f : G�G! L� is a 2{
o
y
le.Given on the other hand a 2{
o
y
le f 2 H2(G;L�) with values in a Galoisextension L=K of degree n, we 
an form the n2{dimensional K{ve
torspa
e(L;G; f) =M�2G Lu�;where multipli
ation of two elements of (L;G; f) is given by(X�2G x�u�)(X�2G y�u� ) = X�;�2G x��(y� )f(�; �)u��with x�; y� 2 L. Now (L;G; f) is a �nite 
entral simple algebra with unityelement f(1; 1)�1u1, whi
h is split by L. (L;G; f) is 
alled 
rossed produ
tof L and G with respe
t to f .Two 
rossed produ
ts of the form (L;G; f) and (L;G; g) are isomorphi
 asK{algebras if and only if f and g di�er by a 2{
oboundary.Theorem 2.4.1 We have Br(L=K) ' H2(G;L�).Proof:Consider two 
rossed produ
ts (L;G; f) and (L;G; g) with f and g normed(that is f(1; 1) = g(1; 1) = 1), then we have(L;G; f)
 (L;G; g) � (L;G; fg):For ea
h 2{
o
y
le g there exists a normed 2{
o
y
le ~g, whi
h is 
ohomolo-gous to g.Is follows that the map� : H2(G;L�)! Br(L=K); [f ℄ 7! (L;G; f)is a well de�ned group homomorphism.� is surje
tive, sin
e ea
h �nite 
entral simple algebra A over K whi
h is15



2.4. ALGEBRAS AND GALOIS COHOMOLOGY 16split by L is equivalent to su
h an algebra B with L � B and dimL(B) = n.Also there is a 2{
o
y
le with B ' (L;G; f).� is also inje
tive: if f is a 2{
o
y
le with (L;G; f) � K, we dedu
e(L;G; f) 'Mn(K), sin
e dimK((L;G; f)) = n2.Now 
onsider the 
rossed produ
t of L and G with respe
t to the triv-ial 2{
o
y
le 1, we obtain (L;G; 1) = ��Lv� with v�v� = v�� and v�x =�(x)v� 8� 2 G; x 2 L.By � : (L;G; 1) ! EndK(L); �(xv�) = x�(y) we de�ne a K{algebrahomo-morphism, whi
h is obviously inje
tive, sin
e (L;G; 1) is simple.Comparing dimensions this implies that � is also surje
tive, hen
e (L;G; 1) 'Mn(K) ' (L;G; f), meaning that f is 
ohomologous to 1. 2In the following we will only 
onsider the 
ase that L=K is a 
y
li
 Galoisextension of degree [L : K℄ = n. In this 
ase we 
an restri
t ourselves to thefollowing simple type of 2{
o
y
les:Let G = Gal(L=K) =< � >. For a 2 K� we 
onsider the mapf�;a : G�G! L�;given by f�;a(�i; �j) = ( a : i + j � n1 : i + j < n:Obviously f�;a is a normed 2{
o
y
le. Let (L; �; a) be the 
rossed produ
t(L;G; f�;a) and set u = u�. Then obviously ui = u�i for i = 1; : : : ; n � 1when
e (L; �; a) = n�1Mi=0 Lui;with un = a; andux = �(x)u; 8x 2 L:It turns out that every 
rossed produ
t is isomorphi
 to an algebra of theform (L; �; a).Lemma 2.4.2 Let f be a normed 2{
o
y
le, then(L;G; f) ' (L; �; a)with a = n�1Ym=0 f(�m; �) 2 K�:16



2.4. ALGEBRAS AND GALOIS COHOMOLOGY 17Proof:We have (L;G; f) = �n�1i=0 Lv�i with v1 = 1 and v�ix = �i(x)v�i for x 2 L.Furthermore v�iv�j = f(�i; �j)v�i+j for 0 � i; j � n� 1.Now v2� = v�v� = f(�; �)v�2 ;also v3� = f(�; �)v�2v� = f(�; �)f(�2; �)v�3 ;and in general vi� = (i�1Yj=1 f(�j; �))v�ifor i = 2; : : : ; n � 1. Considering vn� we obtain vn� = av�n = a. Therefore(L;G; f) = �n�1i=0 Lvi�, sin
e Qi�1j=0 f(�j; �) 2 L� for i = 2; : : : ; n� 1. Also wehave vn� = a and v�x = �(x)v� for all x 2 L. Hen
e(L;G; f) ' (L; �; a).Sin
e a = vn� lies in the 
enter of (L;G; f), we have a 2 K. 2The following theorem shows that the relative Brauer group Br(L=K) 
anbe des
ribed 
ompletely in terms of the ground �eld K:Theorem 2.4.3 Let L=K be Galois with 
y
li
 Galois group G =< � > oforder n. Then the map � : a 7! (L; �; a) indu
es an isomorphismK�=NL=K(L�) �! Br(L=K):Proof:(L; �; a) is split by L, thus [(L; �; a)℄ 2 Br(L=K). Sin
e f�;af�;b = f�;ab wealso have �(a)�(b) = �(ab). Let A be a �nite 
entral simple algebra split byL, then there exists a normed 2{
o
y
le f su
h that A � (L;G; f). But thenthere exists also a 2 K� su
h that (L;G; f) � (L; �; a), when
e A � (L; �; a).Therefore � is surje
tive.It remains to show:(L; �; a) ' (L; �; 1), a 2 NL=K(L�):Set (L; �; a) =Li Lui and (L; �; 1) =Li Lvi together with the usual rules.Suppose a = NL=K(y) with y 2 L�, then 
onsider ~u = y�1u. It follows~un = y�1uy�1u � � �y�1u = y�1�(y�1)u2y�1 � � � y�1u = � � �= (n�1Yi=0 �i(y�1))un = NL=K(y�1)a = a�1a = 1:17



2.5. BRAUER GROUPS OF LOCAL FIELDS 18Furthermore we have~ux = y�1ux = y�1�(x)u = �(x)y�1u = �(x)~u:Therefore (L; �; a) ' (L; �; 1).Consider a K{algebra automorphism � : (L; �; a) '! (L; �; 1), applyingSkolem{Noether (2.1.2) there exists � su
h that x � 1 = ��(x)��1 for allx 2 L. Now 
onsider w = ��(u)��1, then we obtain wn = a as well aswxw�1 = �(x) and wx = �(x)w 8x 2 L. Considering y = wvn�1, where thev was used to de�ne the trivial algebra (L; �; 1), we obtainyx = wvn�1x = w�n�1(x)vn�1 = �(�n�1(x))wvn�1 = xy:Therefore y 2 Z(L;�;1)(L) = L. Furthermorea = wn = yvyv � � � yv = y�(y)v2yv � � � yv = � � �= y�(y)�2(y) � � ��n�1(y)vn = NL=K(y)vn = NL=K(y)sin
e by de�nition of (L; �; 1) we have that vn = 1. 22.5 Brauer Groups of Lo
al FieldsLet K be a lo
al �eld, meaning there exists a dis
rete valuation v on K, Kis 
omplete with respe
t to v and the residue 
lass �eld k of K with respe
tto v is a �nite �eld.Let D be a �nite dimensional skew �eld over K, then the dis
rete valuationv of K 
an be extended uniquely to a valuation vD of D. This valuation isgiven in terms of v by vD(x) = (1=n)vK(ND=K(x)). Here n is the degree ofD over K, the norm of an element d of D=K is de�ned in the usual way asthe determinant of the K{linear map x 7! dx.Let RD be the valuation ring of D and p its maximal ideal. We have kp =RD=p.By de�nition of vD there exists a divisor e of n = [D : K℄ su
h that v(D�) =(1=e)Z, e is 
alled the rami�
ation index of D.A �nite extension L=K is 
alled unrami�ed if the rami�
ation index e ofL over K equals 1 and the asso
iated extension of residue 
lass �elds isseparable. 18



2.5. BRAUER GROUPS OF LOCAL FIELDS 19If L=K is an arbitrary extension of lo
al �elds of degree n, then the asso
iatedextension of residue 
lass �elds is a �nite extension of degree f (f is 
alledresidue 
lass degree). The fundamental relationship between the degree n ofthe extension and the 
orresponding residue 
lass and rami�
ation degree isgiven by n = ef .Fixing a separable 
losure K of K, for ea
h number n there exists exa
tly oneunrami�ed extension Kn of K of degree n in K whi
h is Galois with 
y
li
Galois group. Set q = jkj, then the Galois group Gal(Kn=K) has a 
anoni
algenerator, the Frobenius automorphism �p, whi
h indu
es the automorphismof residue 
lass �elds given by x 7! xq.It follows from the above remarks that it is enough to study the relativeBrauer group Br(L=K) for L=K �nite and Galois. We �rst examine the 
asethat L=K is unrami�ed and then show that ea
h element of Br(K) is splitby an unrami�ed extension of K.With respe
t to Theorem 2.4.3 the study of Br(L=K) is equivalent to thestudy of the Norm map NL=K in an unrami�ed extension L=K.Lemma 2.5.1 Let K be a lo
al �eld and L a 
y
li
 unrami�ed extension ofK of �nite degree. Then every unit u 2 UK is the Norm of a unit of L, hen
ethe norm map NL=K : UL ! UK is surje
tive.Proof:(following [Ser79, Chapter V,x2℄)Consider the higher prin
ipal units UmL = 1 + pmL respe
tively UmK = 1 + pmK ,we 
an then introdu
e �ltrations on UL and UK of the form� � �Um+1L � UmL � � � �U2L � U1L � ULand � � �Um+1K � UmK � � � �U2K � U1K � UKrespe
tively.We now examine the norm map on this �ltrations:Set x = 1 + y with y 2 pnL. Then �(x) = 1 + �(y) for all � 2 G, furthermore�(y) 2 pnL. Hen
eNL=K(x) =Y�2G(1 + �(y)) � 1 +X�2G �(y) mod p2nL : (2.1)19



2.5. BRAUER GROUPS OF LOCAL FIELDS 20Sin
e L=K is unrami�ed, we have pnL \K = pnK, therefore NL=K(x) � 1 modpnK.By passage to the quotient the norm map indu
es maps Nn : UnL=Un+1L !UnK=Un+1K whi
h we now examine. We �rst remark that UL=U1L 
an be iden-ti�ed with the multipli
ative group of the residue 
lass �eld l, for n > 1 we
an identify UnL=Un+1L with pnL=pn+1L whi
h is a one dimensional ve
torspa
e
nL over l. Sin
e L=K is unrami�ed, we 
an identify 
nL with 
nK 
K l.The map Ni 
an now be des
ribed as follows:for i = 0 the map N0 : l� ! k� is just the norm map of the extension ofresidue 
lass �elds l=k.Due to (2.1) Ni : l 
K 
nK for i � 1 is just the map 1
 TrL=K.Sin
e in any separable extension the tra
e map is surje
tive, again due to(2.1) we obviously have that Nn : UnL=Un+1L ! UnK=Un+1K is surje
tive.We now use the following fa
t:Assume that we have bije
tions UL ' lim! UL=UnL as well as UK ' lim! UK=UnK.Then the surje
tivity of the maps Nn : UnL=Un+1L ! UnK=Un+1K implies the sur-je
tivity of N : UL ! UK.It remains to 
he
k whether these 
onditions are satis�ed in our situation.For n � 1 it follows from the observations made above that the map Nn issurje
tive.For n = 0 we have to 
onsider the norm mapN0 : l� ! k� whi
h is surje
tive,sin
e k is a �nite �eld. Therefore the map N : UL ! UK is also surje
tive.2For 
rossed produ
ts de�ned with respe
t to an unrami�ed extension of Kwe 
an now give the following 
lassi�
ation:Theorem 2.5.2 Let Kn=K be the unique unrami�ed extension of K of de-gree n, let � be the Frobenius automorphism, then the map� : Z! Br(Kn=K); k 7! [(Kn=K; �; �k)℄;where � is a uniformizing element of K, indu
es an isomorphism�n : Z=nZ �! Br(Kn=K):20



2.5. BRAUER GROUPS OF LOCAL FIELDS 21Proof:By k 7! (Kn=K; �; �k) we de�ne a group homomorphism indu
ing a mapZ=nZ! Br(Kn=K).This indu
ed homomorphism is surje
tive, sin
e an element of Br(Kn=K)has the form (Kn=K; �; a) with a 2 K�. De
ompose a = u�k with a unit u,it follows thatA � (Kn=K; �; u)
K (Kn=K; �; �k) � (Kn=K; �; �k);sin
e every unit of K is a norm of an unrami�ed extension Kn=K, hen
e thealgebra belonging to u is trivial.If on the other hand we have [(Kn=K; �; �k)℄ = 1 in Br(Kn=K), we knowthat �k = NKn=K(y) with y 2 K�n . Hen
envKn(y) = vK(NKn=K(y)) = vK(�k) = k;and thus k � 0 mod n. We have proven �n to be both inje
tive and surje
-tive, hen
e �n is a bije
tion as 
laimed. 2Theorem 2.5.3 For given m;n 2 N the following diagram 
ommutes:1nZ=Z ! 1mnZ=Z# #Br(Kn=K) ! Br(Kmn=K): (2.2)Hen
e we getTheorem 2.5.4 Let K be a lo
al �eld. Then we have an isomorphism� : Q=Z ' Br(K)with �(k=n mod Z) = [(Kn=K; �n; �k)℄;for n 2 N and 0 � k � n, where �n denotes the Frobenius element of Kn=K.Proof:We have Q=Z = [n2N 1nZ=Z, furthermore Br(K) = [n2NBr(Kn=K). For therelative Brauer group we have an isomorphism �n : Z=nZ' Br(Kn=K), also1nZ=Z' Br(Kn=K). From the 
ommutativity of (2.2) we get an isomorphismQ=Z ' Br(K). 221



2.6. THE BRAUER GROUP OF A GLOBAL FIELD 22De�nition 2.5.5 The inverse of ��1 from Theorem 2.5.4 is 
alled invariantmap.inv : Br(K)! Q=Z; [A℄ = [(Kn=K; �n; �k)℄ 7! inv(A) = kn mod Z:Instead of using the original de�nition of the invariant map, it is sometimes
onvenient to use the map n � inv for an algebra A with [A℄n = 1 instead. Byabuse of language we will refer to both of these maps as invariant map.2.6 The Brauer Group of a Global FieldLet K be a number �eld, i. e. a �nite algebrai
 extension of Q . Let S denote asystem of representatives of the pla
es p of K. Besides the non{ar
himedeanpla
es p for whi
h the 
ompletion Kp of K with respe
t to p is a lo
al �eld,we also have to 
onsider the ar
himedean primes for whi
h Kp is either equalto C or to R.For the lo
al Brauer groups we have the following results:� If p is an ar
himedean pla
e we have that Kp is a lo
al �eld andBr(Kp) ' Q=Z.� Is p a real pla
e we have Kp ' R andBr(Kp) ' Z=2Z' 12Z=Z� Q=Z:.� If p is a 
omplex pla
e we have Kp ' C and Br(Kp) = 1.The embeddingsK ,! Kp indu
e a group homomorphismBr(K)! �pBr(Kp).The most important statement about Brauer groups of global �elds is thefa
t that the global elements are 
ompletely des
ribed by the image in thelo
al Brauer groups:Theorem 2.6.1 (Hasse{Brauer{Noether) There is an exa
t sequen
e0! Br(K)! �p2SBr(Kp)! Q=Z ! 0; (2.3)where the last map is given by (Ap)p2S 7!Pp2S inv(Ap).22



2.7. DISCRETE LOGARITHMS IN FINITE FIELDS 23In the following 
hapters this exa
t sequen
e will play a major role both ina theoreti
al as well as a pra
ti
al sense.2.7 Dis
rete Logarithms in Finite FieldsLet k = Fq be a �nite �eld satisfying ljq � 1, meaning that the l{th roots ofunity are 
ontained in k.We 
an then 
onsider the dis
rete logarithm problem in the group of l{throots of unity: given two non trivial l{th roots of unity �0 and �1 2 h�0i,determine n mod l su
h that �1 = �n0 holds.As we have pointed out before (see 1.2), the question whether the embeddingof this group of order l into the larger group F�q essentially gives the samese
urity as 
onsidering the dis
rete logarithm in F�q is essential for the se
urityof the Digital Signature Algorithm (DSA).Therefore it is interesting to 
onsider this question in the 
ontext of Brauergroups, sin
e they give an approa
h espe
ially suited for this dis
rete loga-rithm problem.Let K be a lo
al �eld with residue 
lass �eld k = Fq , let L=K be a rami�ed
y
li
 Galois extension of degree l with l 6= 
har(k) and Gal(L=K) = h�i.In this situation we get the following des
ription of the relative Brauer groupBr(L=K):Lemma 2.7.1 Let K be a �nite extension of Q p with residue 
lass �eldk. Let L=K be a rami�ed extension of prime degree l 6= p implying that thegroup �l of l{th roots of unity is 
ontained in K�. Then we have Br(L=K) 'k�=(k�)l ' �l(k).Proof:(for further details see [Ser79, V.,x3.℄)We have Br(L=K) ' K�=NL=K(L�) a

ording to theorem 2.4.3. Hen
e wehave to examine the norm map of the rami�ed extension L von K.Ea
h element of K 
an be written in the form u � �i with u 2 UK and i 2 Z.Sin
e L=K is rami�ed, �K is a norm.Therefore we 
an restri
t our attentionto the groups of units UL of L. 23



2.7. DISCRETE LOGARITHMS IN FINITE FIELDS 24Consider the �ltrations � � �U iL � U i�1L � � � �U1L � ULand � � �U iK � U i�1K � � � �U1K � UK ;where we put U iL = 1 + piL and U iK = 1 + piK for i � 1.Sin
e L=K is tamely rami�ed (we have l 6= p), all quotients U iK=U i+1K for i � 1are killed by the norm map ([Ser79, V, Proposition 5 and Corollaries℄), onlythe 
ase UL=U1L ! UK=U1K remains to be examined. We have UL=U1L ' l�and UK=U1K ' k�. Sin
e L=K is rami�ed we have l = k. The image ofUL=U1L under the norm map therefore is k�l. Hen
e we haveK�=NL=K(L�) ' k�=k�l:We have an isomorphism k�=k�l ' �lgiven by x mod k�l 7! x q�1l : 2.From Theorem 2.4.3 and Lemma 2.7.1 we get �l(k) �! Br(L=K), sin
e l 6=
har(k). Here the map is given by � 7! (L; �; �) 2 Br(L=K).Hen
e we 
an solve the dis
rete logarithm problem in the 
y
li
 subgroup�l � F�q as follows:Given two l{th roots of unity �0 and �1 with �1 = �n0 we 
hoose an extensionK of Q p with k = Fq as well as a rami�ed Galois extension L=K of degreel with Gal(L=K) = h�i. Now forming the 
y
li
 algebras A0 = (L=K; �; �0)and A1 = (L=K; �; �1), the dis
rete logarithm problem is solved if we are ableto 
ompute inv(A0) and inv(A1) = n � inv(A0). Thus n 
an be obtained by
omputing inv(A1)=inv(A0) mod l:Hen
e we are lead to this 
omputational task:Given a 
y
li
 algebra A = (L=K; �; �) de�ned over a tamely rami�ed exten-sion of prime degree l 
ompute the invariant of this algebra as an element ofBr(K). 24



Chapter 3
Lo
al Computation ofInvariants
In the previous se
tion we showed the importan
e of the invariant map ofthe theory of Brauer groups for 
ryptographi
 appli
ations.This se
tion will be 
on
erned with the expli
it 
al
ulation of this map overlo
al �elds. As shown in the previous se
tion the 
ase of an algebra de�nedover a tamely rami�ed extension of a lo
al �eld K is of spe
ial interest.3.1 Unrami�ed ExtensionsLet K be a lo
al �eld 
omplete with respe
t to a dis
rete valuation p, let kpdenote the residue 
lass �eld of K with respe
t to p. Assume kp = Fq .In the following we will assume that lj(q � 1) holds, meaning that the l{throots of unity are 
ontained in K.Now let L=K be an unrami�ed extension of prime degree l, sin
e we assumedthat the l{th roots of unity are 
ontained inK by Kummer theory there existsan � 2 K�=K�l su
h that L = K(�1=l).The �eld extension L=K is 
y
li
 Galois, assume Gal(L=K) = h�i.Consider an element of order l inside Br(K) given by the two{
o
y
le�(�i; �j) = ( � : i + j � l1 : i + j < l:25



3.2. TAMELY RAMIFIED EXTENSIONS 26Let UL and UK denote the groups of unity of L and K respe
tively. As wehave noted before (see Theorem 2.5.1) in an unrami�ed extension L=K ea
helement of UK is a norm 
oming from a unity of L. Let � be a prime elementthen we 
an assume that � is of the form � = �n. Hen
e we get:�(�i; �j) = ( �n : i+ j � l1 : i+ j < lIf � is the Frobenius element �p, the invariant map 
an be 
omputed imme-diately sin
e by de�nition inv(�(�ip; �jp)) � n mod l.Suppose �k = �p, then we obtain:(L; �; �n) ' (L; �k; �nk) ' (L; �p; �nk):Hen
e we get inv(�(�i; �j)) � nk mod l.Therefore in this 
ase we have redu
ed the 
omputation of the invariant mapto the problem of des
ribing the relation between a generator � of the Galoisgroup Gal(L=K) and the Frobenius element �p of the extension L=K, i.e.solving a dis
rete logarithm in the Galois group of L=K.Sin
e we are in the situation of Kummer extensions, this 
an be a

omplishedas follows:Re
all that � a
ts on 
 = �1=l via �(
) = �l
 with a primitive l{th root ofunity �l.Let x denote the redu
tion of an element x 2 K in the residue 
lass �eldkp = Fq .The Frobenius automorphism a
ts on elements of the extension lp=kp byraising to the q{th power: �p(x) = xq. Hen
e the a
tion of the Frobenius on
 is given by �p(
)=
 = 
q=
 = �q=l=�1=l = � q�1l : (3.1)In order to des
ribe � as a power of the Frobenius we have to solve thedis
rete logarithm (� q�1l )k = �l in Fq .3.2 Tamely Rami�ed ExtensionsWe have seen before (see 2.7) that the 
ase of a two{
o
y
le de�ned overa tamely rami�ed extension L=K of prime degree l is espe
ially interesting.26



3.2. TAMELY RAMIFIED EXTENSIONS 27Note that we only 
onsider the 
ase l 6= 
har(kp).We keep the assumptions on K from the previous se
tion, espe
ially assume�l 2 K� (otherwise an extension of the des
ribed type would not exists). Forte
hni
al reasons also suppose that �l2 62 K holds.Let Gal(L=K) = h�i be 
y
li
 of order l, 
onsider an element of order l inthe Brauer group Br(K) given by the two{
o
y
le�(�i; �j) = ( � : i + j � l1 : i + j < lwith � 2 K�=NL=K(L�).Sin
e we have l 6= 
har(kp) we see that L=K is tamely rami�ed, hen
e (seeTheorem 2.7.1) we have K�=NL=K(L�) = k�p=k�lp ' h�li. Therefore we 
anassume that � 2 h�li holds.In order to 
ompute the invariant of the algebra given by �, we 
onsider thefollowing situation:Let L=K be 
y
li
 and tamely rami�ed of prime degree l. Let Kl=K be theunrami�ed extension of degree l, assume Gal(Kl=K) = h�pi where �p denotesthe Frobenius automorphism.KlLL ==|||||||| KlaaDDDDDDDDKrami�ed h�iaaCCCCCCCC unrami�edh�pi <<zzzzzzzzThis diagram gives us the following diagram in Galois 
ohomology:H2(KlL=K; (KlL)�)H2(L=K;L�) in
KlLL 55kkkkkkkkkkkkkk H2(Kl=K;K�l )in
KlLKliiTTTTTTTTTTTTTTTOur task 
an be des
ribed as follows:We have to �nd a 
o
y
le  in H2(Kl=K;K�l ) su
h that the in
ation  ̂ =in
KlLKl ( ) di�ers from the in
ation �̂ = in
KlLL (�) only by a 
oboundary.The in
ations of the two 
o
y
les 
an be des
ribed expli
itly as follows:Set Gal(L=K) = h�i and Gal(Kl) = h�pi, hen
e we have Gal(LKl) = h�; �pi.27



3.2. TAMELY RAMIFIED EXTENSIONS 28We then get �̂(�i�jp; �r�sp) = �(�i; �r) with 1 � i; j; r; s � land  ̂(�i�jp; �r�sp) =  (�jp; �sp) with 1 � i; j; r; s � l:Now  ̂ is 
ohomologous to �̂ i� there is a map � : Gal(LKl=K) ! (LKl)�su
h that: �̂(z1; z2) =  ̂(z1; z2)�(z2)�(z1z2)�1�(z1)z2for all z1; z2 2 Gal(LKl=K).It turns out that the fun
tion � is already determined by its values �(�) and�(�p).Some basis properties of � are summed up in the following lemma:Lemma 3.2.1 1. �(1) = 1.2. � = NLKl=Kl(�(�)).3. ��n = NLKl=L(�(�p)).4. �(��p) = �(�p)�(�)�p = �(�)�(�p)�.Proof:1.: Trivial.2.: We have �(�)�(�i+1)�1�(�i)� = �̂(�i; �) ̂(�i; �)�1; (3.2)and furthermore �̂(�i; �) = �(�i; �) = 1 for i < l�1 and  ̂(�i; �) =  (1; 1) =1.Hen
e using (3.2) we immediately get�(�i+1) = �(�)�(�i)�: (3.3)Now we 
on
lude indu
tively for i < l � 1:�(�i+1) = �(�)�(�)� � � � �(�)l�2; (3.4)
28



3.2. TAMELY RAMIFIED EXTENSIONS 29For i = l � 1 we get:�(�)�(�l)�1�(�l�1)� = �(�)�(�l�1)� (3.5)= �̂(�l�1; �) ̂(�l�1; �)�1= �(�l�1; �) (1; 1)= �:Using (3.4) we obtain: � = �(�)�(�)� � � � �(�)�l�1 : (3.6)Sin
e L=K is 
y
li
 Galois with Gal(L=K) = h�i it follows thatx = l�1Yi=0 �(�)�i = NL=K(�(�)): (3.7)3.: Considering �(�p) we 
an 
on
lude analogous to 2. that�(�i+1p ) = �(�p)�(�p)�p � � � �(�p)i for i < l � 1 (3.8)holds.From �̂(�l�1p ; �p) = �(1; 1) and  ̂(�l�1p ; �p) =  (�l�1p ; �p) = �n we get��n = l�1Yi=0 �(�p)�ip = NKl=K(�(�p)); (3.9)sin
e Kl=K is 
y
li
 Galois with Gal(Kl=K) = h�pi.4.: Considering �(��p) we obtain�̂(�; �p) = �(�; 1) = 1 = �(1; �) = �̂(�p; �) (3.10)and �̂(�; �p) = �(1; �p) = 1 = �(�p; 1) = �̂(�p; �); (3.11)using (3.2) we obtain�(�p)�(��p)�1�(�)�p = �(�)�(��p)�1�(�p)�; (3.12)hen
e �(�p)�(�)�p = �(�)�(�p)�: (3.13)2Using these elementary properties of � we 
an now pro
eed to �nd a suitable
oboundary transforming the 
o
y
le � into the 
o
y
le  . Here it is mostimportant to 
hoose L=K and Kl=K 
arefully. This has to be done in su
h away that the operation of � and �p in 3.2.1[4.℄ 
an be related to ea
h other.29



3.2. TAMELY RAMIFIED EXTENSIONS 30Theorem 3.2.2 Let K be a lo
al �eld with �l 2 K and �l2 62 K. Let � be anelement of K su
h that v(�) = 1.Let Kl=K be unrami�ed of degree Grad l over K with Frobenius automor-phism �p generating Gal(Kl=K).Realize Kl = K(�1=l) as a Kummer extension. Fix the l{th root of unity �de�ning the a
tion of �p on �1=l:�p(�1=l) = ��1=l:Let L = K(�1=l)=K be 
y
li
 rami�ed of degree l (l 6= 
har(kp)) and Gal(L=K) =h�i. Here � is de�ned by �(�1=l) = ��1=l.Let � 2 H2(h�i; L�) be given by�(�i; �j) = ( �m : i+ j � l1 : i+ j < l:Let  2 H2(Kl=K;K�l ) = H2(h�pi; K�l ) be given by (�ip; �jp) = ( �n : i + j � l1 : i + j < l:Then � and  are 
ohomologous in H2(Gal(LKl=K); (LKl)�) ifn � �tm mod lwith t � (q � 1)=l mod l.Corollary 3.2.3 The element of Br(K) given by � has invariant�tm mod l.Proof: We �rst 
ompute �(�) and �(�p). Lemma 3.2.1[4.℄ gives a relationbetween these elements and the a
tion of �; �p on them. It turns out thatthe invariant 
an be 
omputed from this relation.Lemma 3.2.1[1.℄ implies that � = NLKl=Kl(�(�)). Sin
e we have � 2 K and�l2 62 K, an unrami�ed extension of degree l over K is de�ned by �1=l. Sin
ethis extension is uniquely determined we have �1=l 2 L. Hen
e from � = �mwe get � = ((�m)1=l)l = NLKl=Kl((�m)1=l). Therefore we have:NLKl=Kl � �(�)(�m)1=l� = 1:30



3.2. TAMELY RAMIFIED EXTENSIONS 31Hilbert 90 implies that �(�) = (�m)1=lx��11 (3.14)with x1 2 (LKl)� holds.Now 
onsider LKl=L instead of LKl=Kl. Sin
e we have (��n)1=l 2 L itfollows that NLKl=L((��n)1=l) = ((��n)1=l)l = ��n;hen
e we obtain �(�p) = (��n)1=lx�p�12 (3.15)with x2 2 (LKl)�.It follows from 3.2.1[4.℄ that�(�p)�(�)�p = �(�)�(�p)�: (3.16)The a
tion of the Frobenius �p on �1=l is given by raising to the q = pf{thpower. Hen
e we get�(�)�p = ((�m)1=lx��11 )�p = �mq=lx�p���p1 : (3.17)The a
tion of � on �1=l is given by �(�1=l) = ��1=l, hen
e we get�(�p)� = ((��n)1=lx�p�12 )� = ��n(��n)1=lx��p��2 : (3.18)Inserting (3.14) and (3.15) in (3.16), we get((��n)1=lx�p�12 )�(�)�p = ((�m)1=lx��11 )�(�p)�: (3.19)Now 
onsidering (3.17) and (3.18) we obtain(��n)1=lx�p�12 �mq=lx��p��p1 = (�m)1=lx��11 ��n(��n)1=lx��p��2 : (3.20)At this point we use the fa
t that both extensions L=K and Kl=K are de�nedin su
h a way, that both the operation of � and of �p on appropriate primitiveelements are des
ribed by the same l{th root of unity �.Equivalently this gives��n�m(q�1)=l = x��p��p��+11 x�p���p+�p�12 = (x1x2 )(��1)(�p�1): (3.21)31



3.2. TAMELY RAMIFIED EXTENSIONS 32Now inserting x = (x1x2 )��1 we 
an write (3.21) in the formx�p = ��n�m(q�1)=lx: (3.22)We now pro
eed by rewriting this relation in su
h a form that we 
an solvefor n in this equation.To do this we �rst try to 
hange x in su
h a way that the new element is�xed by �p, hen
e does not lie in LKl but in Kl.Hen
e we want to �nd an element 
 2 LKl su
h that 
�p=
 = �n+tm holds. Wehave (�1=l)�p=�1=l = �(q�1)=l. The fa
t that �l 2 K and �l2 62 K implies lj(q�1)and (q � 1)=l 6� 0 mod l. Therefore we 
an 
ompute ((q � 1)=l)�1 mod l.We now have ((�1=l)�((q�1)=l)�1n�m)�p�1 = ��n�m(q�1)=l: (3.23)Hen
e for x=((�1=l)�((q�1)=l)�1n�m) we have(x=((�1=l)�((q�1)=l)�1n�m))�p = x=((�1=l)�((q�1)=l)�1n�m): (3.24)Thus we have x = (x1x2 )��1 = (�1=l)�((q�1)=l)�1n�m)xL (3.25)with xL 2 L.Now applying the norm with respe
t to LKl=Kl to equation (3.25) we get:1 = (�)�((q�1)=l)�1n�mNL=K(xL); (3.26)sin
e (x1x2 )��1 is in the kernel of the norm map.Hen
e we have ��n�m(q�1)=l 2 NL=K(L�). We have that � 62 NL=K(L�)holds sin
e otherwise this would imply �l2 2 K 
ontrary to our assumptions.When
e n � �m(q � 1)=l mod l (3.27)as 
laimed. 232



Chapter 4
Lo
al{global{methods
4.1 Introdu
tionIn Chapter 3 we introdu
ed methods from Galois 
ohomology of lo
al �eldsin order to 
ompute the invariant of an element of Br(Kp) for a lo
al �eldKp.We will now show how we 
an make use of lo
al{global methods in order to
al
ulate the invariant map at a given pla
e of a global �eld K.Let S be a set of non{equivalent pla
es of K, let Kp for p 2 S denote the
ompletion of K with respe
t to p. For ea
h pla
e p we have an invariantmap invp : Br(Kp)! Q=Z.As explained in Chapter 2 the 
elebrated theorem by Hasse, Brauer andNoether gives a relationship between the Brauer group Br(K) of the global�eld K and the Brauer groups Br(Kp) of the 
ompletions of K.Theorem 4.1.1 We have a short exa
t sequen
e0! Br(K)!Mp2S Br(Kp) P invp! Q=Z ! 0; (4.1)where Br(K)! �p2SKp is given by A 7! �p(A
Kp) and the map�p2SKp P invp! Q=Z33



4.2. EXPLICIT COMPUTATION OF INVARIANTS 34is de�ned by �p(A
Kp) 7!Xp2S invp(A
Kp):This 
an be interpreted in the following way: the lo
al invariants of a givenglobal element A of Br(K) determine this element 
ompletely. Furthermorethese lo
al invariants satisfy the equation 0 =Pp2S invp(A
Kp) in Q=Z.4.2 Expli
it Computation of InvariantsConsider a lo
al �eld Kp and an element Ap of Br(Kp). For the sake ofsimpli
ity we will assume that Ap is of prime order l in Br(Kp). Our task isto 
ompute inv(Ap) eÆ
iently.Furthermore assume that Ap 2 Br(Kp) is given in the formAp = (Lp=Kp; �; ap).Here Lp=Kp is a 
y
li
 extension of degree l, � is a generator of the Galoisgroup Gp = Gal(Lp=Kp) and ap 2 K�p=NLp=Kp(L�p).In order to use lo
al{global methods we have to lift the given lo
al algebra Apto a global algebra A. Then the relation given by the Hasse{Brauer{Noethertheorem shows that the invariant at p { whi
h we are interested in { 
an bere
overed from the knowledge of the invariants at all other pla
es q 6= p forwhi
h we have invq(A) 6= 0.Assume that the prime ideal q is unrami�ed in L=K. Also assume that theglobal lift A is given now as a global 
y
li
 algebra of the form (L=K; �; a).From the de�nition of the invariant map, we know that the expli
it 
al
ula-tion of the invariant of A at the pla
e q is related to two problems:� Computing vq(a), the q{adi
 valuation of a.� Computing an integer fq su
h that �fq is the Frobenius �q at q.While the �rst task is easy to solve (see for example [Coh96, Algorithm4.8.17℄), the se
ond task is mu
h more diÆ
ult. Indeed, we have seen inChapter 3.1 that this question is dire
tly related to solving a dis
rete loga-rithm problem in a �nite �eld, at least in the 
ase that we deal with a lo
alKummer extension. 34



4.3. EXPLICIT CONSTRUCTION OF GLOBAL ALGEBRAS 35Note, however, that the Hasse{Brauer{Noether theorem predi
ts the exis-ten
e of a global algebra A whi
h has non trivial invariant exa
tly at twopla
es p and q, where p is the pla
e we are interested in and q is any otherpla
e of K. Therefore, theoreti
ally we should be able to relate the problemof 
al
ulating the invariant at p to a task as easy as possible. However thestatement of the theorem is simply an existen
e statement. We will show inthe following what kind of te
hniques one might use in order to expli
itly
onstru
t su
h algebras.4.3 Expli
it Constru
tion of Global AlgebrasIn order to 
onstru
t a global lift of the lo
al algebra Ap, we �rst 
onstru
t aglobal 
y
li
 extension L of K with pres
ribed lo
al behavior at the pla
e p.The easiest way to do this is to use Kummer theory. Thus we assume, thatK 
ontains the l{th roots of unity and that we have L = K(�1=l) with� 2 K�=K�l.The lo
al behavior of su
h a Kummer extension 
an be des
ribed as follows(see [Coh00, Theorem 10.2.9℄):Theorem 4.3.1 Let K be a number �eld, l a prime su
h that �l 2 K holdsand L = K(�1=l) with � 2 K�=K�l. Let q be a pla
e of K. Set e = vq(l).1. If (vq(�); l) = 1 holds, then q is rami�ed.2. If (vq(�); l) = l and q 6 jl holds, we have that� q splits 
ompletely, if the 
ongruen
e xl � � mod q has a solution.� q is inert, if the 
ongruen
e xl � � mod q has no solution.3. If (vq(�); l) = l and qjl hold, we have that� q splits 
ompletely, if the 
ongruen
e xl � � mod qel+1 has a so-lution.� q is inert, if the 
ongruen
e xl � � mod qm has a solution form = el but not for m = el + 1.35



4.3. EXPLICIT CONSTRUCTION OF GLOBAL ALGEBRAS 36� q is rami�ed, if the 
ongruen
e xl � � mod qel has no solution.The Galois group G of the global extension L=K is given by Gp = h�i, here� is determined by �(�1=l) = �l�1=l for a �xed l{th root of unity �l.Lifting a lo
al 
y
li
 algebra to a global one is easy:we simply have to 
hoose an element a 2 K whi
h lifts ap 2 Kp. Then theglobal 
y
li
 algebra (L=K; �; a) 
oin
ides lo
ally at p with the given algebraAp.This means that A has invariant invp(Ap) at p. Let resq : Br(K) ! Br(Kq)denote the restri
tion map for a pla
e q of K given by A 7! A 
 Kq, thenwe also have invq(Aq) = invq(resp(A)). In the following we will identifyinvq(A) = invq(A
Kq).In order to make use of the Hasse{Brauer{Noether theorem we now haveto determine the pla
es q 6= p of K for whi
h the global algebra A has anon{trivial invariant.We �rst note that invq(A) is automati
ally trivial if q splits 
ompletely inL=K sin
e in this 
ase LQ = Kq holds (here Q denotes an extension of q toL).If q is inert in L=K, the invariant is trivial if ljvq(a) holds.In the tamely rami�ed 
ase q 6 jl, to whi
h we restri
t our attention, we seethat the invariant is trivial if a has an order prime to l in the residue 
lass�eld k�q of Kq. Hen
e the l{th root of unity asso
iated to a in k�q is the trivialone.lo
al behavior 
ondition for trivial invariantrami�ed q 6 jl a = 1 in k�q=k�lqunrami�ed q inert ljvq(a)unrami�ed q 
ompletely split automati
ally

36



4.4. EFFICIENT METHODS FOR CALCULATING INVARIANTS 374.4 EÆ
ient Methods for Cal
ulating Invari-antsWe now des
ribe in an example how it is possible to expli
itly 
onstru
t aglobal algebra relating the 
omputation of the invariant map at a rami�edpla
e p to 
omputations at unrami�ed pla
es q of small norm. Sin
e weonly su

eeded to do this using (global) Kummer theory, it is immediately
lear that this approa
h is not going to work for 
ryptographi
 instan
es.The study of the o

urring problems leads to the development of a methodworking without Kummer theory. This will be explained in detail in the next
hapter.Consider the following global Kummer extension with espe
ially simple ram-i�
ation stru
ture:Choose an element � of K su
h that �oK = p, then from theorem 4.3.1 wesee that in K(�1=l)=K rami�
ation 
an only o

ur for q = p or for q su
hthat qjl.In the following we will assume that this is the 
ase.Example 4.4.1We give an example for the 
ase l = 13.First we have to 
onstru
t a global extension L=K = Q (�13) with pres
ribedrami�
ation. Consider the element� = �2�11 + 2�10 � �8 � �7 � 4�5 + �4 + �3 � �2 2 Q(�13):We have �oQ(�13 ) = p with pj263. It is 
he
ked easily using theorem 4.3.1that all pla
es q with qj13 split 
ompletely in L=K. Hen
e L=K is rami�edexa
tly at p.Now 
onsider the algebra given byAp = (Lp=Kp; �; ap = 193z2 + 100z + 67):Here Kp=Q 263 is an extension of degree 3 over Q 263 obtained by adjoiningthe 13{th roots of unity to Q 263 . We have that Kp=Q 263 is unrami�ed, theextension of residue 
lass �elds is given by k = F263(z)=F263 , where z satis�esthe irredu
ible equation z3 + 25z2 + 229z + 262 = 0 over F263 .37



4.5. EXPERIMENTAL RESULTS 38Furthermore we note that jkj = 2633 = 18191447.It is easily seen that ap indeed 
orresponds to a non trivial element in k�=k�l,hen
e des
ribes a non trivial algebra. The naive lift leads for example to thealgebra A = (L=Q(�13); �; a = 193�2 + 100� + 67):Fa
toring the norm of a shows that aoK is divided by a prime ideal q lyingover 449359464893. Sin
e the 
orresponding lo
al extension Lq=Kq is inert,we have to 
ompute a dis
rete logarithm in F449359464893 . Hen
e this naivelifting approa
h does not lead to a simpli�
ation of the original problem.4.5 Experimental ResultsWe now des
ribe an experimental approa
h whi
h aims at produ
ing globalalgebras with non trivial invariants at primes of small norm.To this end we pro
eed as follows:Besides A we also 
onsider the elementAi = A
 A
 � � � 
 A| {z }i times (1 < i < l)of Br(Kp) whi
h is given by (Lp=Kp; �; ai). Obviously we have: invp(Ai) =i � invp(A).Given a relation involving invp(A) as well as one involving invp(Ai), we 
ansubtra
t these two relations from ea
h other, thus gaining a relation 
ontain-ing (i � 1)invp(A). If we �nd two su
h relations 
ontaining a 
ommon termbelonging to a prime of large norm this term 
an
els out. Thus we 
an hopeto 
onstru
t a relation involving only terms belonging to pla
es of small normbesides a multiple of invp(A).The 
onstru
ting of these relations is easy:Given ap in kp whi
h is non trivial in k�p=k�lp , this means that a(pf�1)=lp 6= 1holds in kp.In order to 
onstru
t global liftings a of ap giving the same algebra and hen
ethe same invariant lo
ally at p we pro
eed as follows:Consider powers of ap of the form anp in kp, where n � 1 mod l holds. Then38



4.5. EXPERIMENTAL RESULTS 39we get (anp )(pf�1)=l = a(pf�1)=lp . Hen
e the di�erent anp des
ribe indeed thesame lo
al algebra at p.Lifting the di�erent elements anp to global elements an, we obtain the desiredglobal algebras An = (L=K; �; an) with pres
ribed invariant at p.We again 
onsider the lo
al algebra from example 4.4.1.Here we had Kp = Q 263(�13) and kp ' F263(z), where z satis�ed the equationz3 + 25z2 + 229z + 262 = 0. Let p be a �xed pla
e of Q 263(�13) lying overp = 263.Consider also the element ap = 193z2 + 100z + 67 in kp whi
h belongs to anon trivial invariant at p.Following the pro
edure explained above we 
onstru
ted 50:000 relationsinvolving invp(A) and 2invp(A) respe
tively. Sin
e jkpj = 18:191:446, wesear
hed for relations having in 
ommon a pla
e of norm greater than 100:000.Amongst the 50:000 relations we found 32 pairs whi
h had in 
ommon a termbelonging to a pla
e of large norm. However, even if one su
h term 
an
elsout, it is of 
ourse possible that some other terms belonging to pla
es of highnorm remain, in whi
h 
ase the new relation is not useful. However, if thisis not the 
ase, we have found a good relation relating the invariant at thepla
e p to the 
al
ulation of dis
rete logarithms in �nite �elds of small norm.Amongst the 32 pairs we were able to �nd 5 good pairs.Results in the 
ase invp(A){2invp(A)Number of relations Number of pairs Number of good pairs50:000 32 5Good pairsNumber �nite �elds involved1 (53,1),(157,1),(313,1),(937,1),(29173,1),(31357,1),(37571,1)2 (53,1),(937,1),(31357,1),(37571,1)3 (131,1),(157,1),(521,1),(677,1),(2731,1),(4421,1)4 (2,12),(3,4),(859,1)5 (3823,1),(13417,1),(14717,1),(20333,1),(38351,1),(79301,1)Here (p; f) denotes the �nite �eld Fpf , the bold entries denote those pla
eswhi
h are inert in the global extension L=K.39



4.5. EXPERIMENTAL RESULTS 40Some further 50:000 relations involving 3invp(A) made some more 
ompar-isons possible.Results in the 
ase invp(A){3invp(A)Number of relations Number of pairs Number of good pairs50:000 42 16Good pairsNumber �nite �elds involved1 (5227,1),(38923,1)2 (2,12),(2731,1)3 (2,12),(2731,1)4 (2731,1)5 (2,12),(2731,1)6 (2,12),(313,1),(2731,1),(31357,1)7 (2731,1)8 (313,1),(31513,1),(31357,1)9 (313,1),(2731,1),(31357,1)10 (2731,1)11 (2,12),(313,1),(1483,1),(31357,1),(96487,1)12 (2731,1)13 (2731,1)14 (2,12),(5227,1),(38923,1)15 (2731,1)16 (313,1),(2731,1),(31357,1)Here it is worth noti
ing that in four 
ases all but one term 
an
eled out,hen
e relating the 
omputation of the desired invariant at p to a term be-longing to pla
e of very small norm (2731). Thus we have redu
ed a dis
retelogarithm in F2633 to one in F2731 .Finally the data for the last 
omparison:Results in the 
ase 2invp(A){3invp(A)Number of relations Number of pairs Number of good pairs50:000 12 1Good pairsNumber �nite �elds involved1 (2,12),(131,1),(521,1),(677,1),(4421,1)40



4.5. EXPERIMENTAL RESULTS 41We 
an draw the following 
on
lusions from these 
omputational experi-ments:� The proposed lo
al{global te
hnique indeed yields relations whi
h re-late the 
omputation of the invariant map at the rami�ed pla
e p tothe dis
rete logarithm problem in small �nite �elds.� The expli
it 
onstru
tion of global algebras using Kummer theory isonly possible, if the l{th roots of unity are 
ontained in the globalground �eld K.But this of 
ourse implies that for larger l the global �eld K 
an nolonger be handled eÆ
iently be
ause of Q � Q(�l) � K. Hen
e the pro-posed method 
an not deal with values of l whi
h are of 
ryptographi
interest.The key to over
ome this problems is to �nd a 
ompletely di�erent way ofdealing with global 
y
li
 extensions with pres
ribed rami�
ation. This willbe dis
ussed at length in the next 
hapter.
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Chapter 5
Global Class Field Theory
In the previous 
hapter we des
ribed expli
it methods to 
onstru
t global
y
li
 algebras with pres
ribed rami�
ation. It turned out that the 
entralproblem is to have a good des
ription of the lo
al properties of the global�eld over whi
h we want to 
onstru
t the 
y
li
 algebra.As we already remarked at the end of the last 
hapter, the fa
t that we usedKummer theory to 
onstru
t 
y
li
 extensions makes is impossible to applythese ideas in a general 
ontext, sin
e we 
an not deal eÆ
iently with theglobal �eld Q (�l)=Q for l large.We therefore turn to a more theoreti
al approa
h to this problem. Re
all thatthe des
ription of Abelian extensions of global number �elds with restri
tedrami�
ation lies at the heart of global 
lass �eld theory.We will �rst give a summary of 
lass �eld in a general sense. Extensiveexamples will then be given for the two easiest 
ases.5.1 Moduli and Ray Class GroupsWe �x a base �eld K. Our goal is to des
ribe the Abelian extension of Kwith pres
ribed rami�
ation. We �rst introdu
e some terminology.De�nition 5.1.1 A modulus m in K is a pair (m0;m1) where m0 is anintegral ideal and m1 is a set of real embeddings of K into C . We write this42



5.1. MODULI AND RAY CLASS GROUPS 43formally as m = m0m1.We de�ne (o=m)� = (o=m0)� � Fm12 .If m and n are two moduli, we say that n divides m (njm) if m0 � n0 andn1 � m1.If a is a nonzero fra
tional ideal of K we say that a is 
oprime to m ifvp(a) = 0 for all pjm. Equivalently we 
an write a = b=
 with b and 
integral ideals 
oprime to m0 in the usual sense.The set of ideals 
oprime to m forms a group denoted by Im(K). If � 2 K�we say that � is 
oprime to m if the 
orresponding prin
ipal ideal �oK is.Re
all that the 
lass group of K is de�ned via the long exa
t sequen
e1! U(K)! K� ! I(K)! Cl(K)! 1where U(K) denotes the groups of units in K� and I(K) denotes the set offra
tional oK{ideals. We now want to �nd a way to repla
e IK with Im(K)in this de�nition.De�nition 5.1.2 Let m be a modulus in K.For � 2 K� we say that � � 1 mod mif for all p dividing m0 we have vp(� � 1) � vp(m0) and for all embeddings�i 2 m1 we have �i(�) > 0. We write K�m for the group of su
h �.Let Pm(K) denote the set of fra
tional prin
ipal ideals of oK that 
an bewritten in the form �oK with � 2 K�m . It is 
lear that Pm(K) is a subgroupof Im(K) 
alled ray group of m.Now 
onsider an element a of Pm(K). If a = �oK = �oK with �; � 2 K�m thisis equivalent to saying that �=� is a unit in K�m . These units form a subgroupof U(K) whi
h will be denoted by Um(K) = U(K) \K�m . We therefore havethe following exa
t sequen
e1! Um(K)! K�m ! Pm(K)! 1:We are now ready to de�ne the ray 
lass group Clm(K) in an analogous wayto Cl(K) via the exa
t sequen
e1! Pm(K)! Im ! Clm(K)! 1:43



5.1. MODULI AND RAY CLASS GROUPS 44The �niteness of the ray 
lass group and a formula to 
al
ulate its 
ardinalityfollows from the following statement.Theorem 5.1.3 We have an exa
t sequen
e1! Um(K)! U(K)! (oK=m)� ! Clm(K)! Cl(K)! 1: (5.1)Hen
e the ray 
lass group is �nite. Also we know thathm(K) = h(K) j(oK=m)�j[U(K) : Um(K)℄ (5.2)where h(K) and hm(K) denote the 
ardinality of the 
lass group of K andthe ray 
lass group of Km respe
tively.In order to be able to formulate the main theorem of global 
lass �eld theorywe now introdu
e the notion of a 
ongruen
e subgroup.De�nition 5.1.4 A group of fra
tional ideals C su
h thatPm(K) � C � Im(K)is 
alled a 
ongruen
e subgroup for the modulus m. In order to indi
atethe modulus to whi
h C 
orresponds, we introdu
e the notation (m; C) for a
ongruen
e subgroup modulo m.Note that we 
an also 
onsider the set of 
lasses C = C=Pm � Clm, so we 
an
onsider a 
ongruen
e subgroup as a subgroup of the ray 
lass group Clm.It is natural to ask when, given (m1; C1) and (m2; C2), we have thatClm1=C1 'Clm2=C2 holds. To answer this question we introdu
e an equivalen
e relationbetween 
ongruen
e subgroups:De�nition 5.1.5 We say that two 
ongruen
e subgroups (m1; C1) and (m2; C2)are equivalent ((m1; C1) � (m2; C2)) ifIm2 \ C1 = Im1 \ C2:One 
he
ks that this is indeed an equivalen
e relation and that we haveIm1=C1 ' Im2=C2 as 
laimed. 44



5.2. ABELIAN EXTENSIONS OF K 45A further notion is that of the 
ondu
tor of a 
ongruen
e subgroup. In orderto introdu
e this we �rst de�ne the GCD (greatest 
ommon divisor) of two
ongruen
e subgroups. If m1 and m2 are two moduli, we de�ne the greatest
ommon divisor n = g
d(m1;m2) of m1 and m2 by taking the sum of the
orresponding integral ideals and the interse
tion at the pla
es of in�nity.Clearly, if n is de�ned thus, it is the largest modulus dividing both m1 andm2, hen
e the terminology.Theorem 5.1.6 Let (m1; C1) and (m2; C2) be two 
ongruen
e subgroups su
hthat (m1; C1) � (m2; C2). Let n = g
d(m1;m2) . Then there exists a unique
ongruen
e subgroup C modulo n su
h that (n; C) � (m1; C1) � (m2; C2). Cis given by C = C1Pn = C2Pn. We 
all the 
ongruen
e subgroup (C; n) theGCD of the 
ongruen
e subgroups (m1; C1) and (m2; C2).Now 
onsider an equivalen
e 
lass C of 
ongruen
e subgroups. Then thereexists a 
ongruen
e subgroup (f; Cf) in C 
alled the 
ondu
tor of the 
lass Csu
h that ea
h member of C is of the form (fa; Cf \ Ifa) for any modulus a ofK.We 
an now de�ne the 
ondu
tor of a 
ongruen
e subgroup:De�nition 5.1.7 Given a 
ongruen
e subgroup (m; C) we 
onsider the 
lassC of 
ongruen
e subgroups equivalent to (m; C). Call f the 
ondu
tor of(m; C), if (f; Cf) is the 
ondu
tor of C.Call any given modulus f a 
ondu
tor if there exists a 
ongruen
e subgroupof 
ondu
tor equal to f.5.2 Abelian Extensions of KHaving explained the stru
ture of the ray 
lass group of a given modulus mof K, we now pro
eed to explain how this stru
ture 
ontrols the arithmeti
of Abelian extensions of K with rami�
ation 
ontrolled by m.Re
all from algebrai
 number theory the notion of the 
ondu
tor of an ex-tension L=K. It is given by f0 =Yp pnp;45



5.2. ABELIAN EXTENSIONS OF K 46where np 2 N0 is given by a lo
al 
ondition at p. More pre
isely we havenp > 0 exa
tly if �Kp is a norm lo
ally at p in the extension Lp=Kp. Hen
ef0 
ontains exa
tly those primes p whi
h ramify in L=K.Let f1 be the set of real pla
es of K rami�ed in L. We de�ne the 
ondu
torof L=K to be the modulus f(L=K) = f0f1.De�nition 5.2.1 Let L=K be an Abelian extension and m a modulus of K.Then m is 
alled suitable for the extension L=K if m is a multiple of the
ondu
tor f of L=K.Now we de�ne a group homomorphism from Im (the group of fra
tional ideals
oprime to m), to the absolute Galois group G of L=K. More pre
isely fora =Ypja pvp(a)we de�ne the Artin map to beArtL=K(a) =Ypja �vp(a)pwhere �p denotes the Frobenius at p inside G as usual.Theorem 5.2.2 (Artin re
ipro
ity) The Artin map is a surje
tive grouphomomorphism from Im to G. Moreover the kernel of the Artin map Am(L=K)is a 
ongruen
e subgroup modulo m, hen
e the Artin map 
an be viewed as asurje
tive map from Clm to G.The fundamental equivalen
e of studying the stru
ture of Clm(K) and ofstudying Abelian extensions of K is now given by the 
elebrated TagakiExisten
e theoremTheorem 5.2.3 If (m1; Am1(L1=K)) � (m2; Am2(L2=K)), then L1 and L2are K{isomorphi
.Conversely, given any 
ongruen
e subgroup (m; C) then there exists an Abelianextension L=K, unique up to K{isomorphism, su
h that m is a suitable mod-ulus for L=K and C = Am(L=K).The arithmeti
 properties of the Abelian extension L=K 
orresponding to(m; C) are as follows: 46



5.2. ABELIAN EXTENSIONS OF K 47Theorem 5.2.4 The Artin map indu
es a 
anoni
al isomorphism from Clm=Cto Gal(L=K).The 
ondu
tor f = f(L=K) of the Abelian extension is equal to the 
ondu
torof the 
orresponding 
ongruen
e subgroup.The pla
es of K that ramify in L are exa
tly the divisors of f.Thus we see that the existen
e of an extension of K of degree l whi
h isrami�ed exa
tly at one pla
e p is 
ompletely determined by the stru
ture ofthe ray 
lass group modulo m = pm1.Therefore global 
lass �eld theory establishes the existen
e of a global exten-sion with pres
ribed rami�
ation, or more pre
isely gives 
riteria to determinewhether su
h an extension exists.We 
an now return to the question we want to address, namely how to relatethe invariant at rami�ed pla
es with the invariant at other pla
es. As wepointed out before, this 
an be done using the lo
al-global prin
iple 
omingfrom the Hasse{Brauer{Noether theorem.However in order to make this expli
it we now need to examine the possi-bilities we have to des
ribe the lo
al properties of the Galois group of theextension L=K 
ontained in the ray 
lass �eld Km=K.As before, let � denote a generator of the global Galois group Gal(L=K), forq unrami�ed in L=K denote the Frobenius automorphism by �q. De�ne fqby �fq = �q.Re
all again that the existen
e of a global �eld extension L=K of degree limplies that there is a relation 
oming from a global 
y
li
 algebra (L=K; �; a)of the form Xp rami�ed invp(a) + Xqunrami�edfqvq(a) � 0 mod l:The approa
h of the last se
tion was to restri
t the rami�
ation to one pla
eand to try to eliminate all pla
es of large norm.We now propose to do the following:1. Establish the existen
e of an extension of degree l rami�ed at p.47



5.2. ABELIAN EXTENSIONS OF K 482. Fix a set Q of (unrami�ed) primes q of K.3. Generate relations of the formXp rami�ed invp(a) + Xqunrami�ed;q2Q fqvq(a) � 0 mod l:4. Solve the resulting homogeneous system of linear equations for theinvp(a) and the fq.It should be worth noti
ing at this point that in performing these 
omputa-tions we a
tually solve two problems at on
e:� We provide algorithms for the 
omputation of dis
rete logarithms in�nite �elds.� These algorithms will also 
ompute dis
rete logarithms between a �xedgenerator � and Frobenius automorphisms �q inside the Galois groupof 
ertain sub�elds of ray 
lass �elds.� The theory of Brauer groups shows that des
ribing the Galois group ofray 
lass �elds is intimately linked to solving the dis
rete logarithm in�nite �elds.We will now examine two 
ases in whi
h the global 
lass �eld theory isespe
ially well understood, namely the 
ases of the rationals K = Q and ofimaginary quadrati
 �elds K = Q (pD); D < 0.
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Chapter 6
Two Examples
6.1 The Case K = QThe global 
lass �eld theory of Q is 
ompletely determined by the 
elebratedtheorem of Krone
ker and Weber:Theorem 6.1.1 (Krone
ker{Weber) Every Abelian extension K=Q of Qis 
ontained in a suitable 
y
lotomi
 extension Q (�n)=Q .The following lemma shows why this theorem is of spe
ial interest for us:Corollary 6.1.2 There exists an Abelian extension K=Q of degree l rami�edexa
tly at p i� ljp� 1 holds. If it exists it is uniquely determined.Proof: Obviously the fa
t that K is rami�ed exa
tly at p implies that forea
h 
y
lotomi
 extension Q (�n) 
ontainingK we have that pjn. Hen
e Q(�p)is the smallest 
y
lotomi
 extension 
ontaining K. The extension Q(�p) overQ has degree p�1 hen
e there exists an intermediate �eld of Q (�p) of degreel over Q i� ljp� 1 holds.Sin
e Q (�p)=Q is Galois and (Z=pZ)� is 
y
li
 K is uniquely determined. 2Note that therefore Q(�p) is the ray 
lass �eld of Q for the modulusm = (p)1,sin
e Q has one real embedding. Also we see that the ray 
lass group is iso-morphi
 to (Z=pZ)� = Gal(Q(�p)=Q). Note that in this 
ase the 
ardinalityof the ray 
lass group is given by �((p)), sin
e the units of Z are just f+1;�1g,49



6.1. THE CASE K = Q 50therefore Um(Q ) = f+1g and hen
e [U(Q ) : Um(Q)℄ = 2, whi
h 
an
els outwith the 
ontribution from the real embedding in (5.2).Hen
e we know how to 
ompute an extension of Q of prime degree l whi
his rami�ed exa
tly at p:
onsider the extension Q(�p) over Q , set h�i = Gal(Q (�p=Q)) and 
onsiderthe �xed �eld K of h�li inside Q(�l).Thus we have as
ertained the existen
e of an extension of degree l rami�edexa
tly at one pla
e. However our task was not only to 
onstru
t su
h anextension but also to des
ribe its Galois group lo
ally at all unrami�ed pla
es.We will do this by studying the relative Brauer group Br(K=Q).Let K=Q be an extension of degree Grad l rami�ed exa
tly at p. Let h�i =Gal(K=Q) = G be the Galois group of K=Q , 
onsider a global algebra A ofthe form A = (K=Q ; �; a).If a 
an be fa
tored in the form a = Q qnq the theorem by Hasse{Brauer{Noether leads to a relation of the forminvp(a) +Xq 6=p fqnq � 0 mod l: (6.1)We now have to 
hoose a suitable set Q of unrami�ed primes whi
h we allowin (6.1). More pre
isely we have to �nd a way to 
ontrol the primes o

ur-ring in the fa
torization of a, sin
e otherwise ea
h new equation is likely tointrodu
e new indeterminates to the system. The easiest way to handle thisproblem is to restri
t our attention to relations of the form (6.1) 
ontain-ing only terms related to small primes. Hen
e the notion of smoothness ofnatural numbers 
omes up in a natural way.We now note the following similarity between the algorithm we proposed anda 
lassi
al algorithm from 
omputational number theory whi
h also makesuse of the smoothness property:Fix a generator g of the multipli
ative group F�p . Note that a = Q qnq 
anbe viewed as an element of F�p via the natural redu
tion map. Hen
e we 
an
onsider the logarithm of a to the basis g, whi
h is de�ned to be the uniquelydetermined natural number x mod p� 1 su
h that a � gx mod p holds.50



6.1. THE CASE K = Q 51Write x = logg(a). Obviously we have that logg(ab) = logg(a) + logg(b).Hen
e the fa
torization a =Q qnq leads to the equationlogg(a) � logg(Y qnq) �X logg(qnq) �Xnq logg(q) mod p� 1;hen
e logg(a)�Xnq logg(q) � 0 mod p� 1: (6.2)Observe the total similarity between (6.1) and (6.2). Indeed, (6.1) 
an bere
overed from (6.2) by redu
ing equation (6.2) modulo l (this is possiblesin
e we assumed that lj(p� 1)).Hen
e the proposed method to 
ompute the lo
al properties of the Galoisgroup of K=Q has reprodu
ed the 
lassi
al index 
al
ulus algorithm to 
om-pute dis
rete logarithms in prime �elds Fp (see [COS86℄). We brie
y re
allthis algorithm.Starting with an element x of F�p we want to 
ompute the dis
rete logarithmlogg(x). In order to do this we 
ompute xexp for random exp and lift this toxexp 2 Z. If this lift is smooth of the formxexp =Yq2S qnq ;we obtain a relation of the formexp � logg(x) =Xq2S nq logg(q) mod p� 1:If we 
olle
t enough relations of this sort we 
an solve the resulting systemof linear equations for logg(x) and logg(q).In the 
ase of Brauer groups we 
an pro
eed exa
tly like this, a smooth liftleads to a relation exp � invp(x) +Xq2S nqfq � 0 mod l:So instead of 
omputing logg(x) and logg(q), we 
ompute invp(x) and fq.Algorithm 1 Computation of lo
al properties of K=QInput: x 2 FpOutput: invp(x),fq 51



6.1. THE CASE K = Q 521. A := [0℄2. x := lift of �0 to F�p3. while Rang(A) < jSj � 1 do exp := random element of [1; p � 1℄xexp = lift of xexp toZif smooth(xexp) then Relation = (exp,fa
torization(xexp))A := In
lude(A;Relation) end while4. ve
tor:=element of Ker(A)5. Output ve
torNote that in order to 
ompute the dis
rete logarithm of y with respe
t tox in the 
y
li
 subgroup of order l inside F�p we simply need to 
omputeinvp(y) and invp(x) and we 
an do so by lifting xexp1yexp2 to Z and storingthe smooth relations obtained from this for random exp1 and exp2.We 
an then obtain invp(x) and invp(y) by 
omputing a ve
tor in the kernelof the resulting relation matrix. We need to assume that the matrix hasmaximal rank in order to be sure to obtain non trivial values for invp(x)and invp(y) from the one ve
tor we 
ompute. The dis
rete logarithm is thenobtained via 
omputing invp(y)=invp(x) mod l:The 
omplexity estimates found in [COS86℄ also apply to the problem of
omputing lo
al properties of the Galois group of K=Q . More pre
isely weobtain the following:Theorem 6.1.3 Consider an extension K=Q of degree l rami�ed exa
tly atp su
h that lj(p�1). Let � be a generator for the Galois group of K=Q . Thenthe 
omputation of the exponents fq su
h that �fq equals the Frobenius �q atq for q � Lp(12 ; �) for � 2 R+ has heuristi
 
omplexityLp�12 ; � + 1� + o(1)� :Here L denotes the 
omplexity theoreti
 fun
tion given byLN(�; �) = exp(�(logN)�(log logN)1��):52



6.2. EXAMPLE 53Note that we need not 
onsider any primes q in the relation (6.2) for whi
hwe have ljlogg(q) if we are interested in 
omputing the fq. This 
orrespondsto the 
ase that q splits 
ompletely in K=Q :We know from the de
omposition law for 
y
lotomi
 �elds that the order ofthe residue 
lass �eld of q is given by the order of q mod p� 1. Hen
e q splits
ompletely in K=Q i� this order is prime to l. But this means that lj logg(q).Sin
e we solve a homogeneous system of equations the solution is only deter-mined up to multipli
ation of a s
alar from F�l .This re
e
ts the fa
t that we have not �xed a generator � of the Galois groupGal(K=Q) and that �i for 1 � i � l � 1 is also a generator.6.2 ExampleConsider the extension of degree 37 of Q whi
h is rami�ed exa
tly at p =1015 + 37. Therefore the 
omputation of the lo
al properties of Gal(K=Q )
orresponds to solving dis
rete logarithms in the 
y
li
 subgroup of order37 in F�p where p = 1015 + 37. In order to 
he
k the 
orre
tness of our
omputations we 
ompute a dis
rete logarithm as well as the exponents fqfor the primes up to 1009. Hen
e 
onsider the elements x0 = 23 and x1 =57 of Fp , these 
an be viewed as liftings of the 37{th roots of unity �0 =627390197251587 and �1 = 312088005699472 to Fp .As fa
tor basis S we 
hoose the �rst 169 primes up to 1009 and sear
h forelements 23k157k2 in F�p for whi
h the lifts to Z fa
tor over S (here n1 andn2 are random numbers from the interval [1; p℄). After 
olle
ting 200 smoothlifts it turned out, that three primes 
an be eliminated from the fa
tor basissin
e they did not appear in any of the relations. Furthermore the prime 743
an be eliminated sin
e it splits 
ompletely in the 
y
li
 extension K=Q ofdegree 37 rami�ed exa
tly at p. The relation matrix built from 200 
olumnsof the form Xqi2S nifi + k1invp(�) + k2invp(�n) = 0 (6.3)in 167 indeterminates turned out to have rank 166. The kernel of the matrixis generated by the ve
tor 53



6.3. THE CASE OF IMAGINARY QUADRATIC FIELDS 54(1; 8; 31; 20; 32; 18; 23; 7; 29; 25; 5; 36; 11; 12; 7; 9;14; 32; 4; 14; 27; 14; 35; 35; 12; 34; 5; 27; 19;17; 17; 15; 15; 20; 22; 16; 2; 33; 15; 35; 26; 34;34; 6; 23; 4; 5; 12; 11; 33; 33; 29; 10; 33; 30; 15; 1;3; 2; 5; 20; 28; 6; 28; 3; 20; 9; 29; 23; 18; 30; 26; 20;4; 6; 24; 1; 27; 9; 17; 14; 25; 14; 7; 13; 13; 2; 19; 13;6; 9; 21; 4; 31; 1; 27; 23; 18; 24; 19; 4; 12; 29; 13; 27;10; 7; 14; 5; 28; 1; 31; 14; 2; 28; 28; 4; 35; 15; 31; 19;6; 19; 9; 10; 2; 5; 12; 36; 34; 24; 34; 10; 8; 30; 28; 11;35; 11; 33; 26; 34; 25; 24; 1; 21; 34; 27; 18; 7; 9; 26; 25;19; 29; 2; 15; 30; 26; 3; 5; 22; 17; 13; 21; 8; 22)The two last entries 
orrespond to the two invariants. Sin
e we have 22=8 =12 in Z=37Z, the solution of the dis
rete logarithm is 12. Indeed we have62739019725158712 = 312088005699472in F1015+37.6.3 The Case of Imaginary Quadrati
 FieldsWe now turn to the simplest example of number �elds, namely quadrati
extensions of the rationals. Here, the 
ase of imaginary quadrati
 �elds isespe
ially easy.Theorem 6.3.1 Let K = Q(p�D) with D > 0, D squarefree and D 6=�1;�3 be an imaginary quadrati
 �eld. Let m be a modulus asso
iated to theideal a. Then the order of the ray 
lass group modulo m is given byhm(K) = h(K)�(a)2 : (6.4)Proof: Sin
e K is imaginary quadrati
, K does not have a real embedding,hen
e no real pla
es. Also, the group of units of oK is equal to f+1;�1g.Hen
e the the index of Um(K) in U(K) is equal to two. 2Corollary 6.3.2 Let p be a prime ideal of K. Assume that ljNK=Q(p) � 1with l 6= 2 prime. Also assume that (l; h(K)) = 1. Then there exists anextension L=K rami�ed exa
tly at p.54



6.3. THE CASE OF IMAGINARY QUADRATIC FIELDS 55Note that the assumption (l; h(K)) = 1 is needed in order to assure that weobtain an extension whi
h is not 
ontained in the Hilbert 
lass �eld of K andhen
e would be unrami�ed.Fix an extension of degree l over K rami�ed exa
tly at a prime p, setGal(L=K) = h�i. Again we want to des
ribe Gal(L=K) lo
ally, that is�nd the relation between � and �q for a prime q of K whi
h is inert in L=K.We 
an make use of the arithmeti
 of K=Q in order to get information aboutthe exponents fq we are interested in:Consider the global 
y
li
 algebra (L=K; �; q) where q is a rational prime,whi
h leads to a relationinvp(q) +Xqjq fq � 0 mod l:But invp(q) 
orresponds to the lo
al 
y
li
 algebra (Lp=Kp; �; q), where q nowhas to be viewed in k�p =k�lp ' F�p2=F�lp2 .Assume that q is trivial in this quotient, hen
e we have invp(q) � 0 mod l.From this it follows that fq1 � �fq2 mod l if q splits in K or fq � 0 mod l ifq is inert. Hen
e we getLemma 6.3.3 Assume that q is inert in K=Q ,i. e. (q) = q. Then we havefq = 0 if the order of q in kp is prime to l.Assume that q splits in K=Q , i. e. q = qq, then we have fq � �fq mod lexa
tly if the order of q in kp is prime to l.Corollary 6.3.4 Assume that ljp+ 1. Then we have:fq = 0 if qoK = q.fq � �fq mod l if qoK = qq.6.3.1 The Case of ljp+ 1In this 
ase we 
an make use of Corollary 6.3.4 in when des
ribing the Galoisgroup Gal(L=K) lo
ally.Consider the relation 
oming from the algebra (L=K; �; a) for a 2 K. WriteaoK = Yq inert qmq Yq split qnqqnq;55



6.3. THE CASE OF IMAGINARY QUADRATIC FIELDS 56hen
e invp(a) � Xq inert fqmq + Xq split(qnq + qnq) mod l: (6.5)Due to Lemma 6.3.3 we know that we have fq � 0 mod l for q inert in K.Furthermore, due to Lemma 6.3.3 in the situation q = qq in K it is enoughto 
ompute fq sin
e then fq is also known.Therefore we 
an modify a relation of the forminvp(a) + Xq inert fqmq + Xq split(fqnq + fqnq) � 0 mod l (6.6)by � Removing all inert primes.� Repla
ing fqnq + fqnq by fq(nq � nq).Thus (6.6) 
an be rewritten in the forminvp(a) + Xq split(fq(nq � nq)) � 0 mod l:Again this 
omputation reprodu
es an algorithm for 
omputing dis
rete log-arithms, now in F�p2 originally proposed by ElGamal in [ElG85℄. However we
an modify this algorithm, sin
e instead of using all the split primes up to a
ertain norm, we use only one prime from ea
h pair.Here is an overview of the algorithm:Algorithm 2 DL in 
y
li
 subgroup of order l in Fp2 , ljp+ 1.Input: Q(p�D), D square free, D 6= �1;�3. a; b 2 Fp2Output: n su
h that (a(p2�1)=l)n = b(p2�1)=l.1. Generate rational fa
torbase Srational of rational primes p � B.2. Generate algebrai
 fa
torbase Salgebrai
 
ontaining one prime idealq of the the de
omposition q = qq for rational q that splits inK.3. Compute x = anabnb in Fp2 . 56



6.3. THE CASE OF IMAGINARY QUADRATIC FIELDS 574. Lift x to an element x in K.5. If NK=Q(x) is B-smooth, fa
torxoK = Ysinert sns Yqsplit qnqqnq.6. Store relation (na; nb; nq � nq)q2Salgebrai
.7. On
e enough relations are 
olle
ted (> jSalgebrai
j + 2), build therelation matrix A.8. Compute v = ker(A).9. Output v2=v1 mod l.Although the rational fa
torbase Srational 
ontains all primes up to B, thealgebrai
 fa
torbase Salgebrai
 is generated from Srational by omitting all inertprimes (one half of the primes in Srational) and by sele
ting only one of thetwo prime ideals lying over a split rational prime q. Hen
e the algebrai
fa
torbase has exa
tly half the size of the rational fa
torbase whi
h meansthat:1. We only have to �nd halve as mu
h relations in order to obtain arelation matrix of maximal rank.2. The linear algebra be
omes easier sin
e the resulting matrix is 
onsid-erably smaller. If we assume the 
omplexity of the linear algebra to bequadrati
 in the size of fa
torbase, this would give a fa
tor of four.ElGamal gives the following 
omplexity estimate whi
h also 
arries over toour modi�
ation.Theorem 6.3.5 Let K be an imaginary quadrati
 �eld K = Q(p�D), letp be the prime ideal lying over the inert rational prime number p, assumeljp+ 1.Let L=K be the extension of K of degree l rami�ed exa
tly at p, let � bea generator of Gal(L=K). Then the 
omputation of the exponents fq su
hthat �fq equals the Frobenius �q at q, where the norm of q is bounded byLp(1=2;p4=3) has heuristi
 
omplexityLp(1=2;p48 + o(1)):57



6.3. THE CASE OF IMAGINARY QUADRATIC FIELDS 586.3.2 ExampleAs an example 
onsider the dis
rete logarithm inside the 
y
li
 subgroup oforder 19 insider F1512 . We use the global number�eld K = Q(p�31) whi
hhas 
lass number h(K) = 3. Sin
e 19j151+1 we 
an use the above mentionedmodi�
ations.As fa
torbase S we 
hoose the primes q2;1; q5;1 and q7;1 lying above 2; 5 and 7respe
tively. We want to solve the dis
rete logarithm problem in the subgroupof order 19 given by the two 19{th roots of unity related to 3z+1 and 40z+80,where z denotes a root of x2 +31 over F1512 .We 
olle
t the following smoothrelations: (3z + 1)1 = (3z + 1) and (3p�31 + 1)oK = p12;1p22;2p15;1p17;1(3z + 1)156 = (6z + 102) and (6p�31 + 102)oK = p62;1p22;2p13p15;1(3z + 1)170 = (128z + 128) and (128p�31 + 128)oK = p112;1p82;2(3z + 1)181 = (12z + 116) and (12p�31 + 116)oK = p32;1p62;2p15;2p17;1(3z + 1)253 = (12z + 52) and (12p�31 + 52)oK = p32;1p72;2p17;2Using the des
ribed modi�
ations we obtain the following system of linearequations mod19: invp(3z + 1)� f2 + f5 + f7 � 0 mod 19156invp(3z + 1) + 4f2 + f5 � 0 mod 19170invp(3z + 1) + 3f2 � 0 mod 19181invp(3z + 1)� 3f2 � f5 + f7 � 0 mod 19253invp(3z + 1)� 4f2 � f7 � 0 mod 19As a solution we obtain invp(3z + 1) � 1; f2 � 13; f5 � 1; f7 � 11 mod 19.Now sin
e (40p�31 + 80)oK = p32;1p32;2p25;1p15;2p17;2From this smooth fa
torisation we obtain the relation invp(40z+80)+f5�f7 �0 mod 19, whi
h gives invp � 10 mod 19. Hen
e the solution of the dis
retelogarithm problem should be 10.In order to 
he
k this the two 19{th roots of unity asso
iated to 3z + 1 and40z + 80 are 136z + 24 and 69z + 36, indeed we have that(136z + 24)10 = 69z + 3658



6.3. THE CASE OF IMAGINARY QUADRATIC FIELDS 59as 
laimed.Note that although the 
lass group of the global number�eld we used is nontrivial,we were able to obtain our relations without 
onsidering any obstru
-tion problems.6.3.3 The Case of ljp� 1While the 
ase of ljp+1 
an only appear in the 
ase, that p is inert in K=Q ,the 
ase that ljp�1 
an be realized either with an inert or with a split primep.Consider �rst the 
ase that p is inert, poK = p.In this situation we have to in
lude both inert and split primes in the algebrai
fa
tor base sin
e we 
annot use Lemma 6.3.3.Hen
e from the global algebra (L=K; �; a) where L=K denotes the extensionof degree l inside the ray 
lass �eld belonging to p we obtain relations of theform invp(a) + Xq inert fqvq(a) + Xq splitfqvq(a) + fqvq(a) � 0 mod l:Sin
e exa
tly one half of the elements in Srational will be inert in L=K and theother half will split in L=K, Salgebrai
 will be of the size N = 3=2jSrationalj.Hen
e we do not obtain an advantage for 
omputations in F�p , if we use thismethod.Now 
onsider the situation that p = p1p2, i. e. p splits in K=Q , meaning thatf(x) = x2 +D splits in the fa
tors (x� x1)(x� x2) mod p. Note that when� denotes a global root of f(x) generating K=Q , the global element a + b�with a; b 2 Z 
orresponds to the lo
al element a + bx1 and a + bx2 in theresidue 
lass �elds of p1 and p2 respe
tively.Let L=K be the ray 
lass �eld of modulus m = p1, hen
e L=K is rami�edexa
tly at p1. Then the relation 
oming from the global algebra (L=K; �; a+b�) looks like this:invp1(a+ bx1) +Xq 6=p1 fqvq(a+ b�) � 0 mod l: (6.7)59



6.3. THE CASE OF IMAGINARY QUADRATIC FIELDS 60Assume that both a + bx1 as well as a + b� are smooth meaning that thenorm of a + b� is smooth with respe
t to an algebrai
 fa
tor base S2, anda+bx1 2 Fp 
an be lifted to a smooth element of Z with respe
t to a rationalfa
tor base S1. Seta+ bx1 = Yq2S1 qnq ; a+ b� = Yq2S2 qnq:Then the relation (6.7) 
an be rewritten in the formXq2S1 nqinvp1(q) +Xq2S2 fqvq(a+ b�) � 0 mod l:Our task is now to sear
h for pairs (a; b) 2 Z2 su
h that both a + bx1 anda + b� are smooth. If we have 
olle
ted enough of these pairs, we 
an solvethe resulting system of relations of type (6.3.3) both for invp1(q); q 2 S1 andfq; q 2 S2.But this is exa
tly the situation of the generalization of the so 
alled Gaussianinteger sieve, whi
h is one of the most e�e
tive method known for solvingthe dis
rete logarithm problem in prime �elds Fp (see for example [eur98,171{183℄) .Furthermore the proposed method is valid even in the 
ase of non trivial
lass number. We will look at this phenomenon in greater detail in the next
hapter.Therefore we have demonstrated, that the 
lassi
al index 
al
ulus approa
has well as the more re�ned approa
h of the Gaussian integer method 
anboth be interpreted as 
al
ulating lo
al invariants of the Galois groups of ray
lass �elds of 
ertain number �elds.
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Chapter 7
Global Cy
li
 Extensions withSeveral Rami�ed Primes
In the pre
eding 
hapters we linked the arithmeti
 of extensions rami�edexa
tly at one prime p with the arithmeti
 of the underlying residue 
lass�eld of p. It is a natural question to ask what happens if we allow more thanone rami�ed prime.We restri
t this to the 
ase of 
y
li
 extensions of the rationals Q . Thereforewe study the relation between sub�elds L of the ray 
lass �eld K=Q rami�edat the primes p1; : : : ; pn and the arithmeti
 of the �nite �elds Fpi respe
tively.First we have to establish the existen
e of su
h an extension. Re
all thatby Krone
ker{Weber (Theorem 6.1.1) an extension of Q of degree l rami�edat p exists exa
tly in the 
ase that lj(p � 1). More generally the extensionLp1;::: ;pn=Q of degree l rami�ed exa
tly at p1; : : : ; pn has to be 
ontained inQ(�p1 �p2���pn).Assume that Lp1;::: ;pn�1=Q is an extension of degree l rami�ed exa
tly atp1; : : : ; pn�1 and Lpn=Q of degree l is rami�ed at pn. Then Lp1;::: ;pn�1Lpn=Qis Galois of order l2 over Q . Fix a subgroup H of G = Gal(Lp1;::: ;pn�1Lpn=Q )of order l su
h that the �xed �eld L of H is 
ontained neither in Lp1;::: ;pn�1nor in Lpn . This is possible sin
e G has exa
tly l + 1 distin
t subgroupsof order l. Then L has to be rami�ed exa
tly at p1; : : : ; pn. Thus we haveshown indu
tively the existen
e of a Galois extension of degree l rami�ed atprime pi su
h that lj(pi � 1). 61



62Again we want to study the lo
al{global relation 
oming from a global algebraof the form (L=Q ; �; a) for a 2 N . Assume that a has the fa
torizationa = nYi=1 pmii Yq2S qnqthen we obtain a relation of the formnXi=1 invpi(a) +Xq2S fqnq � 0 mod l:Note that due to the rami�
ation properties of L=Q we now allow elementsfrom a fa
tor base S as well as the rami�ed primes pi in the fa
torization ofa.We observe that again the knowledge of the exponents fq relating the gen-erator � to the Frobenius automorphism �q at q is equivalent to obtaining arelation between dis
rete logarithm problems in F�pi for i = 1; : : : ; n.First 
onsider the non{
ryptographi
 
ase that all primes pi are small (mean-ing the dis
rete logarithm problem in all the �elds Fpi is easy to solve).Fix a fa
torbase S of rational primes q, our aim is to 
ompute the fq. Considera global algebra (L=Q ; �; a0) where a0 has the fa
torizationa0 = nYi=1 pm0;ii Yq2S qn0;q :This leads to the relationnXi=1 invpi(a0) +Xq2S fqn0;q � 0 mod l: (7.1)Suppose a1 2 N has the fa
torizationa1 = nYi=1 pm1;ii Yq2S qn1;qThe relation indu
ed by a se
ond algebra (L=Q ; �; a1) will 
ontain fa
tors ofthe form fqn1;q as well as terms of the form invpi(a1). The 
ru
ial observation62



63is now that these invariants invpi(a1) 
an be related to invpi(a0) as follows:First note that invpi(a1) = invpi(Yj 6=i pmjj Yq2S qn1;q)sin
e in the lo
al extension Lpi=Q pi the prime element pi is a norm.Now we have invpi(a1) = ninvpi(a0), where n is the solution to the dis
retelogarithm problem(Yj 6=i pm1;jj Yq2S qn1;q)(pi�1)=l = ((Yj 6=i pm0;jj Yq2S qn0;q)(pi�1)=l)nin the l{th roots of unity inside F�pi .Using this approa
h, we need not sear
h for relations:Pres
ribe any exponents nq for primes q 2 S thus obtaininga =Yq2S qnq :Then relate the invariants of a at the rami�ed pla
es pi to relation (7.1) bysolving the dis
rete logarithm problems in the �elds Fpi . Thus the 
omplexityof this 
al
ulation is determined by the 
omplexity of solving the dis
retelogarithms in F�pi and from the following linear algebra. Hen
e we see thatthe 
omplexity will be dominated in a subexponential way by the largestprime rami�ed in L=Q .What happens if we turn to the 
ryptographi
 interesting situation, namelythat pn (say) is so large that 
omputing dis
rete logarithms in F�pn is no longerpossible?Obviously we 
annot 
hoose arbitrary elementsa = nYi=1 pmii Yq2S qnqany longer in order to generate relations, sin
e we now have to 
ontrol the in-variant invpn at the rami�ed pla
e pn without 
omputing dis
rete logarithms.But by 
omputing random powers of an element of Fpn we 
an generatesmooth relations while also 
ontrolling the invariant at pn:Fix x 2 F�pn related to a l{th root of unity in F�pn . Compute xexp for random63



64exponents 1 � exp � Order(x). Let xexp be a lift of xexp to Z. We now keepthe lift xexp if it fa
tors in the formxexp = nYi=1 pmii Yq2S qnq :Assume we look at two liftsxexp0 = nYi=1 pm0;ii Yq2S qn0;qand xexp1 = nYi=1 pm1;ii Yq2S qn1;qwith relationsexp0invpn(x) + n�1Xi=1 invpi(xexp0) +Xq2S fqn0;q � 0 mod land exp1invpn(x) + n�1Xi=1 invpi(xexp1) +Xq2S fqn1;q � 0 mod lrespe
tively, we again 
an 
ompute the dependen
y between invpi(xexp1) andinvpi(xexp0) by 
omputing dis
rete logarithms in F�pi now for i = 1; : : : ; n�1.Thus we are able to produ
e relations involving exa
tly jSj + n terms aslong as the 
omputation of dis
rete logarithms in Fpi for i = 1; : : : ; n� 1 isfeasible.The 
omplexity of this approa
h will be determined by� the 
omplexity of �nding smooth relations� the 
omplexity of solving the dis
rete logarithms in F�pi for i = 1; : : : ; n�1.� the 
omplexity of solving the resulting system of linear equations.How does this situation 
ompare to the 
omputation of dis
rete logarithmsin F�pn using an extension with just one rami�ed prime?64



65Here we have to 
ompare the suggested approa
h in the 
ase of several ram-i�ed primes with the following modi�ed version of our algorithm in the 
aseof one rami�ed prime:Instead of sear
hing for relations involving primes below a 
ertain bound B wealso allow some extra primes pi; i = 1; : : : ; n�1 to o

ur in the fa
torizationsof the lifts. Having 
olle
ted enough relations of this sort, we then solve forthe fq; q 2 S and the fpi; i = 1; : : : ; n� 1.Hen
e we see that� In both algorithms a relation is kept, if it involves small primes less thanB and some extra primes pi. Hen
e the same smoothness 
onditionholds in both algorithms.� Sin
e both types of relations 
ontain n+ jSj unknowns, the number ofoperations in order to solve the resulting linear algebra problem willwe be the same.� Using just one rami�ed prime, we do not need to 
ompute any dis
retelogarithms in the �elds Fpi .Hen
e if we are only interested in 
omputing dis
rete logarithms in Fpn , wedo not gain an advantage by allowing more than one prime to ramify.
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Chapter 8
Constru
ting Global l{thpowers and the DL problem
8.1 Introdu
tionWe now review some ideas relating the 
onstru
tion of l{th powers in number�elds to the dis
rete logarithm problem in �nite �elds ([AD93℄,[S
h93℄,[S
h99℄)and then pro
eed to show how Brauer groups 
an be used in some instan
esto simplify this approa
h.As a motivation 
onsider the dis
rete logarithm problem in the 
y
li
 sub-group of order l inside the multipli
ative group of the prime �eld F�p . Supposewe are given elements a and b asso
iated to l{th roots of unity �a and �b. Inorder to 
ompute the dis
rete logarithm between �a and �b, we 
an pro
eedas follows:Generate random pairs r; s and 
ompute 
 � arbs mod p. Store the triple(r; s; 
) if the lift of 
 to N fa
tors over a fa
tor base S. Now if we generatesuÆ
iently many su
h triples (ri; si; 
i)i=1;::: ;z, we 
an �nd elements e1; : : : ; ezsu
h that zYi=1 
eii = xlfor some integer x. Indeed 
onsider the fa
torizations 
i = QjSjj=1 pnj;ij , this
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8.1. INTRODUCTION 67gives zYi=1 
eii = zYi=1( jSjYj=1 pnj;ij )ei = zYi=1 jSjYj=1 pnj;ieij= jSjYj=1 zYi=1 pnj;ieij= jSjYj=1 pPzi=1 nj;ieij :Now this is an l{th power exa
tly if Pzi=1 nj;iei � 0 mod l for all j, wherej = 1; : : : ; jSj.Hen
e we have to �nd a non trivial solution to the system of linear equationsn1;1e1 + n1;2e2 + � � �+ n1;zez � 0 mod l... ... ...njSj;1e1 + njSj;2e2 + � � �+ njSj;zjez � 0 mod l:If we have obtained enough smooth lifts, that is if we have z > jSj, a non-trivial solution exists, and we 
an �nd it by linear algebra modulo l.Thus we obtain that akabkb � xl mod pwhere ka =Pzi=1 eiri and kb =Pzi=1 eisi and x is an element of F�p . Note thatthe solution to the dis
rete logarithm problem is now given by �ka=kb mod lassuming that kb is invertible modulo l.Now 
onsider what happens if we want to generalize this idea to the moregeneral 
ase of extension �elds Fpn .Let K be number �eld of degree n over Q , let p be an inert prime in Kmeaning poK = p. We 
an then represent Fpn as oK=poK, where oK is thering of integers in K.Assume that we are given a and b in Fpn . We want to solve the dis
retelogarithm asso
iated to the two l{th roots of unity �a and �b de�ned bya(pn�1)=l and b(pn�1)=l (assuming l divides pn � 1).Again we generate random pairs r; s and 
ompute 
 = arbs in Fpn . Now notethat due to the isomorphism oK=poK ' Fpn we 
an lift 
 to an element of67



8.1. INTRODUCTION 68oK. We keep the triple (r; s; 
) only if 
oK fa
tors over a fa
torbase S of(algebrai
) primes of K.Assume we are able to �nd enough of these triples, i. e. (ri; si; 
i)i=1;::: ;z.Again we are able to 
ompute integers ei su
h that( zYi=1 
eii )oK = I lwhere I denotes some ideal of oK. But now we 
an not apply the sameargument as in the 
ase of prime �elds above, sin
e the ideal I need not bea prin
ipal ideal.Thus we are lead to 
onsider the following number theoreti
al problem:De�nition 8.1.1 SetVl = f� 2 Kj vp(�) � 0 mod l 8 pg:Then the problem to de
ide whether an element in Vl=K�l ss trivial is 
alledobstru
tion problem.If we want to use the following algorithm 3 in order to solve the dis
retelogarithm problem in the �nite �eld Fpn , we have to �nd a way to deal withthe obstru
tion problem.Algorithm 3 Computing the DL in 
y
li
 subgroups using l{th powers.Input:�nite �eld Fpn , number �eld K, surje
tion � : oK ! Fpn , a; b 2 �l(Fpn ).Output: m su
h that am = b.1. Choose a fa
torbase of (algebrai
) primes S.2. Generate 
 = asabsb. Lift 
 to 
 in oK via �. Keep 
 if it is S--smooth.3. Find more than jSj smooth lifts 
1; : : : ; 
z.4. Compute ei 2 Z=lZ su
h that (Qzi=1 
iei)oK = I l.5. De
ide if (Qzi=1 
iei) is a l--th power in K.6. If it is, return (�P eisai)=(P eisbi) mod l.68



8.2. SOLUTIONS FOR THE OBSTRUCTION PROBLEM 698.2 Solutions for the Obstru
tion ProblemIn the literature one 
an �nd two approa
hes to deal with the obstru
tionproblem:The �rst one uses the 
on
ept of 
hara
ter signatures ([AD93℄), the se
ondone uses a te
hnique of S
hirokauer based on p{adi
 logarithms ([S
h93,Proposition 3.10℄).We give a brief overview of the two te
hniques:8.2.1 Chara
ter SignaturesThe 
on
ept of 
hara
ter signatures was originally developed in the 
ontextof fa
toring and was adopted to index 
al
ulus by Adleman in [AD93℄.Let K be a number �eld. Call an algebrai
 integer � generating an ideal ofthe form I l an l{singular integer with respe
t to oK.Let �; � be two l{singular integers, 
all � equivalent to � (� � �), if thereexist �; � 2 oK su
h that �l� = �l� . Let G(l) be the group of equivalen
e
lasses of l{singular integers with respe
t to �. It is a group of exponentsdividing l with identity element I(l) = f�lj� 2 oKg and group operation[�℄[�℄ 7! [��℄. Let Cl(K)[l℄ be the l{torsion inside the 
lass group of K.Then G(l) 
an be written in the formG(l) ' U(K)=U(K)l � Cl(K)[l℄; (8.1)where U(K) denotes the unit group of K.We now introdu
e the notion of a 
hara
ter signature:Consider prime ideals p1; : : : ; pz of oK, elements n1; : : : ; nz 2 oK and � 2 oK .Assume that (�) + pi = (1) for all i, ljN(pi) � 1 and that ni is a primitivel{th root of unity in (oK=pi)�.Then the 
hara
ter signature of � with respe
t to < pi; ni > is < e1; : : : ; ez >where �(N(pi)�1)=l � neii mod pi:Assume that K is Abelian over Q , then by Cebotarev it follows that for allprime ideals pi and 
 2 G[l℄, there exists � 2 oK su
h that [�℄ = 
 and69



8.2. SOLUTIONS FOR THE OBSTRUCTION PROBLEM 70(�) + pi = (1).Given 
 2 G(l) and< pi; ni >, de�ne the map � by mapping 
 to the 
hara
tersignature of � with respe
t to the < pi; ni >. The map � is well de�ned onG(l) and is a group homomorphism� : G(l)! �zi=1Z=lZ:How 
an these properties be used in order to solve the obstru
tion problem?Due to the �niteness of the 
lass number and the fa
t that U(K) is �nitelygenerated we see from (8.1) that G(l) is �nitely generated as well. Let H bethe number of generators of C(l).Re
all that it is reasonably easy to 
onstru
t l{singular elements (�i)i=1;::: ;Hfrom the smooth liftings as des
ribed above. We now 
ompute the 
hara
tersignatures �i of the elements �i and �nd elements bi su
h thatXi bi�i �< 0; : : : ; 0 > modl:Now Adleman argues that it is likely that the map � : G(l) ! �Z=lZ is aninje
tion implying that these bi are a
tually the same bi needed in order toprodu
e an element whi
h is the identity element in G(l). This in turn wouldimply that Q �bii = Æl for Æ 2 oK. Hen
e our obstru
tion problem would besolved.Note that you would need to 
ompute rank(G(l)) many liftings in order tobe able to apply this method, instead of just one as proposed in algorithm 3.8.2.2 S
hirokauers Approa
hS
hirokauer [S
h93℄ also uses 
hara
ters to provide a solution to the obstru
-tion problem. These are de�ned as follows.Let K be a number �eld. Let l be rational prime whi
h does not ramify inK. Let �1 = f
 2 oKjNK=Q(
) 6� 0 mod lg:For ea
h prime ideal l in oK dividing (l) let �l = j(oK=l)�j and let � be theleast 
ommon multiple of the �l. Then for all 
 2 �1
� � 1 mod l:70



8.2. SOLUTIONS FOR THE OBSTRUCTION PROBLEM 71Now de�ne �1 : �1 ! loK=l2oK by�1(
) = (
� � 1) + l2oK:For i > 1, let �i = f
 2 �i�1j�i�1(
) = 0g, and let �i : �i ! l2i�1oK=l2ioKbe the fun
tion given by �i(
) = (
� � 1) + l2ioK. For 1 � j � n, letfbjl2i�1 + l2ioKg be a module basis for l2i�1oK=l2ioK over Z=l2i�1Z. Then �iis given by the maps �i;j : �i ! Z=l2i�1Zde�ned by the 
ongruen
e
� � 1 � nXj=1 �i;j(
)bjl2i�1 mod l2i :Sin
e �i(

0) = �i(
) + �(
0) and �i;j(

0) = �i;j(
) + �i;j(
0), these mapsde�ne homomorphisms on the group of units of oK.For any 
 2 K� and any prime ideal p of oK let ordp(
) be the exponentto whi
h p divides the fra
tional ideal generated by 
. Now the relationbetween the maps �i and the obstru
tion problem 
omes from the followingstatement[S
h93℄:Theorem 8.2.1 Let e be a positive integer, let � be the least integer su
hthat 2� > e. Assume that the 
lass number is not divisible by l and that theunits in oK whi
h are 
ongruent to 1 mod le+1 are le{th powers. Let 
 2 ��be su
h that ordp(
) � 0 mod le for all prime ideals p in oK and ��(
) = 0.Then 
 is an le{th power in oK.Note that both of the des
ribed te
hniques make use of 
ertain more or lessstrong assumptions. We will now show how to avoid the obstru
tion problemin 
ertain situations if we apply Brauer group te
hniques.The 
entral observation is that we only need to 
ombine the global lifts insu
h a way that they generate a l{th power in the �nite �eld k we 
onsider.Brauer groups provide a te
hnique to de
ide this from the global informationwe have. However we have to assume the existen
e of an extension of K with
ertain properties. 71



8.3. APPLICATION OF BRAUER GROUPS 728.3 Appli
ation of Brauer GroupsWe make the following fundamental assumption:Main Assumption:Assume that there exists a prime ideal p of oK su
h that k is 
ontained inthe residue 
lass �eld of p. Let Kp be the ray 
lass �eld of K belonging to themodulus m = p. Suppose that the order of Clm(K) is divisible by l and that(h(K); l) = 1.By the assumption we have that ljjGal(Kp=K)j. Sin
e, by de�nition,Gal(Kp=K)is Abelian, we 
an �nd a subgroup H of order jGal(Kp=K)j=l, whi
h �xes aGalois extension L=K of degree l. Sin
e (h(K); l) = 1, this extension has tobe rami�ed at p, sin
e it 
an not be 
ontained in the Hilbert 
lass �eld of K.We 
onsider global algebras of the form (L=K; �; a). The following observa-tion is 
ru
ial in this 
ontext:Lemma 8.3.1 Let a 2 K be an element of Vl = f� 2 K�j ljvq(�)8qg. Thenunder the assumption made above we know that invp(a) � 0 mod l.Proof: Consider the relation 
oming from the global algebra (L=K; �; a). Itis given by invp(a) +Xq 6=p fqvq(a) � 0 mod l (8.2)as we have seen many times before.Now observe that in (8.2) all terms involving the unrami�ed pla
es q vanish,sin
e by de�nition a 2 Vl implies that ljvq(a) for all q. Therefore (8:2) redu
esto invp(a) � 0 mod l;as 
laimed. 2But this means that we 
an apply the 
onstru
tion des
ribed above without
onsidering the obstru
tion problem at all.To see this 
onsider again the element Qzi=1 
eii from the pre
eeding se
tion.By 
onstru
tion this is an element of Vl, hen
e the pre
eding lemma tells us,that invp(Qzi=1 
eii ) = 0. But this 
an only happen, if the asso
iated element72



8.4. COMPUTING THE DEGREE OF RAY CLASS FIELDS 73in the �nite �eld Fpn be
omes trivial in the quotient F�pn=F�lpn , hen
e is a l{thpower. But this means that we have an equationakabkb = xlin Fpn , where ka = Pzi=1 eiri and kb = Pzi=1 eisi. If kb 6� 0 mod l, we havethus obtained the solution �ka=kb mod l of the dis
rete logarithm problem.Note that the methods from this and the pre
eding 
hapters di�er signi�-
antly:While the pre
eding 
hapter des
ribed how lo
al properties of the Galoisgroup of sub�elds of ray 
lass �elds 
an be used to solve the dis
rete loga-rithm problem, this 
hapter shows that the pure existen
e of su
h sub�eldsimplies that the obstru
tion problem is trivial.However we still need to address the problem of how to ensure the existen
e ofsu
h a sub�eld. We will give a survey of 
omputational methods to a
hievethis in the next se
tion. Furthermore we will also give some theoreti
alresults.8.4 Computing the Degree of Ray Class FieldsThe task of 
omputing the order of the ray 
lass group given the number�eld K and a modulus m is a well studied one, there is number theoreti
software available whi
h is espe
ially suited to do this (for example KANTand PARI). Of 
ourse, the strongness of the main assumption we had tomake in order to apply the theory of Brauer groups is 
losely related to the
omplexity of the 
omputations involved.Re
all that the ray 
lass group was de�ned by the exa
t sequen
e (5.1)1! Um(K)! U(K)! (oK=m)� ! Clm(K)! Cl(K)! 1:Via this sequen
e the task of determing the stru
ture of Clm(K) 
an berelated to determing the stru
ture of U(K) and Cl(K) as well as to makingall these maps e�e
tively 
omputable.More pre
isely we are only interested in determing the order of Clm(K).Therefore it would suÆ
e to 
ompute the order of Cl(K) and U(K)=Um(K).73



8.5. CM FIELDS AND THEIR RAY CLASS FIELDS 74The 
omputation of the order of (oK=m)� 
an be negle
ted.We would even be satis�ed with 
omputing the index of U(K)m inside U(K),sin
e we only need to satisfy the 
ondition that (h(K); l) whi
h is likely tobe met for a prime l of 
ryptographi
 size.The 
omputation of the index of U(K)m inside U(K) however is a highlynontrivial task. The only way of solving this problem in the general situ-ation (see [Coh00, Chapter 4℄ and here espe
ially [Coh00, 4.5, Exer
ise 1and Algorithm 4.1.11℄) is to apply general algorithms for 
omputations in�nite Abelian group whi
h require the groups to be given in Smith NormalForm (SNF). Espe
ially this means that we need to 
ompute a system offundamental units of K. Hen
e for arbitrary number �elds this 
an not bea

omplished without reasonable 
omputational e�ort.8.5 CM �elds and their Ray Class FieldsSin
e determing whether a given number �eld K has a sub�eld of given orderinside the ray 
lass �eld of modulus m 
an be a substantial 
omputationalproblem, it would be ni
e to have general results about the degree of the ray
lass �eld for a given modulus m.The main observation is that it will suÆ
e to give estimates for the index[UK : UK;m℄ from above, sin
e this will give bounds for the degree of the ray
lass �eld from below.When sear
hing for examples for su
h bounds, we made some interestingobservations in the 
ase of 
y
lotomi
 �elds. It turned out that these obser-vations hold in the general 
ase of CM �elds.We brie
y re
all some basi
 properties of CM �elds.A number �eld is 
alled totally real if all its embeddings into C in fa
t liein R, it is 
alled totally imaginary if none of its embeddings lies in R. Anelement of a totally real �eld is 
alled totally negative, if all its 
onjugatesare negative.De�nition 8.5.1 A number �eld K is 
alled a CM �eld if K is a totallyimaginary quadrati
 extension of a totally real number �eld K+.74



8.5. CM FIELDS AND THEIR RAY CLASS FIELDS 75Hen
e a CM �eld 
an be obtained from a totally real �eld K+ by adjoiningto K+ the square root of a totally negative element of K+.Cy
lotomi
 �elds K = Q (�n) are CM �elds, sin
e their maximal real sub�eldis given by K+ = Q (�n + ��1n ), and K is obtained by adjoining the squareroot of �2n + ��2n � 2, whi
h is totally negative, to K+.CM �elds are espe
ially interesting in our 
ontext, sin
e mu
h 
an be saidabout the stru
ture of their unit groups without expli
itly 
omputing thefundamental units:Theorem 8.5.2 Let K be a CM �eld and let U be its unit group. Let U+be the unit group of the totally real sub�eld K+ of K. Let W be the group ofroots of unity in K. Then [U : WU+℄ = 1 or 2:Proof: Let �;  : K ! C be two embeddings of K. For � 2 K we want toshow that ��1(�(�)) =  �1( (�)). First note that �(K)=�(K+) is quadrati
,thus it is a normal extension, �(K+) is �xed by 
omplex 
onjugation. Hen
ewe have �(K) = �(K). Espe
ially this implies that ��1(�) is de�ned. Now
onsider ��1(�) and  �1( ). Both are automorphisms of K and both �x K+sin
e it is totally real. Hen
e both lie in Gal(K=K+). But sin
e K is totallyimaginary, neither of them 
an be the identity. Hen
e these automorphismsmust be equal, sin
e K=K+ is quadrati
.Therefore we have established the existen
e of an automorphism ofK indu
edby 
onjugation whi
h is independent of the embedding into C . For an element� of K it is therefore possible to speak of �. Furthermore, j�j2 = �� is alsoindependent of the embedding. If " is a unit, then "=" is an algebrai
 integerof absolute value 1. But this means that � has to be a root of unity (see[Was82, Lemma 1.6℄).Thus we 
an de�ne a map � : U ! W by �(") = "=". Consider the map : U !W=W 2 indu
ed by �. Sin
e W is 
y
li
 we have jW=W 2j = 2. Nowwe need to 
ompute the kernel of  .First note that for a totally real unit "1 and a root of unity � we have that�(") = �(�"1) = �"1�"1 = �2;75



8.5. CM FIELDS AND THEIR RAY CLASS FIELDS 76sin
e "1 is totally real. Hen
e " 2 ker( ). Suppose on the other hand that�(") = �2. Then 
onsider "1 = ��1". From �2 = "=" we see that ��1"has to be real. Thus ker( ) = WU+. Hen
e [U : WU+℄ is bounded byjW=W 2j = 2. Furthermore, the index is equal to 2 exa
tly if �(U) = W andequal to 1 exa
tly if �(U) = W 2. 2Corollary 8.5.3 Let K = Q (�pn ). Then [U :WU+℄ = 1.Proof: See [Was82, Corollary 4.13℄.How 
an this be used in order to give estimates for the index [U : Um℄?Consider the 
ase m = p, where p is a prime ideal of K lying over an inertrational prime p. The 
ondition that u is in Up is that vp(u�1) � 1. This 
anbe reformulated as follows: u has to be an element of the prin
ipal p{unitsU1p , whi
h means exa
tly that u � 1 mod p.Now assume that K is a CM �eld hen
e WUK+ has index 1 or 2 in UK .The Diri
hlet unit theorem says that the free part of UK+ is generated bys = [K : Q ℄=2 � 1 fundamental units u1; : : : ; us. Together with the roots ofunity of K these 
onstitute the full unit group of K. Now from the de�ning
ondition for Up we see that is enough to estimate the exponent n su
h thatuni 2 U1p for all i.We now use the fa
t that the fundamental units are de�ned in the totallyreal �eld K+. Re
all that p lies over an inert rational prime p. This impliesthat p will also be inert in K+, let p+ = p \K+.But then we know that u1+p+p2+���+pm�1i 2 U1p+, sin
e the global norm of the uiin K+ is 1, therefore the norm of the image of the ui in the �nite �eld kp+ hasto be equal to 1 as well. But sin
e pjp+ this also implies u1+p+p2+���+pm�1i 2 U1por (u1+p+p2+���+pm�1i )2 2 U1p depending on the index of WUK+ in UK.Let � be a non trivial element of W , then � jW j � 1 mod p. Therefore weobtain the following estimate:Theorem 8.5.4 Let K be a CM �eld of degree n, let m = n=2 be the degreeof its maximal totally real sub�eld K+. Let p be a prime ideal lying over aninert rational prime p. Then we have that[UK : UK;p℄ � jW j[UK : WUK+℄(1 + p+ p2 + � � �+ pm�1):. 76



8.5. CM FIELDS AND THEIR RAY CLASS FIELDS 77But this gives the estimate for the degree of the ray 
lass �eldKp over K wewanted:Corollary 8.5.5 We have p2m � 1l
m(jW j; [UK : WUK+℄(1 + p+ p2 + � � �+ pm�1)) j [Kp : K℄:Hen
e assume that (l; h(K)) = 1 and (l; jW (K)j) = 1 and m odd. Then thereexists an extension of degree l over K whi
h is rami�ed exa
tly at p iflj(pm�1 � pm�2 + � � �+ 1)Note that for l of 
ryptographi
 size, the 
onditions (l; h(K)) = 1 and(l; jW (K)j) = 1 are not very restri
tive, sin
e they are very likely to besatis�ed. Furthermore, the degree of K over Q gives a bound for the size ofjW j, sin
e K has to 
ontain the appropriate 
y
lotomi
 �eld.The following table 
ompares the estimate with the a
tual degree of the ray
lass �eld in the 
ase of the 
y
lotomi
 �eld K = Q(�7) by 
omputing thequotient of the a
tual degree of the ray 
lass �eld rami�ed at an inert primep (
omputed by KANT) and the estimate 2 � 7 � (p2 + p + 1) (note that inthis 
ase UK = WUK+.It seems that even with growing p the deviation from the estimate seems tobe bounded.

77



8.5. CM FIELDS AND THEIR RAY CLASS FIELDS 78Inert Prime Quotient17 119 331 147 159 161 1373 389 1101 1103 1131 1157 3173 1199 1227 1229 1241 1257 1269 1271 1283 1311 1313 3353 1367 3383 1397 1409 1439 3467 1479 1509 1521 1523 1563 1

Inert Prime Quotient577 1593 1607 3619 1647 1661 3677 1691 1719 1733 1761 1773 1787 1829 3857 1859 1887 1929 1941 1971 1983 1997 11013 11039 11069 11097 11109 11123 31151 11153 31181 11193 11223 11237 11249 1

Inert Prime Quotient1277 11279 11291 11307 11319 11321 11361 11433 11447 31459 31487 11489 31531 31543 31559 11571 11601 11613 11627 11657 31669 11697 11699 11741 31753 11783 11811 11823 11867 11879 11907 11949 11951 11979 131993 178



8.6. APPLICATION OF CM FIELDS IN INDEX CALCULUS 798.6 Appli
ation of CM Fields in Index Cal-
ulusWe now 
onsider the 
ase that we use CM �elds in order to 
ompute dis
retelogarithms in the residue 
lass �elds of these number �elds.As we have seen before our approa
h using Brauer groups is espe
ially suitedto 
ompute dis
rete logarithms in 
y
li
 subgroups. This is of spe
ial interestto 
ryptography, sin
e the idea of hiding a small subgroup inside the multi-pli
ative group of a �nite �eld as originally proposed by S
hnorr, features inseveral 
rypto systems (DSA in the 
ase of prime �elds, XTR in the 
ase ofextension �elds).Consider the 
ase of extension �elds k = Fpn . Here it is important to use asubgroup that is not 
ontained in a proper sub�eld of k, sin
e otherwise weloose the se
urity of the larger �eld we work in. Therefore either n should beprime, or we need to study the fa
torization of the polynomial xn � 1 overZ. The se
ond 
ase is exa
tly what happens in the 
ase of XTR.We look at the 
ase that n = 2m with m odd. Suppose we 
an lift k to aCM �eld K in whi
h p is inert.Thus we have to 
onsider the fa
torization of x2m � 1. It is given byx2m � 1 = (xm + 1)(xm � 1)= (x� 1)(xm�1 + xm�2 + � � �+ x+ 1)(x+ 1)(xm�1 � xm�2 + xm�3 � � � � � x + 1):Consider l prime su
h that ljp2m � 1. In order to de
ide whether the 
y
li
subgroup C of order l inside F�p2m is 
ontained in a proper sub�eld of Fp2m ,we have to 
onsider the fa
tors of x2m � 1 separately.� l must not divide p� 1, sin
e otherwise C would be 
ontained in F�p .� l must not divide pm�1 + pm�1 + � � � + p + 1, sin
e otherwise l woulddivide pm � 1, hen
e C would be 
ontained in F�pm .� l must not divide p+ 1, sin
e otherwise l would divide p2 � 1, hen
e Cwould be 
ontained in F�p2 . 79



8.6. APPLICATION OF CM FIELDS IN INDEX CALCULUS 80Thus we getLemma 8.6.1 Let C be a 
y
li
 subgroup of prime order l, then if C is not
ontained in a proper sub�eld of Fp2m we have thatlj(pm�1 � pm�2 + � � �+ (�1)m�1):We are now ready to apply all our 
omputations to the following situation:Assume p is inert in the CM �eld K of degree d over Q . Consider the dis
retelogarithm in the 
y
li
 subgroup C of order l in Fpd , where C is not 
ontainedin any sub�eld of Fpd . Suppose that (l; h(K)) = 1 and (l; jW (K)j) = 1, whereW (K) denotes the group of roots of unity inside K.In this situation there exists an extension rami�ed pre
isely at pjp of de-gree l, sin
e l satis�es the 
onditions of Corollary 8.5.5. Thus we 
an solvethe dis
rete logarithm in this subgroup using Algorithm 3 with trivial ob-stru
tion. Thus, the most interesting 
ase from the 
ryptographi
al pointof view 
oin
ides exa
tly with the 
ase in whi
h we 
an apply Brauer groupte
hniques.Note that this provides the �rst example of an obstru
tion free approa
h toindex 
al
ulus while working in number �elds of degree larger than 2 we areaware of.Theorem 8.6.2 Let K be a CM �eld of degree d = 2m, let p be a rationalprime inert in K.Then the dis
rete logarithm in 
y
li
 subgroups of order l in Fpd , where l sat-is�es the 
onditions of Lemma 8.5.5 
an be solved using algorithm 3 withoutobstru
tion.It is espe
ially worth noti
ing that this te
hnique does not 
arry over to thegeneral 
ase of dis
rete logarithms in the �eld Fpn . It only holds for thespe
ial 
ase of the 
y
li
 subgroup des
ribed above.It should also be noted that the 
omplexity of this obstru
tion free versionof algorithm 3 will still be Lpn(1=2) as shown in [AD93℄. This is due to thefa
t that the size of the fa
tor base has to vary in subexponential 
omplexityLpn(1=2) in order to guarantee suÆ
iently many smooth elements.80



8.7. THE NUMBER FIELD SIEVE 818.7 The Number Field SieveIn order to a
hieve a subexponential 
omplexity of exponent 1=3 we haveto lift Fpn to a �xed number �eld F and then 
onsider another extensionK=F of degree d depending on both p and n. This is the basi
 idea of thenumber �eld sieve, whi
h was originally invented for fa
toring integers, butwas adopted to the dis
rete logarithm problem by Gordon ([Gor93℄) andS
hirokauer ([S
h93℄,[S
h99℄).We give a brief overview of S
hirokauers version.Given Fpn he �rst �nds the smallest prime r 
ongruent to 1 mod n su
h thatn is prime to (r � 1)=f , where f is the order of p in (Z=rZ)�. Then Q(�r )has a unique sub�eld F of degree n over Q . Sin
e oF=poF ' Fpn we 
an usethis isomorphism to lift Fpn to oF .This is in fa
t 
ompletely analogous to what we did in the pre
eding se
tion.Now on top of F a se
ond number �eld K is de�ned. While in the 
lassi
almethod, the l{th power we seek is 
onstru
ted only in the number �eld F ,we now simultaneously 
ompute one l{th power in F and one in K. Thesubexponential size of the fa
torbase is now determined by K.The advantage in 
omplexity over the 
lassi
al index 
al
ulus is now gainedby de�ning K=F in su
h a way that the degree d of K=F is given byd = ((3n)1=3 + o(1))(log p= log log p)1=3:Then the smoothness bound (and hen
e the size of the fa
tor base) 
an belowered to B = Lpn(1=3; (8n=9)1=3 + o(1));where in all this estimates n is assumed to be �xed and p varies.We show that in prin
iple it seems possible to give examples in whi
h both Fand K have no obstru
tion. However one should note that K is 
onstru
tedin a very spe
ial way, so it is not quite 
lear if this 
onstru
tion 
an bemodi�ed in order to obtain the sort of extension we des
ribe.Suppose we look at the XTR situation, hen
e we work in a 
y
li
 subgroupof order l inside Fp6 , where l divides p2 � p+ 1.81



8.8. SEVERAL RAMIFIED PRIMES 82Now suppose that K is a CM �eld of degree 6d with d odd and 
y
li
 Galoisgroup G = h�i. Consider the sub�eld F �xed by �d, it is of degree 6 over Qand is also a CM �eld (see [Shi97, 18.2. Lemma℄).Assume that p is inert in K=Q , whi
h implies that p is also inert in F=Q .Therefore we know that the obstru
tion for 
onstru
ting a l{th power in Kis trivial, if (h(F ); l) = 1.From Corollary 8.5.5 we obtain that the degree of the ray 
lass �eld of Krami�ed at Pjp is divided by p3d+1. But sin
e d is odd we have p3+1jp3d+1.but (p2�p+1)jp3+1jp3d+1. Hen
e there exists an extension of degree l overK rami�ed exa
tly at P if we assume (h(K); l) = 1. Thus the 
onstru
tionof l{th powers over K also has trivial obstru
tion.Theorem 8.7.1 Let K=Q be a CM �eld whi
h is Galois with 
y
li
 Galoisgroup of order 2 � 3 � n with n odd. Let F=Q be the CM sub�eld of degree 6.Assume that p is inert in K=Q and that ljp2 � p+ 1.Then the 
onstru
tion of l{th powers both in F and in K is without obstru
-tion, provided that (h(K); l) = 1, (h(F ); l) = 1 and (jW (K)j; l) = 1, whereW (K) denotes the number of roots of unity inside K.We 
on
lude this dis
ussion by remarking that subexponential algorithms of
omplexity Lpn(1=2; 
) still play an important role in the theoreti
al analysisof dis
rete logarithms, sin
e at present there is no subexponential algorithmof exponent 1=3 available if both p and n vary in su
h a way that(log p)1=2 < n < (log p)2:This re
e
ts the fa
t that the number �eld sieve method for dis
rete loga-rithms has subexponential 
omplexity Lpn [1=3; (64=9)1=3 + o(1)℄ as long asn < (log p)1=2�� when pn !1 with 0 < � = o(1) [S
h99℄. The fun
tion �eldsieve, whi
h will be dis
ussed later (see 
hapter 9), works well for log p < n1=2.8.8 Extensions with Several Rami�ed Primesand the Obstru
tion ProblemIn the pre
eding se
tions we showed how to over
ome the obstru
tion problemby proving the existen
e of a sub�eld of the ray 
lass �eld with exa
tly one82



8.8. SEVERAL RAMIFIED PRIMES 83rami�ed prime. However as we have seen su
h extensions need not exist.We now give some experimental results 
on
erning the existen
e of su
hextensions if we allow more primes to ramify in this extension.More pre
ise we look at the following:Consider F=Q of degree n, let K be an extension F . Consider a prime plying over p whi
h is inert in F=Q . Thus, F 
an be 
onsidered as a number�eld lifting Fpn . Consider lj(pn � 1).Now let P be an prime ideal of oK lying over p. In order to prove thevanishing of the obstru
tion for K we would have to prove the existen
e ofan extension of degree l rami�ed at P over K.Example:Let F = Q(�7), let p = 17. Then p is inert in F , 
onsider p = 17oK. Wehave 13j(172 � 17 + 1). Sin
e F is a CM �eld, there exists an extension ofdegree rami�ed at p.Now 
onsider F=K given by x2 + �7 + ��17 . It has the equationx12+2�x11+x10+10�x9+10�x8�10�x7+13�x6�2�x5+20�x4�52�x3+60�x2�32�x+8 = 0over Q .p splits into two distin
t primes in K: p = P1P2. However, a 
omputationof the degree of the ray 
lass �eld over K yields that the degree of KPi overK is 2.But if we 
onsider the ray 
lass �eld rami�ed at all primes lying over p instead,this does 
ontain a sub�eld of order 13. Hen
e we see that in prin
iple byswit
hing from one rami�ed prime to several ones it is possible to enfor
e theexisten
e of an extension we look for.In order to make use of this in 
ryptography, we have to take 
are that theextra primes we allow to ramify have 
onsiderably smaller norm than p. Of
ourse we also want that ljNK=Q(q)�1, sin
e we want to enfor
e the existen
eof an extension of degree l inside the ray 
lass �eld. By in
luding primes qwith this property in the modulus, we hope to raise the powers of l in theenumerator of 5.2. Hopefully the index in the denominator of 5.2 will notgrow in the same way. If this happens we may obtain a sub�eld of order linside the ray 
lass �eld. 83



8.8. SEVERAL RAMIFIED PRIMES 84Example: Consider F and K as above. Look at the ray 
lass �eld Kmbelonging to the modulus m = 53P1 
onsisting of all the primes lying above53 in F as well as one prime P1 lying over p = 17oF in K.We have that the degree of the ray 
lass �eld rami�ed at all primes lyingabove 53 has degree [K53 : K℄ = 23 � 132 � 4091:However the degree of Km is given by[Km : K℄ = (2) � (13) � (22 � 13) � (22 � 7 � 13 � 409);where the de
omposition in of the Galois group G of Km=K in 
y
li
 sub-groups is indi
ated by parentheses.Espe
ially we see that G 
ontains three 
y
li
 subgroups of order 13. Hen
ewe know that there exists an extension L=K of degree 13 whi
h is rami�edboth at P1 and at all primes above 53 (note that K has 
lass number 1, thusthe Hilbert 
lass �eld of K is just K).Suppose in general that L=K is an extension of degree l rami�ed at P aswell as at prime ideals qi; i = 1; : : :m su
h that ljNK=Q(qi)� 1, furthermoreNK=Q(qi) is 
onsiderably smaller than NK=Q(p).Suppose we have 
onstru
ted elements ai; i = 1; : : : ; m+ 1 su
h thatvq(ai) � 0 mod l for allq unrami�ed:Then these elements lead to relationsinvp(ai) + mXj=1 invqj (ai) � 0 mod l:Using the assumption that NK=Q(qj) is 
onsiderably smaller than NK=Q(p) we
an now relate invqj(ai) to invqj (ak) for i 6= k by solving the dis
rete logarithmproblem de�ned in the l{th roots of unity inside kqj . Let invqj (ak) = nj;k �invqj(a1).
84



8.8. SEVERAL RAMIFIED PRIMES 85Thus we obtain a system of relationsinvp(a1) + mXj=1 invqj (a1) � 0 mod linvp(a2) + mXj=1 nj;2invqj (a1) � 0 mod l� � � � 0 mod linvp(am+1) + mXj=1 nj;m+1invqj (a1) � 0 mod lWhat happens to this system of equations if we swit
h from ai to akii ?Be
ause we deal with invariants at rami�ed pla
es, we simply get invp(akii ) =kiinvp(ai) and invqj(akii ) = kiinvqj(ai).Thus we get a new system of equationsk1invp(a1) + mXj=1 k1invqj(a1) � 0 mod lk2invp(a2) + mXj=1 k2nj;2invqj(a1) � 0 mod l� � � � 0 mod lkm+1invp(am+1) + mXj=1 km+1nj;m+1invqj(a1) � 0 mod lSumming up all these equations givesm+1Xj=1 kjinvp(aj) + m+1Xj=1 invqj(a1)( mXr=1 krnj;r) � 0 mod l: (8.3)Now we see that Q akjj will be an l{th power in kp exa
tly if the double sumin (8.3) vanishes, sin
e in this 
ase0 � m+1Xj=1 kjinvp(aj) � invp(m+1Yj=1 akjj ) mod l + :But this happens exa
tly if we havek1n1;1 + k2n1;2 + � � �+ kmn1;m � 0 mod l� � �k1nm+1;1 + k2nm+1;2 + � � �+ kmnm1;m � 0 mod l:85



8.8. SEVERAL RAMIFIED PRIMES 86This system of equations has more equations than indeterminates, hen
ethere exists a non trivial solution k1; : : : ; km, whi
h will give us a perfe
tl{th power in kp.Thus introdu
ing more than one rami�ed prime leads to another way ofdealing with the obstru
tion problem in index 
al
ulus by applying the theoryof Brauer groups.
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Chapter 9
The Fun
tion Field Sieve
9.1 Class Field Theory of Fun
tion FieldsIt was pointed out by Adleman in 1994 that the analogy between number�elds and fun
tion �elds 
an be used to generalize the number �eld sieve tothe situation of global fun
tion �elds [Adl94℄.In the previous 
hapters we have dis
ussed the theory of index 
al
ulus inglobal number �elds at length. The main diÆ
ulty we had to over
ome inorder to apply the theory of Brauer groups was to establish the existen
e ofextensions of given rami�
ation and degree over a number �eld K. We wereonly able to prove general results about this in the 
ase of CM �elds.It turns out that the situation is mu
h easier in the 
ase of fun
tion �elds,sin
e we are able to 
onstru
t global fun
tion �elds for whi
h the degree of
ertain ray 
lass �elds is given by a 
ompletely expli
it formula.Let K be a global fun
tion �eld with full 
onstant �eld Fq . Let p; q0 be twodi�erent pla
es of K. Denote by Kq0p the maximal extension over K whi
his rami�ed exa
tly at p together with the property that q0 splits 
ompletelyin Kq0p . In this 
ase we have the following (see [Aue99, 5.10℄ and [Hay79℄):Theorem 9.1.1 The degree of Kq0p over K is given by[Kq0p : K℄ = h(K)deg(q0)qdeg(p) � 1q � 1 : (9.1)Here h(K) denotes the 
lass number of K.87



9.1. CLASS FIELD THEORY OF FUNCTION FIELDS 88Therefore we have the following ni
e 
orollary:Corollary 9.1.2 Suppose deg(q0) = 1. Also suppose that (h(K); l) = 1.Then there exists an extension L=K of degree l, whi
h is rami�ed exa
tly atp, if l divides qdeg(p)�1q�1 .The proof for this 
arries over dire
tly from the 
ase of number �elds.Now 
onsider a pla
e p and a prime l dividing qdeg(p)�1q�1 . We want to showhow we 
an interpret the dis
rete logarithm in the subgroup of order l insideFqdeg(p) using the Brauer group of K.In doing this we make extensive use of the fa
t that the theory of 
y
li
algebras over global fun
tion �elds is 
ompletely analogous to the 
ase ofnumber �elds (see [Roq99℄ for details).In the number �eld 
ase in order to translate the dis
rete logarithm intothe setting of Brauer groups we needed the exa
t sequen
e from the Hasse{Brauer{Noether theorem and the expli
it formulae for the invariant map inthe unrami�ed 
ase. Both of these are available in the 
ase of global fun
tion�elds as well.Let L=K be as above, let q be an unrami�ed prime. Then the lo
al invariantof the 
y
li
 algebra A = (L=K; �q; a) is given byinvq(a) = deg(q)vq(a) mod l:Consider the lo
al extension Lp=Kp, whi
h is rami�ed by de�nition of L=K.Sin
e [Lp : Kp℄ = l and ljqdeg(p) � 1, it is a Kummer extension and thereforeseparable. Thus we obtainBr(Lp=Kp) ' F�qdeg(p)=F�lqdeg(p)exa
tly as in the 
ase of number �elds.This shows that again we 
an use the Brauer group Br(L=K) in order torelate the invariant at the rami�ed pla
e p to those at the unrami�ed pla
es.
88



9.2. BRAUER GROUPS AND THE FUNCTION FIELD SIEVE 899.2 Brauer Groups and the Fun
tion FieldSieveConsider R = Fp [x℄ and an irredu
ible polynomial f of degree n. f de�nes apla
e p of degree n in Quot(R) = Fp(x), we have kp ' Fpn .Let S=R be an extension given by H(x; y) = 0 where H is irredu
ible overR and has degree d in y. De�ne K = Quot(S), assume that K has full
onstant �eld Fp . Also assume that p splits 
ompletely in K, hen
e we havep = P1 � � �Pd.We now use a standard theorem due to Kummer, whi
h phrases the de-
omposition of p in terms of the redu
tion of H(x; y) modulo f (see [Sti93,III.3.7.℄).Assume that y is integral over Op. H(x; y) 
an then be viewed as an elementin Op[y℄. We have a 
anoni
al map Op[y℄ ! kp[y℄ whi
h 
an be obtained asfollows:Assume H(x; y) has the form yd + d�1Xi=0 yihi(x)where hi 2 Op. Let hi be the redu
tion of hi modulo f , hen
e H(x; y) 2 kp[y℄where H(x; y) = yd + d�1Xi=0 yihi(x):Now the fa
t that p splits 
ompletely in K is equivalent to the fa
t thatH(x; y) splits in d linear fa
tors y � 
i with 
i 2 kp.Let 
i denote a lift of 
i to Op. Then for i = 1; : : : ; d there exist pla
es Piof K su
h that Pijp and su
h that (y � 
i) 2 Pi.Furthermore, in this situation the residue 
lass �eld kPi = OPi=Pi is isomor-phi
 to kp[y℄=(y � 
i).We are now ready to apply the fun
tion �eld sieve to this setting:Choose a pla
e P from the d pla
es lying over p. Choose an element 
 in Opsu
h that (y � 
) 2 P. 89



9.2. BRAUER GROUPS AND THE FUNCTION FIELD SIEVE 90Now sear
h for 
oprime polynomials r; s 2 Fp [x℄ su
h that both ry + s andr
+s are B{smooth: here an element of Fp(x) is 
alled B{smooth if it fa
torsin irredu
ible elements of degree less than B. We 
all ry+s B{smooth if thenorm of ry + s over Fp(x) is B{smooth.Note that due to the 
hoi
e of 
 above, the redu
tion of r
+s to kp is exa
tlythe image of ry + s in the residue 
lass �eld of K at P (note that sin
e psplits in K, kP is isomorphi
 to kp ).Choose l su
h that lj(pn � 1)=(p � 1). By Corollary 9.1.2 there exists anextension L=K rami�ed at P if (h(K); l) = 1.De�ne two fa
tor bases: S1 
ontains all irredu
ible polynomials g of Fp [x℄of degree bounded by B. Let S2 be the fa
torbase obtained from S1 by
omputing all primes of K lying over elements of S1.Assume that ry + s and r
 + s are both B{smooth with fa
torizationry + s = YQ2S2QnQand r
 + s = Yg2S1 gng :Consider the relation generated by the global 
y
li
 algebra (L=K; �; ry+ s).It looks like this:Xg2S1 nginvP(g) +XQ2S2 deg(Q)nQfQ � 0 mod l:Here fQ as always denotes the element in Z=lZ su
h that �fQ = �Q, where�Q is the Frobenius at Q.Colle
ting enough of these relations, we will be able to solve for invP(f) andthe fQ.In this setting invP(g) for g 2 S1 is related to the dis
rete logarithm in kp asfollows:By 
onstru
tion we have kP ' kp ' Fp[x℄=(f). Hen
e invP(g) is the invariantrelated to the l{th root of unity (g mod f)(pn�1)=l in k�P=k�lP . In a �rst stepwe 
ompute suÆ
iently many of these invariants. In order to 
ompute the90



9.3. COMPLEXITY ESTIMATES FOR THE FUNCTION FIELD SIEVE 91invariants of the l{th roots of unity asso
iated to elements �1; �2 2 Fp [x℄, wesear
h for random exponents a1; a2 su
h that�a11 �a22 � g1g2 � � �gt mod fwhere the gi are B{smooth. From two su
h smooth relations we are ableto 
ompute invP(�1) and invP(�2) whi
h yields the solution to the dis
retelogarithm problem.We have thus reprodu
ed the situation of the fun
tion sieve algorithm asinvented by Adleman and Huang. Espe
ially this means that that if theparameters are 
hosen 
arefully this algorithm is expe
ted to have heuristi
subexponential 
omplexity of the form Lpn(1=3).9.3 Complexity Estimates for the Fun
tionField SieveWe will now show how the heuristi
 suxexponential 
omplexity of Lpn(1=3)
an be a

omplished.Re
all that we 
onsidered an extension of the rational fun
tion �eld given bythe polynomial H(x; y).More pre
isely, let H(x; y) now be of degreed = d
�11 n1=3(logn)�1=3(log p)1=3e;where 
1 is a 
onstant to be determined later.Assume we have that H(x; 
) � 0 mod f , where 
 is of degree d0 = dn=de.Now 
hoose r; s 2 Fp [x℄ of degree bounded by
2n1=3(logn)2=3(log p)�2=3;where again 
2 is also to be determined later.Now by the assumption on 
 we have that the degree of r
 + s is boundedby (
1 + o(1))n2=3(logn)1=3(log p)�1=3:91



9.3. COMPLEXITY ESTIMATES FOR THE FUNCTION FIELD SIEVE 92Next we have to 
ompute the norm of ry + s, this is given by rdH(x;�s=r).Hen
e its degree is bounded by(
2=
1 + o(1))n2=3(logn)1=3(log p)�1=3:Hen
e the degree of (r
 + s)N(ry + s)is bounded byD = d(
1 + 
2=
1 + o(1))n2=3(logn)1=3(log p)�1=3e:We make the heuristi
 assumption that with randomly 
hosen r and s, thepolynomial (r
 + s)N(ry + s) is random with degree bounded by D.Set Q = pD, set the smoothness bound b = logp(LQ(1=2; 1=p2)). Then theprobability for a pair (r; s) to be b{smooth is at leastLQ(1=2;�1=p2 + o(1));where we have to assume, that log p < n1=2�� with 0 < � = o(1) (see[AH99, page 10℄). The number of elements in the fa
tor bases is boundedby LQ(1=2; 1=p2), thus LQ(1=2;p2 + o(1)) pairs (r; s) have to tried. Sin
ethere are p2
2n1=3(log n)2=3(log p)�2=3available this leads to the 
ondition thatLQ(1=2;p2) � p2
2n1=3(log n)2=3(log p)�2=3 :This 
an be seen to lead to the inequality
2 + 
213
1 � 
22:Thus we have 
1 = (2=3)1=3 and 
2 = (4=9)1=3, whi
h impliesD = (2(2=3)1=3 + o(1))n2=3(logn)1=3(log p)�1=3and b = Lpn [1=3; (4=9)1=3 + o(1)℄:. 92



9.4. A COMPARISON OF NFS AND FFS 93The relations obtained from doubly smooth pairs (r; s) form a system ofsparse linear equation modulo l. The 
omplexity of solving this system isLpn[1=3; (32=9)1=3 + o(1)℄.In the last step we have to relate the given elements �1 and �2 to elements inthe fa
tor base. To do this we have to 
onsider the probability for a randomg 2 Fp [x℄ of degree less than n to be B{smooth. If we assume that p6 < nthis is shown to be given by Lpn [1=3; (3=2)1=3℄in [AH99, page 12℄. Even if we do not use the sophisti
ated te
hniques usedhere, we obtain a subexponential 
omplexity of exponent 1=3 (see [Adl94℄).9.4 A Comparison of NFS and FFSThe main observation of this 
hapter was that using a 
ompletely expli
itformula for the extension degree of the ray 
lass �eld Kq0p of a global fun
tion�eld K we were able to as
ertain the existen
e of an extension L of K ofdegree l rami�ed exa
tly at p if (h(K); l) = 1 and lj(pn � 1)=(p � 1) holds.This is in 
ontrast to the situation of global number �elds, where it wasnot possible to establish the existen
e of su
h an existen
e of given degree.Espe
ially this means that we are not able to give an obstru
tion free versionof index 
al
ulus.If one 
ompares the treatment of NFS and FFS in the literature, one makesthe following observation:As we explained above, in the 
ase of number �elds the obstru
tion problemsneeds 
onsiderable attention. Adleman points out thatIn the number �eld sieve, the analog of the fun
tion �eld is anumber �eld. When this number �eld has 
lass number greaterthan 1 problems arise.When the number �eld sieve is used to fa
tor integers, then theseproblems 
an be over
ome eÆ
iently with the use of singular inte-gers and 
hara
ter signatures (Remark: this was later generalizedby Adleman to the 
ase of dis
rete logarithms [AD93℄).93



9.4. A COMPARISON OF NFS AND FFS 94When the 
lass number is not 1 in the fun
tion �eld 
ase similarproblems arise. However, if (h(K); (pn � 1)=(p � 1)) = 1 thenthese problems also 
an be eÆ
iently over
ome. The basi
 ideais to pretend that h = 1 and that all divisors are prin
iple.This observation ties in ni
ely with the 
lass �eld theoreti
al observation wemade above:indeed in the 
ase of (h(K); (pn�1)=(p�1)) = 1 we 
an use Brauer groups inorder to prove that an obstru
tion free index 
al
ulus exists, whi
h impliesthat we 
an pro
eed exa
tly as if "all divisors are prin
iple". Thereforethe fundamental di�eren
e in the diÆ
ulty of over
oming the obstru
tionproblem 
an be viewed as do
umenting the fundamental di�eren
e betweenthe 
lass �eld theory of fun
tion �elds and global �elds.
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Chapter 10
Abelian Varieties and the Tatepairing
We have pointed out before (see 
hapter 1) that the dis
rete logarithm prob-lem in �nite �elds is only one instan
e of the dis
rete logarithm problem onwhi
h a publi
 key 
rypto system 
an be based. The most important alterna-tive to �nite �elds seems to be the 
ase of Abelian varieties over �nite �elds.The most prominent examples for this are ellipti
 
urves over �nite �elds,although Ja
obians of hyperellipti
 
urves also seem promising.The dis
rete logarithm problem on Abelian varieties 
an be linked to thedis
rete logarithm problem in �nite �elds using pairings on these varieties.We give a des
ription of this approa
h for ellipti
 
urves over �nite �elds andshow how we 
an des
ribe this approa
h using Brauer groups.10.1 The Tate Pairing and the Dis
rete Log-arithm Problem on Ellipti
 CurvesUsing the Tate pairing, Frey{R�u
k redu
tion ([FR94℄, for details 
on
erningimplementational details see also [FMR99℄) allows to transfer the dis
retelogarithm problem in the group of rational points of an ellipti
 
urve overE=Fq (with q = pf ) to a dis
rete logarithm problem in Fqk with k � 1.95



10.1. THE TATE PAIRING AND THE DISCRETE LOGARITHM PROBLEM ONELLIPTIC CURVES 96Theorem 10.1.1 Let E=Fq be an ellipti
 
urve, assume ljq � 1, hen
e thegroup of l{th roots of unity �l is 
ontained in Fq . Then there exists a non{degenerate pairing �l : E[l℄(Fq )� E(Fq )=lE(Fq )! �l:The evaluation of the pairing is given as follows:Consider P 2 E[l℄(Fq ) and Q 2 E(Fq ), 
hoose DP and DQ divisors of primesupport in the 
lasses of (P )� (OE) respe
tively (Q)� (OE). Sin
e lP = OEwe know that lDP is a divisor of a fun
tion fDP . Then the pairing is givenby �l : (P;Q) 7! (fDP (DQ))(q�1)=l 2 �l(Fq ): (10.1)Given P and Q with Q = nP , 
hoose a point ~P satisfying �l(P; ~P ) = �0 2�l; �0 6= 1 and 
al
ulate �l(Q; ~P ) = �1. Sin
e �l is a non{degenerate pairing,we have that �1 = �n0 , hen
e the solution of the dis
rete logarithm problemin Fq also yields the solution of the dis
rete logarithm problem on the ellipti

urve E.The pairing (10.1) 
an be de�ned stri
tly over �nite �elds, however we 
analso use duality theory for Abelian varieties over lo
al �elds, whi
h was howFrey and R�u
k pro
eeded. We re
all this approa
h and show how it is linkedto the arithmeti
 of Brauer groups we studied in the pre
eeding 
hapters.Lift the ellipti
 
urve E=Fq to a suitable 
urve E de�ned over an extensionK of Q p .Then we 
an 
onsider the pairing [Tat57℄:H1(GK; E(K))[l℄� E(K)=lE(K)! H2(GK; K�)[l℄ ' Z=lZ:In the following we 
onsider the relation between the Tate pairing (a

ordingto Li
htenbaum [Li
69℄) and the pairing (10.1). To do this we des
ribe theimage of the Tate pairing inside the Brauer group.Consider the two exa
t sequen
es0! H(E)! Div0(E)! Pi
0(E)! 0; (10.2)96



10.1. THE TATE PAIRING AND THE DISCRETE LOGARITHM PROBLEM ONELLIPTIC CURVES 97where Div0(E) denotes the GK{module of divisors of degree zero on the
urve E=K, H(E) denotes the group of prin
ipal divisors and Pi
0(E) =Div0(E)=H(E) the Pi
ard group of E, and0 ! K� ! K(E)! H(E) ! 0; (10.3)where K(E) denotes the fun
tion �eld of E=K.Sin
e E has a K{rational point, we have H1(GK; Div0(K)) = 0, hen
e theexa
t sequen
e (10.2) yields� � � ! 0 = H1(GK; Div0(K)) ! H1(GK; E(K)) Æ! H2(GK; H(E)): (10.4)The exa
t sequen
e (10.3) gives another long exa
t sequen
e� � � ! H2(GK; K(E)�) �! H2(GK; H(E))! H3(GK ; K�) = 0; (10.5)sin
e K has 
ohomologi
al dimension two.Let f� be an element of H1(GK; E(K))l. In order to 
al
ulate Æf�, 
hoose alift f̂� of f� to Div0(E). Then we havef�;� = (Æf)�;� = f̂� � � f̂�� + f̂� (10.6)whi
h is an element of H2(GK; H(E)).A

ording to (10.5) the map � is surje
tive, hen
e there exists an element �in H2(GK; K(E)�) with �(�) = Æ(f�).Let DQ be an element of Div0(E) in the 
lass of (Q) � (0) and f�;� be atwo{
o
y
le in the 
lass of �. If the support of (f�;� ) and DQ are 
oprime,we 
an de�ne
�;� = f�;� (DQ) =YS2E f�;� (S)nS withDQ =XnSS (10.7)whi
h is a two{
o
y
le with values in K�, hen
e de�nes a 
lass [
�;� ℄ inH2(GK; K�), the Brauer group of K. In [Li
69℄ it is shown, that � always
ontains a two{
o
y
le 
oprime to DP .Consider now hf;DQi = [
�;� ℄.Li
htenbaum has proven in [Li
69℄, thath ; i : H1(GK; E(K))l � E(K)=lE(K) ! H2(GK; K�) (10.8)f� �DP 7! hf�; DP i = [
�;� ℄97



10.1. THE TATE PAIRING AND THE DISCRETE LOGARITHM PROBLEM ONELLIPTIC CURVES 98de�nes a pairing whi
h is up to a sign equivalent to Tates original de�nition.Espe
ially it is a non{degenerate and bilinear.It turns out, that the pairing given by (10.8) 
an be evaluated very eÆ
iently.Cru
ial for this is the following observationLemma 10.1.2 Suppose K 
ontains the l{th roots of unity. Let � be a primeelement of K and h�i the Galois group of the rami�ed extension K(�1=l)=K.Suppose that l is not equal to the 
hara
teristi
s of K and that E has goodredu
tion mod�K .Then we have H1(GK ; E(K))l = Hom(h�i; E(K)l): (10.9)Proof:Let Ku=K be the maximal unrami�ed extension on K. Sin
e l is not equalto the 
hara
teristi
 of K and E has good redu
tion, we obtain:H1(Gal(Ku=K); E(Ku))l = H2(Gal(Ku=K); E(Ku)) = 0: (10.10)With respe
t to the subgroup H = Gal(K=Ku) � Gal(K=K) the in
ation{restri
tion sequen
e gives0 ! H1(Gal(K=Ku); E(K))Gal(Ku=K) infl! H1(GK; E(K))res! H1(Gal(Ku=K); E(K))Gal(K=Ku) = 0:Hen
e we haveH1(Gal(K=Ku); E(K))Gal(Ku=K)l = H1(GK; E(K))l: (10.11)The exa
t sequen
e of G=H = Gal(K=Ku){modules0 ! E(K)l ! E(K) l! E(K) ! 0 (10.12)gives a long exa
t sequen
e� � � ! E(Ku) l! E(Ku) ! H1(G(K=Ku); E(K)l) ! H1(G(K=Ku); E(K))(10.13)l! H1(G(K=Ku); E(K)) ! � � �98



10.1. THE TATE PAIRING AND THE DISCRETE LOGARITHM PROBLEM ONELLIPTIC CURVES 99hen
eE(Ku)=lE(Ku)! H1(G(K=Ku); E(K)l)! H1(G(K=Ku); E(K))l ! 0:(10.14)But observe that E(Ku) is l{divisible, sin
e l 6= 
har(K) and E has goodredu
tion, hen
e E(Ku)=lE(Ku) = 0.Combining this with (10.11) we obtainH1(G(K=Ku); E(K))l = Hom(G(K=Ku); E(K)l)Gal(Ku=K) (10.15)where we used the fa
t that, sin
e E has good redu
tion, a

ording to the
riterion of Neron{Ogg-Shafarevi
h the a
tion of Gal(K=K) on E(K) is un-rami�ed. Hen
e the a
tion of Gal(K=Ku) on E(K)l is trivial.Ea
h element of Hom(GKu; E(K)l) fa
tors over the maximal l{quotient ofGKu, and this is given by Gal(Ku(�1=l)=Ku) = h�i.Sin
e � 
ommutes with all elements of Gal(Ku=K), we obtain the resultstated in the lemma. 2Let f� be an element of H1(GK; E(K))l. A

ording to lemma 10.1.2 thismeans, that f� is given by � 7! P with P 2 E(K)l.In this 
ase the asso
iated two{
o
y
le (Æf)� i;� j has a very spe
ial form:lift f� a

ording to f̂� i = (i � d � l)(P ) � (i � d � l)(0) for i = d � l + r andr < l to Div0(E).Now we pro
eed as in (10.6) and obtain for i+ j < lÆf� i;� j = i(P )� i(0)� ((i+ j)(P )� (i+ j)(0)) + j(P )� j(0) = 0 (10.16)and for i+ j > lÆf� i;� j = i(P )� i(0)� ((i+ j � l)(P )� (i+ j � l)(0)) + j(P )� j(0) = l(P )� l(0):(10.17)Therefore we have(Æf)� i;� j = ( 0 : i+ j < ll(P )� l(0) : i+ j � l (10.18)
99



10.1. THE TATE PAIRING AND THE DISCRETE LOGARITHM PROBLEM ONELLIPTIC CURVES 100Sin
e lP = OE we know that l(P )� l(0) is a prin
ipal divisor asso
iated withthe fun
tion fP . Hen
e the image of the pairing in H2(GK; K�) is given bythe 
lass of the two{
o
y
le(Æf)� i;� j(DQ) = ( 1 : i + j < lfP (DQ) : i + j � l; (10.19)de�ned over a rami�ed extension of degree l.Considering the evaluation of the pairing the following observation is 
ru
ial:A

ording to theorem 2.4.3 and 2.7.1 the value of fP (DQ) has to 
onsideredin K�=NL=K(L�) ' k�=k�l:Indeed it is shown in [FR94, p.872℄ that the values of the pairing obtainedby lifting to the lo
al �eld and then redu
ing to the �nite �eld and of thepairing de�ned over the �nite �eld 
oin
ide. Hen
e we obtain the two{
o
y
ledes
ribing the element in the Brauer group by 
omputing the value of thepairing over the �nite �eld.Thus the des
ription of the Tate pairing in terms of Brauer groups againleads us to the study of two{
o
yles de�ned over rami�ed extensions of lo
al�elds. This was exa
tly the approa
h we dis
ussed earlier when dealing withthe dis
rete logarithm problem in �nite �elds. As we have shown this leads towell known index{
al
ulus te
hniques solving the dis
rete logarithm problemin subexponential time.
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Chapter 11
Appli
ation of the Tate pairingto the DHDP
11.1 Introdu
tionIn this 
hapter1 We will 
onsider the se
urity of various proto
ols on 
ertainellipti
 
urves. Espe
ially we will show that the DiÆe Hellman de
isionproblem is easy on some 
urves whi
h was �rst observed by Frey. Furthermorewe will make use of results of Maurer and Wolf in order to 
onstru
t ellipti

urves on whi
h the DiÆe Hellman de
ision problem is easy, but the dis
retelogarithm is hard and also equivalent to the DiÆe Hellman problem. Thuswe produ
e examples of 
ryptographi
 groups, in whi
h the se
urity of theDiÆe Hellman de
ision problem is as low as possible, while the DiÆe Hellmanproblem is hard.Re
all that in an (additive) group G we 
an pose the following problems(utilizing the Chinese remainder theorem we 
an assume G to have primeorder without loss of generality):� The DL problem. The DL (dis
rete logarithm) problem, is the prob-lem given two group elements g and h, to �nd an integer n, su
h thath = ng whenever su
h an integer exists.1This 
hapter 
ontains joint work with Antoine Joux [JN00℄.101



11.2. DIFFIE HELLMAN DECISION PROBLEM ON ELLIPTIC CURVES 102� The DH problem. The DH (DiÆe{Hellman) problem, is the problemgiven three group elements g, ag and bg, to �nd an element h of G su
hthat h = (ab)g.� The DDH problem. The DDH (de
ision DiÆe{Hellman) problem,is the problem given four group elements g, ag, bg and 
g, to de
idewhether 
 = ab (modulo the order of g).It is immediately 
lear that the solution of DH implies DDH and that thesolution of DL implies DH. We �rst show how to apply the Tate pairing inorder to solve the DDH on 
ertain ellipti
 
urves.11.2 DiÆe Hellman De
ision Problem on el-lipti
 CurvesConsider an ellipti
 
urve E over a �nite �eld k 
ontaining the l{th roots ofunity together with the property that E has a k{rational torsion point P oforder l.Then the Tate pairing is de�ned in this situation and we 
an 
onsider thevalue of hP; P i 2 k�=k�l ' �l.If this value is non trivial,hP; P i = �0 say, the Tate pairing provides an easysolution to the DH de
ision problem:Consider nP ,mP as well as a point Q 2 hP i.We want to de
ide whether Q = nmP holds.To de
ide this we evaluate the Tate pairing twi
e:We �rst 
ompute hnP;mP i = hP; P inm and 
ompare this to the value ofhP;Qi. If Q is indeed equal to nmP these two values 
oin
ide, sin
e hP;Qi =hP; P ai = �a0 . Hen
e a � nm mod l if �a0 = �nm0 .Moreover this pro
ess will only take time polynomial in log q, where k = Fq ,sin
e the Tate pairing 
an be evaluated in O(log l) steps and the 
omparison
an be done in O(log q) steps, sin
e the value of the Tate pairing is an elementof F�q .Note that whenever k 
ontains the l{th roots of unity, and E(k)[l2℄ = hP iwith P a point of order l, the Tate pairing for E=k will have the property102



11.2. DIFFIE HELLMAN DECISION PROBLEM ON ELLIPTIC CURVES 103that hP; P i 6= 1. This 
ondition is for example satis�ed by all 
urves of tra
e2 de�ned over a �nite �eld k 
ontaining the l{th roots of unity, but not anyroots of unity of l{power order.If E is a supersingular 
urve over Fp the Tate pairing 
an be proven to besymple
ti
. Therefore we will have hP; P i = 1 for every P , hen
e the Tatepairing 
an not be applied dire
tly to the DH de
ision problem as outlinedabove.But making use of our knowledge of the endomorphism ring of the 
urve Eover Fp in some 
ases we will still be able to apply the Tate pairing.Consider for example the 
urve E : y2 = x3 + x over the �eld k = Fp wherep � 3 mod 4, whi
h implies that E=k is supersingular. In this 
ase we havethat jEj = p + 1. Hen
e the full l{torsion group of E for l 6= 2 
an not bede�ned over k, sin
e otherwise we would have ljp � 1 and ljp + 1 and thusljp+ 1� p+ 1 = 2.So we have E(k)[l℄ = hP i and E(K)[l℄ = hP;Qi, where K = Fp2 and Q isde�ned over K. Now note that p � 3 mod 4 implies that �1 is a quadrati
nonresidue modp, hen
e the endomorphism� : (x; y) 7! (�x; i � y);where i is a root of x2 + 1 = 0 in K, is not de�ned over k.Thus we obtain that hP; �(P )i 6= 1, and sin
e � is an endomorphism, we 
annow solve the DH de
ision problem in hP i by 
omputinghaP; �(bP )i = haP; b�(P )i = hP; �(P )iaband h
P; �(P )i = hP; �(P )i
:Note that we 
an solve the DH de
ision problem in the subgroup of order lover the ground �eld, although the pairing is not even de�ned over this �eld.The appli
ation of endomorphisms in order to map a point from the ground�eld k to an extension �eld of k is only possible in the 
ase of supersingular
ase, sin
e only in this 
ase the endomorphism ring is non 
ommutative.Here are some more supersingular 
urves with their respe
tive endomor-phisms (taken from [JN00℄): 103



11.3. RESULTS ON THE EQUIVALENCE OF DH AND DL 104Field Curve Morphism Conditions Group orderFp y2 = x3 + ax (x; y) 7! (�x; iy)i2 = �1 p � 3 (mod 4) p+1Fp y2 = x3 + a (x; y) 7! (�x; y)�3 = 1 p � 2 (mod 3) p+1Fp2 y2 = x3 + a (x; y) 7! (! xpr(2p�1)=3 ; yprp�1 )r2 = a; r 2 Fp2!3 = r; ! 2 Fp6 p � 2 (mod 3) p2 � p+ 1Table 11.1: Endomorphism on some supersingular 
urves11.3 Results on the Equivalen
e of DH andDLWe have mentioned before that 
learly DL implies DH. However Maurer andWolf have proven that, assuming the existen
e of 
ertain auxiliary groups, itis also possible to solve DL using only DH. We will now explain this result(see [MW99℄).Assume that we are given a group G of prime order p as well as a DH ora
lefor G. Assume also that we are also given an 
y
li
 ellipti
 
urve Ea;b withgenerator P de�ned over Fp whi
h has B{smooth group order. Maurer andWolf show that in this 
ase we 
an 
ompute dis
rete logarithms in G in timepB(log p)O(1).So suppose we are given gx, we want to 
ompute x. First 
ompute the groupelement gx3+ax+b from gx. This 
an be done by O(log p) group operations andtwo 
alls to the DH ora
le for G in order to 
ompute gx3 from gx. If x3+ax+bis a quadrati
 residue modulo p, then we 
an �nd a group element gy su
hthat y2 � x3 + ax + b mod p (otherwise repla
e gx by gx+d with random d).Note that we have done nothing else but 
omputed a Fp{rational point on theellipti
 
urve in the sense that we have 
omputed (gx; gy) = (gx; gpx3+ax+b)with x; y 2 Fp where (x; y) is now a point on the ellipti
 
urve Ea;b.Given (gu1; gv1) and (gu2; gv2) where (ui; vi) are points on the ellipti
 
urveEa;b we 
an 
ompute (gu3; gv3) su
h that (u3; v3) = (u1; v1) + (u2; v2) inO(log p) group operations in G and O(log p) 
alls to the DH ora
le for G.But now we 
an make use of the assumed smoothness of the group order of104



11.3. RESULTS ON THE EQUIVALENCE OF DH AND DL 105E. Indeed let q be a prime fa
tor of jEa;bj. Given (gx; gy) 
ompute (gu; gv)su
h that (u; v) = (jEj=q)Q on E. Sin
e we know a generator P of E we 
an
ompute the points (ui; vi) = i(jEj=q)P on E for i = 0; 1; : : : ; q � 1. Fromui; vi we 
an obtain group elements in G simply by 
omputing (gui; gvi). Re-
all that our ultimate goal was to solve the dis
rete logarithm in G, whi
hwas transfered to E via (gx; gy), where (x; y) = Q is a point on E.Now suppose Q = kP , then we have (gu; gv) = (gui; gvi) i� k � i mod q. Butthis means that we 
an indeed 
ompute k modulo the prime divisors of jEjand re
over k using Chinese remainder theorem. On
e we know k, we 
an
ompute Q = kP . The solution to the dis
rete logarithm problem in G isthen given by the �rst 
oordinate of Q.Sin
e we assumed the order of E to be B{smooth, it is now easy to see thatthese 
omputations 
an be done in O(pB(log p)3) operations and 
alls to theDH ora
le.This observation 
an be generalized to prove the following theorem:Theorem 11.3.1 (Maurer,Wolf ([MW99℄)) Let P be a �xed polynomialand let G be a 
y
li
 group with generator g su
h that jGj and its fa
torizationjGj = Qsi=1 peii are known. If every prime fa
tor p of jGj greater than B =P (log jGj) is single, and for every su
h p a �nite abelian group Hp withrank r = O(1) is given that is de�ned strongly algebrai
ally over Fp andwhose order is B{smooth (and known), then breaking the DiÆe{Hellmanproto
ol for G with respe
t to g is probabilisti
 polynomial{time equivalent to
omputing dis
rete logarithms in G to the base g.Of 
ourse in order to turn into a rigorous proof of the equivalen
e of DH andDL, we would need a result on the distribution of smooth numbers in theHasse interval [p�2pp; p+2pp℄ (if we want to use ellipti
 
urves as auxiliarygroups). Sin
e very little is known about this, the above argument only givesa strong heuristi
 argument for the equivalen
e of DH and DL. However, fora given group G with known order p if suÆ
es to �nd a ni
e auxiliary group,for example an ellipti
 
urve with smooth group order. We will show in thenext se
tion that this is indeed possible. Thus in spe
ial 
ases we 
an indeed
onstru
t groups with proven equivalen
e of DL and DH.
105



11.4. SEPARATING DDH AND DH 10611.4 Separating DDH and DHNow we want to apply the te
hniques des
ribed above in order to 
onstru
tan ellipti
 
urve with the properties that� the DH de
ision problem 
an be solved in polynomial time using thete
hniques of se
tion 11.2,� the DH problem is polynomial{time equivalent to the DL using 11.3.To do this we �rst 
onstru
t a prime q of size 160 bit satisfying q � 3 mod 4su
h that q + 1 is B{smooth, then the 
urve E : y2 = x3 + x de�ned over Fqhas smooth order q + 1.Now �nd a multiple lq of size 1024 bits su
h that p = lq � 1 is prime andsatis�es p � 3 mod 4, again this means that the 
urve E : y2 = x3+x de�nedover Fp has order lq.Now 
onsider the DH problem in the 
y
li
 subgroup of E(Fp) of order q.Sin
e E=Fp is supersingular, the q{th roots of unity are 
ontained in Fp2and we 
an apply the Tate pairing over this �eld to solve the DH de
isionproblem. But sin
e we have also 
onstru
ted an ellipti
 
urve with smoothorder de�ned over Fq , we 
an also apply Maurers result implying that onE=Fp the DH problem and the DL problem are polynomially equivalent.Antoine Joux has indeed 
onstru
ted a 
urve of this type (see the forth
omingpreprint by Joux and myself[JN00℄).But we 
an also use the 
omplex multipli
ation method in order to produ
e
urves with the required properties.Consider for example the primeq = 2 � 32 � 52 � 74 � 114 � 132 � 172 � 194 � 234 � 294 � 414 � 432 � 472 � 534 � 592 � 712+1:By 
onstru
tion this prime splits in Q(p�2) and hen
e gives rise to an ellipti

urve given by the quadrati
 twist of y2 = x3 + 4x2 + 2x over Fq of tra
e 2.This 
urve has smooth group order q � 1.Now observe that the primep = 10520271803096747014481979765760257331100679605646347718996561806137464308594161644227333072555176902458828154778255387030653804798408032040744347318340517682234135681757165693690915308877084767136052958967927432 � q2 + 1106



11.5. INVERSE FUNCTIONS TO THE TATE PAIRING 107also splits in Q(p�2), so again will give us an ellipti
 
urve y2 = x3+4x2+2xnow over Fp . Sin
e q2jp � 1, this ellipti
 
urve has a subgroup of order q.Also, it is 
he
ked easily that this 
urve possesses a q{torsion point P withthe property that hP; P i 6= 1.11.5 Inverse Fun
tions to the Tate PairingWe will now 
onsider the 
onsequen
es the existen
e of an easily 
omputableinverse to the Tate pairing would have.An inverse to the Tate pairing is understood to be a group homomorphism� : �l ! E(Fq )[l℄ su
h that h�(�); P0i = � holds.Consider k = Fp su
h that ljp � 1, but k does not 
ontain higher roots ofunity of l{order. Let �0 be a primitive l{th root of unity.Now 
hoose an ellipti
 
urve E de�ned over Fp of Tra
e 2, that is jEj = p�1.Let P0 be a �xed l{torsion point. We know that hP0; P0i = �0 6= 1 holds.But then we know that this must be true for ea
h point of order l in hP0i,sin
e for P 2 hP0i, we have P = nP0 with 1 � n < l. It follows thathP; P i = hnP0; nP0i = hP0; P0in2 6= 1:Now we use this setting to solve the DH de
ision problem in the 
y
li
 sub-group �l � F�q as follows:Given �0; �a0 ; �b0 as well as �
0. We have to de
ide, whether 
 = ab holds.To do this we 
ompute �(�0) = P , �(�a0 ) = Pa,�(�b0) = Pb and �(�
0) = P
.We have so Pa = aP; Pb = bP and P
 = 
P .But now we 
an apply the method des
ribed above in order to solve theDH de
ision problem on E. Hen
e we 
an determine in O(log p) operations,whether 
 = ab holds on E and thus in �l.So if one 
an �nd an inverse � to the Tate pairing, whi
h 
an be 
omputedin O(log p) operations, we would be able to solve the DH de
ision problemin Fp in O(log p) operations.The following points seem worth pointing out:107



11.5. INVERSE FUNCTIONS TO THE TATE PAIRING 108� At the moment the only method available to 
ompute an inverse tothe Tate pairing relies on the 
omputation of suÆ
iently many dis
retelogarithms in F�p , hen
e has subexponential 
omplexity.� The 
onstru
tion of ellipti
 
urves of tra
e 2 over arbitrary prime �eldsFp seems to be a hard problem.Menezes and Vanstone have pointed out, that the se
urity of the XTR 
ryp-tosystem proposed by A. Lenstra and E. Verheul in 2000 is 
losely related tosupersingular 
urves over Fp2 .Indeed 
hoose a supersingular 
urve E over Fp2 , then the Tate pairing isde�ned over an extension of degree 3, i. e. over Fp6 . The points of order l onE, where l divides p2� p+ 1 are mapped dire
tly into the XTR subgroup oforder l. Verheul [Ver00℄ has shown how by applying the Weil pairing with aspe
ial endomorphism the de
ision DiÆe{Hellman problem 
an be solved onsu
h a supersingular ellipti
 
urve (the endomorphism is des
ribed in table11.1).He reasons that an eÆ
iently 
omputable embedding of the XTR subgroupinto the group of points on a supersingular ellipti
 
urve is not likely to existsin
e otherwise the de
ision DH in the XTR subgroup would be weak. If thisreasoning is 
orre
t still remains to be seen.
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