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Most important research prize in mathematics

Der 30-jahrige Peter Scholze darf sich Gber 10.000 Euro Preisgeld freuen.

Mittwoch, 01. August 2018

"Nobelpreis der Mathematik"
Peter Scholze gewinnt Fields-Medaille

Der Bonner Peter Scholze ist mit einem der héchsten Preise der Mathematik aeehrt



Most important research prize in mathematics
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Fields-Medaille
Peter Scholze bekommt weltweit hochste Auszeichnung fiir
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" Peter Scholze bekommt als erster Deutscher seit 32 Jahren eine Fields-Medaille. Die Auszeichnung gilt als
Nobelpreis fiir Mathematik.
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Goal of this talk

Archimedean
fields,e.g. R, C

mod p fields,
e. g. Fp((t))

p-adic fields,
e.g.Q,

Algebraic number
fields,e. g. Q



Solving equations

Important problem in mathematics:

Understand set of solutions of an equation.



Solving equations

Important problem in mathematics:

Understand set of solutions of an equation.

@ Do solutions exist?
@ Are there only finitely many solutions? Can we count them?
Can we write them down explicitly?

@ If there are infinitely many solutions, does the set of
solutions have a (geometric) structure?



Where are we looking for solutions?

Natural numbers N=1{0,1,2,3,...}.
Integers (add negative numbers)

Z={.,-3,-2,-1,01,2,3,...}
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Where are we looking for solutions?

Natural numbers N=1{0,1,2,3,...}.
Integers (add negative numbers)

Z={.,-3,-2,-1,01,2,3,...}

Rational numbers (add fractions 3, 3, 3, ...)

Q:{%; a,beZ,b#O}

Real numbers (add all decimal numbers)

—1, —0.5, 0, 0.333..., 1, 2, 3.14159265... € R



Can we detect cases without solutions?

This is often a very hard problem, for instance:

Theorem (“Fermat’s Last Theorem”, A. Wiles)
Let n > 2 be an integer. Then the equation

xn+yn:Z

has no solutions with integers x,y, z > 1.




Can we detect cases without solutions?

This is often a very hard problem, for instance:

Theorem (“Fermat’s Last Theorem”, A. Wiles)
Let n > 2 be an integer. Then the equation

xn+yn:Z

has no solutions with integers x,y, z > 1.

For certain equations, however, it is easy to show that there are
no solutions in the integers.



Understand set of solutions in real numbers
Trivially: If no solutions in R, then no solutions in Z.

Sometimes: Good understanding of solutions in real numbers
~» understand solutions in integers.



Understand set of solutions in real numbers
Trivially: If no solutions in R, then no solutions in Z.

Sometimes: Good understanding of solutions in real numbers
~» understand solutions in integers.

Over R, can use analytic methods (Differential calculus,
derivatives, ...)
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Looking at the final digit ...

We see that the equation
ot 417 = 4y?

has no solutions with integers z,y € Z,
because the final digit can only be

left hand side z* + 17: right hand side 432
2,3,70r8, 0, 4, or 6.

More powerful: Look at more final digits.

In other words: division with remainder by 10, 100, 1000, ..., 10°.



Looking at the final digit, refined version

Could also do division with remainder by other numbers
n=234....
For instance consider the equation

2t — 17 =7y

This is “solvable mod 10” (both sides can have final digit 3, for
instance).



Looking at the final digit, refined version

Could also do division with remainder by other numbers
n=234....
For instance consider the equation

2t — 17 =7y

This is “solvable mod 10” (both sides can have final digit 3, for
instance).

But division with remainder by 7 gives remainder 1, 3, 4, or 5 on
the left, and 0 on the right.
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Binary expression:
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Division with remainder = n-adic final digit

Binary expression:

23=164+4+2+1=2* 42242+ 20 =10111,.



Division with remainder = n-adic final digit
Binary expression:
23=164+4+2+1=2"+22+2" +2°=10111,.

23 =1 mod 2,
23 =11, =3 mod 4,
23 =111, =7 mod 16.



Division with remainder = n-adic final digit

Binary expression:
23=164+4+2+1=2* 42242+ 20 =10111,.

23 =1 mod 2,
23 =11, =3 mod 4,
23 =111, =7 mod 16.

7-adic expression:
23=21+2=3-7"42-7" =32,

23 =2 mod 7.



Analytic methods

Key point: passing to limit.
A sequence of real numbers “coming arbitrarily close to each
other” converges to a limit in R.
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Key point: passing to limit.
A sequence of real numbers “coming arbitrarily close to each
other” converges to a limit in R.

@ ...not interesting in 7Z,

@ ...does not work in Q: We can approximate /2 by rational
numbers, but it is not rational itself.
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Analytic methods

Key point: passing to limit.
A sequence of real numbers “coming arbitrarily close to each
other” converges to a limit in R.

Two real numbers are close to each other if the differences lie
far to the right of the decimal point:
123.12345 is much closer to 123.12346 than to 123.22345

A limit always exists because, naively speaking, we allow
infinitely many digits to the right of the decimal point.
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difficult than having only the final digits match.

Having more digits match is a “better approximation” of the
solution from this point of view.
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@ x =85, y = 548: 52 200 608 versus 600 608




Setting up an analogy

“Solving” an equation so that the final 5 digits match is more
difficult than having only the final digits match.

Having more digits match is a “better approximation” of the
solution from this point of view.
Example (Lind-Reichardt equation: z* — 17 = 2y?)
@ r =5, y=_8: 608 versus 128
@ x =85, y = 548: 52 200 608 versus 600 608

10-adic numbers Zy:
Allow infinitely many digits, extending to the left.




Computing with 10-adic numbers

ZlO = { .. G2a1Qp; a; € {0, 1, ce ,9}}

All natural numbers are 10-adic numbers.



Computing with 10-adic numbers

ZlO = { .. G2a1Qp; a; € {0, 1, ce ,9}}

All natural numbers are 10-adic numbers. We can add and
multiply 10-adic numbers.



Computing with 10-adic numbers

ZlO = { .. G2a1Qp; a; € {0, 1, ce ,9}}

All natural numbers are 10-adic numbers. We can add and
multiply 10-adic numbers.

Surprising things may happen:

...9994+1=0, hence ...999 = —1.



Computing with 10-adic numbers

ZlO = { .. G2a1Qp; a; € {0, 1, ce ,9}}

All natural numbers are 10-adic numbers. We can add and
multiply 10-adic numbers.

Properties
@ all integers are 10-adic numbers,
@ Zi has operations +, —, -.

@ Even some fractions are 10-adic: ...6667-3=1.




Variant: p-adic numbers

Although we can compute in the set Z,, of 10-adic numbers, it
has some less nice features:

...8212890625 - ...1787109376 = 0.
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Variant: p-adic numbers

Although we can compute in the set Z,, of 10-adic numbers, it
has some less nice features:

...8212890625 - ...1787109376 = 0.

Better: p-adic numbers Z, for a prime number p.
That means: use p-adic expression, and allow it to extend
infinitely to the left.

Zg = { .. Q9Q10g; A; € {0, 1}}
Z7 = { .. Qo0a10g; a; € {0, ]., ce ,6}}
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Geometry of the p-adic numbers

Absolute value on Z,

|| !
|, = —,
P o

where n is the number of zeros at the end of p-adic expression

Example
@ 48], = [1100005], = 1/2* = 1/16,
o |23|7 = |327|7 = 1,




Geometry of the p-adic numbers

Absolute value on Z,

|| !
|, = —,
P o

where n is the number of zeros at the end of p-adic expression

4

We regard x close to y, if |z — y| small.

Some unusual features:
@ Every triangle is isosceles.

@ Any two circles are disjoint or concentric.
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The field of p-adic numbers

The field Q,: Enlarge Z, by allowing finitely many digits after
decimal point.

Example (p = 2)

0.1, =1/2, 0.01,=1/4, 1111 = —1)/2,

Q, afield: have +, —, -, /.

Uber eine nene Begriindung der Theorie der algebraischen
Zahlen.

Von K. Hensel in Berlin.

Die Analogie zwischen den Resultaten der Theorie der alge-
braischen Functionen einer Variabeln und der der algebraischen
Zahlen hat mir schon seit mehreren Jahren den Gedanken nahe ge-




The field of p-adic numbers
The field Q,: Enlarge Z, by allowing finitely many digits after
decimal point.

Example (p = 2)
0.1 =1/2, 0.0l,=1/4, ...111.15 = —1/2.

Q, afield: have +, —, -, /.

" Im allgemeinen schreiten alle diese Entwickelungen nach Po-
tenzen von p» mit ganzzahligen Exponenten fort, d. h. sie konnen
folgendermalsen geschrieben werden:

A A_, '
@) X~7‘+"‘+T+AO+A1P+'“1

fiir diese Zahlen erhiilt man also genau dieselben Entwickelungen
wie fiir eine algebraische Function in der Umgebung einer regu-
liren Stelle.




The field of p-adic numbers
The field Q,: Enlarge Z, by allowing finitely many digits after
decimal point.

Example (p = 2)
0.1y =1/2, 0.01,=1/4, ...111.13=—1/2.

Q, afield: have +, —, -, /.

Z, = {Zaipi; a; € {0,1,...,p—1}},
i=0

Qp:{za1p17 ZOEZ, ale{()?]‘?’p_l}}

=10



p-adic geometry

Tate (around 1962): Rigid analytic spaces

Huber (around 1990): Adic spaces
~ reasonable notion of p-adic manifold/space.



p-adic geometry
Tate (around 1962): Rigid analytic spaces

Huber (around 1990): Adic spaces
~ reasonable notion of p-adic manifold/space.

Peter Scholze has revolutionized the field
of p-adic geometry.

M. Rapoport, Laudatio for P. Scholze, ICM 2018




p-adic and complex geometry are similar

Theorem (Scholze)
Let C'/Q, be complete and algebraically closed. Let X be a
smooth proper rigid analytic space over C. For all i > 0, we have

> dimg H (X, Q%) = dime Hip(X/C) = dimg, H.,(X,Q,)

Jj=0




The local-global principle

Theorem (Hasse-Minkowski)
Letn > 1andleta; € Q, 1 <i <n. Then the equation

2 2 2
a1x] + agxy + -+ apxy, =1

has a solution x; € Q, if and only if it has a solution in R and in
every field Q,,.




The local-global principle

Theorem (Hasse-Minkowski)
Letn > 1andleta; € Q, 1 <i <n. Then the equation

2 2 2
a1x] + agxy + -+ apxy, =1

has a solution x; € Q, if and only if it has a solution in R and in
every field Q,,.

Example (Hasse-Minkowski for n = 1)

ar? = 1 solvable in Q < a is a square # 0 < a > 0 and every
prime p occurs with even exponent in factorization of a
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...can we write them down?

Linear: 20 — 6 =0, xr = g = 3.
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When solutions exist ...

...can we write them down?

Linear: 20 — 6 =0, xr = g = 3.

b
ar —b=20, a+#0, x =
a

|
M
=]

Quadratic:

ar®* +br+c=0, a#0,

. —b+Vb?% — 4ac or 1 —b —/b? — 4dac

2a 2a

€ R.
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Galois: No formula for higher degree! (=~ 1830)

Even worse: For example, the zeros of the polynomial
x® + 5t — 2023 — 4022 4+ 5r + 1
cannot be expressed in terms of +, —, -, / and {/—.
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Galois: No formula for higher degree! (=~ 1830)
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Galois groups
Distinguish kind of solution of polynomial by their symmetry
group

Definition (informal)
The Galois group of a polynomial is the group of permutations of
the zeros of the polynomial that are compatible with 4, —, -.




Galois groups

Distinguish kind of solution of polynomial by their symmetry
group
Definition (informal)

The Galois group of a polynomial is the group of permutations of
the zeros of the polynomial that are compatible with 4, —, -.

Definition

Let f be a polynomial with coefficients in a field K. Let L be the
smallest field containing K and all zeros of f (in some
algebraically closed extension field).

The Galois group of f is the group of field automorphisms

L — L which fix all elements of K.




Solvability in terms of Galois groups

Theorem
If f is a polynomial over Q whose solutions can be expressed in
terms of +, —, -, / and {/— starting from rational numbers, then

the Galois group of f is solvable.

Example
The Galois group of the polynomial

2° + 5zt — 202% — 402% + 5z + 1

is the symmetric group S5 which is not solvable.




Can we understand Galois groups?

Definition (Absolute Galois group)

Let K be a field, and let K be a separable closure of K. We call
Gk = Gal(K/K) the absolute Galois group of K.
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Definition (Absolute Galois group)

Let K be a field, and let K be a separable closure of K. We call
Gk = Gal(K/K) the absolute Galois group of K.

Example (K = Q)

Gy is highly mysterious.

Understanding it properly is one of the principal goals of number
theory.

y




Can we understand Galois groups?

Definition (Absolute Galois group)

Let K be a field, and let K be a separable closure of K. We call
Gk = Gal(K/K) the absolute Galois group of K.

Example (K = Q)

Gy is highly mysterious.

Understanding it properly is one of the principal goals of number
theory.

Example (K = Q,)
G, Is somewhat easier to understand, but still complicated.




The absolute Galois group of a finite field

Definition (Finite field with p elements)
Let p be a prime number. We let

F,:={0,1,...,p—1}

with addition and multiplication “modulo p”.

In particular: 14 ---+1 =0inF,. (“Characteristic p")
———

p summands



The absolute Galois group of a finite field

Definition (Finite field with p elements)
Let p be a prime number. We let

F,:={0,1,...,p—1}

with addition and multiplication “modulo p”.

In particular: 14 ---+1 =0inF,. (“Characteristic p")
———

p summands

Remark
Let K be a field of characteristic p. Then

(x+y)P =aP+y? forallz,y € K.
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Frobenius homomorphism.




Remark
Let K be a field of characteristic p. Then

(x+y)P =aP+¢? forallz,y € K.

In other words: The map z — z? is a field homomorphism, the
Frobenius homomorphism.

Consequence

The absolute Galois group G¥, is isomorphic to Z, the profinite
completion of Z. It is topologically generated by the Frobenius
automorphism.




How far apart are characteristic 0 and p?
Compare
Q, = {iaipi; io0 € Z, a; € {0,1,...,p—1}}.
Versus h
F,((t) = {iaiti; i0c€Z, a; € {0,1,...,p— 1}}.

These descriptions look similar, but addition is very different!



Perfectoid fields and tilting

Definition (Scholze)

A perfectoid field is a field K, complete with respect to a
non-discrete non-archimedean valuation, with residue
characteristic p > 0 with ring of integers Oy = {z € K; |z| < 1},
such that the map

OK/p—>OK/p, {L’i—>$p,

IS surjective.

Example
Qp(pl/poo )" Qp (pp )" Fp((?)) (tl/poo )"




Tilting: Switch from char. 0 to positive
characteristic

Every perfectoid field K has a tilt k.

K’ = Frac( im Ok /p).

TP

The tilt KX” has characteristic p: 1+ ---+1=0in K”.

Theorem (Fontaine, Wintenberger)

GK = GKb.




Perfectoid spaces

Definition (Scholze)

Let K be a perfectoid field. A perfectoid space over K is an adic
space which is locally isomorphic to an affinoid adic space, i.e.,
an adic space of the form Spa(R, R™) where R is a perfectoid
K-algebra.




Perfectoid spaces

Definition (Scholze)

Let K be a perfectoid field. A perfectoid space over K is an adic
space which is locally isomorphic to an affinoid adic space, i.e.,
an adic space of the form Spa(R, R™) where R is a perfectoid
K-algebra.

Tilting for perfectoid spaces
Every perfectoid space X has a tilt X”, and both have “the same
étale covers”:

Theorem (Scholze)

1%

m(X) =2 m(X°)
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The Langlands program

Theorem (Quadratic Reciprocity Law, Gaul3)
Let p # q be prime numbers > 2, p=1 mod 4. The equation

z2=¢ mod p has a solution
if and only if the equation

z>=p mod ¢ has a solution.




The Langlands program

Theorem (Quadratic Reciprocity Law, Gaul3)
Let p # q be prime numbers > 2, p=1 mod 4. The equation

z2=¢ mod p has a solution
if and only if the equation

z>=p mod ¢ has a solution.

Example (p = 5, ¢ = 67)
The equation 22 =67=2 mod 5 has no solution.
Hence 2?>=5 mod 67 has no solution.




Class field theory

Describe the maximal abelian quotients G and G

La théorie du corps de classes a une réputation de diffi-
culté qui est en patrtie justifiée. Mais il faut faire une dis-
tinction: il n’est peut-étre pas en effet dans la science de
théorie ou tout a la fois les démonstrations soient aussi
ardues, et les résultats d’une aussi parfaite simplicité et
d’'une aussi grande puissance.

J. Herbrand, 1936



Particular instance: Modularity

Elliptic curve Modular form

=23+t —z f:H—C

holom., “highly symmetric”

Theorem (Wiles, ...)
Every elliptic curve E over QQ is modular.
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3 holom., “highly symmetric”

0.5

Theorem (Wiles, ...)
Every elliptic curve E over QQ is modular.




Particular instance: Modularity

Elliptic curve Modular form

Numbers of solutions mod p, fH—=C
p a prime number: holom., “highly symmetric”

y* = 2% + 2% — 2 mod p}

~» L-function L(E/Q, s)

0.5

Theorem (Wiles, ...)
Every elliptic curve E over QQ is modular.




Particular instance: Modularity

Elliptic curve Modular form
Numbers of solutions mod p, Fourier expansion,
p a prime number: q = exp(2miz)
#{(z,y); 0<z,y<p-1, 1—2¢"—¢"+2¢"+¢"+2¢"+- -

y* = 2% + 2% — 2 mod p}

~» L-function L(E/Q, s) ~ L-function L(f, s)

Theorem (Wiles, ...)
Every elliptic curve E over QQ is modular.




Corollary
The L-function L(E/Q, s) has a holomorphic continuation to C. J




Corollary
The L-function L(E/Q, s) has a holomorphic continuation to C.

v

Theorem (Allen, Calegari, Caraiani, Gee, Helm, Le

Hung, Newton, Scholze, Taylor, Thorne)
Let E be an elliptic curve over a CM field K. Then the
L-function of E over K has a meromorphic continuation to C.

v




Other direction: automorphic — Galois

Theorem (Scholze)

Let F' be totally real or CM, let G = Resy,o(GL,), and let X be
the locally symmetric space attached to G and a compact open
subgroup K C G(Ay). For every system of Hecke eigenvalues
occurring in the cohomology H'(X,F,), there exists a
continuous Galois representation

p: Gal(F/F) — GL,(F,)

such that Hecke eigenvalues and Frobenius eigenvalues match.




Goal of this talk

Archimedean
fields,e.g. R, C

mod p fields,
e. g. Fp((t))
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Why are we doing this?
Fascinating to

@ understand problems that have been studied for more than
2000 years,
@ gain conceptual understanding of surprising patterns,

@ teach the subject to others.
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(Polynomial) equations are everywhere:

@ Elliptic curve cryptography
@ Theoretical physics

@ Computer science

@ Biochemistry
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What is this good for?

(Polynomial) equations are everywhere:

@ Elliptic curve cryptography

@ Theoretical physics

@ Computer science

@ Biochemistry

A HILBERT SCHEME IN COMPUTER VISION

CHRIS AHOLT, BERND STURMFELS AND REKHA THOMAS

ABSTRACT. Multiview geometry is the study of two-dimensional images
of three-dimensional scenes, a foundational subject in computer vision.
We determine a universal Grobner basis for the multiview ideal of n
generic cameras. As the cameras move, the multiview varieties vary in a
family of dimension 11n—15. This family is the distinguished component
of a multigraded Hilbert scheme with a unique Borel-fixed point. We
present a combinatorial study of ideals lying on that Hilbert scheme.




What is this good for?

(Polynomial) equations are everywhere:

@ Elliptic curve cryptography
@ Theoretical physics
@ Computer science

@ Biochemistry
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MODULI SPACES AND MACROMOLECULES

R. C. PENNER

ABSTRACT. Techniques from moduli spaces are applied to biological macro-
molecules. The first main result provides new a priori constraints on protein
g(‘omctxy discovered empirically and confirmed computationally. The second
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Congratulations, Peter!

Seminar: Etale Kohomologie, WS 2007/08
"Programm': Wir haben die ersten drei Kapitel des Artikels von Deligne in SGA 4 1/2 gelesen
Vortrige

1 Treuflacher Abstieg P. Scholze

2 Grothendieck-Topologien S. Hahne

3 Etale Morphismen T. Richarz

4 Die etale Fundamentalgruppe R. Kucharczyk

5 Henselsche Ringe A. Muller

6 Etale Garben P. Hartwig

7 Halme, direktes Bild A. lvanov

8 Die Brauer-Gruppe R. Kucharczyk

Q NDer Caty vann Teean F Hellmann
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