Because of the attack on the computer network of the University of Duisburg-Essen, some content (in particular some image files) cannot be accessed because it is stored on central servers of the university.
Abstract Niels uit de Bos
Niels uit de Bos will speak on
Ramified geometric Langlands: an example
Abstract: The geometric Langlands correspondence is a geometrized analogue of the Langlands correspondence for function fields. I will briefly explain and motivate this analogue and then focus on the specific case of rank 2 bundles on $\mathbb{P}^1$ with tame ramification at 4 points, where everything becomes very explicit and concrete. In particular, given a rank 2 local system on $\mathbb{P}^1 \setminus \{\infty, 0, 1, t\}$ with unipotent monodromy, I construct its corresponding Hecke eigensheaf and in addition (but this will probably not be discussed in the talk), I can explicitly describe how the Hecke operators act on a basis of the cusp forms. The existence of such an eigensheaf was already known in this case, but its explicit calculation may still lead to some interesting results and moreover, I give a new proof that seems likely to be straightforwardly generalisable to the case where the 4 distinct ramification points are replaced by any divisor of degree 4 on $\mathbb{P}^1$ --- a case where the existence of eigensheaf was not yet known.