Infinity categories and an application

Room: WSC-N-U-3.05

The aim of this term ist to learn basic notions of infinity-categories (we will use quasi-categories as an incarnation of this concept) that allow to prove gluing and descent theorems for refined versions of derived categories (for which the corresponding statements may fail). Two applications of this machinery, have been very general results on formal gluing as in articles of Bhatt and Batt—Halpern-Leistner and the construction of a good six-functor formalism for algebraic stacks by Liu and Zheng.

A preliminary programm: pdf

Die Titel der Vorträge und Daten finden Sie im Anhang. Die Uhrzeit ist wie letztes Semester 14:15.

Termin Vortragender Titel
12.04.2018 Jochen Heinloth Introduction
19.04.2018 Maria Yakerson From categories to simplicial sets and quasicategories
26.04.2018 Jin Fangzhou Basic categorical notions in quasicategories
03.05.2018 Rakesh Pawar Lifting properties and applications to quasicategories
17.05.2018 Marc Levine Interlude on model categories
24.05.2018 Konstantin Jakob Joyal’s model structure
07.06.2018 Daniel Harer Back to derived categories and functors
14.06.2018 Gabriela Guzman Adjoint functor theorems
21.06.2018 Ulrich Görtz Interlude: The Barr-Beck theorem and descent
28.06.2018 Aprameyo Pal Symmetric monoidal quasicategories
05.07.2018 Lennart Gehrmann The Barr-Beck-Lurie theorem
12.07.2018 Tom Bachmann Application: Tannaka-duality and gluing
19.07.2018 Program discussion