ERRATUM:

P-ALCOVES AND NONEMPTINESS OF AFFINE DELIGNE-LUSZTIG VARIETIES

P-ALCÔVES ET VACUITÉ DE VARIÉTÉS DE DELIGNE-LUSZTIG AFFINES

ULRICH GÖRTZ, XUHUA HE, AND SIAN NIE

In this erratum, we would like to rectify two errors in our paper [2]. In both cases, the mistake has no consequences for other parts of the paper; only the statements of the corrected propositions below are used.

Reduction to adjoint groups. Proposition 2.2.1 does not hold as stated, and should be replaced by the following:

Proposition 0.0.1. Assume that chark does not divide the order of $\pi_{1}\left(\mathbf{G}_{\mathrm{ad}}\right)$. Let $\lambda \in \pi_{0}(\mathrm{Flag})=\pi_{1}(\mathbf{G})_{\Gamma}$, denote by λ_{ad} its image under the map $\pi_{0}($ Flag $) \rightarrow \pi_{0}\left(\right.$ Flag $\left._{\text {ad }}\right)$, and denote by Flag $_{\lambda}$ and $\mathrm{Flag}_{\mathrm{ad}, \lambda_{\mathrm{ad}}}$ the corresponding connected components. Then the projection $\mathbf{G} \rightarrow \mathbf{G}_{\mathrm{ad}}$ induces an isomorphism

$$
\operatorname{Flag}_{\lambda} \xrightarrow{\cong} \text { Flag }_{\mathrm{ad}, \lambda_{\mathrm{ad}}} .
$$

If the map $\pi_{0}(\mathrm{Flag}) \rightarrow \pi_{0}\left(\mathrm{Flag}_{\mathrm{ad}}\right)$ is injective, then the homomorphism $\mathbf{G} \rightarrow \mathbf{G}_{\text {ad }}$ induces an immersion

$$
\text { Flag } \rightarrow \text { Flag }_{\text {ad }} .
$$

The proof given in the paper proves the above statement. The problem with the original statement is that the map $\pi_{0}($ Flag $) \rightarrow \pi_{0}\left(\mathrm{Flag}_{\text {ad }}\right)$ is not injective in general; this was erroneously claimed in part (2) of the original statement, and implicitly used in part (1).

[^0]Assume that \mathbf{G} is semisimple. In this case the map $\pi_{0}(\mathrm{Flag}) \rightarrow$ $\pi_{0}\left(\mathrm{Flag}_{\mathrm{ad}}\right)$ is injective if and only if the coinvariants $X_{*}(T)_{\Gamma}$ are torsionfree (which is true for instance, if G is of adjoint type or simply connected, see [1] 4.4.16). In fact, using the notation of [3], we can identify

$$
\pi_{0}(\text { Flag })=\pi_{1}(G)_{\Gamma}=X^{*}\left(\widehat{Z}(G)^{\Gamma}\right)=X_{*}(T)_{\Gamma} / X_{*}\left(T_{\mathrm{sc}}\right)
$$

(and likewise for $G_{\text {ad }}$), see loc. cit., page 196. In view of the commutative diagram

we see that

$$
\operatorname{ker}\left(\pi_{0}(\text { Flag }) \rightarrow \pi_{0}\left(\text { Flag }_{\text {ad }}\right)\right) \cong X_{*}(T)_{\Gamma, \text { tors }},
$$

the torsion subgroup of $X_{*}(T)_{\Gamma}$.
Some properties on Newton points. In Proposition 3.5.1, the assumption that $[b]$ be basic is missing. The correct statement is

Proposition 0.0.2. Let $[b]$ be a basic σ-conjugacy class in $\mathbf{G}(\mathbb{L})$ and $J \subset S$ with $\delta(J)=J$. Then $[b] \cap \mathbf{M}_{J}(\mathbb{L})$ contains at most one σ conjugacy class of $\mathbf{M}_{J}(\mathbb{L})$.

This statement is justified by the proof of the proposition given in [2]. The problem in the non-basic case is that in line 3 we can only really conclude that $\bar{\nu}_{x}=\bar{\nu}_{x^{\prime}}$, i.e., that the dominant Newton vectors of x and x^{\prime} coincide. However, in the sequel of the proof we use the stronger statement that $\nu_{x}=\nu_{x^{\prime}}$. If x lies in a basic σ-conjugacy class, then $\nu_{x}=\bar{\nu}_{x}$ since $\bar{\nu}_{x}$ is central.

It is easy to give counterexamples to the statement for non-basic b, e.g., take $\mathbf{G}=G L_{2}, J=\emptyset$, i.e., $\mathbf{M}=\mathbf{M}_{J}$ is the diagonal torus. Then the diagonal matrices with entries $(\epsilon, 1)$, and $(1, \epsilon)$, resp., are σ-conjugate in $\mathbf{G}(L)$, but not in $\mathbf{M}(L)$.

Acknowledgments. We thank Haifeng Wu for discussions around Proposition 2.2.1. We thank Eva Viehmann for pointing out the mistake in Proposition 3.5.1 and providing the counterexample given above.

References

[1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II, Publ. math. de l'IHES 60 (1984), 197-376.
[2] U. Görtz, X. He, S. Nie, P-alcoves and nonemptiness of affine Deligne-Lusztig varieties, Ann. sci. de l'ENS, 4^{e} série, t. 48 (2015), 647-665.
[3] T. Haines, M. Rapoport, On parahoric subgroups, Appendix to G. Pappas, M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 188-198.

Ulrich Görtz, Institut für Experimentelle Mathematik, UniverSität Duisburg-Essen, 45117 Essen, Germany

E-mail address: ulrich.goertz@uni-due.de
Xuhua He, Department of Mathematics, University of Maryland, College Park, MD 20742, USA

E-mail address: maxhhe@ust.hk
Sian Nie, Institute of Mathematics, Chinese Academy of Sciences, 100190 Beijing, China

E-mail address: niesian@amss.ac.cn

[^0]: U. G. was partially supported by the Sonderforschungsbereich TR 45 "Periods, Moduli spaces and Arithmetic of Algebraic Varieties" of the Deutsche Forschungsgemeinschaft.
 X. H. was partially supported by HKRGC grant 602011.

