Arithmetic of elliptic curves over function fields
Organizers: Massimo Bertolini, Rodolfo Venerucci
Room: WSC-N-U-3.05
The goal of this seminar is to discuss the main features of the arithmetic theory of elliptic curves over function fields of positive characteristic, including the known results on the Birch and Swinnerton-Dyer conjecture and the modularity theorems.
Program: pdf
Termin | Vortragender | Titel |
---|---|---|
20.04.2017, 14:15 | Andrea Agostini | Elliptic curves over function fields and the BSD conjecture |
27.04.2017, 14:15 | Aprameyo Pal | Zeta functions and the Weil conjectures |
04.05.2017, 14:15 | Matteo Tamiozzo | The Shioda-Tate formula |
11.05.2017, 14:15 | Heer Zhao | Brauer groups and the Tate conjecture |
18.05.2017, 14:15 | Lorenzo Mantovani | Brauer groups and Shafarevic-Tate groups |
08.06.2017, 14:15 | Vytas Paskunas | Analytic modularity of elliptic curves |
22.06.2017, 14:15 | Carlos de Vera Piquero | Drinfeld upper half plane |
29.06.2017, 14:15 | Alexandre Pyvovarov | Drinfeld modules and modular schemes |
06.07.2017, 14:15 | Rodolfo Venerucci | Drinfeld reciprocity law I |
13.07.2017, 14:15 | Lennart Gehrmann | Drinfeld reciprocity law II |
20.07.2017, 14:15 | Matteo Tamiozzo | Gross-Zagier formula and BSD in rank one |
27.07.2017, 14:15 | Program discussion for the next semester |